JP6707730B2 - Physical property measurement method - Google Patents

Physical property measurement method Download PDF

Info

Publication number
JP6707730B2
JP6707730B2 JP2016053364A JP2016053364A JP6707730B2 JP 6707730 B2 JP6707730 B2 JP 6707730B2 JP 2016053364 A JP2016053364 A JP 2016053364A JP 2016053364 A JP2016053364 A JP 2016053364A JP 6707730 B2 JP6707730 B2 JP 6707730B2
Authority
JP
Japan
Prior art keywords
surface potential
measurement
measurement target
potential sensor
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016053364A
Other languages
Japanese (ja)
Other versions
JP2017167011A (en
Inventor
俊之 杉本
俊之 杉本
信雄 野村
信雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Kasuga Denki Inc
Original Assignee
Yamagata University NUC
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Kasuga Denki Inc filed Critical Yamagata University NUC
Priority to JP2016053364A priority Critical patent/JP6707730B2/en
Publication of JP2017167011A publication Critical patent/JP2017167011A/en
Application granted granted Critical
Publication of JP6707730B2 publication Critical patent/JP6707730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

この発明は、非接触で測定対象の物性を測定する物性測定装置に関する。 The present invention relates to a physical property measuring device that measures the physical properties of a measurement target in a non-contact manner.

従来から、物体の物性を測定するために、非接触式の表面電位センサが用いられることがあった。
例えば、特許文献1に記載の物性測定装置は、図3に示すように、帯電装置1と非接触式の表面電位センサ2とを組み合わせたものである。帯電装置1は、放電電極3と多孔電極板4とを備え、表面電位センサ2は、検出電極板5、計測回路6、及び演算部7を備え、それぞれ電源8に接続されている。
この測定装置では、上記測定対象9の表面の照射領域aに、上記帯電装置1の放電電極3を対向させるとともに、この照射領域aから所定の距離離れた測定領域bに上記表面電位センサ2の検出電極板5を対向させている。この検出電極板5には、対向する測定領域bの表面電位に応じて電荷が誘導される。この検出電極板5に誘導された電荷を計測回路6が計測し、その電荷量から演算部7が測定対象9の表面電位を算出する。
Conventionally, a non-contact type surface potential sensor has been used in some cases in order to measure the physical properties of an object.
For example, as shown in FIG. 3, the physical property measuring device described in Patent Document 1 is a combination of a charging device 1 and a non-contact surface potential sensor 2. The charging device 1 includes a discharge electrode 3 and a porous electrode plate 4, and the surface potential sensor 2 includes a detection electrode plate 5, a measurement circuit 6, and a calculation unit 7, each of which is connected to a power supply 8.
In this measuring device, the discharge electrode 3 of the charging device 1 is opposed to the irradiation area a on the surface of the measurement target 9, and the surface potential sensor 2 of the surface potential sensor 2 is arranged in a measurement area b that is a predetermined distance away from the irradiation area a. The detection electrode plates 5 are opposed to each other. Electric charges are induced in the detection electrode plate 5 in accordance with the surface potential of the measurement region b facing the detection electrode plate 5. The measurement circuit 6 measures the electric charges induced in the detection electrode plate 5, and the calculation unit 7 calculates the surface potential of the measurement target 9 from the amount of the electric charges.

そして、図3の測定装置を用いて測定対象9の物性を測定する際には、帯電装置1によって上記照射領域aにイオンを照射し、その過程における測定領域bの表面電位の変化を、上記表面電位センサ2で検出するようにしている。帯電装置1から上記照射領域aにイオンが照射されると、その電荷は電流として測定対象9の表面に沿って照射領域aから外方へ拡散する。このイオンが測定領域bに到達すれば、測定領域bの表面電位が変化する。したがって、上記測定領域bの表面電位の変化を検出すれば、上記照射領域aから測定領域bまでの電荷の流れ方が分かり、測定対象9の電気的な表面抵抗を検出できることになる。つまり、測定対象9の物性である表面抵抗を測定できる。また、表面抵抗のほかにも、この表面抵抗に関連する他の物性を検出することもできる。 When measuring the physical properties of the measuring object 9 using the measuring device of FIG. 3, the charging device 1 irradiates the irradiation region a with ions, and changes in the surface potential of the measurement region b in the process are described above. The surface potential sensor 2 is used for detection. When the charging device 1 irradiates the irradiation area a with ions, the electric charge diffuses outward from the irradiation area a along the surface of the measurement target 9 as a current. When the ions reach the measurement region b, the surface potential of the measurement region b changes. Therefore, if the change in the surface potential of the measurement area b is detected, the way in which the charge flows from the irradiation area a to the measurement area b is known, and the electrical surface resistance of the measurement target 9 can be detected. That is, the surface resistance, which is a physical property of the measurement target 9, can be measured. In addition to the surface resistance, other physical properties related to this surface resistance can be detected.

例えば、樹脂塗料は、液体状態では導電性であるが、乾燥によって固化すると絶縁性になるものが多い。このような塗膜を測定対象9とすると、この測定対象9は硬化度によって電気抵抗が変化する。そこで、上記従来の物性測定装置で、測定対象9の測定領域bの表面電位の変化に基づいて表面抵抗を検出すれば、この表面抵抗から塗膜の硬化度、あるいは乾燥度を特定することができる。 For example, resin paints are conductive in a liquid state, but often become insulating when solidified by drying. When such a coating film is used as the measuring object 9, the electric resistance of the measuring object 9 changes depending on the degree of curing. Therefore, if the surface resistance is detected based on the change in the surface potential of the measurement area b of the measurement target 9 with the above-mentioned conventional physical property measuring device, the degree of cure or dryness of the coating film can be specified from this surface resistance. it can.

特開2015−127665号公報JP, 2005-127665, A 特開2010−190815号公報JP, 2010-190815, A

上記従来の物性測定装置は、測定対象9の表面に沿って流れる電荷量の変化によって、上記測定対象9の物性を測定するものである。このような装置で測定する上記測定対象9がアースされた金属製など導電性のベースに接触しているような場合には、測定対象9の表面抵抗などの物性を測定することができないことがあった。
なぜなら、ベースが導電性でしかも測定対象9の電気抵抗が小さい場合には、上記帯電装置1から測定対象9に照射されたイオンが上記照射領域aから金属製のベースへ流れてしまい、測定領域bまで到達しないからである。このような場合に、上記従来の物性測定装置では、測定領域bの表面電位の変化が測定できないため、測定対象9の物性を測定することもできなかった。
The above-mentioned conventional physical property measuring device measures the physical property of the measurement target 9 by the change of the amount of charge flowing along the surface of the measurement target 9. When the measurement target 9 measured by such an apparatus is in contact with a conductive base such as a grounded metal, physical properties such as surface resistance of the measurement target 9 may not be measured. there were.
This is because when the base is conductive and the electrical resistance of the measurement target 9 is small, the ions irradiated from the charging device 1 to the measurement target 9 flow from the irradiation region a to the metal base, and the measurement region This is because it does not reach b. In such a case, the conventional physical property measuring device cannot measure the physical property of the measurement target 9 because the change in the surface potential of the measurement region b cannot be measured.

例えば、アースされた金属ベースに塗布した塗膜の場合、塗布直後の塗膜は溶媒を多く含むために体積抵抗が低く、このような塗布直後の塗膜に照射されたイオンは、塗膜表面から導電性の金属ベースを介してアースへ流れてしまう。そのため、この塗膜における測定領域bの表面電位は変化しない。そのため、上記従来の測定装置では、表面電位の変化を測定できない。塗膜の硬化が進み、塗膜の体積抵抗が十分に大きくなると、照射イオンは塗膜の表面に沿って拡散するので、測定領域bの表面電位は変動し、上記従来の物性測定装置によっても上記測定領域bの表面電位の変化を測定できる。したがって、上記従来の装置では、導電性のベース上に塗布された塗膜の場合、塗布直後の塗膜の硬化度や、その硬化の過程を測定することはできなかった。 For example, in the case of a coating film applied to a grounded metal base, the coating film immediately after coating contains a large amount of solvent, so the volume resistance is low.Ions irradiated to such a coating film immediately after coating are Flows through the conductive metal base to ground. Therefore, the surface potential of the measurement area b in this coating film does not change. Therefore, the conventional measuring device cannot measure the change in surface potential. When the coating film is hardened and the volume resistance of the coating film becomes sufficiently large, the irradiation ions diffuse along the surface of the coating film, so that the surface potential of the measurement region b fluctuates. The change in the surface potential of the measurement area b can be measured. Therefore, in the case of the coating film applied on the conductive base, the above-mentioned conventional apparatus cannot measure the degree of curing of the coating film immediately after the application or the process of the curing.

この発明の目的は、測定対象が、アースされた金属板など導電性のベース上に接触している場合であっても、その電気的な物性を測定できる物性測定方法を提供することである。 An object of the present invention is to provide a physical property measuring method capable of measuring the electrical properties of a measurement target even when the measurement target is in contact with a conductive base such as a grounded metal plate.

第1の発明は、測定対象にイオンを照射する放電電極と、上記測定対象の表面電位を測定する表面電位センサとを備え、上記測定対象の特定の部位に、上記放電電極によって生成されるイオンを照射しながら、上記特定の部位の表面電位を上記表面電位センサで測定する物性測定方法であって、上記表面電位センサと上記放電電極との間に、上記放電電極が形成する電界が上記表面電位センサに直接影響を及ぼさないよう、上記放電電極からの電界を遮断し得る位置に、シールド電極を設けたことを特徴とする。 1st invention is provided with the discharge electrode which irradiates a measurement object with an ion, and the surface potential sensor which measures the surface potential of the said measurement object, The ion produced|generated by the said discharge electrode in the specific site|part of the said measurement object. Is a physical property measuring method of measuring the surface potential of the specific portion with the surface potential sensor while irradiating, the electric field formed by the discharge electrode between the surface potential sensor and the discharge electrode is the surface A shield electrode is provided at a position where the electric field from the discharge electrode can be blocked so as not to directly affect the potential sensor .

第2の発明は、上記表面電位センサで上記特定の部位の表面電位を繰り返し測定することを特徴とする。 A second aspect of the invention is characterized in that the surface potential sensor repeatedly measures the surface potential of the specific portion.

第3の発明は、上記特定の部位にイオンを照射する前に、上記測定対象を除電することを特徴とする。 A third aspect of the invention is characterized in that the measurement target is destaticized before the specific region is irradiated with ions.

第4の発明は、上記測定対象が塗膜であることを特徴とする。 A fourth invention is characterized in that the measurement target is a coating film.

第1の発明では、測定対象の特定の部位にイオンを照射しながらその部位の表面電位を測定するので、照射されたイオンが測定対象からベースへ流れたとしても、表面電位センサは、流れたイオンによる電流と測定対象の体積抵抗とに応じた表面電位を測定できる。
したがって、表面電位センサの検出値に基づいて、測定対象の体積抵抗や、体積抵抗に関連する物性を測定することができる。
しかも、表面電位センサに対する放電電極からの電界を遮断するようにシールド電極を設けているので、高電圧を印加された放電電極が形成する電界の影響が、直接、表面電位センサに及ばないようにできる。その結果、より正確な物性測定ができる。
In the first invention, since the surface potential of a specific portion of the measurement target is measured while irradiating the ion with the ion, even if the irradiated ion flows from the measurement target to the base, the surface potential sensor flows. It is possible to measure the surface potential according to the current caused by the ions and the volume resistance of the measurement target.
Therefore, it is possible to measure the volume resistance of the measurement target and the physical properties related to the volume resistance based on the detection value of the surface potential sensor.
Moreover, since the shield electrode is provided so as to block the electric field from the discharge electrode with respect to the surface potential sensor, the influence of the electric field formed by the discharge electrode to which a high voltage is applied does not directly affect the surface potential sensor. it can. As a result, more accurate physical property measurement can be performed.

第2の発明によれば、イオン照射されている特定の部位の表面電位の時間的変化に基づいて、測定対象の物性の経時変化を測定することができる。例えば、塗装直後から、乾燥によって硬化する塗膜の硬化度の変化を測定することもできる。 According to the second aspect of the present invention, it is possible to measure the change over time of the physical properties of the measurement target based on the change over time of the surface potential of the specific site irradiated with ions. For example, it is possible to measure the change in the degree of curing of a coating film that is cured by drying immediately after coating.

第3の発明によれば、物性測定を開始する前の帯電や、前回の測定時に照射したイオンの影響を受けずに、測定対象の物性を測定できる。測定対象が帯電していると、放電電極と測定対象との間の電位差が小さくなるので、放電状態が変化して、測定対象に対するイオンの照射量も変わってしまう可能性がある。イオンの照射量が変われば、測定対象を流れる電流値が変わり、正確な物性測定ができないことになるが、測定開始前に除電をすれば、正確な物性測定ができる。 According to the third aspect of the present invention, the physical properties of the measurement target can be measured without being affected by the charging before starting the physical property measurement and the influence of the ions irradiated at the previous measurement. When the measurement target is charged, the potential difference between the discharge electrode and the measurement target becomes small, so the discharge state may change, and the dose of ions to the measurement target may also change. If the amount of ion irradiation changes, the value of the current flowing through the measurement target changes, and accurate physical property measurement cannot be performed. However, if static electricity is removed before the start of measurement, accurate physical property measurement can be performed.

第4の発明によれば、表面電位センサの測定値に基づいて、塗膜の硬化度を測定することができる。この発明の測定方法では、アースされたベースに塗布された塗膜であっても、塗布直後の抵抗が低い状態から硬化過程を確認することができる。 According to the fourth aspect, the degree of cure of the coating film can be measured based on the measurement value of the surface potential sensor. According to the measuring method of the present invention, even if the coating film is applied to the grounded base, the curing process can be confirmed from the state where the resistance immediately after the application is low.

実施形態の測定装置の概略図である。It is a schematic diagram of a measuring device of an embodiment. 実施形態の測定原理の説明図である。It is explanatory drawing of the measurement principle of embodiment. 従来の測定装置の概略図である。It is a schematic diagram of the conventional measuring device.

図1,2を用いて、この発明の一実施形態を説明する。
この実施形態では、金属製のベース10上に塗布された塗膜を測定対象9とし、その硬化度を測定する。なお、上記測定対象9は塗布直後の塗膜で、その体積抵抗値は低いことが想定される。
また、図1において測定対象9の厚みとベース10の厚みとを同等に表しているが、塗膜である測定対象9の厚みは数十〔μm〕程度であり、ベース10よりも薄い場合が多い。
An embodiment of the present invention will be described with reference to FIGS.
In this embodiment, a coating film applied on a metal base 10 is set as a measurement target 9 and the degree of curing is measured. The measurement target 9 is a coating film immediately after coating, and it is assumed that its volume resistance value is low.
Further, in FIG. 1, the thickness of the measurement object 9 and the thickness of the base 10 are shown to be equal, but the thickness of the measurement object 9 that is a coating film is about several tens [μm] and may be thinner than the base 10. Many.

この実施形態に用いる測定装置は、図1に示すようにイオン照射機構11と表面電位センサ12とを備えている。
イオン照射機構11には、高電圧電源に接続された針状の放電電極13が設けられ、この放電電極13に高電圧を印加すると、先端に生成されたイオンが、測定対象9上のイオン照射領域Aに照射される。
The measuring device used in this embodiment includes an ion irradiation mechanism 11 and a surface potential sensor 12, as shown in FIG.
The ion irradiation mechanism 11 is provided with a needle-shaped discharge electrode 13 connected to a high-voltage power supply. When a high voltage is applied to this discharge electrode 13, the ions generated at the tip are irradiated with ions on the measurement target 9. The area A is irradiated.

また、表面電位センサ12は、図3に示す従来の表面電位センサ2と同様に一般的な表面電位センサである。
つまり、ケーシング内に、図示しない検出窓を介して上記測定対象9と対向する位置に検出電極板14を保持している。この検出電極板14に誘導される電荷量に基づいて表面電位を検出する。
ただし、この実施形態において上記検出電極板14は、上記測定対象9上の上記イオン照射領域Aに対向して設けられている。つまり、このイオン照射領域Aが、この発明の特定の部位であり、この部位の表面電位を表面電位センサ12で測定することになる。
Further, the surface potential sensor 12 is a general surface potential sensor like the conventional surface potential sensor 2 shown in FIG.
That is, the detection electrode plate 14 is held in the casing at a position facing the measurement target 9 through a detection window (not shown). The surface potential is detected based on the amount of electric charge induced in the detection electrode plate 14.
However, in this embodiment, the detection electrode plate 14 is provided so as to face the ion irradiation region A on the measurement target 9. That is, this ion irradiation region A is a specific part of the present invention, and the surface potential of this part is measured by the surface potential sensor 12.

また、上記放電電極13の先端と、表面電位センサ12の検出電極板14との間には、シールド電極15を設けている。このシールド電極15は、アースされた金属製の丸棒からなる。このようなシールド電極15を設けたのは、上記放電電極13が形成する電界が、直接上記検出電極14に入って、表面電位の測定に影響しないようにするためである。シールド電極15を設けることによって、上記電界が表面電位の測定に与える影響を小さくすることができる。したがって、表面電位センサ12が、より正確に測定対象9の電位を測定できることになる。 A shield electrode 15 is provided between the tip of the discharge electrode 13 and the detection electrode plate 14 of the surface potential sensor 12. The shield electrode 15 is made of a grounded metal round bar. The shield electrode 15 is provided in order to prevent the electric field formed by the discharge electrode 13 from directly entering the detection electrode 14 and affecting the measurement of the surface potential. By providing the shield electrode 15, the influence of the electric field on the measurement of the surface potential can be reduced. Therefore, the surface potential sensor 12 can measure the potential of the measurement target 9 more accurately.

さらに、この第1実施形態では、上記表面電位センサ12とは別の第2の表面電位センサ16を備えている。この表面電位センサ16は、上記測定対象9の表面上で、イオン照射領域Aから所定の距離離れた測定領域Bに検出電極板17を対向させたセンサである。
第2の表面電位センサ16と上記第1の表面電位センサ12とは、同じ検出原理を利用したものである。
Furthermore, in this 1st Embodiment, the 2nd surface potential sensor 16 different from the said surface potential sensor 12 is provided. The surface potential sensor 16 is a sensor in which a detection electrode plate 17 is opposed to a measurement area B, which is a predetermined distance from the ion irradiation area A, on the surface of the measurement target 9.
The second surface potential sensor 16 and the first surface potential sensor 12 use the same detection principle.

このような測定装置を用いて、測定対象9の硬化度を求める方法を説明する。
上記放電電極13に高電圧を印加してイオン照射領域Aにイオンを照射する。このとき、2つの表面電位センサ12,16はどちらも作動させておく。
上記放電電極13からイオン照射領域Aにイオンが照射されると、そのイオンは測定対象9の厚み方向に移動してアースへ流れる。
上記イオン照射領域Aにイオンを照射し続けると、図2に示すように測定対象9の厚み方向に電流Iが流れることになる。この電流Iは、放電電極13の放電条件に応じて飽和する電流である。なお、図2では、導電性のベース10を省略し、測定対象9の厚みを厚く表わしている。
A method of obtaining the degree of cure of the measurement target 9 using such a measuring device will be described.
A high voltage is applied to the discharge electrode 13 to irradiate the ion irradiation area A with ions. At this time, both of the two surface potential sensors 12 and 16 are operated.
When the ion irradiation region A is irradiated with ions from the discharge electrode 13, the ions move in the thickness direction of the measurement target 9 and flow to the ground.
When the ion irradiation region A is continuously irradiated with ions, a current I flows in the thickness direction of the measurement target 9 as shown in FIG. This current I is a current that saturates according to the discharge conditions of the discharge electrode 13. Note that, in FIG. 2, the conductive base 10 is omitted and the thickness of the measurement target 9 is shown thick.

このように、上記イオン照射領域Aに照射したイオンが電流Iとして流れると、イオン照射領域Aの表面電位Vは、上記電流Iと測定対象9の体積抵抗Rとの積であるV=I・Rとなり、この表面電位Vが上記第1の表面電位センサ12で測定される。
したがって、表面電位センサ12で測定された表面電位Vから、測定対象9の体積抵抗Rを検出することができる。また、体積抵抗Rから塗膜の硬化度を検出することもできる。
上記のように、測定対象9の表面における特定のイオン照射領域Aにイオンを照射しながらその部位である上記イオン照射領域Aの表面電位を測定することによって、塗布直後の塗膜のように従来の物性測定装置では測定できなかった測定対象9の物性を測定することができる。
Thus, when the ions irradiated to the ion irradiation region A flow as the current I, the surface potential V of the ion irradiation region A is V=I· which is the product of the current I and the volume resistance R of the measurement target 9. R becomes R, and this surface potential V is measured by the first surface potential sensor 12.
Therefore, the volume resistance R of the measurement target 9 can be detected from the surface potential V measured by the surface potential sensor 12. Also, the degree of cure of the coating film can be detected from the volume resistance R.
As described above, by irradiating a specific ion irradiation region A on the surface of the measurement target 9 with ions and measuring the surface potential of the ion irradiation region A, which is the site, it is possible to obtain a conventional coating film just after coating. It is possible to measure the physical properties of the measuring object 9 that could not be measured by the physical property measuring device.

また、塗料の塗布後一定時間ごとに、塗膜である測定対象9へのイオン照射と表面電位測定とを繰り返せば、表面電位Vの変化から体積抵抗Rの変化や、そのときの塗膜の硬化度を検出することもできる。
なお、塗膜の硬化度を測定するためには、塗膜の体積抵抗Rと硬化度との対応テーブルを、塗料の種類ごとにあらかじめ作成しておく必要がある。このテーブルを用いて、測定された体積抵抗Rから塗膜の硬化度を特定することができる。そして、上記表面電位センサ12に、対応テーブルを記憶させた演算部を備えれば、この測定装置から演算部が特定した硬化度を出力することができる。
Further, if the ion irradiation and the surface potential measurement on the measurement object 9 which is a coating film are repeated at regular time intervals after the application of the coating material, the change of the surface potential V changes the volume resistance R and the coating film at that time. The degree of cure can also be detected.
In addition, in order to measure the degree of curing of the coating film, it is necessary to create a correspondence table between the volume resistance R of the coating film and the curing degree for each type of coating material in advance. Using this table, the degree of cure of the coating film can be specified from the measured volume resistance R. If the surface potential sensor 12 is provided with an arithmetic unit that stores a correspondence table, the degree of cure specified by the arithmetic unit can be output from this measuring device.

また、上記測定方法においてイオン照射を行なう前に、測定対象9の表面を除電する工程を付加するようにすれば、より正確な測定が可能になる。
もし、測定対象9の表面が、先のイオン照射によって帯電した状態を放置したままにしておくと、イオン照射前の放電電極13とイオン照射領域Aとの間の電位差が、先の測定時から変化してしまう。上記放電電極13とイオン照射領域Aとの間の電位差が異なれば、それが原因で放電状態が変化してしまう可能性もある。例えば、イオン照射領域Aの表面電位が高くなって、放電電極13との間の電位差が通常よりも小さくなっていた場合には、放電が起こりにくくなり、放電が不安定になってしまう。放電状態が変化すれば、上記電流Iも変わって、体積抵抗Rの測定値にも誤差が生じてしまうが、上記のようにイオン照射前に除電を実施すれば、測定精度が上がる。
Further, in the above-mentioned measurement method, if a step of removing the charge on the surface of the measurement target 9 is added before the ion irradiation, more accurate measurement becomes possible.
If the surface of the object 9 to be measured is left in a state of being charged by the previous ion irradiation, the potential difference between the discharge electrode 13 and the ion irradiation area A before the ion irradiation is different from that at the time of the previous measurement. It will change. If the potential difference between the discharge electrode 13 and the ion irradiation region A is different, there is a possibility that the discharge state will change due to that. For example, when the surface potential of the ion irradiation region A is high and the potential difference between the ion irradiation region A and the discharge electrode 13 is smaller than usual, the discharge is less likely to occur and the discharge becomes unstable. If the discharge state changes, the current I also changes and an error also occurs in the measured value of the volume resistance R. However, if the static elimination is performed before the ion irradiation as described above, the measurement accuracy increases.

さらに、塗膜の硬化度が高くなって、測定対象9の体積抵抗Rが絶縁体と見なせるほど大きくなった場合には、第2の表面電位センサ16を用いて上記測定領域Bの表面電位を測定するようにしている。
このように、塗膜の硬化度が高くなったときには第2の表面電位センサ16を用いるようにしたのは、塗膜の測定対象9の体積抵抗Rが大きくなると、上記表面電位センサ12を用いた上記の方法では、測定できないことがあるためである。
Further, when the degree of curing of the coating film becomes high and the volume resistance R of the measuring object 9 becomes so large that it can be regarded as an insulator, the second surface potential sensor 16 is used to measure the surface potential of the measurement region B. I try to measure.
In this way, the second surface potential sensor 16 is used when the degree of curing of the coating film becomes high, because the surface potential sensor 12 is used when the volume resistance R of the measurement target 9 of the coating film becomes large. This is because the above-mentioned method may not be able to be measured.

測定対象9の体積抵抗Rが絶縁体と見なされるほど大きくなると、イオン照射領域Aへ照射されたイオンは、直ちにアースへ流れることにはならない。そのため、イオンを照射し続けているイオン照射領域Aの表面電位は非常に高くなり、上記表面電位センサ12の測定限界を超えてしまうことがある。 When the volume resistance R of the measurement target 9 becomes so large that it is regarded as an insulator, the ions irradiated onto the ion irradiation region A do not immediately flow to the ground. Therefore, the surface potential of the ion-irradiated region A that continues to be irradiated with ions becomes very high, and may exceed the measurement limit of the surface-potential sensor 12.

一方、第2の表面電位センサ16では、塗装直後の塗膜のように測定対象9の抵抗Rが低い場合には、測定領域Bの表面電位測定はできない。上記体積抵抗Rが低い場合には、上記イオン照射領域Aに照射されたイオンは直ちにアースへ流れてしまうので、上記イオン照射領域Aから離れた位置にある測定領域Bまで到達するイオンはほとんどないからである。
ところが、塗膜が硬化して測定対象9が絶縁体となった場合には、照射領域Aに照射されたイオンは測定対象9の表面に沿って広がり、上記測定領域Bに達して測定領域Bの表面電位を変化させる。この表面電位の変化を、第2の表面電位センサ16で測定すれば、測定対象9の表面抵抗が測定でき、塗膜の硬化度も測定できることになる。
On the other hand, the second surface potential sensor 16 cannot measure the surface potential of the measurement region B when the resistance R of the measurement target 9 is low, such as the coating film immediately after coating. When the volume resistance R is low, the ions irradiated on the ion irradiation area A immediately flow to the ground, so that almost no ions reach the measurement area B located away from the ion irradiation area A. Because.
However, when the coating film hardens and the measurement object 9 becomes an insulator, the ions irradiated to the irradiation area A spread along the surface of the measurement object 9 and reach the measurement area B to reach the measurement area B. Change the surface potential of. If the change in the surface potential is measured by the second surface potential sensor 16, the surface resistance of the measuring object 9 can be measured and the degree of curing of the coating film can also be measured.

したがって、一定時間ごとに測定を繰り返して塗膜の硬化度の変化を測定する際に、塗布直後からある程度硬化するまでは、上記イオン照射領域Aの表面電位を測定し、上記抵抗Rが大きくなったら、第2の表面電位センサ16で測定領域Bの表面電位を測定するようにすれば、塗布直後から塗料が完全に硬化するまで硬化度の変化を連続的に確認することもできる。 Therefore, when the change in the degree of curing of the coating film is measured by repeating the measurement at regular time intervals, the surface potential of the ion irradiation region A is measured until the resistance is increased to a certain degree of curing immediately after the coating. Then, if the second surface potential sensor 16 measures the surface potential of the measurement region B, it is possible to continuously confirm the change in the curing degree immediately after the application until the coating material is completely cured.

なお、上記実施形態では、表面電位センサ12と放電電極13との間にシールド電極15を設けて、上記表面電位センサ12が、放電電極13で形成される電界を直接検出しないようにしている
なお、シールド電極15の構成、上記丸棒状のものに限らず、例えば板状のものでもよい。ただし、尖端部があると、その部分で放電しやすくなるため、シールド電極15としては丸棒のように尖端部を持たない形状が好ましい。
さらに、放電電極13の構成も針状に限らず、特定のイオン照射領域Aにイオン照射ができればどのようなものでもかまわない。
In the above embodiment, the shield electrode 15 is provided between the surface potential sensor 12 and the discharge electrode 13 so that the surface potential sensor 12 does not directly detect the electric field formed by the discharge electrode 13 .
The configuration of the shield electrode 15 is not limited to the above round bar may be for example a plate-like. However, if there is a pointed portion, discharge is likely to occur at that point, so the shield electrode 15 preferably has a shape that does not have a pointed portion, such as a round bar.
Further, the structure of the discharge electrode 13 is not limited to the needle shape, and any structure may be used as long as the specific ion irradiation region A can be irradiated with ions.

金属製の部品の塗装現場において、塗膜の乾燥状態を確認する際に有用である。 It is useful for confirming the dry state of the coating film at the coating site of metal parts.

9 測定対象
11 イオン照射機構
12 表面電位センサ
13 放電電極
14 検出電極板
15 シールド電極
A (特定の部位)イオン照射領域
9 Measurement Target 11 Ion Irradiation Mechanism 12 Surface Potential Sensor 13 Discharge Electrode 14 Detection Electrode Plate 15 Shield Electrode A (Specific Part) Ion Irradiation Area

Claims (4)

測定対象にイオンを照射する放電電極と、上記測定対象の表面電位を測定する表面電位センサとを備え、
上記測定対象の特定の部位に、上記放電電極によって生成されるイオンを照射しながら、上記特定の部位の表面電位を上記表面電位センサで測定する物性測定方法であって、上記表面電位センサと上記放電電極との間に、上記放電電極が形成する電界が上記表面電位センサに直接影響を及ぼさないよう、上記放電電極からの電界を遮断し得る位置に、シールド電極を設けた物性測定方法。
A discharge electrode that irradiates the measurement target with ions, and a surface potential sensor that measures the surface potential of the measurement target,
A specific property of the measurement target , while irradiating the ions generated by the discharge electrode, a physical property measuring method for measuring the surface potential of the specific part with the surface potential sensor, the surface potential sensor and the A physical property measuring method in which a shield electrode is provided at a position capable of blocking an electric field from the discharge electrode so that an electric field formed by the discharge electrode does not directly affect the surface potential sensor between the discharge electrode and the discharge electrode .
上記表面電位センサで上記特定の部位の表面電位を繰り返し測定する請求項1に記載の物性測定方法。 The physical property measuring method according to claim 1, wherein the surface potential sensor repeatedly measures the surface potential of the specific portion. 上記特定の部位にイオンを照射する前に、上記測定対象を除電する請求項1又は2に記載の物性測定方法 The physical property measuring method according to claim 1, wherein the measurement target is destaticized before the specific portion is irradiated with ions. 上記測定対象が塗膜である請求項1〜3のいずれか1に記載の物性測定方法。 The physical property measuring method according to claim 1, wherein the measurement target is a coating film.
JP2016053364A 2016-03-17 2016-03-17 Physical property measurement method Active JP6707730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053364A JP6707730B2 (en) 2016-03-17 2016-03-17 Physical property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053364A JP6707730B2 (en) 2016-03-17 2016-03-17 Physical property measurement method

Publications (2)

Publication Number Publication Date
JP2017167011A JP2017167011A (en) 2017-09-21
JP6707730B2 true JP6707730B2 (en) 2020-06-10

Family

ID=59913312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053364A Active JP6707730B2 (en) 2016-03-17 2016-03-17 Physical property measurement method

Country Status (1)

Country Link
JP (1) JP6707730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320782B2 (en) * 2019-08-27 2023-08-04 俊之 杉本 Coating film property measuring method and measuring device
CN111521665B (en) * 2020-04-09 2021-12-21 电子科技大学 Method for regulating and controlling charge quantity and charge property of liquid drops
JP7465475B1 (en) 2023-08-18 2024-04-11 春日電機株式会社 Surface potential measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183877A (en) * 1999-12-27 2001-07-06 Seiko Instruments Inc Printing density control method and device for electrophotographic printing device
JP2002156360A (en) * 2000-09-05 2002-05-31 Nippon Paint Co Ltd Method for discriminating hydrophilic film from hydrophobic coating film
JP4649805B2 (en) * 2001-09-04 2011-03-16 トヨタ自動車株式会社 Coating object inspection device and coating object inspection method
JP3611037B2 (en) * 2002-09-03 2005-01-19 春日電機株式会社 Conductive coating film inspection method and apparatus
JP4810804B2 (en) * 2003-07-28 2011-11-09 日産自動車株式会社 Method and apparatus for inspecting ground state of workpiece to be electrostatically coated
JP5510629B2 (en) * 2009-02-20 2014-06-04 国立大学法人山形大学 Charge transfer rate measuring device and method, surface resistance measuring device and method, and program for them
JP5550490B2 (en) * 2010-08-27 2014-07-16 キヤノン株式会社 Discharge device
US8466687B2 (en) * 2010-09-20 2013-06-18 The Aerospace Corporation System and method for detecting defects
JP6354077B2 (en) * 2013-12-27 2018-07-11 国立大学法人山形大学 Paint dryness measuring device

Also Published As

Publication number Publication date
JP2017167011A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6707730B2 (en) Physical property measurement method
JP2012234817A (en) Plasma probe and method for plasma diagnosis
JP2012234817A5 (en)
JP2014514557A (en) Method and apparatus for non-contact detection of the potential of an object with two different values of electric flux
US9664720B2 (en) Device for the contactless determination of an electrical potential of an object, current probe, and method
US4095176A (en) Method and apparatus for evaluating corrosion protection
JP5510629B2 (en) Charge transfer rate measuring device and method, surface resistance measuring device and method, and program for them
Renner et al. An approach to an accurate determination of the energy spectrum of high-energy electron beams using magnetic spectrometry
Hoang et al. Mechanisms of surface potential decay on enamel wire coatings
Staubach et al. Direct electrical field strength distribution determination on electrical apparatus by means of an electro-optical miniature field sensor
Schierding et al. Further Developments of Metrological and Simulation-Based Characterization of the Non-contact Measurement of Electrostatic Charge by Means of Electric Field Meters
Kalade et al. The Dynamics of the Electric Field Distribution in the Surface of Insulating Film Irradiated by Air Ions
JP7320782B2 (en) Coating film property measuring method and measuring device
Molaee et al. General Consideration for button BPM
JP5625941B2 (en) Resistance measuring device and resistance measuring method
JP2019194544A (en) Surface resistance measurement method and surface resistance measurement device
JP2015127665A (en) Charging and discharging device, and surface physical property measuring apparatus using the same
JP7465475B1 (en) Surface potential measuring device
JP2014089053A (en) Snow accumulation measuring apparatus
Schierding et al. Electrostatic investigations for characterization of HVDC insulation systems
Koch et al. Cavity detection on organic coatings by electrostatic measurements: A detailed study using FR4 fiberglass epoxy laminates
RU57512U1 (en) IONIZATION CAMERA
CN207636779U (en) Energy calibration device
Gedraite Analysis of the effect of electrode shapes in dielectric breakdown of thin films and prevision of breakdown using partial discharges
Rahim In House Electrostatic Field Meter Calibration for Improved ESD Protection

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200310

R150 Certificate of patent or registration of utility model

Ref document number: 6707730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250