JP2018116832A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2018116832A
JP2018116832A JP2017006715A JP2017006715A JP2018116832A JP 2018116832 A JP2018116832 A JP 2018116832A JP 2017006715 A JP2017006715 A JP 2017006715A JP 2017006715 A JP2017006715 A JP 2017006715A JP 2018116832 A JP2018116832 A JP 2018116832A
Authority
JP
Japan
Prior art keywords
battery
batteries
vertical direction
facing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017006715A
Other languages
Japanese (ja)
Other versions
JP6717213B2 (en
Inventor
知美 淺井
Tomomi Asai
知美 淺井
雅貴 内山
Masaki Uchiyama
雅貴 内山
保幸 大場
Yasuyuki Oba
保幸 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017006715A priority Critical patent/JP6717213B2/en
Publication of JP2018116832A publication Critical patent/JP2018116832A/en
Application granted granted Critical
Publication of JP6717213B2 publication Critical patent/JP6717213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery module capable of suppressing variations in cooling performances of respective batteries from being caused due to a heat exchanger.SOLUTION: A battery module 1 includes a heat exchanger 2, a thermal diffusion part 3, a heat conduction part 4, and a plurality of batteries 5. The batteries 5 are in thermal contact with the heat conduction part 4 from at least the upper side of the heat conduction part 4, and are disposed at positions that overlap the thermal diffusion part 3 and the heat conduction part 4 in the vertical direction Z. The thermal diffusion part 3 has a higher thermal conductivity than the heat conduction part 4. When a surface of a lower side of each battery 5 is defined as a reference surface 51, the reference surfaces 51 of the batteries 5 are disposed at a plurality of positions in the vertical direction Z. The top surface 31 of the thermal diffusion part 3 has a plurality of facing portions 311 facing the reference surfaces 51 of the batteries 5 in the vertical direction Z. At least one of the facing portions 311 facing the reference surfaces 51 of the batteries 5 other than the lowermost battery 501 among the batteries 5 in the vertical direction Z is located above the facing portion 311 facing the reference surface 51 of the lowermost battery 501 in the vertical direction Z.SELECTED DRAWING: Figure 1

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

電池モジュールとして、例えば特許文献1に開示されたものがある。特許文献1に記載の電池モジュールは、一方向に並んで配された複数の電池と、複数の電池の並び方向に直交する上下方向の下側に配置された熱交換器とを有する。そして、特許文献1に記載された電池モジュールは、複数の電池と熱交換器との間の熱伝導性を向上させるべく、複数の電池と熱交換器との間に可撓性を有するゲルを介在させている。   An example of the battery module is disclosed in Patent Document 1. The battery module described in Patent Literature 1 includes a plurality of batteries arranged in one direction and a heat exchanger disposed on the lower side in the vertical direction perpendicular to the arrangement direction of the plurality of batteries. And the battery module described in patent document 1 is a gel which has flexibility between a some battery and a heat exchanger in order to improve the heat conductivity between a some battery and a heat exchanger. Intervene.

特許文献1に記載の電池モジュールを組み付けるにあたっては、例えば、熱交換器の上面にゲルを塗布し、当該ゲルの上面に、並んで配された複数の電池を押し付けるように配置する。これにより、ゲルが変形しながら複数の電池のゲル側の面である密着面に確実に密着する。それゆえ、ゲルが電池の密着面に密着しないことに起因して各電池から熱交換器までの伝熱経路における熱抵抗が大きくなることを抑制できる。   In assembling the battery module described in Patent Document 1, for example, a gel is applied to the upper surface of the heat exchanger, and a plurality of batteries arranged side by side are pressed onto the upper surface of the gel. Thereby, it adheres firmly to the contact surface which is the surface by the side of the gel of a some battery, deform | transforming a gel. Therefore, it is possible to suppress an increase in thermal resistance in the heat transfer path from each battery to the heat exchanger due to the gel not sticking to the contact surface of the battery.

特開2014−127321号公報JP 2014-127321 A

しかしながら、電池モジュールにおいては、各電池の寸法誤差や複数の電池の組付誤差等に起因して、上下方向における複数の電池の前記密着面の位置にずれが生じる場合がある。この場合、各電池の密着面と熱交換器との上下方向の間隔にばらつきが生じ、各電池の密着面と熱交換器との間に配されているゲルの上下方向の厚みにもばらつきが生じる。これに伴い、各電池から熱交換器までの伝熱経路における熱抵抗にばらつきが生じてしまう。これは、各電池から熱交換器までの伝熱経路における熱抵抗が、各電池と熱交換器との間に配されたゲルの厚みに依存することによる。その結果、熱交換器によって各電池を均等に冷却することができず、複数の電池において温度ばらつきが発生してしまうおそれがある。   However, in the battery module, there may be a deviation in the positions of the contact surfaces of the plurality of batteries in the vertical direction due to a dimensional error of each battery, an assembly error of the plurality of batteries, and the like. In this case, the vertical distance between the contact surface of each battery and the heat exchanger varies, and the vertical thickness of the gel disposed between the contact surface of each battery and the heat exchanger also varies. Arise. Along with this, variation occurs in the thermal resistance in the heat transfer path from each battery to the heat exchanger. This is because the thermal resistance in the heat transfer path from each battery to the heat exchanger depends on the thickness of the gel disposed between each battery and the heat exchanger. As a result, each battery cannot be uniformly cooled by the heat exchanger, and there is a possibility that temperature variations occur in a plurality of batteries.

本発明は、かかる課題に鑑みてなされたものであり、熱交換器による各電池の冷却性能にばらつきが生じることを抑制することができる電池モジュールを提供しようとするものである。   This invention is made | formed in view of this subject, and aims at providing the battery module which can suppress that dispersion | variation arises in the cooling performance of each battery by a heat exchanger.

本発明の一態様は、熱交換器(2)と、
前記熱交換器に熱的に接触した熱拡散部(3)と、
前記熱拡散部の上面(31)に熱的に接触した熱伝導部(4)と、
前記熱伝導部の少なくとも上側から前記熱伝導部に熱的に接触するとともに、前記熱拡散部及び前記熱伝導部と上下方向(Z)に重なる位置に配された複数の電池(5)と、を有し、
前記熱拡散部は、前記熱伝導部よりも熱伝導率が高く、
前記電池の下側の面を基準面(51)と定義したとき、複数の前記電池の前記基準面は、上下方向の複数の位置に配されており、
前記熱拡散部の前記上面は、複数の前記電池の前記基準面と上下方向に対向する複数の対向部(311)を有し、
複数の前記電池のうち前記基準面が最下端に位置する前記電池を最下端電池(501)と定義したとき、複数の前記電池のうちの前記最下端電池以外の前記電池の前記基準面と上下方向に対向する前記対向部の少なくとも一つは、前記最下端電池の前記基準面と上下方向に対向する前記対向部よりも上側に位置している、電池モジュール(1)にある。
One aspect of the present invention is a heat exchanger (2),
A thermal diffusion section (3) in thermal contact with the heat exchanger;
A heat conducting part (4) in thermal contact with the upper surface (31) of the thermal diffusion part;
A plurality of batteries (5) disposed in positions that are in thermal contact with the heat conduction part from at least the upper side of the heat conduction part and overlap the heat diffusion part and the heat conduction part in the vertical direction (Z); Have
The thermal diffusion part has higher thermal conductivity than the thermal conduction part,
When the lower surface of the battery is defined as a reference surface (51), the reference surfaces of the plurality of batteries are arranged at a plurality of positions in the vertical direction,
The upper surface of the heat diffusion portion has a plurality of facing portions (311) facing the reference surfaces of the plurality of batteries in the vertical direction,
When the battery in which the reference plane is located at the lowest end among the plurality of batteries is defined as the lowest end battery (501), the reference plane of the batteries other than the lowest end battery among the plurality of batteries is vertically At least one of the facing portions facing in the direction is in the battery module (1), which is located above the facing portion facing in the vertical direction the reference surface of the bottom end battery.

前記電池モジュールにおいて、複数の電池のうちの最下端電池以外の電池の基準面と上下方向に対向する対向部の少なくとも一つは、最下端電池の基準面と上下方向に対向する対向部よりも上側に位置している。それゆえ、複数の電池の基準面と、熱拡散部の上面の複数の対向部との間の上下方向の間隔にばらつきが生じることを抑制することがきできる。これにより、熱伝導部における複数の電池の基準面と上下方向に重なる領域の厚みにばらつきが生じることを抑制することができる。それゆえ、各電池から熱拡散部までの伝熱経路における熱抵抗値に、ばらつきが生じることを抑制することができる。   In the battery module, at least one of the facing portions facing the reference surface of the battery other than the lowest battery among the plurality of batteries in the vertical direction is more than the facing portion facing the reference surface of the bottom battery in the vertical direction. Located on the upper side. Therefore, it is possible to suppress variation in the vertical spacing between the reference surfaces of the plurality of batteries and the plurality of facing portions on the upper surface of the thermal diffusion portion. Thereby, it can suppress that dispersion | variation arises in the thickness of the area | region which overlaps with the reference plane of the some battery in a heat conductive part at an up-down direction. Therefore, it is possible to suppress the occurrence of variation in the thermal resistance value in the heat transfer path from each battery to the heat diffusion portion.

以上のごとく、前記態様によれば、熱交換器による各電池の冷却性能にばらつきが生じることを抑制することができる電池モジュールを提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
As described above, according to the aspect, it is possible to provide a battery module that can suppress variation in the cooling performance of each battery by the heat exchanger.
In addition, the code | symbol in the parenthesis described in the means to solve a claim and a subject shows the correspondence with the specific means as described in embodiment mentioned later, and limits the technical scope of this invention. It is not a thing.

実施形態1における、電池モジュールの全体断面図。1 is an overall cross-sectional view of a battery module according to Embodiment 1. FIG. 実施形態1における、電池モジュールの上面図。FIG. 3 is a top view of the battery module in the first embodiment. 図2の、III−III線矢視断面図。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 図1の、一部拡大図。The partially expanded view of FIG. 実施形態1における、熱拡散部の斜視図。FIG. 3 is a perspective view of a heat diffusion unit in the first embodiment. 実施形態2における、電池モジュールの全体断面図。FIG. 4 is an overall cross-sectional view of a battery module in Embodiment 2. 実施形態3における、電池モジュールの全体断面図。FIG. 4 is an overall cross-sectional view of a battery module according to Embodiment 3. 実施形態3における、熱拡散部の斜視図。The perspective view of the thermal diffusion part in Embodiment 3. FIG. 実施形態4における、電池モジュールの全体断面図。FIG. 6 is an overall cross-sectional view of a battery module in a fourth embodiment. 図9の、A−A線矢視断面図。FIG. 10 is a cross-sectional view taken along line AA in FIG. 9. 実施形態4における、電池モジュールの製造方法を説明するための断面図であって、金属薄板変形前の状態の図。It is sectional drawing for demonstrating the manufacturing method of the battery module in Embodiment 4, Comprising: The figure of the state before a metal thin plate deformation | transformation. 実施形態4における、電池モジュールの製造方法を説明するための断面図であって、金属薄板変形後の状態の図。It is sectional drawing for demonstrating the manufacturing method of the battery module in Embodiment 4, Comprising: The figure of the state after a metal thin plate deformation | transformation.

(実施形態1)
電池モジュールの実施形態につき、図1〜図5を用いて説明する。
本実施形態の電池モジュール1は、図1に示すごとく、熱交換器2と熱拡散部3と熱伝導部4と複数の電池5とを有する。熱拡散部3は、熱交換器2に熱的に接触している。熱拡散部3は、熱伝導部4よりも熱伝導率が高い。熱伝導部4は、熱拡散部3の上面31に熱的に接触している。複数の電池5は、熱伝導部4の少なくとも上側から熱伝導部4に熱的に接触している。図1、図3に示すごとく、熱拡散部3及び熱伝導部4と上下方向Zに重なる位置に配されている。なお、熱拡散部3と熱伝導部4とが並ぶ方向を上下方向Zとする。上下方向Zにおける熱拡散部3に対する熱伝導部4側を上側、その反対側を下側とする。
(Embodiment 1)
An embodiment of a battery module will be described with reference to FIGS.
As shown in FIG. 1, the battery module 1 of the present embodiment includes a heat exchanger 2, a heat diffusing unit 3, a heat conducting unit 4, and a plurality of batteries 5. The thermal diffusion unit 3 is in thermal contact with the heat exchanger 2. The thermal diffusion unit 3 has a higher thermal conductivity than the thermal conduction unit 4. The heat conducting unit 4 is in thermal contact with the upper surface 31 of the heat diffusing unit 3. The plurality of batteries 5 are in thermal contact with the heat conducting unit 4 from at least the upper side of the heat conducting unit 4. As shown in FIGS. 1 and 3, the heat diffusing unit 3 and the heat conducting unit 4 are arranged at positions overlapping the vertical direction Z. Note that the direction in which the heat diffusing unit 3 and the heat conducting unit 4 are arranged is the vertical direction Z. The heat conduction part 4 side with respect to the heat diffusion part 3 in the vertical direction Z is the upper side, and the opposite side is the lower side.

図1に示すごとく、電池5の下側の面を基準面51と定義したとき、複数の電池5の基準面51は、上下方向Zの複数の位置に配されている。熱拡散部3の上面31は、複数の電池5の基準面51と上下方向Zに対向する複数の対向部311を有する。ここで、複数の電池5のうち基準面51が最下端に位置する電池5を最下端電池501と定義する。このとき、複数の電池5のうちの最下端電池501以外の電池5の基準面51と上下方向Zに対向する対向部311の少なくとも一つは、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。   As shown in FIG. 1, when the lower surface of the battery 5 is defined as a reference surface 51, the reference surfaces 51 of the plurality of batteries 5 are arranged at a plurality of positions in the vertical direction Z. The upper surface 31 of the heat diffusion unit 3 has a plurality of facing portions 311 that face the reference surfaces 51 of the plurality of batteries 5 in the vertical direction Z. Here, the battery 5 in which the reference plane 51 is located at the lowermost end among the plurality of batteries 5 is defined as the lowermost end battery 501. At this time, at least one of the facing portions 311 facing the reference surface 51 of the batteries 5 other than the lowest battery 501 in the vertical direction Z among the plurality of batteries 5 is the reference surface 51 of the lowest battery 501 and the vertical direction Z. It is located above the facing portion 311 facing the.

電池モジュール1は、装置の電力源として用いられる。例えば、電池モジュール1を、内燃機関用の回転電機を駆動させるための動力源とすることができる。   The battery module 1 is used as a power source for the apparatus. For example, the battery module 1 can be used as a power source for driving a rotating electrical machine for an internal combustion engine.

本実施形態において、電池5は、リチウムイオン二次電池である。また、電池5は、外装が鉄やアルミニウム等の金属からなる、いわゆる缶型の電池である。図1〜図3に示すごとく、電池5は、電池本体50と、電池本体50から上側に突出した一対の端子52を有する。電池本体50の下面が基準面51である。本実施形態において、基準面51は、上下方向Zに直交する平面であり、下側を向く面である。   In the present embodiment, the battery 5 is a lithium ion secondary battery. The battery 5 is a so-called can-type battery whose exterior is made of a metal such as iron or aluminum. As shown in FIGS. 1 to 3, the battery 5 includes a battery main body 50 and a pair of terminals 52 protruding upward from the battery main body 50. The lower surface of the battery body 50 is a reference surface 51. In the present embodiment, the reference surface 51 is a plane orthogonal to the up-down direction Z and is a surface facing downward.

電池5は、上下方向Zに直交する方向の一つに厚みを有する扁平な板状を呈している。本実施形態において、複数の電池5は、上下方向Zの寸法を除いて互いに同等の形状を有する。図1、図2に示すごとく、複数の電池5は、上下方向Zに直交する並び方向Xに並んで電池構造体10を構成している。また、電池構造体10は、並び方向Xに拘束されている。複数の電池5は、電池5の厚み方向に並んで配されて電池構造体10を構成している。電池構造体10において、隣り合う電池5間には、電池本体50同士が電気的に接触することを防止するための絶縁材101が配されている。   The battery 5 has a flat plate shape having a thickness in one of the directions orthogonal to the vertical direction Z. In the present embodiment, the plurality of batteries 5 have the same shape except for the dimension in the vertical direction Z. As shown in FIGS. 1 and 2, the plurality of batteries 5 constitutes a battery structure 10 that is aligned in the alignment direction X orthogonal to the vertical direction Z. Further, the battery structure 10 is constrained in the alignment direction X. The plurality of batteries 5 are arranged side by side in the thickness direction of the battery 5 to constitute the battery structure 10. In the battery structure 10, an insulating material 101 for preventing the battery main bodies 50 from being in electrical contact is disposed between the adjacent batteries 5.

電池構造体10は、並び方向Xの両側から、拘束部材100によって並び方向Xに拘束されている。拘束部材100は、電池構造体10の両側に配された一対のエンドプレート11と、一対のエンドプレート11を接続する接続部材12とを有する。接続部材12の両端は、エンドプレート11に固定されている。これにより、電池構造体10は、並び方向Xの両側から、拘束部材100によって並び方向Xに拘束されている。なお、エンドプレート11と並び方向Xの端部に配された電池5との間には、断熱材13が配されている。また、電池構造体10が並び方向Xに拘束されていれば、他の拘束手段を採用することも可能である。   The battery structure 10 is restrained in the alignment direction X by the restraining member 100 from both sides of the alignment direction X. The restraining member 100 includes a pair of end plates 11 disposed on both sides of the battery structure 10 and a connection member 12 that connects the pair of end plates 11. Both ends of the connection member 12 are fixed to the end plate 11. Thereby, the battery structure 10 is restrained in the alignment direction X by the restraining member 100 from both sides of the alignment direction X. A heat insulating material 13 is disposed between the end plate 11 and the battery 5 disposed at the end portion in the alignment direction X. Further, if the battery structure 10 is constrained in the alignment direction X, other restraining means can be employed.

図1に示すごとく、本実施形態において、複数の電池5は、上下方向Zにおける基準面51の位置がずれている。換言すると、複数の電池5は、上下方向Zにおける基準面51の位置が一致していない。本実施形態において、基準面51が最下端に位置する電池5は、複数ある。同様に、基準面51が最上端に位置する最上端電池502も複数ある。なお、複数の電池5は、電池構造体10を構成する際、各電池5の端子52の位置を互いに一致させるように構成される。すなわち、複数の電池5は、それぞれの上端の上下方向Zの位置を一致させるよう配される。そして、複数の電池5は、熱拡散部3の上面31に配された熱伝導部4の上面に配されている。   As shown in FIG. 1, in the present embodiment, the position of the reference surface 51 in the vertical direction Z is shifted in the plurality of batteries 5. In other words, the positions of the reference surfaces 51 in the vertical direction Z of the plurality of batteries 5 do not match. In the present embodiment, there are a plurality of batteries 5 in which the reference surface 51 is located at the lowest end. Similarly, there are a plurality of uppermost end batteries 502 with the reference plane 51 positioned at the uppermost end. The plurality of batteries 5 are configured so that the positions of the terminals 52 of the batteries 5 are aligned with each other when the battery structure 10 is configured. That is, the plurality of batteries 5 are arranged so that the positions of the upper ends in the vertical direction Z coincide with each other. The plurality of batteries 5 are arranged on the upper surface of the heat conducting unit 4 arranged on the upper surface 31 of the heat diffusing unit 3.

熱拡散部3は、例えばアルミニウムからなる。なお、これに限られず、熱拡散部3は、後述の熱伝導部4よりも熱伝導率が高ければ、他の材料を採用することも可能である。熱拡散部3の複数の対向部311のうち、最上端電池502の基準面51と上下方向Zに対向する対向部311は、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。さらに、本実施形態においては、熱拡散部3の複数の対向部311と、複数の電池5の基準面51との上下方向Zの間隔は、互いに同等である。   The thermal diffusion unit 3 is made of aluminum, for example. However, the present invention is not limited to this, and other materials can be adopted for the thermal diffusion part 3 as long as the thermal conductivity is higher than that of the thermal conduction part 4 described later. Of the plurality of facing portions 311 of the thermal diffusion portion 3, the facing portion 311 facing the reference surface 51 of the uppermost battery 502 in the vertical direction Z is the facing portion facing the reference surface 51 of the lowermost battery 501 in the vertical direction Z. It is located above 311. Furthermore, in the present embodiment, the intervals in the vertical direction Z between the plurality of facing portions 311 of the heat diffusing portion 3 and the reference surfaces 51 of the plurality of batteries 5 are equal to each other.

図1、図5に示すごとく、熱拡散部3は、基部32と小面積部33とを有する。基部32は、複数の電池5のすべてと上下方向Zに重なるよう形成されている。小面積部33は、基部32の上面に配されるとともに、上下方向Zから見たときの面積が基部32よりも小さい。基部32と小面積部33とは、溶接等によって互いに熱伝導可能に接合されている。   As shown in FIGS. 1 and 5, the thermal diffusion unit 3 has a base 32 and a small area 33. The base 32 is formed so as to overlap with all of the plurality of batteries 5 in the vertical direction Z. The small area portion 33 is disposed on the upper surface of the base portion 32 and has an area smaller than that of the base portion 32 when viewed from the vertical direction Z. The base 32 and the small area portion 33 are joined to each other so as to be able to conduct heat by welding or the like.

基部32は、上下方向Zに厚みを有する平板状を呈している。上下方向Zから見たときの基部32の面積は、上下方向Zから見たときの電池構造体10の面積と同等或いはそれ以上である。そして、基部32は、少なくとも一部に、電池構造体10の全体が上下方向Zに重なる位置に配されている。   The base 32 has a flat plate shape having a thickness in the vertical direction Z. The area of the base 32 when viewed from the vertical direction Z is equal to or larger than the area of the battery structure 10 when viewed from the vertical direction Z. And the base part 32 is distribute | arranged to the position where the whole battery structure 10 overlaps with the up-down direction Z at least partially.

図1に示すごとく、本実施形態において、小面積部33は、1つの電池5の基準面51と上下方向Zに重なるよう配されている。本実施形態において、上下方向Zからみた小面積部33の面積は、基準面51の面積と同等になるよう形成されているが、これに限られず、基準面51の面積よりも大きくなっても小さくなってもよい。   As shown in FIG. 1, in the present embodiment, the small area portion 33 is arranged so as to overlap with the reference surface 51 of one battery 5 in the vertical direction Z. In the present embodiment, the area of the small area portion 33 viewed from the vertical direction Z is formed to be equal to the area of the reference surface 51, but is not limited to this, and even if it is larger than the area of the reference surface 51. It may be smaller.

小面積部33は、複数の電池5の基準面51の上下方向Zのずれ方に応じて適宜配置される。つまり、小面積部33は、熱拡散部3の各対向部311と、各電池5の基準面51との上下方向Zの間隔が同等となるよう配置される。本実施形態において、小面積部33は、複数の電池5のうち最下端電池501以外の電池5の下側にそれぞれ配されている。上下方向Zにおける各電池5と基部32との間の領域のうち、電池5と基部32との間の上下方向Zの寸法が比較的大きい領域には、複数の小面積部33が厚さ方向に積み重ねられている。これにより、上下方向Zにおける熱拡散部3の上面31の位置が調整される。本実施形態においては、上下方向Zにおける最上端電池502と基部32との間に、複数の小面積部33が積み重ねられている。本実施形態において、すべての小面積部33は、互いに同じ形状を有する。なお、複数の小面積部33は、すべての形状が互いに同じものに限られない。例えば、上下方向Zから見たときの各小面積部33の面積を互いに同等としつつ、少なくとも1つの小面積部33と、他の小面積部33のうちの少なくとも1つの小面積部33との間において、上下方向Zの寸法を互いに異ならせても良い。また、複数の小面積部33は、上下方向Zから見たときの各小面積部33の面積が、互いに同じものに限られない。以後、熱拡散部3の複数の対向部311と各電池5の基準面51との上下方向Zの間隔を、上下間隔ということもある。   The small area portion 33 is appropriately arranged according to how the reference surfaces 51 of the plurality of batteries 5 are displaced in the vertical direction Z. That is, the small area portion 33 is arranged such that the distance in the vertical direction Z between each facing portion 311 of the heat diffusing portion 3 and the reference surface 51 of each battery 5 is equal. In the present embodiment, the small area portion 33 is disposed below each of the batteries 5 other than the lowest battery 501 among the plurality of batteries 5. Among the regions between each battery 5 and the base portion 32 in the vertical direction Z, in a region where the dimension in the vertical direction Z between the battery 5 and the base portion 32 is relatively large, a plurality of small area portions 33 are in the thickness direction. Are stacked. Thereby, the position of the upper surface 31 of the thermal diffusion part 3 in the vertical direction Z is adjusted. In the present embodiment, a plurality of small area portions 33 are stacked between the uppermost battery 502 and the base portion 32 in the vertical direction Z. In the present embodiment, all the small area portions 33 have the same shape. The plurality of small area portions 33 are not limited to the same shape in all shapes. For example, at least one small area part 33 and at least one small area part 33 among the other small area parts 33 while the areas of the small area parts 33 when viewed from the vertical direction Z are equal to each other. In the meantime, the dimensions in the vertical direction Z may be different from each other. Moreover, the area of each small area part 33 when it sees from the up-down direction Z in the some small area part 33 is not restricted to the mutually same thing. Hereinafter, the interval in the vertical direction Z between the plurality of facing portions 311 of the thermal diffusion unit 3 and the reference surface 51 of each battery 5 may be referred to as the vertical interval.

ここで、複数の上下間隔が互いに同等、とは、複数の上下間隔が互いに同一ではないものの、略同一である場合を含む。例えば、複数の上下間隔が互いに略同一である場合とは、各上下方向の設計値を互いに同じ値d1とした場合において、各上下間隔と設計値d1との差の絶対値が、それぞれ、設計値d1の10%の値以下である場合とすることができる。   Here, the plurality of vertical intervals are equal to each other includes the case where the plurality of vertical intervals are not the same, but are substantially the same. For example, when the plurality of vertical intervals are substantially the same, when the design values in the vertical direction are the same value d1, the absolute values of the differences between the vertical intervals and the design value d1 are respectively designed. It may be a case where the value is 10% or less of the value d1.

熱拡散部3の上面31と各電池5の基準面51との間に熱伝導部4が配されている。熱伝導部4は、熱拡散部3の上面31及び各電池5の基準面51に密着している。本実施形態において、熱伝導部4は、1つの板をその厚み方向に複数回折り曲げたような形状を有する。熱伝導部4は、弾性変形可能であることが好ましい。また、熱伝導部4は、電気的絶縁性を有することが好ましい。熱伝導部4は、例えばシリコーンにより構成することができる。   The heat conducting unit 4 is disposed between the upper surface 31 of the heat diffusing unit 3 and the reference surface 51 of each battery 5. The heat conducting unit 4 is in close contact with the upper surface 31 of the heat diffusing unit 3 and the reference surface 51 of each battery 5. In the present embodiment, the heat conducting unit 4 has a shape such that one plate is bent a plurality of times in the thickness direction. The heat conduction part 4 is preferably elastically deformable. Moreover, it is preferable that the heat conductive part 4 has electrical insulation. The heat conduction part 4 can be comprised, for example with silicone.

なお、電池モジュール1を組み立てる際は、例えば、まず熱拡散部3の上面31に熱伝導部4を配置する。次いで、電池構造体10における複数の電池5の基準面51を熱伝導部4に押し付ける。これにより、熱伝導部4を弾性変形させつつ、複数の電池5の基準面51及び熱拡散部3の上面31に密着させる。   When assembling the battery module 1, for example, the heat conducting unit 4 is first disposed on the upper surface 31 of the heat diffusing unit 3. Next, the reference surfaces 51 of the plurality of batteries 5 in the battery structure 10 are pressed against the heat conducting unit 4. Thereby, the heat conducting part 4 is brought into close contact with the reference surface 51 of the plurality of batteries 5 and the upper surface 31 of the heat diffusing part 3 while being elastically deformed.

図4に示すごとく、熱伝導部4における複数の電池5の基準面51と上下方向Zに重なる領域を重なり領域41と定義する。熱伝導部4における複数の重なり領域41は、互いに厚みTが同等である。ここで、複数の重なり領域41は、互いに厚みTが同等とは、複数の重なり領域41の厚みTが互いに同一ではないものの、略同一である場合を含む。複数の重なり領域41の厚みTが互いに略同一である場合とは、各重なり領域41の上下方向Zの寸法の設計値を互いに同じ値d2とした場合において、各重なり領域41の上下方向Zの寸法と設計値d2との差の絶対値が、それぞれ、設計値d2の10%の値以下である場合とすることができる。   As shown in FIG. 4, a region that overlaps the reference plane 51 of the plurality of batteries 5 and the vertical direction Z in the heat conducting unit 4 is defined as an overlapping region 41. The plurality of overlapping regions 41 in the heat conducting unit 4 have the same thickness T. Here, the plurality of overlapping regions 41 having the same thickness T includes a case where the thicknesses T of the plurality of overlapping regions 41 are not the same but substantially the same. The case where the thicknesses T of the plurality of overlapping regions 41 are substantially the same means that the design value of the dimension in the vertical direction Z of each overlapping region 41 is the same value d2 in the vertical direction Z of each overlapping region 41. The absolute value of the difference between the dimension and the design value d2 may be less than or equal to 10% of the design value d2.

図1に示すごとく、熱伝導部4における重なり領域41同士は、連結領域42によって連結されている。連結領域42には、上下方向Zに直交する面上に形成されたものと、上下方向Zに直交する面に対して傾斜するよう形成されたものがある。連結領域42が連結する重なり領域41の上下方向Zの位置が互いに同じである場合、連結領域42は、上下方向Zに直交する面上に形成される。一方、連結領域42が連結する重なり領域41の上下方向Zの位置が互いに異なれば、連結領域42は、上下方向Zに直交する面に対して傾斜するよう形成される。   As shown in FIG. 1, the overlapping regions 41 in the heat conducting unit 4 are connected by a connecting region 42. The connection region 42 includes one formed on a surface orthogonal to the up-down direction Z and one connected to the surface orthogonal to the up-down direction Z. When the overlapping region 41 to which the connection region 42 is connected has the same position in the vertical direction Z, the connection region 42 is formed on a plane orthogonal to the vertical direction Z. On the other hand, if the overlapping regions 41 to which the connecting regions 42 are connected have different positions in the vertical direction Z, the connecting regions 42 are formed so as to be inclined with respect to the plane perpendicular to the vertical direction Z.

熱拡散部3の下面に、熱交換器2が面接触している。図3に示すごとく、本実施形態において、熱交換器2は、内部に冷却媒体を流通させるための冷媒流路21を備える。しかし、これに限られず、熱交換器2は、内部に冷媒流路21を備えないものであってもよい。また、熱交換器2は、熱拡散部3に接触していればよく、例えば熱拡散部3の側面等に接触していてもよい。   The heat exchanger 2 is in surface contact with the lower surface of the heat diffusion unit 3. As shown in FIG. 3, in the present embodiment, the heat exchanger 2 includes a refrigerant flow path 21 for circulating a cooling medium therein. However, the heat exchanger 2 is not limited to this, and the heat exchanger 2 may not include the refrigerant flow path 21 inside. Moreover, the heat exchanger 2 should just be in contact with the thermal diffusion part 3, for example, may be in contact with the side surface of the thermal diffusion part 3, etc.

次に、本実施形態の作用効果につき説明する。
電池モジュール1において、複数の電池5のうちの最下端電池501以外の電池5の基準面51と上下方向Zに対向する対向部311の少なくとも一つは、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。それゆえ、複数の電池5の基準面51と、熱拡散部3の上面31の複数の対向部311との間の上下方向Zの間隔にばらつきが生じることを抑制することがきできる。これにより、熱伝導部4における複数の電池5の基準面51と上下方向Zに重なる領域の厚みにばらつきが生じることを抑制することができる。それゆえ、各電池5から熱拡散部3までの伝熱経路における熱抵抗値に、ばらつきが生じることを抑制することができる。
Next, the effect of this embodiment is demonstrated.
In the battery module 1, at least one of the facing portions 311 facing the reference surface 51 of the batteries 5 other than the lowest battery 501 among the plurality of batteries 5 in the vertical direction Z is connected to the reference surface 51 of the lowest battery 501. It is located above the facing portion 311 facing the direction Z. Therefore, it is possible to suppress the occurrence of variations in the distance in the vertical direction Z between the reference surfaces 51 of the plurality of batteries 5 and the plurality of facing portions 311 of the upper surface 31 of the heat diffusing portion 3. Thereby, it can suppress that dispersion | variation arises in the thickness of the area | region which overlaps with the reference plane 51 of the some battery 5 in the heat conductive part 4, and the up-down direction Z. Therefore, variation in the thermal resistance value in the heat transfer path from each battery 5 to the thermal diffusion unit 3 can be suppressed.

また、熱拡散部3の複数の対向部311のうち、最上端電池502の基準面51と上下方向Zに対向する対向部311は、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。それゆえ、熱抵抗値の差が大きくなることが懸念される重なり領域41間の熱抵抗値の差を小さくしやすい。   In addition, among the plurality of facing portions 311 of the thermal diffusion portion 3, the facing portion 311 facing the reference surface 51 of the uppermost battery 502 in the vertical direction Z faces the reference surface 51 of the lowermost battery 501 in the vertical direction Z. It is located above the facing portion 311. Therefore, it is easy to reduce the difference in the thermal resistance value between the overlapping regions 41 where the difference in the thermal resistance value is a concern.

また、熱拡散部3の複数の対向部311と、複数の電池5の基準面51との上下方向Zの間隔は、互いに同等である。それゆえ、熱伝導部4における複数の重なり領域41の厚みTを互いに同等にしやすい。これにより、一層、各電池5から熱拡散部3までの伝熱経路における熱抵抗値にばらつきが生じることを抑制することができる。   Further, the intervals in the vertical direction Z between the plurality of facing portions 311 of the heat diffusing portion 3 and the reference surfaces 51 of the plurality of batteries 5 are equal to each other. Therefore, it is easy to make the thicknesses T of the plurality of overlapping regions 41 in the heat conducting unit 4 equal to each other. Thereby, it is possible to further suppress variation in the thermal resistance value in the heat transfer path from each battery 5 to the thermal diffusion unit 3.

また、熱拡散部3は、基部32と小面積部33とを有する。これにより、複数の電池5の基準面51の上下方向Zのずれ方に応じて、適宜熱拡散部3を構成しやすい。すなわち、基部32の上面に、適宜、小面積部33を配置することにより、熱拡散部3の上面31の対向部311と複数の電池5の基準面51との上下方向Zの間隔を、互いに同等にすることができる。それゆえ、電池モジュール1の生産性向上を図ることができる。   The thermal diffusion unit 3 includes a base 32 and a small area 33. Thereby, according to how the reference planes 51 of the plurality of batteries 5 are displaced in the vertical direction Z, it is easy to configure the heat diffusion unit 3 as appropriate. That is, by appropriately arranging the small area portion 33 on the upper surface of the base portion 32, the distance in the vertical direction Z between the facing portion 311 of the upper surface 31 of the heat diffusing portion 3 and the reference surfaces 51 of the plurality of batteries 5 can be reduced. Can be equivalent. Therefore, the productivity of the battery module 1 can be improved.

また、複数の電池5は、電池構造体10を構成している。そして、電池構造体10は、並び方向Xに拘束されている。それゆえ、電池モジュール1の使用時に電池モジュール1に生じる振動や衝撃等により、複数の電池5の上下方向Zの位置が、使用前の状態からずれることを防止することができる。これにより、各電池5の基準面51と熱拡散部3の上面31の対向部311との上下方向Zの間隔が、経時的に変化することに起因する各電池5から熱拡散部3までの伝熱経路における熱抵抗値の変動を防止することができる。また、各電池5の性能が経時的に変化することを抑制しやすい。   In addition, the plurality of batteries 5 constitutes a battery structure 10. The battery structure 10 is constrained in the alignment direction X. Therefore, it is possible to prevent the positions of the plurality of batteries 5 in the vertical direction Z from deviating from the state before use due to vibrations or impacts generated in the battery module 1 when the battery module 1 is used. Thereby, the space | interval of the up-down direction Z of the reference surface 51 of each battery 5 and the opposing part 311 of the upper surface 31 of the thermal-diffusion part 3 from each battery 5 to the thermal-diffusion part 3 resulting from change with time. Variations in the thermal resistance value in the heat transfer path can be prevented. Moreover, it is easy to suppress that the performance of each battery 5 changes with time.

以上のごとく、本実施形態によれば、熱交換器による各電池の冷却性能にばらつきが生じることを抑制することができる電池モジュールを提供することができる。   As described above, according to the present embodiment, it is possible to provide a battery module that can suppress variation in the cooling performance of each battery by the heat exchanger.

(実施形態2)
本実施形態は、図6に示すごとく、実施形態1に対して、小面積部33の形状を変更した実施形態である。小面積部33は、上下方向Zの寸法が、基部32の上面と、熱伝導部4の重なり領域41の下面と、の間の上下方向Zの寸法と同じになるよう形成されている。すなわち、本実施形態においては、小面積部33の上下方向Zの寸法を調整することにより、上下方向Zにおける熱拡散部3の上面31の対向部311位置を調整している。
(Embodiment 2)
As shown in FIG. 6, the present embodiment is an embodiment in which the shape of the small area portion 33 is changed with respect to the first embodiment. The small area portion 33 is formed such that the vertical dimension Z is the same as the vertical dimension Z between the upper surface of the base 32 and the lower surface of the overlapping region 41 of the heat conducting unit 4. That is, in the present embodiment, the position of the facing portion 311 of the upper surface 31 of the heat diffusing portion 3 in the vertical direction Z is adjusted by adjusting the size of the small area portion 33 in the vertical direction Z.

その他は、実施形態1と同様である。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
Others are the same as in the first embodiment.
Of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.

本実施形態においても、実施形態1と同様の作用効果を有する。   This embodiment also has the same effects as those of the first embodiment.

(実施形態3)
本実施形態は、図7、図8に示すごとく、熱拡散部3が、一部材からなる実施形態である。例えば、熱拡散部3は、1つの金属を切削加工等することにより一体的に形成されている。換言すれば、熱拡散部3は、複数の部材を接合して構成されない。
その他は、実施形態1と同様である。
(Embodiment 3)
As shown in FIGS. 7 and 8, the present embodiment is an embodiment in which the thermal diffusion unit 3 is composed of one member. For example, the heat diffusing unit 3 is integrally formed by cutting one metal. In other words, the thermal diffusion unit 3 is not configured by joining a plurality of members.
Others are the same as in the first embodiment.

本実施形態においては、熱拡散部3の熱伝導率を向上させいやすい。これにより、一層、熱交換器2による電池5の冷却性能を向上させることができる。
その他、実施形態1と同様の作用効果を有する。
In the present embodiment, it is easy to improve the thermal conductivity of the thermal diffusion unit 3. Thereby, the cooling performance of the battery 5 by the heat exchanger 2 can be improved further.
In addition, the same effects as those of the first embodiment are obtained.

(実施形態4)
本実施形態は、図9〜図12に示すごとく、熱拡散部3が、厚み方向を上下方向Zとしつつ上下方向Zに積層された複数の金属薄板34を有する実施形態である。金属薄板34は、上下方向Zに可撓性を有する。金属薄板34は、外部から上下方向Zの力が作用した場合に、容易に撓む程度の可撓性を有する。上下方向Zに可撓性を有する金属薄板34の厚みは、金属薄板34を構成する金属の硬度に応じて適宜選択される。本実施形態において、金属薄板34は、上下方向Zの厚みが、熱伝導部4よりも小さい。
(Embodiment 4)
As shown in FIGS. 9 to 12, the present embodiment is an embodiment in which the thermal diffusion unit 3 includes a plurality of thin metal plates 34 stacked in the vertical direction Z with the thickness direction being the vertical direction Z. The thin metal plate 34 has flexibility in the vertical direction Z. The thin metal plate 34 is flexible enough to bend easily when a force in the vertical direction Z is applied from the outside. The thickness of the metal thin plate 34 having flexibility in the vertical direction Z is appropriately selected according to the hardness of the metal constituting the metal thin plate 34. In the present embodiment, the metal thin plate 34 has a thickness in the vertical direction Z that is smaller than that of the heat conducting unit 4.

本実施形態において、熱交換器2は、熱拡散部3の側面に接触している。
その他、実施形態1と同様の構造を有する。
In the present embodiment, the heat exchanger 2 is in contact with the side surface of the heat diffusion unit 3.
In addition, it has the same structure as Embodiment 1.

次に、本実施形態の電池モジュール1の製造方法の一例につき説明する。
まず、図11に示すごとく、複数の平坦な金属の薄板(以後、平坦薄板340という)をその厚み方向に積層する。そして、積層した複数の平坦薄板340の最上面に、厚みが一定の熱伝導部4を配置する。この状態において、熱伝導部4は、平坦薄板340の最上面に沿った平坦な形状を有する。そして、積層した複数の平坦薄板340の最下面に、弾性変形可能な弾性部材15を配置する。そして、弾性部材15の下面に変形し難い高剛性プレート16を配置する。ここで、熱伝導部4と複数の平坦薄板340と弾性部材15と高剛性プレート16からなる構造体を、変形前アッシー17とよぶ。
Next, an example of a method for manufacturing the battery module 1 of the present embodiment will be described.
First, as shown in FIG. 11, a plurality of flat metal thin plates (hereinafter referred to as flat thin plates 340) are laminated in the thickness direction. And the heat conductive part 4 with constant thickness is arrange | positioned on the uppermost surface of the laminated | stacked several flat thin plate 340. FIG. In this state, the heat conducting unit 4 has a flat shape along the uppermost surface of the flat thin plate 340. And the elastic member 15 which can be elastically deformed is arrange | positioned in the lowest surface of the laminated | stacked several flat thin plate 340. FIG. Then, a highly rigid plate 16 that is not easily deformed is disposed on the lower surface of the elastic member 15. Here, the structure composed of the heat conducting portion 4, the plurality of flat thin plates 340, the elastic member 15, and the high-rigidity plate 16 is referred to as an assembly 17 before deformation.

そして、複数の電池5を並び方向Xに並べ、電池構造体10を構成し、拘束部材100により並び方向Xに拘束する。そして、変形前アッシー17と電池構造体10とを近付け、変形前アッシー17の熱伝導部4の上面を、電池構造体10の複数の電池5の基準面51に接触させる。この状態から、変形前アッシー17を更に上側、つまり電池構造体10側に押し込む。これにより、変形前アッシー17を上側に押し込む力が、高剛性プレート16及び弾性部材15を介して平坦薄板340に作用する。これにより、図12に示すごとく、複数の平坦薄板340が電池構造体10の複数の電池5の基準面51に沿うような形状に変形し、最終形状、すなわち前述した金属薄板34の形状となる。このとき、弾性部材15の上面は、複数の平坦薄板340の下面の形状変化に応じて変形する。これにより、平坦薄板340の全体に、均等に力を作用しやすい。また、平坦薄板340の形状変化に伴い、熱伝導部4の形状も、平坦薄板340の上面に沿う形状に変形する。
以上により、電池モジュール1を製造することができる。
Then, the plurality of batteries 5 are arranged in the arrangement direction X to form the battery structure 10 and are restrained in the arrangement direction X by the restraining member 100. Then, the assembly 17 before deformation and the battery structure 10 are brought close to each other, and the upper surface of the heat conducting portion 4 of the assembly 17 before deformation is brought into contact with the reference surfaces 51 of the plurality of batteries 5 of the battery structure 10. From this state, the pre-deformation assembly 17 is pushed further into the upper side, that is, the battery structure 10 side. Thereby, the force which pushes the assembly 17 before a deformation | transformation upwards acts on the flat thin plate 340 via the highly rigid plate 16 and the elastic member 15. FIG. As a result, as shown in FIG. 12, the plurality of flat thin plates 340 are deformed into a shape along the reference surfaces 51 of the plurality of batteries 5 of the battery structure 10, and the final shape, that is, the shape of the metal thin plate 34 described above is obtained. . At this time, the upper surface of the elastic member 15 is deformed according to the shape change of the lower surfaces of the plurality of flat thin plates 340. Thereby, it is easy to apply force equally to the entire flat thin plate 340. Further, as the shape of the flat thin plate 340 is changed, the shape of the heat conducting portion 4 is also deformed to a shape along the upper surface of the flat thin plate 340.
Thus, the battery module 1 can be manufactured.

本実施形態においては、電池モジュール1の生産性を向上させやすい。すなわち、前述のように、平坦薄板340を複数の電池5の基準面51に向かって押し付けることにより、容易に熱拡散部3を構成することができる。
その他、実施形態1と同様の作用効果を有する。
In this embodiment, it is easy to improve the productivity of the battery module 1. That is, as described above, the thermal diffusion unit 3 can be easily configured by pressing the flat thin plate 340 toward the reference surfaces 51 of the plurality of batteries 5.
In addition, the same effects as those of the first embodiment are obtained.

本発明は、前記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。   The present invention is not limited to the embodiments described above, and can be applied to various embodiments without departing from the scope of the invention.

例えば、前記各実施形態において、電池はリチウムイオン二次電池としたが、これに限られず、種々の電池を採用することが可能である。例えば、電池をニッケル水素電池等とすることも可能である。また、電池は、缶型の電池に限られず、例えばラミネートフィルム等により外装を構成した、いわゆるラミネート型の電池としてもよい。また、電池は、複数の単電池をパックケース内に収容してなる電池パックとすることも可能である。   For example, in each of the above embodiments, the battery is a lithium ion secondary battery, but is not limited to this, and various batteries can be employed. For example, the battery can be a nickel metal hydride battery. Further, the battery is not limited to a can-type battery, and may be a so-called laminate-type battery in which an exterior is constituted by, for example, a laminate film. The battery may be a battery pack in which a plurality of single cells are accommodated in a pack case.

また、前記各実施形態においては、各電池における端子側と反対側の面を、熱伝導部に接触させる構成を示したが、これに限られない。例えば、電池における、端子の突出方向及び電池の厚み方向との双方に直交する方向を向く面である側面を基準面とし、当該基準面を熱伝導部に接触させてもよい。   Moreover, in each said embodiment, although the structure which makes the surface on the opposite side to the terminal side in each battery contact a heat conduction part was shown, it is not restricted to this. For example, a side surface that is a surface facing a direction orthogonal to both the protruding direction of the terminal and the thickness direction of the battery may be used as a reference surface, and the reference surface may be in contact with the heat conducting unit.

1 電池モジュール
2 熱交換器
3 熱拡散部
31 熱拡散部の上面
311 対向部
4 熱伝導部
5 電池
501 最下端電池
51 基準面
Z 上下方向
DESCRIPTION OF SYMBOLS 1 Battery module 2 Heat exchanger 3 Thermal diffusion part 31 Upper surface of thermal diffusion part 311 Opposing part 4 Thermal conduction part 5 Battery 501 Bottom end battery 51 Reference plane Z Vertical direction

Claims (7)

熱交換器(2)と、
前記熱交換器に熱的に接触した熱拡散部(3)と、
前記熱拡散部の上面(31)に熱的に接触した熱伝導部(4)と、
前記熱伝導部の少なくとも上側から前記熱伝導部に熱的に接触するとともに、前記熱拡散部及び前記熱伝導部と上下方向(Z)に重なる位置に配された複数の電池(5)と、を有し、
前記熱拡散部は、前記熱伝導部よりも熱伝導率が高く、
前記電池の下側の面を基準面(51)と定義したとき、複数の前記電池の前記基準面は、上下方向の複数の位置に配されており、
前記熱拡散部の前記上面は、複数の前記電池の前記基準面と上下方向に対向する複数の対向部(311)を有し、
複数の前記電池のうち前記基準面が最下端に位置する前記電池を最下端電池(501)と定義したとき、複数の前記電池のうちの前記最下端電池以外の前記電池の前記基準面と上下方向に対向する前記対向部の少なくとも一つは、前記最下端電池の前記基準面と上下方向に対向する前記対向部よりも上側に位置している、電池モジュール(1)。
A heat exchanger (2);
A thermal diffusion section (3) in thermal contact with the heat exchanger;
A heat conducting part (4) in thermal contact with the upper surface (31) of the thermal diffusion part;
A plurality of batteries (5) disposed in positions that are in thermal contact with the heat conduction part from at least the upper side of the heat conduction part and overlap the heat diffusion part and the heat conduction part in the vertical direction (Z); Have
The thermal diffusion part has higher thermal conductivity than the thermal conduction part,
When the lower surface of the battery is defined as a reference surface (51), the reference surfaces of the plurality of batteries are arranged at a plurality of positions in the vertical direction,
The upper surface of the heat diffusion portion has a plurality of facing portions (311) facing the reference surfaces of the plurality of batteries in the vertical direction,
When the battery in which the reference plane is located at the lowest end among the plurality of batteries is defined as the lowest end battery (501), the reference plane of the batteries other than the lowest end battery among the plurality of batteries is vertically The battery module (1), wherein at least one of the facing portions facing in the direction is positioned above the facing portion facing the reference surface of the lowermost battery in the vertical direction.
複数の前記電池のうち前記基準面が最上端に位置する前記電池を最上端電池(502)と定義したとき、前記熱拡散部の複数の前記対向部のうち、前記最上端電池の前記基準面と上下方向に対向する前記対向部は、前記最下端電池の前記基準面と上下方向に対向する前記対向部よりも上側に位置している、請求項1に記載の電池モジュール。   Of the plurality of batteries, when the battery whose reference surface is located at the uppermost end is defined as the uppermost battery (502), the reference surface of the uppermost battery among the plurality of facing portions of the heat diffusion portion. 2. The battery module according to claim 1, wherein the facing portion facing in the vertical direction is positioned above the facing portion facing the reference surface of the bottom end battery in the vertical direction. 前記熱拡散部の複数の前記対向部と、複数の前記電池の前記基準面との上下方向の間隔は、互いに同等である、請求項1又は2に記載の電池モジュール。   3. The battery module according to claim 1, wherein the intervals in the vertical direction between the plurality of facing portions of the thermal diffusion portion and the reference surfaces of the plurality of batteries are equal to each other. 前記熱拡散部は、複数の前記電池のすべてと上下方向に重なるよう形成された基部(32)と、前記基部の上面に配されるとともに、上下方向から見たときの面積が前記基部よりも小さい小面積部(33)と、を有する、請求項1〜3のいずれか一項に記載の電池モジュール。   The thermal diffusion part is arranged on the upper surface of the base (32) formed so as to overlap all of the plurality of the batteries in the vertical direction, and has an area when viewed from the vertical direction as compared with the base part. The battery module as described in any one of Claims 1-3 which has a small small area part (33). 前記熱拡散部は、一部材からなる、請求項1〜3のいずれか一項に記載の電池モジュール。   The battery module according to any one of claims 1 to 3, wherein the heat diffusing portion is made of one member. 前記熱拡散部は、厚み方向を上下方向としつつ上下方向に積層された複数の金属薄板(34)を有し、前記金属薄板は、上下方向に可撓性を有する、請求項1〜3のいずれか一項に記載の電池モジュール。   The said thermal diffusion part has several metal thin plate (34) laminated | stacked on the up-down direction, making the thickness direction into an up-down direction, The said metal thin plate has flexibility in an up-down direction. The battery module as described in any one. 複数の前記電池は、上下方向に直交する並び方向に並んで電池構造体(10)を構成しており、前記電池構造体は、並び方向に拘束されている、請求項1〜6のいずれか一項に記載の電池モジュール。   The said some battery is comprising the battery structure (10) along with the row direction orthogonal to an up-down direction, The said battery structure is restrained in the row direction. The battery module according to one item.
JP2017006715A 2017-01-18 2017-01-18 Battery module Active JP6717213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006715A JP6717213B2 (en) 2017-01-18 2017-01-18 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006715A JP6717213B2 (en) 2017-01-18 2017-01-18 Battery module

Publications (2)

Publication Number Publication Date
JP2018116832A true JP2018116832A (en) 2018-07-26
JP6717213B2 JP6717213B2 (en) 2020-07-01

Family

ID=62985590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006715A Active JP6717213B2 (en) 2017-01-18 2017-01-18 Battery module

Country Status (1)

Country Link
JP (1) JP6717213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360474A (en) * 2021-05-17 2022-11-18 丰田自动车株式会社 Electricity storage module
JP2023501736A (en) * 2020-06-10 2023-01-18 エルジー エナジー ソリューション リミテッド Battery module and manufacturing method thereof
JP7450717B2 (en) 2020-06-10 2024-03-15 エルジー エナジー ソリューション リミテッド Battery module and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207541A (en) * 2014-04-23 2015-11-19 日立建機株式会社 Work machine and cooling structure of power storage device mounted to the same
JP2018018630A (en) * 2016-07-26 2018-02-01 株式会社豊田自動織機 Battery module and manufacturing method of battery module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207541A (en) * 2014-04-23 2015-11-19 日立建機株式会社 Work machine and cooling structure of power storage device mounted to the same
JP2018018630A (en) * 2016-07-26 2018-02-01 株式会社豊田自動織機 Battery module and manufacturing method of battery module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023501736A (en) * 2020-06-10 2023-01-18 エルジー エナジー ソリューション リミテッド Battery module and manufacturing method thereof
JP7321635B2 (en) 2020-06-10 2023-08-07 エルジー エナジー ソリューション リミテッド Battery module and manufacturing method thereof
JP7450717B2 (en) 2020-06-10 2024-03-15 エルジー エナジー ソリューション リミテッド Battery module and its manufacturing method
CN115360474A (en) * 2021-05-17 2022-11-18 丰田自动车株式会社 Electricity storage module
CN115360474B (en) * 2021-05-17 2024-03-01 丰田自动车株式会社 Power storage module

Also Published As

Publication number Publication date
JP6717213B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US9780421B2 (en) Conformal heat exchanger for battery cell stack
US11380948B2 (en) Battery module
JP6279948B2 (en) Battery system manufacturing method and battery system manufactured by this method
JP2013051048A (en) Power supply device
JP6171925B2 (en) Battery module manufacturing method
JP2019046578A (en) Manufacturing method of battery pack
JPWO2014203342A1 (en) Battery module
JP2015210894A (en) Battery pack module
JP2018116832A (en) Battery module
JP2019046707A (en) Battery module
US20210091404A1 (en) Separator, battery module and battery module production method
JP6069615B2 (en) Battery module
JPWO2016199563A1 (en) Battery module
JP7208273B2 (en) battery module
JP2014157763A (en) Method for manufacturing heat transfer sheet
US20200013997A1 (en) Battery pack
JP7127341B2 (en) battery module
JP2013232364A (en) Battery device
JP6717212B2 (en) Battery module
WO2013058038A1 (en) Semiconductor device and semiconductor device manufacturing method
US10629794B2 (en) Thermoelectric power generation device and method for manufacturing same
JP2018041582A (en) Battery module and battery pack
WO2021153523A1 (en) Electrical storage module
US20210167340A1 (en) Battery module
JP6987720B2 (en) Rechargeable battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250