JP6709489B2 - Clay burning building materials - Google Patents

Clay burning building materials Download PDF

Info

Publication number
JP6709489B2
JP6709489B2 JP2015238080A JP2015238080A JP6709489B2 JP 6709489 B2 JP6709489 B2 JP 6709489B2 JP 2015238080 A JP2015238080 A JP 2015238080A JP 2015238080 A JP2015238080 A JP 2015238080A JP 6709489 B2 JP6709489 B2 JP 6709489B2
Authority
JP
Japan
Prior art keywords
clay
building material
bottom line
valley bottom
back side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238080A
Other languages
Japanese (ja)
Other versions
JP2017101523A (en
Inventor
俊雄 江木
俊雄 江木
中島 剛
中島  剛
聡 小松原
聡 小松原
福田 健一
健一 福田
清水 一郎
一郎 清水
敬司 芝尾
敬司 芝尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Kake Educational Institution
Original Assignee
Shimane Prefecture
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture, Kake Educational Institution filed Critical Shimane Prefecture
Priority to JP2015238080A priority Critical patent/JP6709489B2/en
Publication of JP2017101523A publication Critical patent/JP2017101523A/en
Application granted granted Critical
Publication of JP6709489B2 publication Critical patent/JP6709489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finishing Walls (AREA)

Description

本発明は、粘土瓦、粘土タイル、粘土煉瓦等の粘土焼成建材、特に粘土瓦に関する。 The present invention relates to clay-fired building materials such as clay roof tiles, clay tiles, and clay bricks, and more particularly to clay roof tiles.

粘土瓦等の粘土焼成建材は、成形・乾燥した粘土質原料を焼成して製造されるものであることから、対候性、耐火性、防水性、遮熱性、遮音性、耐蝕性、美観等の多くの点で、他の材質の建材よりも優れた特徴を有している。しかし、かかる粘土焼成建材は、十分な機械的強度を確保するために、ある程度の厚みが要求され、重量が非常に大きくなってしまうという問題がある。このため、粘土焼成建材の輸送・施工等の容易性、あるいは建築物の軽量化等の要求に合致させるべく、強度を確保しつつも軽量である粘土焼成建材が切望されている。 Clay-fired building materials such as clay roof tiles are produced by firing molded and dried clay-based raw materials, so weather resistance, fire resistance, waterproofness, heat insulation, sound insulation, corrosion resistance, aesthetics, etc. In many respects, it has advantages over other building materials. However, such a clay-fired building material is required to have a certain thickness in order to secure sufficient mechanical strength, and there is a problem that the weight becomes very large. Therefore, in order to meet requirements such as easy transportation and construction of clay-fired building materials, and weight reduction of buildings, there is a strong demand for clay-fired building materials that are lightweight while maintaining strength.

かかる軽量粘土焼成建材として、これまで種々の試みがなされている。 Various attempts have been made to date as such lightweight clay-fired building materials.

たとえば、特許文献1、2等では、屋根瓦の平部の厚みを薄くすることにより軽量化を図るものの、それに伴う強度の低下に対しては、屋根瓦の裏側面に補強リブを設けることで強度の低下を補っている。同様に、特許文献3では、割れやすい中央部を肉厚にすることによって強度を向上させている。 For example, in Patent Documents 1 and 2 and the like, the flat portion of the roof tile is thinned to reduce the weight, but in order to reduce the strength associated therewith, a reinforcing rib is provided on the back side of the roof tile. It compensates for the decrease in strength. Similarly, in Patent Document 3, the strength is improved by making the center portion, which is easily broken, thick.

また、特許文献4、5等では、多孔質形成材等を添加した粘土材料を用いて、中空多孔質体に焼成することで軽量化を図っている。また、特許文献6では、陶磁器用原料に熱硬化性樹脂成形品の粉砕物を添加して焼成することで、軽量化と強度の両立を図っている。 Further, in Patent Documents 4 and 5, etc., the weight is reduced by firing a hollow porous body using a clay material to which a porous forming material or the like is added. Further, in Patent Document 6, by adding a pulverized product of a thermosetting resin molded product to a raw material for ceramics and firing it, both weight reduction and strength are achieved.

さらに、特許文献7では、平瓦を3枚縦に連結させた一体型瓦とすることで、施工する場合の重なり部分を除くことを可能にして軽量化させたとしている。 Further, in Patent Document 7, it has been stated that by making three flat roof tiles vertically connected to each other as an integrated roof tile, it is possible to eliminate an overlapping portion when performing construction, thereby reducing the weight.

特開平10−325215号公報JP, 10-325215, A 特開平05−230937号公報Japanese Patent Laid-Open No. 05-230937 特開2007−224540号公報JP, 2007-224540, A 特開2009−179548号公報JP, 2009-179548, A 特開2007−210872号公報JP, 2007-210872, A 特開2003−342057号公報JP, 2003-342057, A 特開2012−202153号公報JP2012-202153A

加藤悦朗ら、「高強度磁気素地の曲げ強度に及ぼす施釉の効果」、日本セラミックス協会学術論文誌 98[5]504−09(1990)Etsuro Kato et al., “Effect of Glazing on Bending Strength of High-Strength Magnetic Substrate,” Journal of Ceramic Society of Japan, 98[5]504-09 (1990). 秋月俊彦ら、「強化磁器の開発研究(1)強化磁器陶土の開発」、長崎県窯業技術センター研究報告(平成12年度)、第43−48頁Toshihiko Akizuki et al., "Development Research on Reinforced Porcelain (1) Development on Reinforced Porcelain Ceramics", Nagasaki Prefectural Ceramic Technology Center Research Report (2000), pp. 43-48 瓦屋根標準設計・施工ガイドライン 第23〜第25頁(図II−1−1,及び図II−1−2)、監修:独立行政法人建築研究所、発行:社団法人全日本瓦工事業連盟、全国陶器瓦工業組合連合会、全国厚形スレート組合連合会 平成13年8月13日発行、編集 瓦屋根標準施工ガイドライン委員会))Tile roof standard design/construction guidelines, pages 23 to 25 (Fig. II-1-1 and Fig. II-1-2), supervised by: Institute of Building Research, published by: Federation of All Japan Tiled Works, National Ceramics Federation of tile industry association, National Federation of Thick Slate Association, published on August 13, 2001, edited by tile roof standard construction guidelines committee))

以上のように種々の試みがなされてはいるものの、これら公知の方法では、必ずしも既存の設備だけで容易に対処できるとは限らない。 Although various attempts have been made as described above, these known methods cannot always be easily dealt with only by using existing equipment.

そこで、既存の設備にわずかの変更を加えるだけで対処でき、それでもなお効果的に、粘土焼成建材の軽量化と強度の両立を図ることを可能にする技術が依然として切望されている。 Therefore, there is still a long-felt demand for a technique that can deal with the existing facilities by making a slight change, and still effectively achieve both weight reduction and strength of the clay-fired building material.

本発明者らは、表側面から裏側面に向かう厚み方向に樋状の凹状湾曲形状を有する粘土焼成建材において、前記建材の裏側面上、前記凹状湾曲形状の谷底線に沿って、かつ該谷底線を含む、ほぼ帯状の釉薬領域として裏側面釉薬層を形成することで、瓦の曲げ破壊強度(JIS A 5208のJ形及びS形桟の曲げ試験)を向上する検討を行った。 The present inventors, in a clay-fired building material having a gutter-shaped concave curved shape in the thickness direction from the front side to the back side, on the back side of the building material, along the valley bottom line of the concave curved shape, and the valley bottom. By forming the back side glaze layer as a substantially strip-shaped glaze area including a line, a study was conducted to improve the bending fracture strength of the roof tile (bending test of JIS A 5208 J-shaped and S-shaped crosspieces).

この結果、驚いたことに、裏側面における谷底線の端部に対向する表側面上の線状部分を横切るように表側面上に、隆起する部分構造が形成されている場合、前記裏側面釉薬層を、前記隆起する部分構造に対向する裏側面領域に達するまでに終了するように形成することにより、該裏側面領域の部分までをも覆うように形成する場合よりも、前記建材の曲げ破壊強度が有意に高いことが明らかとなった(本発明の第一の態様)。 As a result, surprisingly, when the protruding partial structure is formed on the front side so as to cross the linear portion on the front side facing the end of the valley bottom line on the back side, the back side glaze is formed. Bending fracture of the building material, as compared with the case where the layer is formed so as to finish until reaching the back side surface region facing the raised partial structure, so as to cover even the back side surface region. It was revealed that the strength was significantly high (first aspect of the present invention).

さらに本発明の第一の態様のより好ましい態様として、前記裏側面釉薬層の幅がある一定の範囲において、裏側面のほぼ全幅に亘って釉薬層を形成した場合よりも、曲げ破壊強度がより良好であることも見出した(本発明の第二の態様)。
より正確には、本発明の各態様は以下のとおりである。
Furthermore, as a more preferable aspect of the first aspect of the present invention, in a certain range of the width of the back side glaze layer, the bending fracture strength is more than in the case where the glaze layer is formed over substantially the entire width of the back side surface. It was also found to be good (second aspect of the present invention).
More precisely, the respective aspects of the present invention are as follows.

(本発明の第一の態様)
すなわち、本発明の第一の態様は、表側面、裏側面及び前記2つの表面間の間隔である厚みを有する、粘土焼成建材であって、前記粘土焼成建材は、前記表側面から前記裏側面に向かう厚み方向に凹状に湾曲した、樋状の凹状湾曲形状を有し、
前記裏側面上、前記凹状湾曲形状の谷底線に沿って、かつ該谷底線を含むほぼ帯状の領域として裏側面釉薬層が形成され、
前記谷底線は、前記粘土焼成建材を仮に水平面上に設置した状態にしたとした場合に、前記樋状の凹状湾曲形状の最も低い部分を通る線状部分をいい、
前記粘土焼成建材がさらに、
前記裏側面上の谷底線の少なくとも一方の端部に対向する表側面上の線状部分を横切るように、隆起する部分構造を有し、かつ前記裏側面釉薬層が前記隆起する部分構造に対向する裏側面領域に達するまでに終了しており、
ここで、前記谷底線の端部とは、前記谷底線の一方の末端から他方の末端の方向に延び、前記谷底線方向の長さが前記谷底線の全長の24%以下の線状部分をいうことを特徴とする、粘土焼成建材である。
(First embodiment of the present invention)
That is, the first aspect of the present invention is a clay-fired building material having a thickness that is a front surface, a back surface, and a distance between the two surfaces, wherein the clay-fired building material is from the front surface to the back surface. Has a trough-shaped concave curved shape, which is curved concavely in the thickness direction toward
On the back side surface, along the valley bottom line of the concave curved shape, and the back side glaze layer is formed as a substantially strip-shaped region including the valley bottom line,
The valley bottom line refers to a linear portion that passes through the lowest portion of the trough-like concave curved shape when the clay-fired building material is temporarily placed on a horizontal surface,
The clay-fired building material is further
It has a protruding partial structure so as to cross a linear portion on the front side surface facing at least one end of the valley bottom line on the back side surface, and the back side glaze layer faces the protruding partial structure. It is finished by the time it reaches the back side area,
Here, the end portion of the valley bottom line refers to a linear portion extending from one end of the valley bottom line to the other end, and the length in the valley bottom line direction is 24% or less of the total length of the valley bottom line. It is a clay-fired building material characterized by the above.

(本発明の第二の態様)
前記本発明の第一の態様において、前記裏側面釉薬層は、前記谷底線により、2つの施釉部分領域に分けた場合、前記2つの施釉部分領域の各々の幅が、それぞれ前記粘土焼成建材の裏側面の全幅の15〜30%の範囲内にあり、ここで、裏側面の全幅とは、前記粘土焼成建材の裏側面上、前記谷底線に垂直な方向の最大幅をいうことを特徴とする、粘土焼成建材である。
(Second aspect of the present invention)
In the first aspect of the present invention, when the back side glaze layer is divided into two glazed partial regions by the valley line, each width of each of the two glazed partial regions is equal to that of the clay-fired building material. It is in the range of 15 to 30% of the total width of the back side surface, and the total width of the back side surface is the maximum width in the direction perpendicular to the valley bottom line on the back side surface of the clay-fired building material. It is a clay-fired building material.

本発明の粘土焼成建材は、裏側面の特定領域に裏側面釉薬層を形成するという簡便な手段で、該粘土焼成建材強度を向上させることができ、この結果、該粘土焼成建材の厚みを薄くすることで軽量化させても、十分な強度を維持できる。 The clay-fired building material of the present invention can improve the strength of the clay-fired building material by a simple means of forming a backside glaze layer in a specific region on the backside, and as a result, the thickness of the clay-fired building material can be reduced. By doing so, even if the weight is reduced, sufficient strength can be maintained.

製造コストの観点からみても、既存の設備に裏側面の施釉工程を加えるだけであるため、有利である。 From the viewpoint of manufacturing cost, it is advantageous because only the back side glaze process is added to the existing equipment.

本発明の対象となりうる種々の粘土瓦の形状を示す図である(出典:非特許文献3、第25頁図II−1−2より抜粋)。It is a figure which shows the shape of various clay roof tiles which can become the object of this invention (Source: Non-patent literature 3, 25 page-extract from Figure II-1-2). 本発明の典型例的対象であるJ形桟瓦の各部位の名称を説明する図である(出典:非特許文献3、第23頁図II−1−1より抜粋)。It is a figure explaining the name of each site|part of the J-shaped roof tile which is a typical object of this invention (Source: Nonpatent literature 3, page 23 FIG. II-1-1 excerpt). 谷底線及び裏側面釉薬層のおおよその位置関係の一例を示すためのJ形桟瓦の裏側面の平面図及び横面図である。なお、図中の(a)、(b),(c)の帯状領域それぞれは、瓦を設置した場合に隣接する瓦と重なり合う部分を示すが、通常、(a)部分の裏側面も施釉されている場合が多く、(b)部分の裏側面にも少なくとも一部が施釉されている場合が多い。もっとも、以下の本願発明の説明では、これらの(a)、(b)の裏側面の施釉状況については特に言及しない。FIG. 5 is a plan view and a lateral view of the back side surface of the J-shaped slab for showing an example of the approximate positional relationship between the valley bottom line and the back side glaze layer. Each of the strip-shaped regions (a), (b), and (c) in the drawing shows a portion overlapping with an adjacent roof tile when the roof tile is installed, but the back side surface of the (a) portion is also usually glazed. In many cases, at least a part of the back side surface of part (b) is also glazed. However, in the following description of the invention of the present application, the glazed state on the back side of these (a) and (b) is not particularly mentioned. 曲げ試験後のJ形桟瓦を裏側面から観察した写真である。J形桟瓦の裏側面に合計幅12cmの帯状に施釉されている。なお、写真において上部が尻側、下部が頭側になるように置かれている。It is the photograph which observed the J-shaped sash from the back side after a bending test. It is glazed in a strip shape with a total width of 12 cm on the back side of the J-shaped roof tile. In the photograph, the upper part is placed on the hip side and the lower part is placed on the head side. 本発明における建材の種々の表側面隆起部分構造と裏側面釉薬層の関係(a1)〜(a3)を示す、建材部分の断面図(谷底線に沿って切断)である。It is sectional drawing (cut along a valley bottom line) of a building material part which shows the relationship (a1)-(a3) of various front side surface ridge partial structures and back side glaze layer of the building material in this invention. 試験例4で用いたJ形瓦の裏側面に形成された穴の配置を示す平面概略図である。9 is a schematic plan view showing the arrangement of holes formed on the back side surface of the J-shaped roof tile used in Test Example 4. FIG.

[1]本発明の対象について
(1−1)
本発明では、表側面から裏側面に向かう厚み方向に凹状に湾曲した、樋状の凹状湾曲形状を有する粘土焼成建材を対象とする。
[1] Object of the present invention (1-1)
The present invention is directed to a clay-fired building material having a trough-like concave curved shape that is concavely curved in the thickness direction from the front side surface to the back side surface.

ここで、「樋状の凹型湾曲形状」とは、断面形状がU字の溝型樋に例えることのできる形状の凹型湾曲形状をいい、粘土焼成建材の表側面上、線状に延びて配置された凹型湾曲形状のことをいう。 Here, the "trough-shaped concave curved shape" refers to a concave curved shape that can be likened to a groove-shaped trough having a U-shaped cross section, and is arranged linearly on the front surface of the clay-fired building material. It means a concave curved shape.

本発明の典型対象としては、J形桟瓦、S形桟瓦、J形軒瓦、J形袖瓦等を挙げることができる(図1参照)。 Typical objects of the present invention include J-shaped roof tiles, S-shaped roof tiles, J-shaped roof tiles, and J-shaped sleeve roof tiles (see FIG. 1).

(1−2)
「樋状の凹型湾曲形状」を有する粘土焼成建材において、説明の便宜上、その裏側面上に谷底線の概念を導入する。
(1-2)
In the clay-fired building material having the "trough-shaped concave curved shape", the concept of the valley line is introduced on the back side surface for convenience of description.

ここにいう谷底線とは、本態様の粘土焼成建材を水平面上に設置した状態にした場合に、前記樋状の凹状湾曲形状の最も低い部分を通る線状部分をいう。このような谷底線上の少なくとも一部において、設置表面からの応力がかかることから、該谷底線に沿って、割れが生じやすいと考えられる。 The valley bottom line here means a linear portion that passes through the lowest portion of the trough-like concave curved shape when the clay-fired building material of this embodiment is placed on a horizontal plane. Since stress is applied from the installation surface to at least a part of such a valley line, it is considered that cracks are likely to occur along the valley line.

より具体的には、前記線状方向に延びた「樋状の凹型湾曲形状」が、粘土焼成建材の互いに対向する一対の辺上に形成する2次元の凹型曲線それぞれについて、前記粘土焼成建材を水平面上に設置した状態にした場合に、最も低くなる点同士を結んだ裏側面上の直線として定めることができる。 More specifically, for each of the two-dimensional concave curves formed by the "trough-shaped concave curved shape" extending in the linear direction on a pair of opposing sides of the clay-fired building material, the clay-fired building material is It can be defined as a straight line on the back side connecting the lowest points when installed on a horizontal plane.

典型的な対象であるS形ないしJ形桟瓦等では、通常、谷底線は建材の対向する一対の辺に略垂直に配置されているが、必ずしもこれに限らず、垂直から多少ずれていてもよい。 In a typical object such as an S-shaped or J-shaped roof tile, etc., the valley bottom line is usually arranged substantially vertically on a pair of opposite sides of the building material, but this is not necessarily the case, and it may be slightly displaced from the vertical. Good.

また、谷底線により、粘土焼成建材の裏側面は通常、おおよそ同程度の表面積の領域に2分割される。より具体的には40:60〜60:40程度の面積比の領域に2分割されることが好ましい。 In addition, the bottom surface of the clay-fired building material is usually divided into two areas having approximately the same surface area by the valley line. More specifically, it is preferably divided into two regions having an area ratio of about 40:60 to 60:40.

本態様の典型例であるS形ないしJ形桟瓦を例にとれば、これらの瓦が瓦桟木と直接接触することによって形成される線状部分を1枚の瓦全体に延長した線が前記谷底線にほぼ対応する。 Taking the S-shaped to J-shaped roof tiles, which are typical examples of this embodiment, as an example, a line obtained by extending a linear portion formed by direct contact between these roof tiles and the roof tile slab over one roof tile is the valley bottom. Almost corresponds to the line.

S形ないしJ形桟瓦には通常、裏側面の尻に一対の引っ掛け爪を有しており、該引っ掛け爪により瓦桟木の上面に瓦を引っ掛けることで瓦が載置されている。このため、前記谷底線は、通常、一対の引っ掛け爪の間のいずれかを通過するものと考えられる(図3参照)。 Usually, the S-shaped or J-shaped roof tile has a pair of hooking claws on the bottom of the back side, and the roofing tiles are placed by hooking the roof tiles on the upper surface of the roof tile bridge by the hooking claws. Therefore, it is considered that the valley bottom line normally passes through either of the pair of hooking claws (see FIG. 3 ).

さらにJ形桟瓦には通常、裏側面の尻に安定駒が備えられ、瓦桟木の上面に瓦を引っ掛けた際に安定駒が支えとなって、瓦がぐらつかないように安定化される。このため、瓦が瓦桟木と接することによって形成される線状部分を容易に同定しうる。 Further, the J-shaped roof tile is usually provided with a stabilizing piece on the bottom of the back side, and when the roof tile is hooked on the upper surface of the roof tile, the stabilizing piece serves as a support to stabilize the roof tile so that it does not wobble. Therefore, it is possible to easily identify the linear portion formed by the roof tile coming into contact with the roof tile splint.

しかし、このような安定駒がない場合、瓦のぐらつきにより、前記谷底線が一意的に定まりにくい場合も考えられる。このような場合でも、引っ掛け爪等により本来あるべき設置位置が明らかな場合には、これを基準にして谷底線を定めることができる。もっとも、どうしても不明な場合には、瓦のぐらつきにより瓦が瓦桟木と接することによって形成される線状部分が掃く領域の中間点を連結する線状部分を谷底線として採用してもよい。 However, if there is no such stable piece, it may be difficult to uniquely determine the valley bottom line due to the wobble of the roof tile. Even in such a case, when the originally intended installation position is clear by the hooking claw or the like, the valley bottom line can be determined on the basis of this. However, if it is absolutely unclear, a linear portion that connects the midpoints of the areas swept by the linear portion formed by the roof tile wobbling contacting the roof tile stake may be used as the valley bottom line.

下記の表1には、各種市販J形桟瓦の谷底線の位置と引っ掛け爪との位置関係を示す。これによると、谷底線は、J形桟瓦の裏面尻側にある2つの引っ掛け爪の中間点に近い部分を通過するが、より厳密には、2つの引っ掛け爪の中間点よりも、やや水返し側に寄った、あるいはやや桟山側と反対側に依った部分を通過することがわかる。 Table 1 below shows the positional relationship between the position of the valley bottom line and the hooking claws of various commercially available J-shaped roof tiles. According to this, the valley bottom line passes through a portion near the middle point of the two hooking claws on the rear side of the back of the J-shaped roof tile, but more strictly speaking, rather than the middle point of the two hooking claws, the water repelling is slightly It can be seen that it passes through a part that is closer to the side or slightly depending on the side opposite to the pier side.

なお、下記表にいう長さは、瓦を仮に水平面上に設置した状態に載置した場合に、該水平面上に投影した長さを意味する。 In addition, the length referred to in the following table means the length projected on the horizontal plane when the roof tile is temporarily placed on the horizontal plane.

*1:瓦の形状区分53B
長さA:295mm,幅B:315mm;
働き長さa:225mm,働き幅b:275mm
なお、表中の5種の石州瓦は、いずれも製造メーカーが異なる。
*2:瓦の形状区分53A
長さA:305mm,幅B:305mm;
働き長さa:235mm,働き幅b:265mm
なお、表中の5種の三州瓦は、いずれも製造メーカーが異なる。
*3:働き寸法(働き長さ、働き幅)とは、屋根を葺く際の重なりや、はぜ組み等により、有効寸法が小さくなることを考慮に入れた、瓦の有効寸法のことである。
*1: Roof shape classification 53B
Length A: 295 mm, width B: 315 mm;
Working length a: 225 mm, working width b: 275 mm
Note that the five types of Sekishu roof tiles in the table have different manufacturers.
*2: Roof tile shape classification 53A
Length A: 305 mm, width B: 305 mm;
Working length a: 235 mm, working width b: 265 mm
The five types of Sanshu roof tiles in the table are from different manufacturers.
*3: Working size (working length, working width) refers to the effective size of the roof tile, taking into consideration that the effective size becomes smaller due to overlapping when roofing and roofing, etc. is there.

(1−3)
なお、本発明の対象となる粘土焼成建材は樋状の凹状湾曲形状を有するため平坦ではない。このため、本願発明の対象についての長さや面積を問題にする場合(たとえば、谷底線方向の長さ、谷底線の全長、谷底線に垂直な方向の幅、施釉部分領域の表面積、裏側面の全幅等)、粘土焼成建材を仮に水平面上に設置した状態とした場合に、該水平面上に垂直に投影された平面上の値として前記長さや面積を見積もることができる。
(1-3)
The clay-fired building material to which the present invention is applied is not flat because it has a trough-like concave curved shape. Therefore, when the length or area of the object of the present invention is a problem (for example, the length in the valley bottom line direction, the total length of the valley bottom line, the width in the direction perpendicular to the valley bottom line, the surface area of the glazed part area, the back side surface) When the clay firing building material is placed on a horizontal plane, the length and area can be estimated as values on a plane vertically projected on the horizontal plane.

[2]粘土焼成建材について
本発明にいう粘土焼成建材とは、粘土を材料として1000〜1250℃程度の高温で焼成する工程を含む製造過程によって製造された粘土瓦、粘土タイル、粘土煉瓦等の建材、典型的には粘土瓦を指す。
[2] Clay-fired building materials The clay-fired building materials referred to in the present invention include clay tiles, clay tiles, clay bricks, etc. produced by a production process including a step of firing clay at a high temperature of about 1000 to 1250°C. A building material, typically a clay tile.

これらの粘土焼成建材は、一般には、土練機から押し出されて板状に成形された粘土を金属製の型に入れプレスして、建材に成形する成形工程と、成形された建材を乾燥する乾燥工程と、施釉された建材を焼成する焼成工程とを経て製造され、任意工程として、乾燥工程と焼成工程の間に、乾燥された建材の表側面に釉薬(「表側面釉薬層」)を塗布する施釉工程を含めてもよい。 These clay-fired building materials are generally formed by molding clay extruded from a clay kneader into a metal mold and pressing it to form a building material, and then drying the formed building material. It is manufactured through a drying process and a firing process that fires the glazed building material, and as an optional step, a glaze (“front side glaze layer”) is provided on the front side of the dried building material between the drying process and the firing process. You may include the glaze process to apply.

本発明においては、乾燥された建材の裏側面の特定の一部領域にほぼ帯状に、裏側面釉薬層を形成することが特徴になっている。この工程は乾燥工程と焼成工程の間に行うことができるが、任意工程である表側面釉薬層の形成の際に用いる既存の設備に、裏側面の施釉工程を加えるだけであるため、コスト面でも有利である。 The present invention is characterized in that the back side glaze layer is formed substantially in a band shape in a specific partial region of the back side of the dried building material. This step can be performed between the drying step and the firing step, but it is costly because it only requires the addition of the back side glaze step to the existing equipment used for forming the front side glaze layer. But it is advantageous.

ここで、表側面とは、板状形状の建材を設置する場合に、外部側に置かれるべき表面を指し、裏側面とは、前記表側面とは反対側の表面を指す。 Here, the front side surface refers to a surface to be placed on the outer side when a plate-shaped building material is installed, and the back side surface refers to a surface opposite to the front side surface.

また、本発明においては、裏側面の特定一部領域の釉薬処理により粘土焼成建材の曲げ破壊強度を向上させることができるため、十分な強度を維持しつつ厚みを小さくすることにより軽量の粘土焼成建材を提供できる。本発明の提供できる粘土焼成建材の厚みとしては、好ましくは12mm〜16mmとすることができ、さらには6mm〜12mmの薄さの軽量品を与えることも可能である。 Further, in the present invention, since the bending fracture strength of the clay-fired building material can be improved by the glaze treatment of the specific partial region on the back surface, the weight of the clay-fired clay can be reduced by reducing the thickness while maintaining sufficient strength. We can provide building materials. The thickness of the clay-fired building material that can be provided by the present invention is preferably 12 mm to 16 mm, and it is also possible to provide a lightweight product having a thickness of 6 mm to 12 mm.

なお、ここにいう曲げ破壊強度は鋼製板上において3点曲げ破壊荷重測定により測定されるものであり、JIS A 5208に規定されるJ形及びS形桟瓦(試験体桟瓦)の曲げ試験に準じて測定される。但し、JIS A 5208にいう、荷重をかける中央の荷重用鋼製丸棒(直径30mm)は、その中心軸ができるだけ谷底線の直ぐ上になるように配置する。また、試験体桟瓦の左右下側にそれぞれ配置される2本の支持用鋼製丸棒(直径30mm)は支持用鋼製丸棒と平行となるように配置される(桟瓦の場合、2本の支持用鋼製丸棒の間隔は200mm)。この際、各支持用鋼製丸棒を試験体桟瓦に密着させると共に試験体桟瓦をほぼ水平に支持するために、隙間が生じて安定しない場合には支持用鋼製丸棒と桟瓦の間に適当なゴム板を挿入してもよい。 The bending fracture strength referred to here is measured by three-point bending fracture load measurement on a steel plate, and is used for bending tests of J-shaped and S-shaped slabs (test slabs) specified in JIS A 5208. It is measured according to. However, according to JIS A 5208, the center round steel bar for load application (diameter: 30 mm) is arranged so that its central axis is as close as possible to the valley bottom line. Further, the two supporting steel round bars (30 mm in diameter) respectively arranged on the left and right lower sides of the test piece ridge are arranged so as to be parallel to the supporting steel round bars (in the case of the ridge, two bars are used). The distance between the supporting steel round bars is 200 mm). At this time, since each supporting steel round bar is closely attached to the test piece ridge and supports the test piece ridge substantially horizontally, if there is a gap and it is not stable, a gap is created between the supporting steel round bar and the ridge. A suitable rubber plate may be inserted.

なお、試験体の長辺の長さが200mm以下である等、試験体の大きさが比較的小さく、2つの支持用鋼製丸棒の間隔を200mmとすることが困難な場合には、2つの支持用鋼製丸棒の間隔を、試験体の外接矩形の長辺長さの83%に相当する間隔としてもよい。 If the length of the long side of the test piece is 200 mm or less, and the size of the test piece is relatively small, and it is difficult to set the distance between the two supporting steel round bars to 200 mm, 2 The interval between the two supporting steel round bars may be an interval corresponding to 83% of the long side length of the circumscribed rectangle of the test body.

また、本発明においては、単位面積当たりの重量としては、3.52〜2.58g/cm2とでき、さらには2.58〜1.30g/cm2のより軽量な粘土焼成建材を与えることも可能である。なお、ここにいう単位面積当たりの重量は、粘土焼成建材を平坦な水平面上に本来設置すべき状態で載置した状態に置き、該水平面上に垂直に投影される粘土焼成建材の2次元平面形状の面積を全面積基準にして計算する。 Further, in the present invention, the weight per unit area can be 3.52 to 2.58 g/cm 2, and further, a lighter clay-fired building material of 2.58 to 1.30 g/cm 2 is provided. Is also possible. In addition, the weight per unit area referred to here is the two-dimensional plane of the clay-fired building material that is placed vertically on the horizontal plane when the clay-fired building material is placed on the flat horizontal surface in a state that it should be originally installed. The area of the shape is calculated based on the total area.

もっとも、本発明の対象となりうるJ形ないしS形瓦の場合、より簡便には、JIS A 5280表2に定められている各種寸法区分の桟瓦の長さA及び幅Bを有する矩形の面積として、単位面積当たりの重量を計算する基準となる全面積を求めることができる。 However, in the case of the J-shaped or S-shaped roof tile that can be the subject of the present invention, more simply, as a rectangular area having a length A and a width B of the roof tile of various size categories defined in JIS A 5280 Table 2 , It is possible to obtain the total area which is a standard for calculating the weight per unit area.

[3]裏側面釉薬層について
(3−1)
本発明においては、粘土焼成建材の裏側表面上、樋状の凹状湾曲形状の谷底線に沿って、かつ該谷底線を含むほぼ帯状の釉薬領域として裏側面釉薬層が形成される。
[3] About back side glaze layer (3-1)
In the present invention, the back side glaze layer is formed on the back surface of the clay-fired building material along the trough bottom line of the gutter-shaped concave curved shape and as a substantially strip-shaped glaze region including the trough bottom line.

また、用いる釉薬としては、任意の公知の釉薬を用いることができるが、少なくとも珪素及びアルミニウムを含む組成の釉薬、より具体的には、主にSiO2:37%、Al23:9%、MnO:23%、Fe23:7%、CaO:6%程度を含む組成の釉薬が、溶融と凝固の観点で好ましい。 As the glaze to be used, any known glaze can be used, but a glaze having a composition containing at least silicon and aluminum, more specifically, mainly SiO 2 : 37%, Al 2 O 3 : 9% , A MnO:23%, Fe 2 O 3 :7%, CaO:6% composition is preferable from the viewpoint of melting and solidification.

(3−2) 本発明の第一の態様
本発明の第一の態様では、粘土焼成建材の裏側面上の谷底線の少なくとも一方の端部に対向する表側面上の線状部分を横切るように、隆起する部分構造が形成され、かつ前記裏側面釉薬層が、前記隆起する部分構造に対向する裏側面領域に至るまでに終了している。
(3-2) 1st aspect of this invention In the 1st aspect of this invention, it crosses the linear part on the front side surface which opposes at least one end part of the valley bottom line on the back side surface of a clay-fired building material. And a back side glaze layer is formed by reaching the back side surface region facing the rising part structure.

驚いたことに、裏側面釉薬層の端部が前記隆起する部分構造に対向する裏側面領域に至るまでに終了する、より好ましくは前記隆起する部分構造に対向する裏側面領域のより直前で終了することが、建材の曲げ破壊強度に有利に働くことが見出された(試験例1参照)。 Surprisingly, the end of the back glaze layer ends by the time it reaches the back side region facing the raised substructure, more preferably it ends more immediately before the back side region facing the raised substructure. It was found that this has an advantageous effect on the bending fracture strength of the building material (see Test Example 1).

ここで、前記「谷底線の端部」とは、前記谷底線の一方の末端から他方の末端の方向に延び、前記谷底線方向の長さが前記谷底線の全長の24%以下の線状部分をいう。もっとも、裏側面釉薬層の谷底線方向の長さをより確保する観点からは、該谷底線方向の長さが、谷底線の全長の15%以下であること、したがって、「隆起する部分構造」が粘土焼成建材の辺により近いところで谷底線に対向する表側面の線状部分を横切ることが好ましい。 Here, the "end of the valley bottom line" means a linear shape extending from one end of the valley bottom line to the other end, and the length in the valley bottom line direction is 24% or less of the total length of the valley bottom line. Refers to the part. However, from the viewpoint of further securing the length of the back side glaze layer in the valley bottom line direction, the length in the valley bottom line direction is 15% or less of the total length of the valley bottom line, and therefore, "protruding partial structure". It is preferable to cross the linear portion of the front side surface facing the valley bottom line at a position closer to the side of the clay-fired building material.

隆起する部分構造は、建材の裏側面上の谷底線の両端部のうち一方の端部に対向する表側面上の線状部分を横切る態様が通常であるが、さらに谷底線の他方の端部に対向する表側面上の線状部分をも横切る態様でもよい。この場合、両端部に対向する表側面上の線状部分を横切る隆起する部分構造はそれぞれ別個の部分構造でもよいし、連続した部分構造でもよい。このように谷底線の両端部にそれぞれ隆起する部分構造がある場合、本願発明では少なくとも一方の隆起する部分構造について、裏側面釉薬層の前記終了条件(「前記裏側面釉薬層が、前記隆起する部分構造に対向する裏側面領域に至るまでに終了」)を満たすことが必要であるが、さらに好ましくは両方の隆起する部分構造について、裏側面釉薬層の前記終了条件を満たすことが好ましい。 The protruding partial structure usually crosses a linear portion on the front side facing one end of both ends of the valley bottom line on the back side of the building material, but the other end of the valley bottom line is further crossed. It is also possible to traverse a linear portion on the front side surface facing to. In this case, the protruding partial structures that traverse the linear portions on the front side surface facing both ends may be separate partial structures or continuous partial structures. In this way, when there is a partial structure that bulges at both ends of the valley bottom line, in the present invention, for at least one of the partial structures that bulge, the end condition of the back side glaze layer (“the back side glaze layer is raised. It is necessary to satisfy "the end until reaching the back side region opposite to the partial structure", but it is more preferable to satisfy the above-mentioned end condition of the back side glaze layer for both the raised partial structures.

さらに、「横切る」には、隆起する部分構造が、谷底線端部に対向する表側面上の線状部分を完全に横切る場合のみならず、隆起する部分構造が前記線状部分上に存在する限りは、前記線状部分で途切れている場合も含む。 Further, "crossing" includes not only the case where the protruding partial structure completely crosses the linear portion on the front side surface facing the valley bottom line end, but the protruding partial structure exists on the linear portion. As long as there is a break in the linear portion.

また、「谷底線端部に対向する表側面上の線状部分」とは、水平面上に粘土焼成建材を設置したとした場合に、この表側面上の線状部分をこの水平面上に垂直に投影した際に通過する裏側面上の線状部分が、前記した谷底線端部と一致するような表側面上の線状部分のことをいう。 In addition, "the linear part on the front side facing the valley bottom line end" means that when the clay-fired building material is installed on the horizontal plane, the linear part on the front side is perpendicular to this horizontal plane. It means a linear portion on the front side surface such that the linear portion on the back side surface that passes when projected matches the above-mentioned valley bottom line end portion.

さらに、「隆起する部分構造に対向する裏側面領域」とは、水平面上に粘土焼成建材を設置したとした場合に、表側面の隆起部分構造をこの水平面上に垂直に投影した際に通過する裏側面領域のことをいう。 Furthermore, the "back side surface area facing the raised partial structure" means that when the clay-fired building material is installed on a horizontal plane, it passes when the raised partial structure on the front side is projected vertically on this horizontal plane. Refers to the back surface area.

以下、「対向する」との文言が用いられた際には、これらと同様の意味に解してよい。 Hereinafter, when the word "opposite" is used, it may be understood to have the same meaning as these.

(3−2−1)
前記隆起部分構造としては、粘土焼成建材の厚みを増やす任意の部分構造が含まれるが、より具体的には、雨水が建材の表側面から裏側面へ流れ落ちることを防止するための水返し壁、水返し段差壁(試験例1参照)等が例示できる。
(3-2-1)
The raised partial structure includes any partial structure that increases the thickness of the clay-fired building material, but more specifically, a water return wall for preventing rainwater from flowing down from the front side surface to the back side surface of the building material, A water return step wall (see Test Example 1) can be exemplified.

これらの隆起構造は通常、建材の辺に沿って形成されているが(したがって、およそ垂直ないし、それに近い角度で谷底線端部に対向する表側面の線状部分を横切る)、多少ずれて形成されていてもよい。 These raised structures are usually formed along the sides of the building material (thus, approximately perpendicularly or at an angle close to that which crosses the linear portion of the front side facing the valley bottom line ends), but with some misalignment. It may have been done.

より具体的には、試験例1で用いたJ形瓦では、表側面から裏側面に雨水が回りこむのを回避するために、瓦の尻側近傍領域内に隆起部分構造[3段の段差(高さがそれぞれ約1mm)]が形成され、谷底線に対応する表側面の線状部分において尻側に厚みが2mmまで増加している[図5(a2)参照]。 More specifically, in the J-shaped roof tile used in Test Example 1, in order to prevent rainwater from flowing from the front side surface to the back side surface, a raised partial structure [three-step difference] is formed in the area near the tail side of the roof tile. (Each height is about 1 mm)], and the thickness increases to 2 mm on the butt side in the linear portion of the front side surface corresponding to the valley bottom line [see FIG. 5(a2)].

そして、この試験例では、J形瓦の尻側から種々の無施釉幅を採ることで、谷底線に沿って種々の長さの裏側面釉薬層が形成され、それぞれの建材の曲げ破壊強度(JIS A 5208に規定されるJ形およびS形瓦の曲げ試験に準じて測定)が測定された。その結果、前記隆起部分構造に対向する裏側面領域を含んで裏側面釉薬層を形成した場合よりも、前記隆起部分構造に対向する裏側面領域にまで至らない、すなわち前記隆起部分構造に対向する裏側面領域を含まないように裏側面釉薬層を形成した場合の方が曲げ破壊強度が有意に高かった。これは単純に施釉面積を増やせば強度が向上するとの予想に反する結果である。 Then, in this test example, by taking various non-glazing widths from the bottom side of the J-shaped roof tile, back side glaze layers of various lengths are formed along the valley bottom line, and the bending fracture strength of each building material ( (Measured according to the bending test of J-shaped and S-shaped roof tiles defined in JIS A 5208). As a result, compared to the case where the back side glaze layer is formed to include the back side surface region facing the raised partial structure, the back side surface region facing the raised partial structure is not reached, that is, the back side glaze layer is facing. The bending fracture strength was significantly higher when the back glaze layer was formed so as not to include the back side region. This is a result contrary to the expectation that the strength will be improved simply by increasing the glazed area.

さらに、前記隆起部分構造に対向する裏側面領域を含まない裏側面釉薬層の中でも、前記隆起部分構造に対向する裏側面領域に近いところまで施釉した方が曲げ強度が向上する傾向がみられた。 Further, even in the back side glaze layer not including the back side surface region facing the raised portion structure, the bending strength tended to be improved when glazed to a position close to the back side surface region facing the raised portion structure. ..

これは、曲げ破壊試験において負荷をかけられる谷底線上の線状部分における強度の均一性に関係するものと考えている。すなわち、谷底線端部に対向する表側面上の線状部分を隆起部分構造が横切る場合、隆起による厚みの増加によって、谷底線上の線状部分等における強度は、隆起部分では増加し強度が不均一になっている。しかし、前記隆起部分構造に対向する裏側面領域を覆わない範囲内で裏側面釉薬層を形成することで、釉薬層の強度向上効果により、前記強度の不均一性が解消する方向に働く。これは前記隆起構造に近いところまで裏側面釉薬層を形成することで、この傾向はより高まる。しかし、裏側面釉薬層が前記隆起部分構造に対向する裏側面領域まで覆ってしまうと、かかる不均一性の解消は期待できない。隆起部分構造部分と非隆起部分構造部分とがいずれも裏側面釉薬層による同様の強度向上を受けるためである。 This is considered to be related to the uniformity of strength in the linear portion on the valley bottom line that is loaded in the bending fracture test. That is, when the raised partial structure crosses a linear portion on the front surface facing the end of the valley bottom line, the strength of the linear portion on the valley bottom line increases at the raised portion and the strength becomes unsatisfactory due to the increase in thickness due to the protrusion. It is uniform. However, by forming the back side glaze layer in a range that does not cover the back side surface region facing the raised portion structure, the strength non-uniformity of the glaze layer acts to eliminate the unevenness of the strength. This tendency is further enhanced by forming the back side glaze layer close to the raised structure. However, if the back side glaze layer covers even the back side surface region facing the raised portion structure, it cannot be expected to eliminate such nonuniformity. This is because both the raised partial structure portion and the non-raised partial structure portion receive similar strength improvement due to the back side glaze layer.

(3−2−2)
また、「隆起する部分構造」は、目視で隆起と確認できる程度のものが含まれるが、曲げ破壊強度に影響を及ぼしうる程度の急激な建材厚みの変化を伴うとの観点からは、谷底線上において、隆起開始点と隆起極大点とを結んだ線が谷底線となす角度が、少なくとも45°となる程度に急激に隆起している構造を例示できる。ここで、隆起極大点とは、隆起開始点から谷底線に沿って隆起する方向に移動した場合に、隆起高さが最初に極大に達する点をいう。典型的には粘土焼成建材の厚みDとして0.05D〜0.2D程度の高さ(典型的には高さが1〜3mm程度)の隆起が挙げられ、試験例1のようにこのような隆起が複数集まって段差構造を形成していてもよい。
(3-2-2)
In addition, the "raised partial structure" includes those that can be visually confirmed as a bulge, but from the perspective of accommodating a sudden change in the thickness of building materials that may affect the bending fracture strength, In the above, there can be exemplified a structure in which the line connecting the ridge start point and the ridge maximum point makes a sharp ridge so that the angle formed with the valley bottom line is at least 45°. Here, the protrusion maximum point refers to a point at which the protrusion height first reaches a maximum when it moves from the protrusion start point in the direction of the protrusion along the valley bottom line. Typically, the thickness D of the clay-fired building material is a ridge having a height of about 0.05D to 0.2D (typically, a height of about 1 to 3 mm). A plurality of bumps may be gathered to form a step structure.

なお、ここにいう粘土焼成建材の厚みDは、原則として粘土焼成建材の裏側面谷底線の中央点(谷底線の全長の半分の位置にある谷底線上の点)における厚みで代表することができる。もっとも、中央点部分に付属構造が形成され、隆起ないし陥没している場合には、谷底線中央点から出発して谷底線に沿ってそれぞれの方向に移動した場合に、前記付属構造が丁度なくなる点(合計2点)における厚みを数平均してもよい。以下にあらわれる本態様の粘土焼成建材の厚みDも、同様である。 The thickness D of the clay-fired building material here can be represented by the thickness at the center point of the back side valley-bottom line of the clay-fired building material (point on the valley bottom line at half the length of the valley bottom line) in principle. .. However, if an accessory structure is formed at the center point and it is raised or depressed, the accessory structure will be lost if you start from the center point of the valley line and move in each direction along the valley line. The number of points (two points in total) may be averaged. The same applies to the thickness D of the clay-fired building material of the present embodiment that appears below.

また、「隆起する部分構造」は、瓦の辺(隆起部分構造側)にまで形成されていてもよいが[たとえば図5(a1)]、図5(a3)のように瓦の辺にまで及んでいないものでもよい。もっとも、何れの場合にも、「隆起する部分構造」は谷底線の一方の末端(隆起部分構造側)から数えて谷底線方向に、少なくとも谷底線の全長の8.5%、より好ましくは9%、より好ましくは9.5%、更に好ましくは10%を超えたところにも少なくともその一部の部分構造が存在していることが好ましい。 Further, the “raised partial structure” may be formed up to the side of the roof tile (the side of the raised partial structure) [for example, FIG. 5(a1)], but even up to the side of the roof tile as shown in FIG. 5(a3). It may be one that has not reached. However, in any case, the "protruding partial structure" is at least 8.5% of the total length of the valley bottom line, more preferably 9% in the direction of the valley bottom line counting from one end of the valley bottom line (the side of the protruding substructure). %, more preferably 9.5%, and even more preferably 10% or more, at least a part of the partial structure thereof is preferably present.

さらに「隆起する部分構造」の谷底線方向の長さとしては、谷底線の全長の24%以内であれば任意に定めることができるが、谷底線の全長の3%〜24%とすることもできる。 Further, the length of the "protruding partial structure" in the valley bottom line direction can be arbitrarily determined within 24% of the total length of the valley bottom line, but may be 3% to 24% of the total length of the valley bottom line. it can.

さらに、「隆起する部分構造に対向する裏側面領域に至るまでに終了」とは、裏側面釉薬層が、隆起する部分構造に対向する裏側面領域を覆わないことをいう。このため、隆起部分構造の表側面上における谷底線に垂直な方向の長さが比較的短く、裏側面釉薬層の谷底線に垂直な方向の幅よりも狭い場合、裏側面釉薬層が、たとえば、隆起する部分構造に対向する裏側面領域の周囲を囲うように施釉されている態様等も含む。 Furthermore, “finishing before reaching the back side surface region facing the raised partial structure” means that the back side glaze layer does not cover the back side surface region facing the raised partial structure. Therefore, when the length in the direction perpendicular to the valley bottom line on the front surface of the raised partial structure is relatively short and narrower than the width in the direction perpendicular to the valley bottom line of the back side glaze layer, the back side glaze layer is, for example, , A mode in which the back side surface region facing the raised partial structure is glazed so as to surround the periphery, and the like.

(3−3)本発明の第二の態様
本発明の第二の態様は、前記本発明の第一の態様のより好ましい態様である。
(3-3) Second Aspect of the Present Invention A second aspect of the present invention is a more preferable aspect of the first aspect of the present invention.

すなわち、本発明の第二の態様では、本発明の第一の態様において、さらに裏側面釉薬層の特定範囲の幅(建材裏側面上、谷底線に垂直な方向の幅)を規定する。 That is, in the second aspect of the present invention, in the first aspect of the present invention, the width of the specific range of the back side glaze layer (width on the back side of the building material and in the direction perpendicular to the valley bottom line) is further defined.

すなわち、本発明の第一の態様において、裏側面釉薬層は、谷底線により、2つの施釉部分領域に分けた場合、前記2つの施釉部分領域の各々の幅が、それぞれ前記粘土焼成建材の裏側表面の全幅の15%〜30%の範囲内にある。 That is, in the first aspect of the present invention, when the back side glaze layer is divided into two glazed partial areas by a valley line, the width of each of the two glazed partial areas is the back side of the clay-fired building material. Within the range of 15% to 30% of the total width of the surface.

これは、曲げ破壊強度の観点で好ましい(試験例2)。広く施釉すればするほど強度はあがるのではとの単純な予想に反するが、これは理論に縛されないものの、施釉部位と無施釉部位の界面の位置が、該界面付近の変形により応力がより分散しやすい位置にあるためではないかと推論している。 This is preferable from the viewpoint of bending fracture strength (Test Example 2). Contrary to the simple expectation that the more glazed it is, the stronger the strength will be, but this is not bound by theory, but the position of the interface between the glazed part and the non-glazed part disperses the stress more due to the deformation near the interface. It is inferred that it is because it is in a position where it is easy to do.

特に曲げ強度向上の観点からは、前記2つの施釉部分領域が、谷底線を対称軸として対称に配置されていることが好ましい(試験例5参照)。 In particular, from the viewpoint of improving bending strength, it is preferable that the two glazed partial regions are symmetrically arranged with the valley bottom line as the axis of symmetry (see Test Example 5).

ここで、前記2つの施釉部分領域の各々の幅は、各施釉部分領域の面積を該施釉部分領域の谷底線方向の長さで割り算することによって得られる平均の幅として求めることができる。 Here, the width of each of the two glazed partial regions can be obtained as an average width obtained by dividing the area of each glazed partial region by the length of the glazed partial region in the direction of the valley bottom line.

また、粘土焼成建材の裏側面の全幅は、前記粘土焼成建材の裏側面上、前記谷底線に垂直な方向の最大幅をいう。典型的な対象例であるJ形桟瓦、S形桟瓦、J形軒瓦、J形袖瓦等の瓦においては、JIS A 5208表2にいう幅Bの値を採用することができる。 Further, the total width of the back side surface of the clay-fired building material refers to the maximum width on the back side surface of the clay-fired building material in the direction perpendicular to the valley bottom line. For typical roof tiles such as J-shaped roof tiles, S-shaped roof tiles, J-shaped roof tiles, and J-shaped sleeve roof tiles, the value of width B described in Table 2 of JIS A 5208 can be adopted.

そして、前記2つの施釉部分領域の各々の面積は、本態様の粘土焼成建材を水平面上に設置した状態にした場合に、該水平面上に、裏側表面、2つの施釉部分領域の各々を垂直に投影して得られる水平面上における面積をいう。 The area of each of the two glazed partial regions is such that when the clay-fired building material of this embodiment is placed on a horizontal surface, the back surface and the two glazed partial regions are vertically arranged on the horizontal surface. The area on a horizontal plane obtained by projection.

[4]その他の好ましい態様
(4−1)
本発明の第一〜第二の態様において、さらなる良好な曲げ破壊強度の観点(JIS A 5208のJ形及びS形桟瓦の曲げ試験のように、建材裏側面の谷底線に沿って鋼製丸棒で加圧するタイプの負荷に対する曲げ強度)からは、
裏側面釉薬層の谷底線方向の長さが、谷底線の全長の少なくとも40%である本発明の第一〜第二の態様の粘土焼成建材であって、
(i)前記裏側面釉薬層により覆われた建材の裏側面領域のうち、前記谷底線ないしその近傍の領域であって、該領域に属する各点が前記谷底線の両末端が属する辺からそれぞれ、前記谷底線方向に、少なくとも前記谷底線の全長の14%、より好ましくは少なくとも9%離れている建材裏側面領域、
又は
(ii)該(i)の建材裏側面領域に対向する建材表側面領域、
が平滑であることが好ましい。
[4] Other preferred embodiments (4-1)
In the first and second aspects of the present invention, from the viewpoint of better bending fracture strength (as in the bending test of JIS A 5208 J-shaped and S-shaped stiles, a steel circle is formed along the valley bottom line on the back side of the building material. From the bending strength against the load of the type that pressurizes with a rod),
A clay-fired building material according to the first to second aspects of the present invention, wherein the length of the back side glaze layer in the valley bottom line direction is at least 40% of the total length of the valley bottom line,
(I) Of the back side surface area of the building material covered by the back side glaze layer, the valley bottom line or an area in the vicinity thereof, and each point belonging to the area is from each side to which both ends of the valley bottom line belong. A building material backside surface region that is at least 14%, more preferably at least 9% of the total length of the valley bottom line in the direction of the valley bottom line,
Or (ii) a front surface area of the building material facing the back surface area of the building material of (i),
Is preferably smooth.

ここでいう裏側面釉薬層の谷底線方向の長さとは、ほぼ帯状の裏側面釉薬層における谷底線方向の長さの最大値として定義する。この裏側面釉薬層の谷底線方向の長さは少なくとも40%であるが、より好ましくは45%以上であり、その好ましい上限値の点では、91.5%以下、より好ましくは70〜87%である。 The length in the valley bottom line direction of the back side glaze layer here is defined as the maximum value of the length in the valley bottom line direction in the substantially belt-shaped back side glaze layer. The length of the bottom side glaze layer in the valley bottom line direction is at least 40%, more preferably 45% or more, and in terms of a preferable upper limit value, 91.5% or less, more preferably 70 to 87%. Is.

また、ここでいう「平滑」とは、より具体的には、建材表面領域が隆起ないし陥没する部分構造(たとえば補強リブ等の隆起構造、陥没孔ないし貫通孔の陥没構造、段差構造等)を有しないことをいう。かかる部分構造は、たとえば金型を用いたプレス成形により形成されたものが例示できる。 The term “smooth” as used herein more specifically refers to a partial structure in which the surface area of the building material is raised or depressed (for example, a raised structure such as a reinforcing rib, a depressed structure of a depressed hole or a through hole, a stepped structure, etc.). It does not have. Examples of such a partial structure include those formed by press molding using a mold.

かかる隆起ないし陥没する部分構造及びその周辺の領域に、負荷がかかった場合、建材の厚みが急激に変化していることにより、この領域における負荷に伴う変位量もほとんど不連続となり、歪みが生じやすくなる。その結果、前記隆起ないし陥没する部分構造は本来的に曲げ破壊の起点となりやすい。 When a load is applied to the raised or depressed partial structure and the surrounding area, the amount of displacement due to the load in this area becomes almost discontinuous due to the abrupt change in the thickness of the building material, causing distortion. It will be easier. As a result, the raised or depressed partial structure tends to be a starting point of bending failure.

このため、特に負荷のかかりやすい前記(i)又は(ii)、より好ましくは前記(i)、更に好ましくは(i)及び(ii)の建材表面領域にかかる隆起ないし陥没する部分構造がないことが、良好な曲げ破壊強度の観点からそもそも有利となる。 For this reason, there is no ridge or recessed partial structure in the surface area of the building material of (i) or (ii), more preferably (i), more preferably (i), and more preferably (i) and (ii), which is particularly susceptible to load. However, it is advantageous in the first place from the viewpoint of good bending fracture strength.

また、谷底線の近傍とは、粘土焼成建材の厚みをDとしたときに、谷底線に沿って両側にそれぞれ延びる0.75Dの幅のほぼ帯状の領域(合計で1.5Dの幅)、言い換えれば、前記谷底線を中心としてこれに垂直に1.5Dの幅を前記粘土焼成建材の裏側面上に有し、前記谷底線に沿った方向に延びるほぼ帯状の領域をいう(試験例4参照)。 Further, the vicinity of the valley bottom line means that when the thickness of the clay-fired building material is D, a substantially strip-shaped region (width of 1.5D in total) having a width of 0.75D extending on both sides along the valley bottom line, In other words, it has a width of 1.5D perpendicular to the valley bottom line on the back side of the clay-fired building material, and refers to a substantially strip-shaped region extending in the direction along the valley bottom line (Test Example 4). reference).

なお、前記(i)において、少なくとも谷底線の全長の14%、より好ましくは9%離れていることを要求したのは、粘土瓦等において、谷底線の両端部に部分構造を有する場合が多いことを考慮したものである。 In (i) above, it is often required that at least 14%, more preferably 9%, of the total length of the valley line is separated from each other in the clay roof tile and the like. This is a consideration.

さらに、さらに前記(i)又は(ii)のより好ましい態様として、
裏側面釉薬層の谷底線方向の長さが、谷底線の全長の少なくとも40%である本発明の第一〜第二の態様の粘土焼成建材であって、
(iii)前記裏側面釉薬層により覆われた建材の裏側面領域のうち、該領域に属する各点が前記谷底線の両末端が属する辺からそれぞれ、前記谷底線方向に、少なくとも前記谷底線の全長の14%、より好ましくは9%離れている建材裏側面領域、又は
(iv)該(iii)の建材裏側面領域に対向する建材表側面領域、
が平滑であることが好ましい。
Furthermore, as a more preferred embodiment of the above (i) or (ii),
A clay-fired building material according to the first to second aspects of the present invention, wherein the length of the back side glaze layer in the valley bottom line direction is at least 40% of the total length of the valley bottom line,
(Iii) Of the back side surface area of the building material covered by the back side glaze layer, each point belonging to the area is located at least in the valley bottom line direction from the sides to which both ends of the valley bottom line belong. 14% of the total length, more preferably 9% away from the building material backside surface area, or (iv) the building material backside surface area facing the building material backside surface area of (iii),
Is preferably smooth.

言い換えれば、前記(i)及び(ii)の態様のうち、特に裏側面釉薬層により覆われた建材の裏側面の全面[前記(iii)]、又はこれに対向する建材表側面領域が平滑であることが好ましい。 In other words, among the aspects (i) and (ii), particularly the entire back surface [the above (iii)] of the building material covered with the back surface glaze layer, or the surface area of the building material facing this is smooth. Preferably.

(4−2)
本発明の第一〜第二の態様において、粘土焼成建材の表側面上、少なくとも70%の表面上に表側面釉薬層を形成してもよい。
(4-2)
In the first and second aspects of the present invention, a surface side glaze layer may be formed on the surface of at least 70% of the surface of the clay-fired building material.

これは通常の周知の施釉工程であり、任意の公知の釉薬を用いることができる。 This is a normal and well-known glaze process, and any well-known glaze can be used.

[5]先行技術との関係
引用文献2は、裏面に補強リブを設けることで軽量化を図る技術を中心に記載しているものの、別途、引用文献2の請求項6、段落0015、0078〜0083,0086〜0092、0098及び請求項6;特に請求項6、段落0079、0089及び0098には、瓦本体の裏面の一部分の肉厚を薄く形成し、しかる後に、瓦本体より低融点の釉薬を少なくとも裏面の一部以上に施した後、所定温度で焼成した軽量瓦も記載されている。これによると、キレ、ヒビ割れ等に基づく強度低下が全く無くなる様に、釉薬がキレ、ヒビ等に入り込み、バインダーとして作用させ、一体化を図り、理論値通りの強度を得ることができると共に、見掛け上、肉厚を増加できるため、従来品に比し強度的に何ら遜色のない軽量化した屋根瓦とすることが出来るとしている。そして、その一例として例1や例3(引用文献2の段落0087〜0092参照)には、裏面の一部である中央部位34が釉薬処理された瓦(J形瓦と考えられる)が作製されている(引用文献2の図63等参照)。
[5] Relationship with Prior Art Although the cited document 2 mainly describes a technique for reducing the weight by providing a reinforcing rib on the back surface, separately, claim 6, paragraph 0015, 0078 to citation of the cited document 2. 0083, 0086 to 0092, 0098 and claim 6; in particular, claim 6, paragraphs 0079, 0089 and 0098, a part of the back surface of the roof tile body is formed thin, and thereafter, the glaze having a lower melting point than the roof tile body. There is also described a lightweight roof tile which is fired at a predetermined temperature after at least a part of the back surface is subjected to. According to this, the glaze penetrates into the cracks, cracks, etc. and acts as a binder so that the strength reduction due to the cracks, cracks, etc. is completely eliminated, and it is possible to obtain the strength as the theoretical value while aiming at integration. Since the wall thickness can be increased apparently, it is said that the roof tile can be made lighter in weight and comparable in strength to conventional products. And as an example thereof, roof tiles (think of as J-shaped roof tiles) in which the central portion 34, which is a part of the back surface, is glazed are produced in Examples 1 and 3 (see paragraphs 0087 to 0092 of the cited document 2). (See FIG. 63 of Cited Document 2).

引用文献2の実施例で具体的に示される瓦は、J形瓦であり本発明の対象と共通している。 The roof tile specifically shown in the embodiment of the cited document 2 is a J-shaped roof roof and is common to the object of the present invention.

しかし、谷底線端部に対応する表側面上の線状部分に隆起する構造があるか否かについては、明確ではない。 However, it is not clear whether or not there is a protruding structure in the linear portion on the front surface corresponding to the end of the valley bottom line.

また、仮に谷底線端部に対応する表面側面上の線状部分に隆起する構造があったとしても、引用文献2の図34等に中央部位34で指定される裏側釉薬層[引用文献2の段落0086,0089(例1)]では、特に裏側釉薬層の谷底線方向の位置についての限定について、何らの記載も示唆もない。 Even if there is a structure in which a linear portion on the side surface of the surface corresponding to the end of the valley bottom line is bulged, the back glaze layer specified in the central portion 34 in FIG. In paragraphs 0086 and 0089 (Example 1)], there is no description or suggestion about the limitation on the position of the back side glaze layer in the direction of the valley bottom line.

したがって、引用文献2には本願発明の第一の態様につき記載も示唆もないと言わざるをえない。 Therefore, it must be said that the cited document 2 does not describe or suggest the first aspect of the present invention.

さらに、引用文献2は単に「裏面の一部分」(引用文献2の段落0086,0089)とあるだけであり、さらにどの程度の幅で裏側施釉したのかについても、何らの明示の記載もない。引用文献2の図63には、施釉されたとされる帯状の中央部位34が図示されてはいるが、これもあくまで概略図にすぎず、何処まで正確にこの図面から読み取ることができるかについては不明である。 Further, the cited document 2 merely refers to "a part of the back surface" (paragraphs 0086 and 0089 of the cited document 2), and there is no explicit description about how wide the back side is glazed. Although FIG. 63 of the cited document 2 shows the strip-shaped central portion 34 which is said to be glazed, this is also only a schematic diagram and how exactly can be read from this drawing. Unknown.

したがって、この意味においても、本発明の第二の態様につき記載も示唆もない。 Therefore, also in this sense, there is no description or suggestion of the second aspect of the present invention.

さらに、引用文献2には、裏側面釉薬層が、谷底線を対称軸として対称に配置するのが好ましいことについての何らの記載も示唆もない。 Further, in the cited document 2, there is no description or suggestion that it is preferable to arrange the back side glaze layer symmetrically with respect to the valley bottom line.

瓦製造用粘土として、石州瓦製造用粘土(荒地A)を用いた。 As the clay for producing tiles, clay for producing Sekishu tiles (rough land A) was used.

下記の表2に粒度分布を示す。なお、粒度分布は、JIS A 1204(2009)の沈降測定により調べたものである。 The particle size distribution is shown in Table 2 below. The particle size distribution is measured by sedimentation measurement according to JIS A 1204 (2009).

[試験例1]
石州瓦製造会社が、石州瓦製造用粘土として荒地Aを用いて製造した表側面施釉後のJ形の白地粘土瓦[表側面施釉済み、寸法区分53B(長さ:295mm、幅315mm)、JIS A 5208の表2参照]の裏側面に、銀黒色(主にSiO2:37%、Al23:9%、MnO:23%、Fe23:7%、CaO:6%程度を含む))を用いて施釉した。
[Test Example 1]
The Sekishu tile manufacturing company manufactured the Sekishu tile by using the waste land A as the clay for producing the Seki tile, and then the J-shaped white background clay tile after glazed surface [Glazed on the surface, dimension classification 53B (length: 295 mm, width 315 mm) , JIS A 5208, Table 2]], on the back side thereof, silver black (mainly SiO 2 : 37%, Al 2 O 3 : 9%, MnO: 23%, Fe 2 O 3 : 7%, CaO: 6%). Glazed).

なお、このJ形瓦の表側面には、瓦の尻のほぼ全長に亘って、尻から頭に向かって38mmの長さの領域[谷底線の全長の12.9%(=100×38/295)]に3段の段差(水返し壁)が形成され、尻側方向に厚みが厚くなっている[1段差につき1mm、合計2mm、各段差の谷底線上における傾斜角(隆起開始点と高さが最初に極大となる点との間を結ぶ線分と隆起開始点上の平面とのなす角度)はそれぞれ45度またはそれ以上、図5(a2)参照]。前記3段の段差は、図5(a2)においてa=11.3mm,b=13.5mm,c=14.5mm、d=19.1mm、e=12.8mm,f=50mmに相当する。 On the front side of the J-shaped roof tile, a region having a length of 38 mm from the bottom to the head over almost the entire length of the roof of the roof tile [12.9% of the total length of the valley bottom line (=100×38/ 295)] has three steps (water reversal walls), and the thickness is thicker toward the hip side [1 mm per step, a total of 2 mm, the inclination angle on each valley bottom line (protrusion start point and height). The angle formed by the line segment connecting the point at which is the maximum first and the plane on the ridge start point is 45 degrees or more, respectively, see FIG. 5(a2)]. The three-step difference corresponds to a=11.3 mm, b=13.5 mm, c=14.5 mm, d=19.1 mm, e=12.8 mm, f=50 mm in FIG. 5(a2).

施釉範囲は、尻からそれぞれ2.5、5、7及び9cm離れた所から谷底線を中心線として、その両側にそれぞれ7cm幅(合計14cm幅)で粘土瓦の頭までとした。施釉後、約1時間室温で乾燥させた後に、電気炉を用いて時間当たり100℃の昇温速度で1185℃まで加熱し、40分間保持した後に炉冷した。得られた板状試験体は吸水率を測定した後に、110℃で24時間乾燥し、曲げ破壊荷重(JIS A 5208に規定されるJ形およびS形瓦の曲げ試験に準じて測定)の測定を行った。測定には島津製オートグラフ(AG−2000C)を用いて行った。測定結果と尻から2.5cm無施釉の瓦に対する曲げ破壊荷重の向上率を表3に示す。なお、測定はそれぞれの瓦に付いて3枚行い、平均値を求めた。測定後に瓦の厚みを測定したところ14mmであった。 The glazed areas were 2.5 cm, 5, 7 and 9 cm away from the buttocks, respectively, with the valley bottom line as the center line, and 7 cm width (14 cm width in total) on both sides to the head of the clay tile. After glazing, it was dried at room temperature for about 1 hour, then heated to 1185° C. at a temperature rising rate of 100° C. per hour using an electric furnace, held for 40 minutes, and then cooled in the furnace. The plate-shaped test body thus obtained was measured for water absorption and then dried at 110° C. for 24 hours to measure the bending fracture load (measured in accordance with the bending test for J-shaped and S-shaped roof tiles defined in JIS A 5208). I went. The measurement was performed using a Shimadzu autograph (AG-2000C). Table 3 shows the measurement results and the improvement rate of the bending fracture load with respect to the tile that is not glazed 2.5 cm from the bottom. In addition, the measurement was performed for each roof tile three times, and the average value was obtained. When the thickness of the roof tile was measured after the measurement, it was 14 mm.

この表から、施釉幅が14cmの場合(裏側面全幅の44.4%の合計施釉幅)、尻からの無施釉幅を5cm(裏側面施釉層に含まれる谷底線の割合は83.1%)とすると最も曲げ破壊強度が高まることが分かる。 From this table, when the glazed width is 14 cm (total glazed width of 44.4% of the total back side width), the unglazed width from the buttocks is 5 cm (the ratio of the valley bottom line included in the back side glazed layer is 83.1%). ), the bending fracture strength is highest.

無施釉幅が小さくなる、すなわち施釉面積が増加することにより曲げ破壊荷重が増加することは、施釉により破壊の起点となる欠陥が減るためと考えられる。しかし無施釉幅が5cmから2.5cmと小さくなると逆に強度が低下している。この要因として、瓦尻部周辺の素地の厚さが影響していると考えられる。2.5cmと5cmの間には、瓦の表側面に雨水が裏側面に回り込むのを防ぐための段差(約1mm程度)が形成されており、尻から38mmの幅で谷底線端部に対向する表側面上の線状部分を横切っている。そのため段差から尻までの素地は頭から段差(水返し壁)までよりも厚さが約2mm厚くなっている。強度は厚くなると大きくなることから、段差を境に素地の強度は大きくなる。強度が大きくなると荷重による変形は小さくなる。このことと実験結果を併せて考えると、無施釉幅が5cmの場合は段差から尻部に施釉がなされておらず、素地が厚くなっている部分の強度は釉薬によって高められていない。他方、無施釉部分が2.5cmの場合は施釉によって段差近傍の素地が2mm厚くなった部分の強度が高められている。すなわち、2.5cmの場合と5cmの場合では段差周辺の素地の強度に違いがある。このことから、5cmの場合は段差を境にした素地の強度差は2.5cm場合の差よりも小さいと判断できる。すなわち、曲げ破壊試験において負荷される谷底線上部分(あるいはより正確には、谷底線に対向する表側面の線状部分)における強度の均一性が無施釉幅5cmの場合の方が無施釉幅2.5cmの場合よりも大きく、線状負荷をかけた際の歪みもより少ないと考えられる。 The decrease in the unglazing width, that is, the increase in the bending area due to the increase in the glaze area, is considered to be due to the decrease in defects that are the starting points of fracture due to the glaze. However, when the unglaze width is reduced from 5 cm to 2.5 cm, the strength is decreased. It is considered that the thickness of the base material around the roof tile portion has an effect on this factor. Between 2.5 cm and 5 cm, a step (about 1 mm) is formed on the front side of the roof tile to prevent rainwater from wrapping around to the back side, facing the end of the valley line with a width of 38 mm from the hip. It crosses a linear part on the front side. Therefore, the base material from the step to the hip is about 2 mm thicker than the head to the step (water repellent wall). Since the strength increases as the thickness increases, the strength of the base material increases at the step. As the strength increases, the deformation due to the load decreases. Considering this together with the experimental results, when the non-glazing width is 5 cm, the step is not glazed on the buttocks, and the strength of the thickened base material is not increased by the glaze. On the other hand, when the unglaze part is 2.5 cm, the strength of the part where the base material in the vicinity of the step is thickened by 2 mm is increased by the glazing. That is, there is a difference in strength of the base material around the step between the case of 2.5 cm and the case of 5 cm. From this, it can be judged that the difference in strength of the base material with the step as the boundary is smaller in the case of 5 cm than in the case of 2.5 cm. That is, when the glaze width is 5 cm, the strength uniformity in the portion above the valley bottom line (or more accurately, the linear portion on the front side facing the valley bottom line) that is loaded in the bending fracture test is 2 glazed. It is considered to be larger than the case of 0.5 cm, and the strain when a linear load is applied is also smaller.

曲げ破壊試験時に押し棒が瓦の表面に沿って荷重できれば素地強度が高い部分が形成されている2.5cmの方が曲げ破壊強度は高くなると考えられるが、実試験では表面の凹凸に沿って荷重を加えることは不可能である。そのため、段差を境に素地の強度が大きく変化する施釉方法(ここでは2.5cm)では、段差周辺に応力が生じ易くそのために5cmよりも強度が低下したと考えられる。 If the push rod can be loaded along the surface of the roof tile during the bending fracture test, it is considered that the bending fracture strength will be higher at 2.5 cm where the part with high base strength is formed, but in the actual test, along the unevenness of the surface It is impossible to apply a load. Therefore, it is considered that the glazing method (here, 2.5 cm) in which the strength of the base material greatly changes at the boundary of the step causes stress to be easily generated around the step, resulting in a strength lower than 5 cm.

なお、尻からの無施釉幅が2.5、5、7及び9cmである各J形の白地粘土瓦それぞれの、裏側面の施釉面積に含まれる谷底線の割合(%)は、それぞれ91.5%、83.1%、76.3%及び69.5%である。 The ratio (%) of valley bottom lines included in the glazed area on the back side of each J-shaped white clay tile having a non-glazing width of 2.5, 5, 7, and 9 cm from the hips was 91. 5%, 83.1%, 76.3% and 69.5%.

[試験例2]
石州瓦製造会社が、石州瓦製造用粘土として荒地Aを用いて製造した表側面施釉後のJ形の白地粘土瓦[表側面施釉済み、寸法区分53B(長さ:295mm、幅315mm)、JIS A 5208の表2参照]の裏側面に、試験例1と同様の銀黒色の釉薬を施釉した。
[Test Example 2]
The Sekishu tile manufacturing company manufactured the Sekishu tile by using the waste land A as the clay for producing the Seki tile, and then the J-shaped white background clay tile after glazed surface [Glazed on the surface, dimension classification 53B (length: 295 mm, width 315 mm) , JIS A 5208, Table 2], and the same glaze of silver black as in Test Example 1 was applied to the back side.

なお、このJ形瓦の表側面には、試験例1と同様、瓦の尻から頭に向かって38mmの長さの領域内[谷底線の全長の12.9%(=100×38/295)]に3段の段差(水返し壁)が形成されている[図5(a2)参照]。 In addition, on the front side surface of this J-shaped roof tile, as in Test Example 1, within a region having a length of 38 mm from the bottom to the head of the roof tile [12.9% of the total length of the valley floor line (=100×38/295). )] is formed with three steps (water return wall) [see FIG. 5(a2)].

施釉範囲は、粘土瓦の尻からそれぞれ5cm離れた所から谷底線を中心線として、その両側にそれぞれ6、7、8cm幅で粘土瓦の頭までとした。 The glazed area was 5 cm away from the bottom of the clay tile, with the valley bottom line as the center line and the width of 6, 7 and 8 cm on each side to the head of the clay tile.

施釉後、約1時間室温で乾燥させた後に、電気炉を用いて時間当たり100℃の昇温速度で1185℃まで加熱し、40分間保持した後に炉冷した。得られた板状試験体は吸水率を測定した後に、110℃で24時間乾燥し、曲げ破壊荷重(JIS A 5208に規定されるJ形およびS形瓦の曲げ試験に準じて測定)の測定を行った。測定には島津製オートグラフ(AG−2000C)を用いて行った。測定結果を表4に示す。なお、測定はそれぞれの瓦に付いて3枚行い、平均値を求めた。測定後に瓦の厚みを測定したところ14mmであった。 After glazing, it was dried at room temperature for about 1 hour, then heated to 1185° C. at a temperature rising rate of 100° C. per hour using an electric furnace, held for 40 minutes, and then cooled in the furnace. The plate-shaped test body thus obtained was measured for water absorption and then dried at 110° C. for 24 hours to measure the bending fracture load (measured in accordance with the bending test for J-shaped and S-shaped roof tiles defined in JIS A 5208). I went. The measurement was performed using a Shimadzu autograph (AG-2000C). The measurement results are shown in Table 4. In addition, the measurement was performed for each roof tile three times, and the average value was obtained. When the thickness of the roof tile was measured after the measurement, it was 14 mm.

この表4から、粘土瓦の尻からの無施釉幅を5cmとした場合(裏側面釉薬層が段差に達する前に終了している場合)、施釉幅を14cmとすると最も曲げ破壊強度が高まることが分かる。 From Table 4, when the unglaze width from the bottom of the clay tile is 5 cm (when the back side glaze layer is finished before reaching the step), the bending glaze strength is the highest when the glazed width is 14 cm. I understand.

ここで、施釉幅12cm、14cm及び16cmの裏側面釉薬層は、J形の白地粘土瓦の裏側面全幅に対して、それぞれ38.1%、44.4%及び50.8%であった。これは谷底線を境界とする裏側面釉薬領域の2つの部分領域の幅がJ形の白地粘土瓦の裏側面の全幅を基準にそれぞれ19.1%、22.2%及び25.4%の幅を占めた場合に相当する。 Here, the back side glaze layers having a glazed width of 12 cm, 14 cm and 16 cm were 38.1%, 44.4% and 50.8% of the back side total width of the J-shaped white clay tile, respectively. This is because the width of the two partial areas of the back side glaze area with the valley line as the boundary is 19.1%, 22.2% and 25.4% respectively based on the total width of the back side of the J-shaped white clay tile. Equivalent to occupying the width.

また、裏側面釉薬層に含まれる谷底線の割合は83.1%[(245/295)×100]であった。 The ratio of the valley bottom line contained in the back side glaze layer was 83.1% [(245/295)×100].

[試験例3]
石州瓦製造会社が石州瓦製造用粘土として荒地Aを用いて製造した、乾燥前のJ形瓦成形品の表側のほぼ全面を深さ約4mm削り取り、乾燥後表側面に施釉したJ形の白地粘土瓦[表側面施釉済み、寸法区分53B(長さ:295mm、幅315mm)、JIS A 5208の表2参照]の裏側面に、試験例1と同様の銀黒色を施釉した。
[Test Example 3]
A J-shaped roof tile, which was manufactured by Sekishu Tile Manufacturing Company using clay A for use in Sekishu tile production, was scraped from the front surface of the J-shaped roof molding to a depth of approximately 4 mm, and then glazed on the front surface after drying. The same as the test example 1 was glazed on the back side of the white clay roof tile (finished to be glazed on the front surface, dimension section 53B (length: 295 mm, width 315 mm), see Table 2 of JIS A 5208).

なお、このJ形瓦の表側面には、試験例1と同様、瓦の尻から頭に向かって38mmの幅の領域内[谷底線の全長の12.9%(=100×38/295)]に3段の段差(水返し壁)が形成されている[図5(a2)参照]。 In addition, on the front surface of this J-shaped roof tile, as in Test Example 1, within a region having a width of 38 mm from the bottom to the head of the roof tile [12.9% of the total length of the valley bottom line (=100×38/295)]. ] Is formed with three steps (water return wall) [see FIG. 5(a2)].

施釉範囲は、尻から5cm離れた所から谷底線を中心として、その両側にそれぞれ7cm幅(合計14cm幅)で粘土瓦の頭までとし、施釉後、約1時間室温で乾燥させた。比較のために、表側面を4mm削り、かつ表側面だけに施釉したJ形白地粘土瓦を準備した。これら2種類の瓦について、電気炉を用いて時間当たり100℃の昇温速度で1185℃まで加熱し、40分間保持した後に炉冷した。得られた板状試験体は吸水率を測定した後に、110℃で24時間乾燥し、曲げ破壊荷重(JIS A 5208に規定されるJ形およびS形瓦の曲げ試験に準じて測定)の測定を行った。測定には島津製オートグラフ(AG−2000C)を用いて行った。2種類の瓦の曲げ破壊測定結果と裏側面が無施釉の瓦に対する曲げ破壊荷重の向上率を表12に示す。なお、測定後に瓦の厚みを測定したところそれぞれ約10mmで、重量は2142g(裏側面施釉)、2135g(裏側面無施釉)であった。 The glazed area was about 5 cm away from the buttocks, centered on the valley bottom line, and 7 cm wide (14 cm wide in total) on each side to the head of the clay tile, and after glazed, it was dried at room temperature for about 1 hour. For comparison, a J-shaped white clay clay tile was prepared in which the front side surface was shaved by 4 mm and only the front side surface was glazed. These two types of roof tiles were heated to 1185° C. at a heating rate of 100° C. per hour using an electric furnace, held for 40 minutes, and then cooled in the furnace. The plate-shaped test body thus obtained was measured for water absorption and then dried at 110° C. for 24 hours to measure the bending fracture load (measured in accordance with the bending test for J-shaped and S-shaped roof tiles defined in JIS A 5208). I went. The measurement was performed using a Shimadzu autograph (AG-2000C). Table 12 shows the bending fracture measurement results of the two types of roof tiles and the improvement rate of the bending fracture load with respect to the roof tile whose back surface is not glazed. When the thickness of the roof tile was measured after the measurement, it was about 10 mm, and the weight was 2142 g (back side glazed) and 2135 g (back side non-glazed).

この表と試験結果から、裏側面に施釉することにより重量が2200g程度の瓦に約2200N程度の強度を付与させることが可能であることが分かった。 From this table and the test results, it was found that it is possible to give strength of about 2200 N to a roof tile having a weight of about 2200 g by applying glaze on the back surface.

なお、裏側釉薬層の幅は、J形の白地粘土瓦の全幅を基準として44.4%であり、谷底線により2つの部分施釉領域に分けた場合の各部分施釉領域の幅は22.2%であった。 The width of the back side glaze layer was 44.4% based on the total width of the J-shaped white clay tile, and the width of each partial glaze area when divided into two partial glaze areas by the valley bottom line was 22.2. %Met.

また、裏側釉薬層に含まれる谷底線の割合は、83.1%であった。 The ratio of the valley bottom line contained in the back glaze layer was 83.1%.

[試験例4]
石州瓦製造会社が、石州瓦製造用粘土として荒地Aを用いて製造した表側面施釉後のJ形の白地粘土瓦[寸法区分53B(長さ:295mm、幅315mm)、JIS A 5208の表2参照]の裏側面に、瓦の谷底線を基準とし、桟山側の方向に谷底線からそれぞれ1,2,3cm離れた平行線上の、尻から5,10,15,20cmの位置に直径が2.5mm、深さが4mmの円柱状の穴をドリルで形成した。谷底線上にも同様の位置に4か所の穴を形成した(図6参照)。
[Test Example 4]
The Sekishu tile manufacturing company manufactured the clay for producing Sekishu tile using the wasteland A, and the J-shaped white background clay tile after glazing [dimension classification 53B (length: 295 mm, width 315 mm), JIS A 5208 On the back side of [Table 2], the diameter at the position of 5,10,15,20 cm from the butt on the parallel line that is 1,2,3 cm away from the valley bottom line in the direction of the ridge, with the roof bottom line as the reference A cylindrical hole having a diameter of 2.5 mm and a depth of 4 mm was formed with a drill. Four holes were formed at the same position on the valley bottom line (see FIG. 6).

次に、電気炉を用いて時間当たり100℃の昇温速度で1185℃まで加熱し、40分間保持した後に炉冷した。得られたJ形瓦試験体に対して曲げ破壊荷重(JIS A 5208に規定されるJ形及びS形桟瓦の曲げ試験に準じて測定)の測定を行った。測定には島津製オートグラフ(AG−2000C)を用いて行った。表6に曲げ試験により生じた破断面に形成した円柱状の穴の断面が表れているかを示す。なお、試験後のJ形瓦の中心部の厚さを測定すると凡そ14mmであった。 Next, using an electric furnace, it was heated to 1185° C. at a heating rate of 100° C. per hour, held for 40 minutes, and then cooled in the furnace. The bending fracture load (measured according to the bending test of the J-shaped and S-shaped roof tiles specified in JIS A 5208) was measured on the obtained J-shaped roof tile test body. The measurement was performed using a Shimadzu autograph (AG-2000C). Table 6 shows whether the cross section of the cylindrical hole formed in the fracture surface generated by the bending test appears. The thickness of the central portion of the J-shaped roof tile after the test was measured and found to be about 14 mm.

この表から、J形瓦の曲げ破壊荷重を向上させるためには、谷底線を基準としてその左右1cm離れた位置までの領域に、曲げ試験時に破壊の起点となりうる穴の様な構造は無い方が望ましいと考えられる。 From this table, in order to improve the bending failure load of J-shaped roof tiles, there should be no hole-like structure that could become the starting point of failure during bending test in the area up to 1 cm to the left and right of the valley bottom line. Is considered desirable.

[試験例5]
石州瓦製造会社が、石州瓦製造用粘土として荒地Aを用いて製造した施釉後のJ形の白地粘土瓦[寸法区分53B(長さ:295mm、幅315mm)、JIS A 5208の表2参照]の裏側面に、試験例1と同様の銀黒色の釉薬を施釉した。施釉範囲は、粘土瓦の尻から2.5cm離れた所から谷底線を中心線として、その両側に7cm幅で粘土瓦の頭までとしたものと、粘土瓦の尻から2.5cm離れ、かつ谷底線から水返し側に2cm寄った所を中心線として、その両側に7cm幅で粘土瓦の頭までとした。これは谷底線を中心にして、水返し側の施釉領域の幅が5cm、水返し側と反対側の施釉領域の幅が9cmに対応する。
[Test Example 5]
The Sekishu tile manufacturing company produced the glazed J-shaped white clay tiles using the wasteland A as clay for producing Sekishu tiles [Dimension classification 53B (length: 295 mm, width 315 mm), Table 2 of JIS A 5208]. On the back side of the reference], the same silver-black glaze as in Test Example 1 was applied. The glazed area is 2.5 cm away from the bottom of the clay tile, with the valley bottom line as the centerline, and the width of 7 cm to the head of the clay tile on both sides, and 2.5 cm away from the bottom of the clay tile. The center line was set at a position 2 cm away from the valley bottom line on the water return side, and the width was 7 cm on both sides to the head of the clay tile. This corresponds to a width of the glazed area on the water repelling side of 5 cm and a width of the glazed area on the side opposite to the water repelling side of 9 cm with the valley bottom line as the center.

施釉後、約1時間室温で乾燥させた後に、電気炉を用いて時間当たり100℃の昇温速度で1185℃まで加熱し、40分間保持した後に炉冷した。得られた板状試験体は吸水率を測定した後に、110℃で24時間乾燥し、曲げ破壊荷重(JIS A 5208に規定されるJ形およびS形瓦の曲げ試験に準じて測定)の測定を行った。測定には島津製オートグラフ(AG−2000C)を用い、行った。測定結果を表14に示す。なお、測定はそれぞれの瓦に付いて3枚行い、平均値を求めた。測定後に瓦の厚みを測定したとこ
ろ14mmであった。
After glazing, it was dried at room temperature for about 1 hour, then heated to 1185° C. at a temperature rising rate of 100° C. per hour using an electric furnace, held for 40 minutes, and then cooled in the furnace. The plate-shaped test body thus obtained was measured for water absorption and then dried at 110° C. for 24 hours to measure the bending fracture load (measured in accordance with the bending test for J-shaped and S-shaped roof tiles defined in JIS A 5208). I went. An Shimadzu autograph (AG-2000C) was used for the measurement. The measurement results are shown in Table 14. In addition, the measurement was performed on three tiles for each roof tile, and the average value was obtained. When the thickness of the roof tile was measured after the measurement, it was 14 mm.

この表から、施釉領域の中心を、谷底線にもってくることが曲げ破壊荷重に対して有利に働くことが分かった。 From this table, it was found that bringing the center of the glazed region to the valley bottom line has an advantageous effect on the bending fracture load.

なお、施釉領域の幅はいずれのケースも、J形の白地粘土瓦の全幅を基準にして44.4%の幅であり、裏側面施釉層に含まれる谷底線の割合は91.5%であった。 In each case, the width of the glazed area was 44.4% based on the total width of the J-shaped white clay tile, and the ratio of the valley bottom line included in the back side glazed layer was 91.5%. there were.

しかし、谷底線により2つの部分施釉領域に分けた場合、谷底線を中心にして施釉したケースでは、それぞれの部分施釉領域の幅は、J形の白地粘土瓦の全幅を基準にして、いずれも22.2%で等しいが、谷底線より2cm水切り側に寄ったところを中心として施釉したケースでは、それぞれ15.9%、28.6%であった。 However, when dividing into two partial glazed areas by the valley line, in the case of glazed around the valley line, the width of each partial glazed area is based on the entire width of the J-shaped white clay tile. 22.2%, which is the same, but in the case where the glazed case was centered on the part closer to the draining side by 2 cm from the valley bottom line, it was 15.9% and 28.6%, respectively.

Claims (13)

表側面、裏側面及び前記2つの表面間の間隔である厚みを有する、粘土焼成建材であって、
前記粘土焼成建材は、前記表側面から前記裏側面に向かう厚み方向に凹状に湾曲した、樋状の凹状湾曲形状を有し、
前記裏側面上、前記凹状湾曲形状の谷底線に沿って、かつ該谷底線を含むほぼ帯状の領域として裏側面釉薬層が形成され、
前記谷底線は、前記粘土焼成建材を仮に水平面上に設置した状態にした場合に、前記樋状の凹状湾曲形状の最も低い部分を通る線状部分をいい、
前記粘土焼成建材がさらに、
前記裏側面上の谷底線の少なくとも一方の端部に対向する表側面上の線状部分を横切るように、隆起する部分構造を有し、かつ前記裏側面釉薬層が前記隆起する部分構造に対向する裏側面領域に達するまでに終了しており、
ここで、前記谷底線の端部とは、前記谷底線の一方の末端から他方の末端の方向に延び、前記谷底線方向の長さが前記谷底線の全長の24%以下の線状部分をいい、
前記表側面に水返し壁または防水壁が形成されており、前記水返し壁または防水壁が前記隆起する部分構造として構成されていて、前記裏側面釉薬層が、前記粘土焼成建材の前記谷底線に垂直な辺の一方から開始して、前記水返し壁または防水壁に対向する前記裏側面領域に達するまでに終了していることを特徴とする、粘土焼成建材。
A clay-fired building material having a front surface, a back surface, and a thickness that is a distance between the two surfaces,
The clay-fired building material is curved in a concave shape in the thickness direction from the front side surface to the back side surface, and has a gutter-shaped concave curved shape,
On the back side surface, along the valley bottom line of the concave curved shape, and the back side glaze layer is formed as a substantially strip-shaped region including the valley bottom line,
The valley bottom line refers to a linear portion that passes through the lowest portion of the gutter-shaped concave curved shape when the clay-fired building material is temporarily installed on a horizontal plane,
The clay-fired building material is further
It has a protruding partial structure so as to cross a linear portion on the front side surface facing at least one end of the valley bottom line on the back side surface, and the back side glaze layer faces the protruding partial structure. It is finished by the time it reaches the back side area,
Here, the end portion of the valley bottom line refers to a linear portion extending from one end of the valley bottom line to the other end, and the length in the valley bottom line direction is 24% or less of the total length of the valley bottom line. Good,
A water repellent wall or a waterproof wall is formed on the front side surface, and the water repellent wall or the waterproof wall is configured as a raised partial structure, and the back side glaze layer is the valley bottom line of the clay-fired building material. A clay-fired building material, characterized in that it starts from one of the sides perpendicular to and ends by the time it reaches the back side surface region facing the water repellent wall or the waterproof wall .
前記裏側面釉薬層は、前記谷底線により、2つの施釉部分領域に分けた場合、
前記2つの施釉部分領域の各々の幅が、それぞれ前記粘土焼成建材の裏側面の全幅の15〜30%の範囲内にあり、
ここで、前記裏側面の全幅とは、前記粘土焼成建材の裏側面上、前記谷底線に垂直な方向の最大幅をいうことを特徴とする、請求項1に記載の粘土焼成建材。
When the back side glaze layer is divided into two glazed partial regions by the valley bottom line,
The width of each of the two glazed partial regions is within a range of 15 to 30% of the total width of the back surface of the clay-fired building material,
The clay-fired building material according to claim 1, wherein the entire width of the back-side surface refers to a maximum width on the back-side surface of the clay-fired building material in a direction perpendicular to the valley bottom line.
前記裏側面釉薬層の前記谷底線方向の長さが、前記谷底線の全長の少なくとも40%であ
(i)前記裏側面釉薬層により覆われた建材の裏側面領域のうち、前記谷底線ないしその近傍の領域であって、該領域に属する各点が前記谷底線の両末端が属する辺からそれぞれ、前記谷底線方向に、少なくとも前記谷底線の全長の14%離れている建材裏側面領域、
又は
(ii)該(i)の建材裏側面領域に対向する建材表側面領域、
が平滑であり、
ここで、前記谷底線の近傍とは、粘土焼成建材の厚みをDとしたときに、前記谷底線を中心としてこれに垂直に1.5Dの幅を前記粘土焼成建材の裏側面上に有し、前記谷底線に沿った方向に延びるほぼ帯状の領域をいうことを特徴とする、請求項1または2に記載の粘土焼成建材。
The length of the root line direction of the backside surface glaze layer, Ri least 40% der of the total length of the valley line,
(I) Of the back side surface area of the building material covered by the back side glaze layer, the valley bottom line or an area in the vicinity thereof, and each point belonging to the area is from each side to which both ends of the valley bottom line belong. , A building material back side surface region that is separated by at least 14% of the entire length of the valley floor line in the valley floor line direction,
Or (ii) a front surface area of the building material facing the back surface area of the building material of (i),
Is smooth,
Here, the vicinity of the valley bottom line means that when the thickness of the clay firing building material is D, a width of 1.5D is perpendicular to the center of the valley firing line on the back side surface of the clay firing building material. The clay-fired building material according to claim 1 or 2, wherein the clay-fired building material is a substantially strip-shaped region extending in a direction along the valley bottom line.
前記裏側面釉薬層が、前記谷底線を軸として対称に配置されていることを特徴とする、請求項1〜3のいずれかに記載の粘土焼成建材。 The clay firing building material according to any one of claims 1 to 3, wherein the back side glaze layer is symmetrically arranged with the valley bottom line as an axis. 前記粘土焼成建材の厚みが、6mm〜16mmである、請求項1〜4のいずれかに記載の粘土焼成建材。 The clay-fired building material according to claim 1, wherein the clay-fired building material has a thickness of 6 mm to 16 mm. 前記粘土焼成建材の単位表面積当たりの重量が、1.30〜3.52g/cm2である、請求項1〜5のいずれかに記載の粘土焼成建材。 The clay-fired building material according to any one of claims 1 to 5, wherein a weight per unit surface area of the clay-fired building material is 1.30 to 3.52 g/cm2. 前記表側面上、少なくとも70%の表面上に表側面釉薬層が形成されていることを特徴とする、請求項1〜6のいずれかに記載の粘土焼成建材。 The clay-fired building material according to any one of claims 1 to 6, wherein a surface-side glaze layer is formed on at least 70% of the surface of the surface. 前記裏側面釉薬層が、少なくとも珪素およびアルミニウムを含む組成の釉薬で形成されたことを特徴とする、請求項1〜7のいずれかに記載の粘土焼成建材。 The clay firing building material according to claim 1, wherein the back side glaze layer is formed of a glaze having a composition containing at least silicon and aluminum. 前記粘土焼成建材が粘土瓦である、請求項1〜8のいずれかに記載の粘土焼成建材。 The clay-fired building material according to claim 1, wherein the clay-fired building material is a clay roof tile. 前記水返し壁または防水壁が、前記谷底線の前記水返し壁または防水壁側から前記谷底線方向に、少なくとも前記谷底線の8.5%を超えたところにも少なくともその一部の部分構造が存在している、請求項1〜9のいずれか1項に記載の粘土焼成建材。 The partial structure of at least a part of the water repellent wall or the waterproof wall at least at a portion exceeding 8.5% of the valley bottom line in the valley bottom line direction from the water repellent wall or the waterproof wall side of the valley bottom line. The clay-fired building material according to any one of claims 1 to 9, wherein: 前記水返し壁または防水壁の前記谷底線方向の長さが、前記谷底線の全長の3%〜24%である、請求項1〜10のいずれか1項に記載の粘土焼成建材。 The clay-fired building material according to any one of claims 1 to 10, wherein a length of the water return wall or the waterproof wall in the valley bottom line direction is 3% to 24% of the entire length of the valley bottom line. 前記粘土焼成建材の厚みをDとしたとき、前記水返し壁または防水壁の隆起高さが0.05D〜0.2Dである、請求項1〜11のいずれか1項に記載の粘土焼成建材。 The clay-fired building material according to any one of claims 1 to 11, wherein, when the thickness of the clay-fired building material is D, the rising height of the water repellent wall or the waterproof wall is 0.05D to 0.2D. .. 前記水返し壁または防水壁の隆起高さが1〜3mmである、請求項1〜11のいずれか1項に記載の粘土焼成建材。 The clay-fired building material according to any one of claims 1 to 11, wherein the rising height of the water return wall or the waterproof wall is 1 to 3 mm.
JP2015238080A 2015-12-04 2015-12-04 Clay burning building materials Active JP6709489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238080A JP6709489B2 (en) 2015-12-04 2015-12-04 Clay burning building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238080A JP6709489B2 (en) 2015-12-04 2015-12-04 Clay burning building materials

Publications (2)

Publication Number Publication Date
JP2017101523A JP2017101523A (en) 2017-06-08
JP6709489B2 true JP6709489B2 (en) 2020-06-17

Family

ID=59018054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238080A Active JP6709489B2 (en) 2015-12-04 2015-12-04 Clay burning building materials

Country Status (1)

Country Link
JP (1) JP6709489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792949B (en) * 2020-07-08 2022-02-22 佛山市东鹏陶瓷有限公司 Ceramic glazed tile and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243578A (en) * 1989-03-17 1990-09-27 Mitsumine Sangyo Kk Yo-hen roof tile and production thereof
JPH05230937A (en) * 1992-02-21 1993-09-07 Toshiaki Nakamura Light tile and production thereof
JPH094135A (en) * 1995-06-19 1997-01-07 Aichi Pref Gov Toki Kawara Kogyo Kumiai Lightweight roof tile with back board part improved
ES2397235T3 (en) * 2007-03-07 2013-03-05 Csr Limited Roof tile
JP2010018970A (en) * 2008-07-09 2010-01-28 Miyazono Seisakusho:Kk Tile and its manufacturing method
JP5299925B2 (en) * 2011-03-28 2013-09-25 株式会社請川窯業 Lightweight, energy-saving, earthquake-resistant, dry-type roof tile

Also Published As

Publication number Publication date
JP2017101523A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
IL249954B2 (en) Interlocking masonry brick
CN203755354U (en) Basement floor post-cast strip
US9580905B2 (en) Insulating panels made of stone wool, and concrete wall provided with such panels
JP6709489B2 (en) Clay burning building materials
CN105464230A (en) Floor slab heat insulation and sound isolation system and construction method of floor slab heat insulation and sound isolation system
KR102495804B1 (en) Aerated concrete-hybrid construction elements
CN110821057A (en) Self-waterproof structure of roof parapet and construction method
WO2006079355A1 (en) Panel made from expanded plastic meterial for building slab construction, slab and construction method comprising such a panel
JP4835297B2 (en) Lightweight foamed inorganic building materials and lightweight building panels
CN212336747U (en) Ground heat-insulating and sound-insulating system for large-span building
CN220451322U (en) Floor tile terrace based on gypsum-based heat preservation slurry
CN205857516U (en) A kind of novel self-insulated building block and the body of wall being mounted to
RU2335605C1 (en) Wall
JP4151011B2 (en) High-strength concrete reinforcement and method for producing the reinforcement
CN103195246B (en) The construction method of building masonry wall self-heat conserving
CN216142315U (en) Compound light energy-saving heat-insulating ceramic tile
CN209799119U (en) Anti-cracking heat-insulation floor
CN218233899U (en) Air flow transverse circulation heat-preservation composite self-heat-preservation building block
US1583111A (en) Building slab
US20090008821A1 (en) Composition for Insulating Concrete, a Building Element for Producing a Lost Formwork Produced with a Said Concrete, a Lost Formwork Made from Said Elements and a Thus Produces Supporting Wall
US8935894B1 (en) Concrete step
JP2663330B2 (en) ALC sheet
CN209457180U (en) A kind of high-strength insulation wall structure
CN107165292A (en) The self heat insulation wall and its building method of bridge cut-off built in screed
JP4815157B2 (en) Sandwich panel and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6709489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250