JP6710573B2 - Relative rotating part electrical transmission device - Google Patents

Relative rotating part electrical transmission device Download PDF

Info

Publication number
JP6710573B2
JP6710573B2 JP2016095206A JP2016095206A JP6710573B2 JP 6710573 B2 JP6710573 B2 JP 6710573B2 JP 2016095206 A JP2016095206 A JP 2016095206A JP 2016095206 A JP2016095206 A JP 2016095206A JP 6710573 B2 JP6710573 B2 JP 6710573B2
Authority
JP
Japan
Prior art keywords
magnetic element
coil
magnetic
transmission device
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016095206A
Other languages
Japanese (ja)
Other versions
JP2017204554A (en
Inventor
香代 堺
香代 堺
島津 英一郎
英一郎 島津
祥吾 神戸
祥吾 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016095206A priority Critical patent/JP6710573B2/en
Priority to CN201780028737.6A priority patent/CN109155191B/en
Priority to PCT/JP2017/017136 priority patent/WO2017195687A1/en
Publication of JP2017204554A publication Critical patent/JP2017204554A/en
Priority to US16/180,232 priority patent/US11456115B2/en
Application granted granted Critical
Publication of JP6710573B2 publication Critical patent/JP6710573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prostheses (AREA)

Description

この発明は、ロボット、アシストスーツ、その他、関節等の相対回転部を有する機械装置において、前記相対回転部に配置され、電力または信号を非接触で伝送する相対回転部の電気伝送装置に関する。 The present invention relates to an electric transmission device of a relative rotating unit, which is arranged in the relative rotating unit and transmits electric power or a signal in a non-contact manner in a mechanical device having a relative rotating unit such as a robot, an assist suit, and the like.

電力および信号伝送経路に関節部や回転部等の稼働部を含む場合、一般的には、ケーブルを撓ませることで可動域を確保し、電力および信号を伝送している。このケーブルは関節部や回転部が稼働することで繰り返し曲げ伸ばしされる。銅やアルミなどでなるケーブルが繰返し屈曲されることで、ケーブルが断線する懸念がある。また、ケーブルを用いる場合、可動域に制限が発生する。パワーアシストスーツなどでは、ケーブルが周囲の物に引っ掛かり、断線だけでなく装着した人間の転倒などの災害を発生させる可能性もある。
When the power and signal transmission path includes an operating part such as a joint part and a rotating part, generally, the range of motion is secured by bending the cable to transmit the power and the signal. This cable is repeatedly bent and stretched by moving joints and rotating parts. There is a concern that the cable may break due to repeated bending of the cable made of copper or aluminum. Moreover, when a cable is used, the range of motion is limited. In power assist suits and the like, the cables may get caught in surrounding objects, causing not only wire breaks but also accidents such as the fall of the person wearing them.

一方、この可動部にスリップリングを用いることでこれらを解消できるが、スリップリングの欠点として電気接点における摩耗粉の発生が挙げられる。導電性のある液体金属を用いたロータリーコネクタがこの代替品として挙げられるが、使用温度の制限や、環境汚染の懸念があったり、また非常に高価であったりする。 On the other hand, it is possible to solve these problems by using a slip ring for the movable portion, but a drawback of the slip ring is that abrasion powder is generated in the electrical contacts. A rotary connector using a conductive liquid metal is given as an alternative, but it has a limitation in use temperature, there is a concern of environmental pollution, and it is very expensive.

この他に、図10,図11に示すように、一般的なポット形コア52を有する磁性素子51,51を対向させて、漏れ磁束が吸収され易いコイル近傍にギャップを配置した磁気結合の電気伝送装置の構造が提案されている。各磁性素子51は、コア52とコイル53とでなり、両磁性素子51,51はコイル53およびコア52が互いにギャップGを介して互いに対向する。このような構成の例としては、特許文献1が挙げられる。 In addition to this, as shown in FIGS. 10 and 11, magnetic elements 51, 51 having a general pot-shaped core 52 are opposed to each other, and a gap is arranged in the vicinity of the coil where the leakage magnetic flux is easily absorbed. The structure of a transmission device has been proposed. Each magnetic element 51 is composed of a core 52 and a coil 53, and in the magnetic elements 51, 51, the coil 53 and the core 52 face each other with a gap G therebetween. As an example of such a configuration, Patent Document 1 can be cited.

特開平11−354348号公報JP, 11-354348, A 特開2015−6266号公報JP, 2005-6266, A

上記のように、ケーブルを撓ませることで可動域を確保するものは、繰り返し曲げ伸ばしを行うことで断線の恐れがあり、特にパワースーツ等では人間が着用することから、安全性に欠ける。スリップリングは摩耗粉の発生があり、液体金属を用いたロータリーコネクタは、使用温度の制限、環境汚染の懸念、価格の面で問題がある。 As described above, a cable that bends and secures a range of motion has a risk of disconnection due to repeated bending and stretching. In particular, a power suit or the like is worn by humans, and thus lacks safety. The slip ring generates abrasion powder, and the rotary connector using liquid metal has a problem in terms of temperature limitation, environmental pollution, and price.

前記磁気結合による電気伝送装置は、上記の各問題がないが、アキシャル方向のギャップGを介して一対の磁性素子51,51が対向する構成であるため、配置されたギャップGのためにインダクタンス値が大きく低下し、このことから、電力や電気信号の伝送の効率が悪い。インダクタンス値を改善して効率を上げるためにはコア体格を大きくする必要がある。 The electric transmission device by magnetic coupling does not have the above-mentioned problems, but since the pair of magnetic elements 51, 51 are opposed to each other via the gap G in the axial direction, the inductance value due to the arranged gap G is large. Is greatly reduced, which results in inefficient transmission of electric power and electric signals. In order to improve the inductance value and increase the efficiency, it is necessary to increase the core size.

この発明の目的は、断線や使用温度、環境上の問題が生じず、かつ大型化することなく効率良く電力や信号の伝送が行える相対回転部の電気伝送装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an electric transmission device of a relative rotating part that can efficiently transmit electric power and signals without causing problems such as disconnection, operating temperature and environmental problems and without increasing the size.

前提構成の相対回転部の電気伝送装置は、互いに同軸心上で相対回転可能な一対の磁性素子を備え、これら一対の磁性素子は、それぞれコイルとコアとでなり、かつ前記コイルが互いに径方向の内外に位置して磁気結合され、この磁気結合によって電力および電気信号のいずれか一方または両方を伝送する。 The electric transmission device of the relative rotation unit of the premise includes a pair of magnetic elements that are rotatable relative to each other on a coaxial center, and each of the pair of magnetic elements includes a coil and a core, and the coils are arranged in a radial direction. Are located inside and outside of and are magnetically coupled to transmit either or both of electric power and electric signals.

この構成によると、一対の磁性素子は、互いにコイルが径方向の内外に位置するため、磁気結合の結合度に優れていて、電力や電気信号の伝送の効率に優れ、大型化することが回避される。また、磁気結合によるため、断線や使用温度、環境上の問題が生じない。 According to this configuration, the coils of the pair of magnetic elements are located inside and outside in the radial direction, so that the degree of magnetic coupling is excellent, the efficiency of transmission of electric power and electric signals is excellent, and the size is prevented from increasing. To be done. Further, because of the magnetic coupling, there are no disconnection, operating temperature, and environmental problems.

この発明における第1の発明の相対回転部の電気伝送装置は、前記前提構成において、前記一対の磁性素子のうち、前記コイルが径方向の内側に位置する磁性素子の前記コアは、この磁性素子の前記コイルの内周に位置する円筒部とこの円筒部の一端から外径側へ延びて外径端 が他方の磁性素子のコイルよりも大径のフランジ部とでなる断面L字状であり、前記他方の磁性素子の前記コアは、この磁性素子のコイルの外周に位置して一端の端面が前記一方の磁性素子のコアの前記フランジ部に対向する円筒部とこの円筒部の他端から内径側に延びて内径端が他方の磁性素子の前記コアの円筒部の端面にギャップを介して対向するフランジ部とでなる。 Electrical transmission device of the relative rotation of the first invention in this inventions is Oite the premise construction, of the pair of magnetic elements, said core of the magnetic element in which the coil is located inside in the radial direction, The magnetic element has a cylindrical portion positioned on the inner circumference of the coil, and an L-shaped cross section having an outer diameter end extending from one end of the cylindrical portion to the outer diameter side and having an outer diameter end having a larger diameter than the coil of the other magnetic element. The core of the other magnetic element is located at the outer periphery of the coil of the magnetic element, and the end face at one end faces the flange portion of the core of the one magnetic element and the cylindrical portion of the cylindrical portion. ing between the flange inner diameter end extending radially inwardly from the other end are opposed with a gap to the end face of the cylindrical portion of the core of the other magnetic element.

この発明における第2の発明の相対回転部の電気伝送装置は、前記前提構成において、前記一対の磁性素子のうち、前記コイルが径方向の内側に位置する磁性素子の前記コアは、この磁性素子の前記コイルの内周に位置する円筒部とこの円筒部の一端から外径側へ延びて外径端が他方の磁性素子のコア端部の内周面にギャップを介して対向するフランジ部とでなる断面L字状であり、
前記他方の磁性素子の前記コアは、この磁性素子のコイルの外周に位置して一端の端部の内周面が前記一方の磁性素子のコアの前記フランジ部に対向する円筒部とこの円筒部の他端から内径側に延びて内径端が他方の磁性素子の前記コイルよりも小径のフランジ部とでなる。
In the electric transmission device of the relative rotating part according to the second aspect of the present invention, in the prerequisite structure, the core of the magnetic element of the pair of magnetic elements in which the coil is located radially inside is the magnetic element. A cylindrical portion located on the inner circumference of the coil, and a flange portion extending from one end of the cylindrical portion to the outer diameter side and having an outer diameter end facing the inner circumferential surface of the core end portion of the other magnetic element via a gap. Is L-shaped in cross section,
The core of the other magnetic element is located at the outer periphery of the coil of the magnetic element, and the inner peripheral surface of one end of the magnetic element faces the flange portion of the core of the one magnetic element, and the cylindrical portion. an inner diameter end extending radially inward from the other end of ing at the small diameter of the flange portion than the coil of the other magnetic element.

この構成は、いわば、一対の磁性素子の一方をドラム形の一方のフランジを省略した 凸形、他方をカップ形の 凹形とした構成である。この構成によると、コイルとギャップとの距離が従来例に比べて大きくなるため、ギャップにおいて発生した漏れ磁束がコイルに吸収されにくくなることでコイルにおいて消費される磁気エネルギが低減し、
インダクタンス値が向上する。また、給電側と受電側のコイルのうち、一方を他方の内径側に配置できるため、結合度が向上し漏れ磁束を低減できる。これにより、インダクタンス値が改善され、コア体格のより一層の小型化を図ることができる。また、凹凸形状のため、両側の磁性素子を判別し易く、誤組を防止できる。
This structure is, so to speak, one of the pair of magnetic elements having a convex shape in which one flange of the drum shape is omitted and the other having a cup-shaped concave shape. According to this configuration, the distance between the coil and the gap becomes larger than that of the conventional example, so that the leakage magnetic flux generated in the gap is less likely to be absorbed by the coil, and the magnetic energy consumed in the coil is reduced,
The inductance value is improved. Further, since one of the coils on the power feeding side and the coil on the power receiving side can be arranged on the inner diameter side of the other, the coupling degree is improved and the leakage magnetic flux can be reduced. As a result, the inductance value is improved, and the core size can be further reduced. Further, because of the concavo-convex shape, it is easy to distinguish the magnetic elements on both sides, and misassembly can be prevented.

この発明において、前記一対の磁性素子の間のギャップで発生する漏れ磁束による漏れインダクタンスと、コンデンサとでなる共振回路が、前記一対の磁性素子における受側のコイルとこのコイルに接続されたコンデンサとで構成された構成であっても良い。
ギャップに漏れた磁束による漏れインダクタンスと、受電側の磁性素子のコイルに接続したコンデンサとでなる共振回路により、効率を改善することができる。
In the present invention, the leakage inductance due to leakage magnetic flux generated in the gap between the pair of magnetic elements, a resonance circuit consisting of a capacitor, connected to the coil and receiving-side of the coil in the pair of magnetic elements capacitor It may be configured by and.
The efficiency can be improved by the resonance circuit including the leakage inductance due to the magnetic flux leaking into the gap and the capacitor connected to the coil of the magnetic element on the power receiving side.

この発明において、前記一対の磁性素子のうちのいずれか一方の磁性素子が軸体に固定され、他方の磁性素子が前記軸体にラジアル転がり軸受を介して設置されていても良い。 この構成の場合、軸体とラジアル転がり軸受とにより、一対の磁性素子の相互の相対回転可能な支持が、この電気伝送装置の単独で行え、前記機械装置への組付けが容易となる。 In the present invention, one of the pair of magnetic elements may be fixed to the shaft body, and the other magnetic element may be installed on the shaft body via a radial rolling bearing. In this structure, the shaft body and the radial rolling bearing can support the pair of magnetic elements so that the magnetic elements can rotate relative to each other, and the electric transmission device can be independently mounted, so that the mechanical transmission device can be easily assembled.

この発明において、いずれか一方の磁性素子が、機械装置の関節部を構成する一対の相対屈曲部品のうちの一方の相対屈曲部品に、他方の磁性素子が他方の相対屈曲部品にそれぞれ取付けられても良い。
機械装置の関節部に使用される場合に、この発明の電気伝送装置の前記各効果が効果的に発揮される。
In the present invention, one of the magnetic elements is attached to one of the relative bending parts of the pair of relative bending parts forming the joint of the mechanical device, and the other magnetic element is attached to the other relative bending part. Is also good.
When used in a joint portion of a mechanical device, each of the effects of the electric transmission device of the present invention is effectively exhibited.

この構成の場合に、人体に装着されて前記人体の腕、手、脚、または足の動きを駆動源でアシストするパワーアシストスーツであっても良い。
パワーアシストスーツの場合、伝送の信頼性と小型化と強く要望される。そのため、この発明の相対回転部の電気伝送装置の持つ信頼性と小型化の効果が、より効果的に発揮される。
In the case of this configuration, it may be a power assist suit that is attached to a human body and assists the movement of the arm, hand, leg, or foot of the human body with a drive source.
In the case of a power assist suit, reliability of transmission and miniaturization are strongly demanded. Therefore, the reliability and miniaturization effect of the electric transmission device of the relative rotation part of the present invention can be more effectively exhibited.

この発明における第1の発明の相対回転部の電気伝送装置は、互いに同軸心上で相対回転可能な一対の磁性素子を備え、これら一対の磁性素子は、それぞれコイルとコアとでなり、かつ前記コイルが互いに径方向の内外に位置して磁気結合され、この磁気結合によって電力および電気信号のいずれか一方または両方を伝送する相対回転部の電気伝送装置において、前記一対の磁性素子のうち、前記コイルが径方向の内側に位置する磁性素子の前記コアは、この磁性素子の前記コイルの内周に位置する円筒部とこの円筒部の一端から外径側へ延びて外径端が他方の磁性素子のコイルよりも大径のフランジ部とでなる断面L字状であり、前記他方の磁性素子の前記コアは、この磁性素子のコイルの外周に位置して一端の端面が前記一方の磁性素子のコアの前記フランジ部にギャップを介して対向する円筒部とこの円筒部の他端から内径側に延びて内径端が他方の磁性素子の前記コアの円筒部の端面に対向するフランジ部とでなる断面逆L字状であるため、断線や使用温度、環境上の問題が生じず、かつ大型化することなく効率良く電力や信号の伝送が行える
この発明における第2の発明の相対回転部の電気伝送装置は、互いに同軸心上で相対回転可能な一対の磁性素子を備え、これら一対の磁性素子は、それぞれコイルとコアとでなり、かつ前記コイルが互いに径方向の内外に位置して磁気結合され、この磁気結合によって電力および電気信号のいずれか一方または両方を伝送する相対回転部の電気伝送装置において、前記一対の磁性素子のうち、前記コイルが径方向の内側に位置する磁性素子の前記コアは、この磁性素子の前記コイルの内周に位置する円筒部とこの円筒部の一端から外径側へ延びて外径端が他方の磁性素子のコア端部の内周面にギャップを介して対向するフランジ部とでなる断面L字状であり、前記他方の磁性素子の前記コアは、この磁性素子のコイルの外周に位置して一端の端部の内周面が前記一方の磁性素子のコアの前記フランジ部に対向する円筒部とこの円筒部の他端から内径側に延びて内径端が他方の磁性素子の前記コイルよりも小径のフランジ部とでなる断面逆L字状であるため、断線や使用温度、環境上の問題が生じず、かつ大型化することなく効率良く電力や信号の伝送が行える。
Electrical transmission device of the relative rotation of the first invention in this inventions is provided with a relatively rotatable pair of magnetic elements on the same axis to each other, the pair of magnetic elements are each made in the coils and the core, and the coil is magnetically coupled positioned inside and outside in the radial directions, in the electrical transmission device of the relative rotary part you transmit either one or both of power and an electric signal by the magnetic coupling, of the pair of magnetic elements The core of the magnetic element in which the coil is located inside in the radial direction includes a cylindrical portion located on the inner circumference of the coil of the magnetic element and an outer diameter end extending from one end of the cylindrical portion to the outer diameter side and the other outer diameter end. Of the magnetic element has a flange portion having a diameter larger than that of the coil of the magnetic element, and the core of the other magnetic element is located on the outer periphery of the coil of the magnetic element, and one end face of the one core is A cylindrical portion facing the flange portion of the core of the magnetic element with a gap, and a flange portion extending from the other end of the cylindrical portion toward the inner diameter side and having an inner diameter end facing the end surface of the cylindrical portion of the core of the other magnetic element. and because the a sectional inverted L-shape made of, disconnection or use temperature causes no environmental problems, and allows transmission of power efficiently and signal without increasing the size of.
An electric transmission device of a relative rotating part of a second aspect of the present invention includes a pair of magnetic elements that can rotate relative to each other coaxially with each other, and each of the pair of magnetic elements includes a coil and a core. In the electric transmission device of the relative rotating part, wherein the coils are magnetically coupled to each other inside and outside in the radial direction, and either or both of electric power and electric signal are transmitted by the magnetic coupling, in the pair of magnetic elements, The core of the magnetic element in which the coil is located on the inner side in the radial direction has a cylindrical portion located on the inner circumference of the coil of the magnetic element and an outer diameter end extending from one end of the cylindrical portion to the outer diameter side of the other magnetic element. The core of the element has an L-shaped cross-section consisting of an inner peripheral surface and a flange portion opposed to each other through a gap, and the core of the other magnetic element is located at the outer periphery of the coil of the magnetic element and has one end. A cylindrical portion whose inner peripheral surface of the end portion faces the flange portion of the core of the one magnetic element, and an inner diameter end extending from the other end of the cylindrical portion toward the inner diameter side and having a diameter smaller than that of the coil of the other magnetic element. Since it has an inverted L-shape in cross section with the flange portion, there is no problem of disconnection, operating temperature and environment, and power and signals can be transmitted efficiently without increasing the size.

この発明の第一の実施形態にかかる相対回転部の電気伝送装置の一部切欠斜視図である。FIG. 3 is a partially cutaway perspective view of the electric transmission device of the relative rotation unit according to the first embodiment of the present invention. 同電気伝送装置の断面図である。 A cross-sectional view of the electric transmission system. 同伝送装置の磁束の流れを示す説明図である。It is explanatory drawing which shows the flow of the magnetic flux of the same transmission device. 同電気伝送装置の電気回路図である。It is an electric circuit diagram of the electric transmission device. 同電気伝送装置を軸受付きとした例の一部切欠斜視図である。FIG. 3 is a partially cutaway perspective view of an example in which the electric transmission device is provided with a bearing. 図5の電気伝送装置に引出し線を加えた例の一部切欠斜視図である。FIG. 6 is a partially cutaway perspective view of an example in which a lead wire is added to the electric transmission device of FIG. 5. 同電気伝送装置を用いたパワーアシストスーツの一例の説明図である。It is explanatory drawing of an example of the power assist suit using the same electric transmission apparatus. 他の実施形態にかかる相対回転部の電気伝送装置の断面図である。It is sectional drawing of the electric transmission apparatus of the relative rotation part concerning other embodiment. 前記第一の実施形態、他の実施形態、および従来例に係る電気伝送装置の磁束の流れを示す解析結果の説明図である。It is explanatory drawing of the analysis result which shows the flow of the magnetic flux of the electric transmission apparatus which concerns on the said 1st embodiment, other embodiment, and a prior art example. 従来例の一部切欠斜視図である。It is a partially notched perspective view of a prior art example. 同従来例の断面図である。It is sectional drawing of the same prior art example.

この発明の第一の実施形態を図1ないし図3と共に説明する。この相対回転部の電気伝送装置は、トランスの一種であって、互いに同軸心上で相対回転可能な一対の磁性素子1A,1Bを備える。これら一対の磁性素子1A,1Bは、それぞれコイル3とコア2とでなり、かつ前記コイル3,3がギャップGを介し互いに径方向の内外に位置して磁気結合され、この磁気結合によって電力および電気信号のいずれか一方または両方を伝送する。前記一対の磁性素子1A,1Bのうち、いずれか一方、例えば磁性素子1Aは、軸体4の外周に固定され、他方の磁性素子1Bは前記軸体4の外周に回転自在に設置されている。
前記軸体4は、互いに相対回転する一対のハウジング5,6の一方のハウジング5に設置され、他方のハウジング6に前記他方の磁性素子1Bが設置されている。
A first embodiment of the present invention will be described with reference to FIGS. The electric transmission device of the relative rotation unit is a type of transformer, and includes a pair of magnetic elements 1A and 1B that are rotatable relative to each other coaxially. The pair of magnetic elements 1A and 1B are composed of a coil 3 and a core 2, respectively, and the coils 3 and 3 are magnetically coupled to each other by being located inside and outside in the radial direction via a gap G. Transmits either or both electrical signals. One of the pair of magnetic elements 1A and 1B, for example, the magnetic element 1A is fixed to the outer periphery of the shaft body 4, and the other magnetic element 1B is rotatably installed on the outer periphery of the shaft body 4. ..
The shaft body 4 is installed in one housing 5 of a pair of housings 5 and 6 that rotate relative to each other, and the other magnetic element 1B is installed in the other housing 6.

前記一対の磁性素子1A,1Bのうち、一方の磁性素子1Aは凸形、他方の磁性素子1Bは凹形であり、互いに嵌まりあっている。
具体的には、コイル3が径方向の内側に位置する磁性素子1Aのコア2は、コイル3の内周に位置する円筒部2aとこの円筒部2aの一端から外径側へ延びて外径端が他方の磁性素子1Bのコイル3よりも大径のフランジ部2bとでなる断面L字状である。このコア2とコイル3とで、前記凸形のポット形の磁性素子1Aを構成する。
他方の磁性素子1Bのコア2は、この磁性素子1Bのコイル3の外周に位置して一端の端面が前記一方の磁性素子1Aのコア2の前記フランジ部2bにギャップG1を介して対向する外周側の円筒部2cと、この円筒部2cの他端から内径側に延びて内径端が一方の磁性素子1Aのコア2の円筒部2aの端面にギャップG2を介して対向するフランジ部2dとでなる断面L字状である。
Of the pair of magnetic elements 1A and 1B, one magnetic element 1A has a convex shape and the other magnetic element 1B has a concave shape, and they are fitted to each other.
Specifically, the core 2 of the magnetic element 1A in which the coil 3 is located on the inner side in the radial direction has a cylindrical portion 2a located on the inner circumference of the coil 3 and an outer diameter extending from one end of the cylindrical portion 2a to the outer diameter side. It has an L-shaped cross section, the end of which is a flange portion 2b having a larger diameter than the coil 3 of the other magnetic element 1B. The core 2 and the coil 3 form the convex pot-shaped magnetic element 1A.
The core 2 of the other magnetic element 1B is located on the outer periphery of the coil 3 of the magnetic element 1B, and one end face of the core 2 faces the flange portion 2b of the core 2 of the one magnetic element 1A via a gap G1. Side cylindrical portion 2c and a flange portion 2d extending from the other end of the cylindrical portion 2c toward the inner diameter side and having an inner diameter end facing the end surface of the cylindrical portion 2a of the core 2 of one magnetic element 1A via a gap G2. It has an L-shaped cross section.

前記各磁性素子1A,1Bのコイル3は、模式化して図示しているが、ボビンに丸線からなる被覆導線を巻回したものであっても、また平角の導線を一重に巻回したボビンなしのものであっても良い。前記各磁性素子1A,1Bのコア2は、強磁性体であり、圧粉成形磁性体、射出成形磁性体、または積層鋼板等で構成される。 Although the coil 3 of each of the magnetic elements 1A and 1B is schematically shown in the figure, a bobbin may be formed by winding a covered conductive wire made of a round wire, or a bobbin obtained by winding a rectangular conductive wire in a single layer. It may be none. The core 2 of each of the magnetic elements 1A and 1B is a ferromagnetic material, and is made of a powder compact magnetic material, an injection magnetic material, a laminated steel plate, or the like.

前記圧縮成形磁性体は、具体的には、例えば鉄粉、窒化鉄粉等の純鉄系軟磁性材料、Fe−Si−Al合金(センダスト)粉末、スーパーセンダスト粉末、Ni−Fe合金(パーマロイ)粉末、Co−Fe合金粉末、Fe−Si−B系合金粉末等の鉄基合金系軟磁性材料、フェライト系磁性材料、アモルファス系磁性材料、微細結晶材料などの磁性材料を原料とできる。 Specific examples of the compression-molded magnetic body include pure iron-based soft magnetic materials such as iron powder and iron nitride powder, Fe—Si—Al alloy (Sendust) powder, super Sendust powder, and Ni—Fe alloy (Permalloy). Magnetic materials such as powder, Co—Fe alloy powder, Fe—Si—B alloy powder, and other iron-based alloy soft magnetic materials, ferrite magnetic materials, amorphous magnetic materials, and microcrystalline materials can be used as raw materials.

前記射出成形磁性体は、具体的には、前記圧縮成形磁性体の原料粉末に結着樹脂を配合して、この混合物を射出成形することにより得られる。射出成形がし易いこと、射出成形後の形状維持が容易であること、複合磁性体の磁気特性に優れること等から、磁性粉末がアモルファス金属粉末であることが好ましい。アモルファス金属粉末は上述した鉄合金系、コバルト合金系、ニッケル合金系、これらの混合合金系アモルファスなどを使用できる。これらアモルファス金属粉末表面に上述した絶縁被覆が形成されている。
結着樹脂としては、射出成形が可能な熱可塑性樹脂が使用できる。熱可塑性樹脂としては、ポリエチレンやその他の各種の樹脂が使用できる。
Specifically, the injection-molded magnetic body is obtained by mixing a raw material powder of the compression-molded magnetic body with a binder resin and injection-molding the mixture. The magnetic powder is preferably an amorphous metal powder because it is easy to perform injection molding, the shape can be easily maintained after injection molding, and the magnetic properties of the composite magnetic body are excellent. As the amorphous metal powder, the above-mentioned iron alloy system, cobalt alloy system, nickel alloy system, mixed alloy system amorphous of these and the like can be used. The above-mentioned insulating coating is formed on the surface of these amorphous metal powders.
As the binder resin, an injection-moldable thermoplastic resin can be used. As the thermoplastic resin, polyethylene and various other resins can be used.

図4は、この電気伝送装置Aを電力の給電に用いた電気回路の一例を示す。一対の磁性素子1A,1Bのうちのいずれか一方、例えば磁性素子1Aのコイル3が一次側であり、交流電源7に接続されている。他方の磁性素子1Bのコイル3は、二次側、つまり受電側であり、モータ等の負荷8に接続されている。受電側のコイル3と並列にコンデンサ9が接続され、この受電側のコイル3で生じる漏れ磁束による漏れインダクタンスと、コンデンサ9とで共振回路10を構成する。なお、交流電源7に代えて、または交流電源7から出力される交流電圧に重畳させるように電気信号源(図示せず)を設け、負荷8に代えて、または負荷8と共に復調回路(図示せず)を設けることで、電気信号を伝送することができる。 FIG. 4 shows an example of an electric circuit using the electric transmission device A for supplying electric power. Either one of the pair of magnetic elements 1A and 1B, for example, the coil 3 of the magnetic element 1A is the primary side and is connected to the AC power supply 7. The coil 3 of the other magnetic element 1B is the secondary side, that is, the power receiving side, and is connected to the load 8 such as a motor. A capacitor 9 is connected in parallel with the power-reception-side coil 3, and a leakage inductance due to a leakage magnetic flux generated in the power-reception-side coil 3 forms a resonance circuit 10 with the capacitor 9. An electric signal source (not shown) is provided instead of the AC power supply 7 or to be superimposed on the AC voltage output from the AC power supply 7, and instead of the load 8 or together with the load 8, a demodulation circuit (not shown) is provided. By providing (1), an electric signal can be transmitted.

この構成の電気伝送装置Aによると、一対の磁性素子1A,1Bは、互いにコイル3,3が径方向の内外に位置するため、磁気結合の結合度に優れていて、電力や電気信号の伝送の効率に優れ、大型化することが回避される。また、磁気結合によるため、断線や使用温度、環境上の問題が生じない。なお、コイル3,3の磁束Bは、図3に矢印Bで示すように通る。ギャップG1,G2は、磁路に対して垂直に横切る空気層または絶縁層である。
ギャップG1,G2は、この実施形態では空気層としているが、樹脂材等の絶縁体を介在させて絶縁層としても良い。
According to the electrical transmission device A having this configuration, the pair of magnetic elements 1A and 1B have excellent coupling degree of magnetic coupling because the coils 3 and 3 are located inside and outside in the radial direction, and transmit power and electrical signals. It is highly efficient and avoids upsizing. Further, because of the magnetic coupling, there are no disconnection, operating temperature, and environmental problems. The magnetic flux B of the coils 3 and 3 passes as indicated by an arrow B in FIG. The gaps G1 and G2 are air layers or insulating layers that intersect perpendicularly to the magnetic path.
Although the gaps G1 and G2 are air layers in this embodiment, they may be insulating layers with an insulator such as a resin material interposed.

具体的には、この電気伝送装置は、一対の磁性素子1A,1Bの一方の磁性素子1Aを凸形、他方の磁性素子1Bを凹形とした構成である。そのため、漏れ磁束が吸収されやすいコイル近傍以外にギャップG1,G2を設けることになるため、インダクタンス値が向上する。また、給電側と受電側のコイル3,3のうち、一方が他方の内径側に位置するため、結合度が向上し漏れ磁束を低減できる。これにより、インダクタンス値が改善され、コア体格のより一層の小型化を図ることができる。また、凹凸形状のため、両側の磁性素子1A,1Bを判別し易く、誤組を防止できる。
空気に、つまりギャップG1,G2に漏れた磁束によって生じる漏れインダクタンスと、受電側の磁性素子1Bのコイル3に接続したコンデンサ9とでなる共振回路10により、効率を改善することができる。
なお、給電側と受電側のコイル3,3は、この例では互いに巻数を同じとしているが、巻数を互いに異ならせ、昇圧または降圧の機能を持たせても良い。
Specifically, this electric transmission device has a configuration in which one magnetic element 1A of the pair of magnetic elements 1A and 1B has a convex shape and the other magnetic element 1B has a concave shape. Therefore, since the gaps G1 and G2 are provided other than the vicinity of the coil where the leakage magnetic flux is easily absorbed, the inductance value is improved. Further, one of the coils 3 and 3 on the power feeding side and the coil on the power receiving side is located on the inner diameter side of the other, so that the degree of coupling is improved and the leakage magnetic flux can be reduced. As a result, the inductance value is improved, and the core size can be further reduced. Further, because of the concavo-convex shape, it is easy to distinguish the magnetic elements 1A and 1B on both sides, and it is possible to prevent misassembly.
The efficiency can be improved by the resonance circuit 10 including the leakage inductance generated by the magnetic flux leaking to the air, that is, the gaps G1 and G2, and the capacitor 9 connected to the coil 3 of the magnetic element 1B on the power receiving side.
The coils 3 and 3 on the power feeding side and the coil on the power receiving side have the same number of turns in this example, but the number of turns may be different from each other to have a step-up or step-down function.

このように、この実施形態の電気伝送装置Aによると、次の各効果が得られる。
・関節部の電力または信号伝送に使用するケーブルは屈曲による繰返し応力によって断線するが、コアが相対的に稼働可能なこの電気伝送装置Aを適用することで、断線することなく電力または信号を伝送する。
・この電気伝送装置Aは、ポット形インダクタを凹型の磁性素子1Bと凸型の磁性素子1Aに分割したため、漏れ磁束がコイルに吸収されるのを抑えられる。また、一方のコイル3が他方のコイル3の内径に配置されているため、結合係数が向上する。
・ギャップ部G1,G2で発生する漏れ磁束によって生じる漏れインダクタンスと、コンデンサ9とでなる共振回路10により効率を改善することができ、この電気伝送装置を大型化する必要がない。
As described above, according to the electric transmission device A of this embodiment, the following effects can be obtained.
-Cables used for power or signal transmission at joints are disconnected due to repeated stress due to bending, but by applying this electrical transmission device A, which allows the core to operate relatively, power or signals are transmitted without disconnection. To do.
In this electric transmission device A, since the pot type inductor is divided into the concave magnetic element 1B and the convex magnetic element 1A, it is possible to suppress the leakage magnetic flux from being absorbed by the coil. In addition, since the one coil 3 is arranged inside the other coil 3, the coupling coefficient is improved.
The efficiency can be improved by the leakage inductance generated by the leakage magnetic flux generated in the gap portions G1 and G2 and the resonance circuit 10 including the capacitor 9, and it is not necessary to upsize the electric transmission device.

図5は、この相対回転部の電気伝送装置Aを、一対の軸受11,11を有する構成としてハウジング5,6(図2参照)に設置した例を示す。軸受11はラジアル軸受であり、深溝玉軸受とされている。この例では、軸受11の外輪11aと凹形の磁性素子1Bとを前記ハウジングに固定し、軸受11の内輪11bと凸型の磁性素子1Aとを支持軸等の軸体に固定する。ハウジング側から給電する場合、軸体に固定した装置に対して、この電気伝送装置を介して非接触で給電することができる。 FIG. 5 shows an example in which the electric transmission device A of the relative rotating portion is installed in the housings 5 and 6 (see FIG. 2) as a configuration having a pair of bearings 11 and 11. The bearing 11 is a radial bearing and is a deep groove ball bearing. In this example, the outer ring 11a of the bearing 11 and the concave magnetic element 1B are fixed to the housing, and the inner ring 11b of the bearing 11 and the convex magnetic element 1A are fixed to a shaft body such as a support shaft. When power is supplied from the housing side, power can be supplied to the device fixed to the shaft body in a non-contact manner via this electric transmission device.

図6は、図5の実施形態におけるケーブル/ 信号線(青) の取出し例を示す。この例では、凹形の磁性素子1Bについては、コア2の外径部から引出し線3aを取り出している。コア2の端面から引出し線3aを取り出しても良い。軸体4に固定した凸形の磁性素子1Aについては、コイル3は、中空とした軸体4の内径孔から引出し線3bを取り出している。これにより、ハウジング側の部材に干渉することなく電力ケーブル/信号線である引出し線3abを取り出すことができる。 FIG. 6 shows an example of taking out the cable/signal line (blue) in the embodiment of FIG. In this example, with respect to the concave magnetic element 1B, the lead wire 3a is taken out from the outer diameter portion of the core 2. The lead wire 3a may be taken out from the end surface of the core 2. Regarding the convex magnetic element 1A fixed to the shaft body 4, the coil 3 has a lead wire 3b taken out from an inner diameter hole of the hollow shaft body 4. This makes it possible to take out the lead wire 3a, 3 b is without power cable / signal line to interfere with members of the housing side.

図7は、この相対回転部の電気伝送装置を装備する機械装置がパワーアシストスーツ20である例を示す。このパワーアシストスーツ20は、人体の胴体に着せる胴体部20aと、この胴体部20aから延びる腕部20bとを有する。腕部20bは、一対の相対屈曲部品である上腕部20baと下腕部20bbとを有し、両部20ba,20bbの間の相対屈曲部である肘の関節部20acは、軸心O回りに回転自在な1自由度の関節部とされている。胴体部20aに電源7があり、下腕部20baの先端に、手首または手の駆動を行う電動モータ等の負荷8がある。この電源7から負荷8に接続する配線(図示せず)が、前記肘となる関節部20acにおいて、前記実施形態の電気伝送装置Aで接続されている。 FIG. 7 shows an example in which the mechanical device equipped with the electric transmission device of the relative rotating part is the power assist suit 20. The power assist suit 20 has a body portion 20a to be worn on the body of a human body, and an arm portion 20b extending from the body portion 20a. The arm portion 20b has an upper arm portion 20ba and a lower arm portion 20bb which are a pair of relative bending parts, and an elbow joint portion 20ac which is a relative bending portion between the both portions 20ba, 20bb is arranged around the axis O. It is a rotatable joint with one degree of freedom. A power source 7 is provided in the body portion 20a, and a load 8 such as an electric motor for driving the wrist or the hand is provided at the tip of the lower arm portion 20ba. A wiring (not shown) that connects the power source 7 to the load 8 is connected to the elbow joint 20ac by the electric transmission device A of the embodiment.

パワーアシストスーツ20では、電力や電気信号の伝送の信頼性と、関節部における電気伝送装置の小型化とが強く要望される。そのため、この実施形態の相対回転部の電気伝送装置の持つ信頼性と小型化の効果が、より効果的に発揮される。 In the power assist suit 20, reliability of transmission of electric power and electric signals and miniaturization of electric transmission devices at joints are strongly demanded. Therefore, the reliability and the effect of miniaturization of the electric transmission device of the relative rotation unit of this embodiment are more effectively exhibited.

図8は、この発明の他の実施形態を示す。この実施形態では、前記一対の磁性素子1A,1Bのうち、前記コイル3が径方向の内側に位置する磁性素子1Aの前記コア2は、この磁性素子1Aの前記コイル3の内周に位置する円筒部2aとこの円筒部2aの一端から外径側へ延びて外径端が他方の磁性素子1Bのコア端部の内周面にギャップG3を介して対向するフランジ部2bとでなる断面L字状である。
前記他方の磁性素子1Bの前記コア2は、この磁性素子1Bのコイル3の外周に位置して一端の端部の内周面が前記一方の磁性素子1Aのコア2の前記フランジ部2bに対向する円筒部2cとこの円筒部2cの他端から内径側に延びて内径端が他方の磁性素子1Bの前記コイル3よりも小径のフランジ部2dとでなるようにしている。
FIG. 8 shows another embodiment of the present invention. In this embodiment, of the pair of magnetic elements 1A and 1B, the core 2 of the magnetic element 1A in which the coil 3 is located radially inside is located inside the coil 3 of the magnetic element 1A. A section L composed of a cylindrical portion 2a and a flange portion 2b extending from one end of the cylindrical portion 2a to the outer diameter side and having an outer diameter end facing the inner peripheral surface of the core end portion of the other magnetic element 1B via a gap G3. It has a letter shape.
The core 2 of the other magnetic element 1B is located on the outer circumference of the coil 3 of the magnetic element 1B, and the inner peripheral surface at one end is opposed to the flange portion 2b of the core 2 of the one magnetic element 1A. The cylindrical portion 2c and the flange portion 2d extending from the other end of the cylindrical portion 2c to the inner diameter side and having the inner diameter end smaller in diameter than the coil 3 of the other magnetic element 1B.

この構成の場合も、漏れ磁束が吸収されやすいコイル近傍以外にギャップを設けることになるため、インダクタンス値が向上する。また、給電側と受電側のコイル3,3のうち、一方を他方の内径に配置できるため、結合度が向上し漏れ磁束を低減できる。これにより、インダクタンス値が改善され、コア体格のより一層の小型化を図ることができる。また、凹凸形状のため、両側の磁性素子1A,1Bを判別し易く、誤組を防止できる。
この実施形態におけるその他の構成、効果は、図1〜図3と共に前述した第1の実施形態と同様である。
Also in the case of this configuration, since the gap is provided other than the vicinity of the coil where the leakage magnetic flux is easily absorbed, the inductance value is improved. Further, since one of the coils 3 and 3 on the power feeding side and the coil on the power receiving side can be arranged in the inner diameter of the other, the coupling degree is improved and the leakage magnetic flux can be reduced. As a result, the inductance value is improved, and the core size can be further reduced. Further, because of the concavo-convex shape, it is easy to distinguish the magnetic elements 1A and 1B on both sides, and it is possible to prevent misassembly.
Other configurations and effects of this embodiment are similar to those of the first embodiment described above with reference to FIGS.

図9(A)〜(C)は、それぞれ前記第1の実施形態、前記他の実施形態、および図10、図11の従来例における磁束流れの解析結果を示す。同図からわかるように、前記各実施形態は、従来例に比べ、漏れ磁束が吸収されやすいコイル近傍以外にギャップを設けることになるため、インダクタンス値が向上する。 9A to 9C show analysis results of the magnetic flux flow in the first embodiment, the other embodiments, and the conventional examples of FIGS. 10 and 11, respectively. As can be seen from the figure, in each of the above-described embodiments, a gap is provided other than in the vicinity of the coil where the leakage magnetic flux is easily absorbed, so that the inductance value is improved.

以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments for carrying out the present invention have been described above based on the embodiments, but the embodiments disclosed this time are exemplifications in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

1A,1B:磁性素子
2…コア
3…コイル
4…軸体
5,6…部材
2a,2c…円筒部
2b,2d…フランジ部
7…交流電源
8…負荷
9…コンデンサ
10…共振回路
11…軸受
20…パワーアシストスーツ(機械装置)
20b…腕部
20ba…上腕部(相対屈曲部品)
20bb…下腕部(相対屈曲部品)
20bc…関節部(相対回転部)
G1,G2,G3,G4…ギャップ
1A, 1B: Magnetic element 2... Core 3... Coil 4... Shaft bodies 5, 6... Members 2a, 2c... Cylindrical portions 2b, 2d... Flange portion 7... AC power supply 8... Load 9... Capacitor 10... Resonance circuit 11... Bearing 20... Power assist suit (machinery)
20b...arm 20ba...upper arm (relative bending part)
20bb... Lower arm (relative bending part)
20 bc... Joint part (relative rotation part)
G1, G2, G3, G4... Gap

Claims (6)

互いに同軸心上で相対回転可能な一対の磁性素子を備え、これら一対の磁性素子は、それぞれコイルとコアとでなり、かつ前記コイルが互いに径方向の内外に位置して磁気結合され、この磁気結合によって電力および電気信号のいずれか一方または両方を伝送する相対回転部の電気伝送装置において、前記一対の磁性素子のうち、前記コイルが径方向の内側に位置する磁性素子の前記コアは、この磁性素子の前記コイルの内周に位置する円筒部とこの円筒部の一端から外径側へ延びて外径端が他方の磁性素子のコイルよりも大径のフランジ部とでなる断面L字状であり、前記他方の磁性素子の前記コアは、この磁性素子のコイルの外周に位置して一端の端面が前記一方の磁性素子のコアの前記フランジ部にギャップを介して対向する円筒部とこの円筒部の他端から内径側に延びて内径端が他方の磁性素子の前記コアの円筒部の端面に対向するフランジ部とでなる断面逆L字状である相対回転部の電気伝送装置。 A pair of magnetic elements that can rotate relative to each other on the same axis are provided. The pair of magnetic elements includes a coil and a core, and the coils are magnetically coupled to each other inside and outside in the radial direction. In the electric transmission device of the relative rotating unit that transmits one or both of electric power and electric signal by coupling , the core of the magnetic element in which the coil is located inside in the radial direction among the pair of magnetic elements is An L-shaped cross section having a cylindrical portion of the magnetic element located on the inner circumference of the coil and a flange portion extending from one end of the cylindrical portion to the outer diameter side and having an outer diameter end larger in diameter than the coil of the other magnetic element. And the core of the other magnetic element is located at the outer circumference of the coil of the magnetic element, and the end face of one end of which is a cylindrical portion facing the flange portion of the core of the one magnetic element via a gap. An electric transmission device of a relative rotating part having an inverted L-shaped cross section, which extends from the other end of the cylindrical part toward the inner diameter side and has an inner diameter end with a flange part facing the end face of the cylindrical part of the core of the other magnetic element. 互いに同軸心上で相対回転可能な一対の磁性素子を備え、これら一対の磁性素子は、それぞれコイルとコアとでなり、かつ前記コイルが互いに径方向の内外に位置して磁気結合され、この磁気結合によって電力および電気信号のいずれか一方または両方を伝送する相対回転部の電気伝送装置において、
前記一対の磁性素子のうち、前記コイルが径方向の内側に位置する磁性素子の前記コアは、この磁性素子の前記コイルの内周に位置する円筒部とこの円筒部の一端から外径側へ延びて外径端が他方の磁性素子のコア端部の内周面にギャップを介して対向するフランジ部とでなる断面L字状であり、
前記他方の磁性素子の前記コアは、この磁性素子のコイルの外周に位置して一端の端部の内周面が前記一方の磁性素子のコアの前記フランジ部に対向する円筒部とこの円筒部の他端から内径側に延びて内径端が他方の磁性素子の前記コイルよりも小径のフランジ部とでなる断面逆L字状である相対回転部の電気伝送装置。
A pair of magnetic elements that can rotate relative to each other on the same axis are provided. The pair of magnetic elements includes a coil and a core, and the coils are magnetically coupled to each other inside and outside in the radial direction. In the electric transmission device of the relative rotating part that transmits one or both of electric power and electric signal by coupling ,
Of the pair of magnetic elements, the core of the magnetic element in which the coil is located on the inner side in the radial direction includes a cylindrical portion located on the inner circumference of the coil of the magnetic element and an outer diameter side from one end of the cylindrical portion. The outer diameter end is L-shaped in cross section, and has an outer diameter end and a flange portion that faces the inner peripheral surface of the core end portion of the other magnetic element via a gap,
The core of the other magnetic element is located at the outer periphery of the coil of the magnetic element, and the inner peripheral surface of one end of the magnetic element faces the flange portion of the core of the one magnetic element, and the cylindrical portion. Of the relative rotation part, which extends from the other end to the inner diameter side and whose inner diameter end is a flange part having a diameter smaller than that of the coil of the other magnetic element and has an inverted L-shaped cross section.
請求項1または請求項2に記載の相対回転部の電気伝送装置において、前記一対の磁性素子の間のギャップで発生する漏れ磁束による漏れインダクタンスと、コンデンサとでなる共振回路が、前記一対の磁性素子における受側のコイルとこのコイルに接続されたコンデンサとで構成された相対回転部の電気伝送装置。 The electric transmission device of the relative rotating part according to claim 1 or 2, wherein a resonance circuit including a leakage inductance due to a leakage magnetic flux generated in a gap between the pair of magnetic elements and a capacitor is provided in the pair of magnetic elements. electrical transmission device of the relative rotation portion is composed of a receiving-side coil and a capacitor connected to the coil in the device. 請求項1ないし請求項3のいずれか1項に記載の相対回転部の電気伝送装置において、前記一対の磁性素子のうちのいずれか一方の磁性素子が軸体に固定され、他方の磁性素子が前記軸体にラジアル転がり軸受を介して設置された相対回転部の電気伝送装置。 The electric transmission device of the relative rotating part according to any one of claims 1 to 3, wherein one of the magnetic elements of the pair of magnetic elements is fixed to a shaft and the other magnetic element is fixed. An electric transmission device of a relative rotating part installed on the shaft body through a radial rolling bearing. 請求項1ないし請求項4のいずれか1項に記載の相対回転部の電気伝送装置において、いずれか一方の磁性素子が、機械装置の関節部を構成する一対の相対屈曲部品のうちの一方の相対屈曲部品に、他方の磁性素子が他方の相対屈曲部品にそれぞれ取付けられた相対回転部の電気伝送装置。 The electric transmission device of the relative rotating part according to any one of claims 1 to 4, wherein any one of the magnetic elements is one of a pair of relative bending parts constituting a joint part of the mechanical device. An electric transmission device of a relative rotating part, wherein the other magnetic element is attached to the relative bending component, and the other magnetic element is attached to the other relative bending component. 請求項5に記載の相対回転部の電気伝送装置において、前記機械装置が、人体に装着されて前記人体の腕、脚、手、または足の動きを駆動源でアシストするパワーアシストスーツである相対回転部の電気伝送装置。 The electric transmission device of the relative rotating unit according to claim 5, wherein the mechanical device is a power assist suit that is attached to a human body and assists movement of the arm, leg, hand, or foot of the human body with a drive source. Electrical transmission device for rotating parts.
JP2016095206A 2016-05-11 2016-05-11 Relative rotating part electrical transmission device Active JP6710573B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016095206A JP6710573B2 (en) 2016-05-11 2016-05-11 Relative rotating part electrical transmission device
CN201780028737.6A CN109155191B (en) 2016-05-11 2017-05-01 Electric transmission device for relatively rotating parts
PCT/JP2017/017136 WO2017195687A1 (en) 2016-05-11 2017-05-01 Electric transmission device for relatively rotating part
US16/180,232 US11456115B2 (en) 2016-05-11 2018-11-05 Electric transmission device in relatively rotating parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095206A JP6710573B2 (en) 2016-05-11 2016-05-11 Relative rotating part electrical transmission device

Publications (2)

Publication Number Publication Date
JP2017204554A JP2017204554A (en) 2017-11-16
JP6710573B2 true JP6710573B2 (en) 2020-06-17

Family

ID=60322495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095206A Active JP6710573B2 (en) 2016-05-11 2016-05-11 Relative rotating part electrical transmission device

Country Status (1)

Country Link
JP (1) JP6710573B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102531048B1 (en) * 2018-04-26 2023-05-10 주식회사 아모센스 Wireless power transmission system for connection of rotation
KR102602642B1 (en) * 2018-09-18 2023-11-16 삼성전자주식회사 Wireless charging device
DE102019128928B3 (en) * 2019-10-25 2021-01-14 Sick Ag Sensor and method for manufacturing an inductive energy transfer unit
JP7435056B2 (en) 2020-03-10 2024-02-21 オムロン株式会社 Contactless power transmission device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680060A1 (en) * 1994-04-26 1995-11-02 Eaton Corporation Rotary transformer
JP3996607B2 (en) * 2005-04-01 2007-10-24 ニッタ株式会社 Power transmission device and method of assembling the same
JP4743600B2 (en) * 2005-07-27 2011-08-10 株式会社大一商会 Game machine
JP2007321895A (en) * 2006-06-01 2007-12-13 Ntn Corp Rolling member for joint device, and rolling bearing for joint device
JP2008125198A (en) * 2006-11-09 2008-05-29 Ishida Co Ltd Non-contact feeder system
JP2015006266A (en) * 2013-06-25 2015-01-15 国立大学法人三重大学 Body motion support unit
JP6295747B2 (en) * 2014-03-17 2018-03-20 セイコーエプソン株式会社 Finger joint drive device
JP6347984B2 (en) * 2014-05-13 2018-06-27 日本電産サンキョー株式会社 Non-contact power transmission device

Also Published As

Publication number Publication date
JP2017204554A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6710573B2 (en) Relative rotating part electrical transmission device
US11456115B2 (en) Electric transmission device in relatively rotating parts
EP1817142B1 (en) Transmission of power supply for robot applications between a first member and a second member arranged rotatable relative to one another
JP6481672B2 (en) Rotary magnetic coupling device
JP6493351B2 (en) Rotary magnetic coupling device
US20190036419A1 (en) Rotary actuator and robot
US7701315B2 (en) Inductive rotary transfer device
WO2010013418A1 (en) Module for automatic tool exchange device
JP2013534041A (en) Use of a wireless power receiving unit for receiving power, a wireless power transmitting unit, a wireless power transmitting device, and a wireless power transmitting device for transmitting power
US10650963B2 (en) Magnetic coupling device and wireless power transmission system using the same
EP2631923B1 (en) Wireless power connector and wireless power connector system
JP6743677B2 (en) Bearing with wireless sensor and bearing feeding system
JP6416773B2 (en) Non-contact connector
US20180286578A1 (en) Magnetic coupling device and wireless power transmission system using the same
JP4999176B2 (en) Drive device
JP2020043291A (en) Electric transmission device of relative rotation device
JP6710623B2 (en) Relative rotating part electrical transmission device
JP2013243250A (en) Coil for non-contact power supply
JP2010036287A (en) Device without harness of movable part
JP4365532B2 (en) Bearing with integral transformer
JP2018078186A (en) Electric transmission device for relative rotation unit
Risch et al. Flexible automation for the production of contactless power transfer systems for electric vehicles
JPS5914352A (en) Flat motor
JP7536285B2 (en) Link mechanism
JP7205008B2 (en) Motor and motor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200527

R150 Certificate of patent or registration of utility model

Ref document number: 6710573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250