JP6705467B2 - Ultra high molecular weight polyethylene compression molding - Google Patents
Ultra high molecular weight polyethylene compression molding Download PDFInfo
- Publication number
- JP6705467B2 JP6705467B2 JP2018078060A JP2018078060A JP6705467B2 JP 6705467 B2 JP6705467 B2 JP 6705467B2 JP 2018078060 A JP2018078060 A JP 2018078060A JP 2018078060 A JP2018078060 A JP 2018078060A JP 6705467 B2 JP6705467 B2 JP 6705467B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- weight polyethylene
- high molecular
- ultra
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 title claims description 113
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 title claims description 112
- 238000000748 compression moulding Methods 0.000 title description 21
- 238000007906 compression Methods 0.000 claims description 33
- 230000006835 compression Effects 0.000 claims description 33
- 238000005259 measurement Methods 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 81
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 66
- -1 polyethylene Polymers 0.000 description 58
- 238000000034 method Methods 0.000 description 48
- 229920000573 polyethylene Polymers 0.000 description 41
- 239000004698 Polyethylene Substances 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 37
- 239000000047 product Substances 0.000 description 33
- 239000003054 catalyst Substances 0.000 description 32
- 239000004927 clay Substances 0.000 description 31
- 238000006116 polymerization reaction Methods 0.000 description 23
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 17
- 239000005977 Ethylene Substances 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- 238000000465 moulding Methods 0.000 description 15
- 239000002002 slurry Substances 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 230000000704 physical effect Effects 0.000 description 13
- 239000000725 suspension Substances 0.000 description 13
- 238000005299 abrasion Methods 0.000 description 11
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 150000003623 transition metal compounds Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011949 solid catalyst Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QEIQEORTEYHSJH-UHFFFAOYSA-N Armin Natural products C1=CC(=O)OC2=C(O)C(OCC(CCO)C)=CC=C21 QEIQEORTEYHSJH-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000871495 Heeria argentea Species 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- WPQAHGCNQPCFFT-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC)CC)N(CC)CC)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC)CC)N(CC)CC)C1C=CC=C1 WPQAHGCNQPCFFT-UHFFFAOYSA-L 0.000 description 2
- PVLKFPLUVRIBDV-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(C)C)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(C)C)C1C=CC=C1 PVLKFPLUVRIBDV-UHFFFAOYSA-L 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 150000002363 hafnium compounds Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 229940094522 laponite Drugs 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- XMGMFRIEKMMMSU-UHFFFAOYSA-N phenylmethylbenzene Chemical group C=1C=CC=CC=1[C]C1=CC=CC=C1 XMGMFRIEKMMMSU-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- AZJYLVAUMGUUBL-UHFFFAOYSA-A u1qj22mc8e Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O=[Si]=O.O=[Si]=O.O=[Si]=O.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 AZJYLVAUMGUUBL-UHFFFAOYSA-A 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- DRDRZCVOKBYUFM-YIQDKWKASA-N (Z)-N-methyl-N-[(Z)-octadec-9-enyl]octadec-9-en-1-amine hydrobromide Chemical compound Br.CCCCCCCC\C=C/CCCCCCCCN(C)CCCCCCCC\C=C/CCCCCCCC DRDRZCVOKBYUFM-YIQDKWKASA-N 0.000 description 1
- SNGBZYFQXNLFIL-YIQDKWKASA-N (Z)-N-methyl-N-[(Z)-octadec-9-enyl]octadec-9-en-1-amine hydrofluoride Chemical compound F.CCCCCCCC\C=C/CCCCCCCCN(C)CCCCCCCC\C=C/CCCCCCCC SNGBZYFQXNLFIL-YIQDKWKASA-N 0.000 description 1
- FTMIQCJRVKBKHD-YIQDKWKASA-N (z)-n-methyl-n-[(z)-octadec-9-enyl]octadec-9-en-1-amine;hydrochloride Chemical compound Cl.CCCCCCCC\C=C/CCCCCCCCN(C)CCCCCCCC\C=C/CCCCCCCC FTMIQCJRVKBKHD-YIQDKWKASA-N 0.000 description 1
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- NMVXHZSPDTXJSJ-UHFFFAOYSA-L 2-methylpropylaluminum(2+);dichloride Chemical compound CC(C)C[Al](Cl)Cl NMVXHZSPDTXJSJ-UHFFFAOYSA-L 0.000 description 1
- IYVBNEJDHFJJEM-UHFFFAOYSA-N 22-methyltricosan-1-amine Chemical compound CC(C)CCCCCCCCCCCCCCCCCCCCCN IYVBNEJDHFJJEM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- AGVUMKNUIDIECC-UHFFFAOYSA-N CN(C)C1=CC=CC2=C1C1=CC=CC=C1C2[Zr](C1C=CC=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1.C(C1=CC=CC=C1)N(CC1=CC=CC=C1)C(C=C1C2[Zr](C3C=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C3)=CC=C1C(C=C1)=C2C=C1N(CC1=CC=CC=C1)CC1=CC=CC=C1.Cl.Cl.Cl.Cl Chemical compound CN(C)C1=CC=CC2=C1C1=CC=CC=C1C2[Zr](C1C=CC=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1.C(C1=CC=CC=C1)N(CC1=CC=CC=C1)C(C=C1C2[Zr](C3C=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C3)=CC=C1C(C=C1)=C2C=C1N(CC1=CC=CC=C1)CC1=CC=CC=C1.Cl.Cl.Cl.Cl AGVUMKNUIDIECC-UHFFFAOYSA-N 0.000 description 1
- IHJQFTCSYQKBFX-UHFFFAOYSA-N Cl.C(CC)NCCCCCCCCCCCCCCCCCCCCCC Chemical compound Cl.C(CC)NCCCCCCCCCCCCCCCCCCCCCC IHJQFTCSYQKBFX-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- HWXXLSVXRQUDSS-UHFFFAOYSA-N N,N-dimethyldocosan-1-amine hydrobromide Chemical compound [Br-].C[NH+](CCCCCCCCCCCCCCCCCCCCCC)C HWXXLSVXRQUDSS-UHFFFAOYSA-N 0.000 description 1
- ZZUCXMBBCONAAS-UHFFFAOYSA-N N,N-dimethyldocosan-1-amine hydrofluoride Chemical compound F.CCCCCCCCCCCCCCCCCCCCCCN(C)C ZZUCXMBBCONAAS-UHFFFAOYSA-N 0.000 description 1
- LCSDQNJUIPWMHB-UHFFFAOYSA-N N,N-dimethyldocosan-1-amine hydroiodide Chemical compound I.CCCCCCCCCCCCCCCCCCCCCCN(C)C LCSDQNJUIPWMHB-UHFFFAOYSA-N 0.000 description 1
- NUOJFFCEQBVDMI-UHFFFAOYSA-N N,N-dimethyldocosan-1-amine sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCCCCCCCCCCCCCCCCN(C)C NUOJFFCEQBVDMI-UHFFFAOYSA-N 0.000 description 1
- ARTLJCASCXQJNK-UHFFFAOYSA-N N-ethyl-N-methyldocosan-1-amine hydrobromide Chemical compound Br.CCCCCCCCCCCCCCCCCCCCCCN(C)CC ARTLJCASCXQJNK-UHFFFAOYSA-N 0.000 description 1
- YWZRYRRNCJPOEE-UHFFFAOYSA-N N-ethyl-N-methyldocosan-1-amine hydrochloride Chemical compound [Cl-].C[NH+](CCCCCCCCCCCCCCCCCCCCCC)CC YWZRYRRNCJPOEE-UHFFFAOYSA-N 0.000 description 1
- UWXDXSIAGVCDND-UHFFFAOYSA-N N-ethyl-N-methyldocosan-1-amine hydrofluoride Chemical compound F.CCCCCCCCCCCCCCCCCCCCCCN(C)CC UWXDXSIAGVCDND-UHFFFAOYSA-N 0.000 description 1
- UDGGUORRGVUAMT-UHFFFAOYSA-N N-ethyl-N-methyldocosan-1-amine hydroiodide Chemical compound I.CCCCCCCCCCCCCCCCCCCCCCN(C)CC UDGGUORRGVUAMT-UHFFFAOYSA-N 0.000 description 1
- BCRVIUVDTALKOE-UHFFFAOYSA-N N-ethyl-N-methyldocosan-1-amine sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCCCCCCCCCCCCCCCCN(C)CC BCRVIUVDTALKOE-UHFFFAOYSA-N 0.000 description 1
- TWSXCLTUKLSFAG-UHFFFAOYSA-N N-methyl-N-propyldocosan-1-amine sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCCCCCCCCCCCCCCCCN(C)CCC TWSXCLTUKLSFAG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- ZFRZLGFKRJLKFA-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Hf+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC)CC)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Hf+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC)CC)C1C=CC=C1 ZFRZLGFKRJLKFA-UHFFFAOYSA-L 0.000 description 1
- BRWUZEKIRSGMGZ-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(C)C)N(C)C)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(C)C)N(C)C)C1C=CC=C1 BRWUZEKIRSGMGZ-UHFFFAOYSA-L 0.000 description 1
- WQLYLIICQRNZEO-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1 WQLYLIICQRNZEO-UHFFFAOYSA-L 0.000 description 1
- QMRYKWOABJBIQB-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CCCC)CCCC)N(CCCC)CCCC)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CCCC)CCCC)N(CCCC)CCCC)C1C=CC=C1 QMRYKWOABJBIQB-UHFFFAOYSA-L 0.000 description 1
- HMWPUSYIHAUQJK-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=C(C=C2C=2C=C(C=CC1=2)N(C)C)N(C)C)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=C(C=C2C=2C=C(C=CC1=2)N(C)C)N(C)C)C1C=CC=C1 HMWPUSYIHAUQJK-UHFFFAOYSA-L 0.000 description 1
- LACNIYRVTLJWNR-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=C(C=C2C=2C=C(C=CC1=2)N(CC)CC)N(CC)CC)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=C(C=C2C=2C=C(C=CC1=2)N(CC)CC)N(CC)CC)C1C=CC=C1 LACNIYRVTLJWNR-UHFFFAOYSA-L 0.000 description 1
- AKFFYTVBQHAEEH-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC(=C2C=2C=CC(=CC1=2)N(C(C)C)C(C)C)N(C(C)C)C(C)C)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC(=C2C=2C=CC(=CC1=2)N(C(C)C)C(C)C)N(C(C)C)C(C)C)C1C=CC=C1 AKFFYTVBQHAEEH-UHFFFAOYSA-L 0.000 description 1
- ZTQCVTAUBVSVCG-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC(=C2C=2C=CC(=CC1=2)N(C)C)N(C)C)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC(=C2C=2C=CC(=CC1=2)N(C)C)N(C)C)C1C=CC=C1 ZTQCVTAUBVSVCG-UHFFFAOYSA-L 0.000 description 1
- FZCQDJOYFHJJII-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC)CC)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC)CC)C1C=CC=C1 FZCQDJOYFHJJII-UHFFFAOYSA-L 0.000 description 1
- OBOQWYRPFDFDBV-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1 OBOQWYRPFDFDBV-UHFFFAOYSA-L 0.000 description 1
- NMIYGBHTLQTQBQ-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC)CC)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC)CC)C1C=CC=C1 NMIYGBHTLQTQBQ-UHFFFAOYSA-L 0.000 description 1
- GMSIBGOEGNWTKT-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1 GMSIBGOEGNWTKT-UHFFFAOYSA-L 0.000 description 1
- KIJSDFFOODYSAM-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(C)C)N(C)C)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(C)C)N(C)C)C1C=CC=C1)C1=CC=CC=C1 KIJSDFFOODYSAM-UHFFFAOYSA-L 0.000 description 1
- NFZJHUGWDWXSPZ-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC)CC)N(CC)CC)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC)CC)N(CC)CC)C1C=CC=C1)C1=CC=CC=C1 NFZJHUGWDWXSPZ-UHFFFAOYSA-L 0.000 description 1
- OKAQWUABBDQPGI-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1)C1=CC=CC=C1 OKAQWUABBDQPGI-UHFFFAOYSA-L 0.000 description 1
- WFLKZCGKCXJIMQ-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(C)C)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(C)C)C1C=CC=C1)C1=CC=CC=C1 WFLKZCGKCXJIMQ-UHFFFAOYSA-L 0.000 description 1
- AOWOAHGYNMZYIC-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC)CC)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC)CC)C1C=CC=C1)C1=CC=CC=C1 AOWOAHGYNMZYIC-UHFFFAOYSA-L 0.000 description 1
- OMUUDTNBXQTPPN-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C(=CC=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1)C1=CC=CC=C1 OMUUDTNBXQTPPN-UHFFFAOYSA-L 0.000 description 1
- FPKKPMOZVAMFBD-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(C)C)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(C)C)C1C=CC=C1)C1=CC=CC=C1 FPKKPMOZVAMFBD-UHFFFAOYSA-L 0.000 description 1
- OIXGZSAFCJFHHA-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC)CC)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC)CC)C1C=CC=C1)C1=CC=CC=C1 OIXGZSAFCJFHHA-UHFFFAOYSA-L 0.000 description 1
- KWYYNNCUVXKDJX-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Zr+2](C1C2=CC=CC=C2C=2C=CC(=CC1=2)N(CC1=CC=CC=C1)CC1=CC=CC=C1)C1C=CC=C1)C1=CC=CC=C1 KWYYNNCUVXKDJX-UHFFFAOYSA-L 0.000 description 1
- HDJIHBILLWZGKR-UHFFFAOYSA-L [Cl-].[Cl-].C1=Cc2ccccc2C1[Zr++](C1c2ccccc2-c2ccccc12)=C(c1ccccc1)c1ccccc1 Chemical compound [Cl-].[Cl-].C1=Cc2ccccc2C1[Zr++](C1c2ccccc2-c2ccccc12)=C(c1ccccc1)c1ccccc1 HDJIHBILLWZGKR-UHFFFAOYSA-L 0.000 description 1
- BDHMJOAZEPVILT-UHFFFAOYSA-L [Cl-].[Cl-].C=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC12)C(C)(C)C)C(C)(C)C)C1C=CC2=C(C=CC=C12)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C=[Zr+2](C1C2=CC(=CC=C2C=2C=CC(=CC12)C(C)(C)C)C(C)(C)C)C1C=CC2=C(C=CC=C12)C1=CC=CC=C1 BDHMJOAZEPVILT-UHFFFAOYSA-L 0.000 description 1
- JGXQLWHNMOSSEP-UHFFFAOYSA-L [Cl-].[Cl-].CC(C)(C)c1ccc-2c(c1)C(c1cc(ccc-21)C(C)(C)C)[Zr++](C1C=Cc2cccc(c12)-c1ccccc1)=C(c1ccccc1)c1ccccc1 Chemical compound [Cl-].[Cl-].CC(C)(C)c1ccc-2c(c1)C(c1cc(ccc-21)C(C)(C)C)[Zr++](C1C=Cc2cccc(c12)-c1ccccc1)=C(c1ccccc1)c1ccccc1 JGXQLWHNMOSSEP-UHFFFAOYSA-L 0.000 description 1
- MDBXNYYAKCSBIF-UHFFFAOYSA-L [Cl-].[Cl-].CC(C)(C)c1ccc-2c(c1)C(c1cc(ccc-21)C(C)(C)C)[Zr++](C1C=Cc2ccccc12)=C(c1ccccc1)c1ccccc1 Chemical compound [Cl-].[Cl-].CC(C)(C)c1ccc-2c(c1)C(c1cc(ccc-21)C(C)(C)C)[Zr++](C1C=Cc2ccccc12)=C(c1ccccc1)c1ccccc1 MDBXNYYAKCSBIF-UHFFFAOYSA-L 0.000 description 1
- BULLHRADHZGONG-UHFFFAOYSA-N [cyclopenta-2,4-dien-1-ylidene(phenyl)methyl]benzene Chemical compound C1=CC=CC1=C(C=1C=CC=CC=1)C1=CC=CC=C1 BULLHRADHZGONG-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- BICAGYDGRXJYGD-UHFFFAOYSA-N hydrobromide;hydrochloride Chemical compound Cl.Br BICAGYDGRXJYGD-UHFFFAOYSA-N 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- XRSFQLOANYRGRT-UHFFFAOYSA-N n,n-dimethyldocosan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCCCC[NH+](C)C XRSFQLOANYRGRT-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000012005 post-metallocene catalyst Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、融点が高く、高結晶性を示す超高分子量ポリエチレン粒子を成形してなる圧縮成形体に関するものであり、さらに詳細には、強度、耐熱性、耐摩耗性に優れることから軸受部材、研磨材、テープ、ライニング材等としての適用が期待される超高分子量ポリエチレン製圧縮成形体に関するものである。 TECHNICAL FIELD The present invention relates to a compression molded product formed by molding ultrahigh molecular weight polyethylene particles having a high melting point and high crystallinity, and more specifically, a bearing member having excellent strength, heat resistance and wear resistance. The present invention relates to an ultra-high molecular weight polyethylene compression molded product expected to be applied as an abrasive, a tape, a lining material, and the like.
超高分子量エチレン系重合体は、粘度平均分子量(Mv)で100万以上に相当する極めて高い分子量を有していることから、耐衝撃性、自己潤滑性、耐摩耗性、耐候性、耐薬品性、寸法安定性等に優れており、エンジニアリングプラスチックに匹敵する高い物性を有している。このため、各種成形方法により、ライニング材、食品工業のライン部品、機械部品、人工関節、スポーツ用品、微多孔膜等の用途への適用が試みられている。 The ultra high molecular weight ethylene polymer has an extremely high molecular weight equivalent to 1,000,000 or more in viscosity average molecular weight (Mv), and therefore has impact resistance, self-lubricating property, abrasion resistance, weather resistance and chemical resistance. It has excellent properties and dimensional stability, and has high physical properties comparable to engineering plastics. Therefore, various molding methods have been attempted to be applied to applications such as lining materials, food industry line parts, machine parts, artificial joints, sports equipment, and microporous membranes.
しかし、超高分子量エチレン系重合体は、その高い分子量故に、溶融時の流動性が極めて低く、分子量が数万から約50万の範囲にある通常のポリエチレンのように混練押出により成形することは困難である。そこで、超高分子量ポリエチレンは、重合により得られた重合体粉末を直接焼結する方法、圧縮成形する方法、間歇圧縮させながら押出成形するラム押出機による成形方法、溶媒等に分散させた状態で押出成形した後、溶媒を除去する方法等の方法による成形が試みられている。 However, because of its high molecular weight, the ultra-high molecular weight ethylene polymer has extremely low fluidity at the time of melting and cannot be molded by kneading and extrusion like ordinary polyethylene having a molecular weight in the range of tens of thousands to about 500,000. Have difficulty. Therefore, ultra-high molecular weight polyethylene is a method of directly sintering a polymer powder obtained by polymerization, a method of compression molding, a molding method of a ram extruder for extrusion molding while intermittently compressing, a state of being dispersed in a solvent or the like. Attempts have been made to perform molding by a method such as a method of removing the solvent after extrusion molding.
このうち、超高分子量ポリエチレンの圧縮成形体は、超高分子量ポリエチレンの特徴である高い分子量から各種物性の向上が期待される。但し、現在市販されているチーグラー触媒によって製造される超高分子量ポリエチレンは、重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布)が4より大きく、分子量分布が広いため、成形体の強度、耐熱性の向上は、通常分子量のポリエチレンに比べて十分に向上したものとは言えず、期待される性能を発揮するものとは言えないものである。 Among them, the compression molded product of ultra-high molecular weight polyethylene is expected to improve various physical properties due to the high molecular weight which is a characteristic of ultra-high molecular weight polyethylene. However, the ultrahigh molecular weight polyethylene produced by the Ziegler catalyst currently on the market has a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (molecular weight distribution) of more than 4 and has a wide molecular weight distribution. The improvement in strength and heat resistance of the molded product cannot be said to be sufficiently improved as compared with polyethylene having a normal molecular weight, and it cannot be said that the expected performance is exhibited.
一方、メタロセン系触媒、ポストメタロセン系触媒を用いて製造した分子量分布の狭い超高分子量エチレン系重合体も提案されている(例えば特許文献1、2参照。)。 On the other hand, an ultrahigh molecular weight ethylene polymer having a narrow molecular weight distribution produced by using a metallocene catalyst or a postmetallocene catalyst has also been proposed (see, for example, Patent Documents 1 and 2).
しかし、特許文献1、2に提案された超高分子量ポリエチレンを用いて圧縮成形体を製造した場合、成形品としての性能向上は見られるものの、強度、耐熱性、結晶性という点では、その性能は充分な満足を得られるものではなかった。 However, when a compression molded product is produced using the ultrahigh molecular weight polyethylene proposed in Patent Documents 1 and 2, the performance as a molded product is improved, but in terms of strength, heat resistance and crystallinity, the performance is improved. Was not fully satisfied.
また、一般的な超高分子量ポリエチレンは分子量が高くなるほど、分子鎖どうしの絡み合いが解けにくくなるため、分子量が高くなることにより期待される効果を十分発現することができず、例えば、引張破断強度は、分子量300万程度で最大となり、それ以上に分子量を高くしても、逆に引張破断強度が低下するという課題があった。 Further, in general ultrahigh molecular weight polyethylene, as the molecular weight becomes higher, the entanglement of the molecular chains becomes more difficult to unravel, and therefore the expected effect due to the increase in the molecular weight cannot be sufficiently expressed. Has a maximum at a molecular weight of about 3,000,000, and even if the molecular weight is increased more than that, the tensile rupture strength decreases.
そこで、本発明は、上記課題に鑑みてなされたものであり、強度、耐熱性、耐摩耗性に優れる超高分子量ポリエチレン製圧縮成形体を提供することを目的とするものである。 Then, this invention is made|formed in view of the said subject, and an object of this invention is to provide the compression molding made from an ultrahigh molecular weight polyethylene excellent in strength, heat resistance, and abrasion resistance.
本発明者らは、上記課題を解決するために鋭意研究した結果、特定の溶融挙動を有する新規な超高分子量ポリエチレン粒子を用いて、特定の条件下で成形した圧縮成形体が、剛性、強度、耐熱性、耐摩耗性に優れる圧縮成形体となることを見出し、本発明を完成させるに到った。 The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, using a novel ultrahigh molecular weight polyethylene particle having a specific melting behavior, a compression molded article molded under specific conditions has a rigidity and a strength. The inventors have found that a compression molded article having excellent heat resistance and abrasion resistance can be obtained, and have completed the present invention.
即ち、本発明は、少なくとも下記(1)、(2)に示す特性のいずれをも満足することを特徴とする超高分子量ポリエチレン製溶融圧縮成形体に関するものである。
(1)固有粘度([η])が15dl/g以上60dl/g以下、
(2)チタンの含有量が0.2ppm以下又は測定検出限界以下である。
That is, the present invention relates to an ultrahigh molecular weight polyethylene melt compression molded article characterized by satisfying at least the following characteristics (1) and (2).
(1) The intrinsic viscosity ([η]) is 15 dl/g or more and 60 dl/g or less,
(2) The content of titanium is 0.2 ppm or less or the measurement detection limit or less.
以下に、本発明を詳細に説明する。 The present invention will be described in detail below.
本発明の超高分子量ポリエチレン製圧縮成形体は、少なくとも(1)固有粘度([η])が15dl/g以上60dl/g以下、(2)嵩密度が130kg/m3以上700kg/m3以下、(3)示差走査型熱量計(DSC)にて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm1)、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm2)をそれぞれ測定し、該Tm1と該Tm2の差(ΔTm=Tm1−Tm2)が11℃以上30℃以下、という特性のいずれをも満足する超高分子量ポリエチレン粒子を成形温度0℃以上300℃以下で圧縮成形してなるものである。 The ultrahigh molecular weight polyethylene compression-molded product of the present invention has at least (1) an intrinsic viscosity ([η]) of 15 dl/g or more and 60 dl/g or less, and (2) a bulk density of 130 kg/m 3 or more and 700 kg/m 3 or less. (3) Melting point (Tm 1 ) of 1st scan when the temperature was raised from 1° C. to 230° C. at a heating rate of 10° C./min with a differential scanning calorimeter (DSC), and then, After standing for 5 minutes, the temperature was lowered to −20° C. at a temperature lowering rate of 10° C./minute, and after standing for 5 minutes, the temperature was raised again from −20° C. to 230° C. at a temperature rising rate of 10° C./minute (2nd scan). The melting point (Tm 2 ) of the 2nd scan at that time was measured, and the difference between the Tm 1 and the Tm 2 (ΔTm=Tm 1 −Tm 2 ) was 11° C. or higher and 30° C. or lower. It is obtained by compression-molding high-molecular-weight polyethylene particles at a molding temperature of 0°C to 300°C.
該超高分子量ポリエチレン粒子は、超高分子量ポリエチレンが粒子形状を有するものであり、超高分子量ポリエチレンには、ポリエチレンと称される範疇のものが属し、例えば超高分子量エチレン単独重合体;超高分子量エチレン−プロピレン共重合体、超高分子量エチレン−1−ブテン共重合体、超高分子量エチレン−1−ヘキセン共重合体、超高分子量エチレン−1−オクテン共重合体等の超高分子量エチレン−α−オレフィン共重合体;等を挙げることができる。 The ultra-high-molecular-weight polyethylene particles are particles of ultra-high-molecular-weight polyethylene, and the ultra-high-molecular-weight polyethylene belongs to the category called polyethylene. For example, ultra-high-molecular-weight ethylene homopolymer; Ultra high molecular weight ethylene-, such as molecular weight ethylene-propylene copolymer, ultra high molecular weight ethylene-1-butene copolymer, ultra high molecular weight ethylene-1-hexene copolymer, ultra high molecular weight ethylene-1-octene copolymer α-olefin copolymer; and the like.
該超高分子量ポリエチレン粒子は、(1)固有粘度([η])が15dl/g以上60dl/g以下のものであり、特に圧縮成形体とした際に優れた成形性と力学特性を有するものとなることから15dl/g以上50dl/g以下であることが好ましい。ここで、固有粘度が15dl/g未満である場合、得られる成形体は力学特性に劣るものとなる。一方、固有粘度が60dl/gを越える場合、成形時の流動性に劣るため、圧縮成形加工が困難なものとなる。なお、固有粘度は、例えばウベローデ型粘度計を用い、オルトジクロルベンゼン、デカヒドラナフタレン、テトラヒドロナフタレン等を溶媒としたポリマー濃度0.0005〜0.01%の溶液にて、135℃において測定する方法により測定することが可能である。 The ultrahigh molecular weight polyethylene particles (1) have an intrinsic viscosity ([η]) of 15 dl/g or more and 60 dl/g or less, and particularly have excellent moldability and mechanical properties when formed into a compression molded product. Therefore, it is preferably 15 dl/g or more and 50 dl/g or less. Here, when the intrinsic viscosity is less than 15 dl/g, the obtained molded product has poor mechanical properties. On the other hand, when the intrinsic viscosity exceeds 60 dl/g, the fluidity at the time of molding is poor and the compression molding process becomes difficult. The intrinsic viscosity is measured at 135° C. in a solution having a polymer concentration of 0.0005 to 0.01% using ortho-dichlorobenzene, decahydranaphthalene, tetrahydronaphthalene, etc. as a solvent, using an Ubbelohde viscometer, for example. It can be measured by a method.
また、該超高分子量ポリエチレン粒子は、(2)嵩密度が130kg/m3以上700kg/m3以下であり、圧縮成形の際の加工性に優れるものとなることから200kg/m3以上600kg/m3以下であることが好ましい。ここで、嵩密度が130kg/m3未満である場合、粒子の流動性が低下する、保管設備、保管容器、ホッパーでの充満率が低下する等、操作性を著しく低下させる等の課題を発生しやすくなる。一方、嵩密度が700kg/m3を超える場合、成形加工時における加工性に劣り、得られる成形体の物性低下等の課題を発生しやすくなる。なお、嵩密度は、例えばJIS K6760(1995)に準拠した方法で測定することが可能である。 In addition, the ultra high molecular weight polyethylene particles (2) have a bulk density of 130 kg/m 3 or more and 700 kg/m 3 or less, and are excellent in workability during compression molding, and therefore 200 kg/m 3 or more and 600 kg/ It is preferably m 3 or less. Here, when the bulk density is less than 130 kg/m 3 , problems such as a decrease in fluidity of particles, a decrease in filling rate in a storage facility, a storage container, and a hopper, and a problem such as a significant decrease in operability occur. Easier to do. On the other hand, when the bulk density is more than 700 kg/m 3 , the workability during molding is poor and problems such as deterioration of physical properties of the obtained molded product are likely to occur. The bulk density can be measured, for example, by a method based on JIS K6760 (1995).
該超高分子量ポリエチレン粒子は、(3)示差走査型熱量計(DSC)にて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)した際の1stスキャンの融点(Tm1)、その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)した際の2ndスキャンの融点(Tm2)をそれぞれ測定し、該Tm1と該Tm2の差(ΔTm=Tm1−Tm2)が11℃以上30℃以下であり、特に耐熱性、機械的強度、成形性のバランスに優れる超高分子量ポリエチレン製圧縮成形体となることからΔTmが11℃以上15℃以下であることが好ましい。ここで、ΔTmが11℃未満である場合、得られる成形体は、耐熱性、強度等に劣るものとなる。一方、ΔTmが30℃を超える場合、得られる超高分子量ポリエチレン粒子を成形加工に供した際の成形加工性に劣るものとなるばかりか、得られる成形体も物性に劣るものとなる。 The ultra high molecular weight polyethylene particles are (3) melting point of 1st scan when the temperature is raised from 0°C to 230°C at a heating rate of 10°C/min (1st scan) by a differential scanning calorimeter (DSC). (Tm 1 ), then, after being left for 5 minutes, the temperature is lowered to −20° C. at a temperature lowering rate of 10° C./min, and after being left for 5 minutes, again from −20° C. to 230° C. at a temperature raising rate of 10° C./min. The melting point (Tm 2 ) of the 2nd scan when the temperature was raised (2nd scan) was measured, and the difference (ΔTm=Tm 1 −Tm 2 ) between Tm 1 and Tm 2 was 11° C. or higher and 30° C. or lower, In particular, it is preferable that ΔTm is 11° C. or more and 15° C. or less because it is a compression molded product made of ultra-high molecular weight polyethylene which is excellent in the balance of heat resistance, mechanical strength and moldability. Here, when ΔTm is less than 11° C., the obtained molded product is inferior in heat resistance and strength. On the other hand, when ΔTm exceeds 30° C., not only the moldability of the obtained ultrahigh molecular weight polyethylene particles when subjected to the molding process is deteriorated, but also the obtained molded product is deteriorated in physical properties.
なお、一般的なポリエチレンにおいては、高融点を有するポリエチレンとして、高密度ポリエチレンに属するエチレン単独重合体が知られている。しかし、該高密度ポリエチレンにおける融点は130〜135℃程度と低いものである。一方、本発明の圧縮成形体に用いる超高分子量ポリエチレン粒子は、従来から知られているポリエチレンと比較しても極めて高い融点(Tm)を有するものであり、例えばエチレン単独重合体であるならば、Tm1として140℃を超える極めて高い融点を有している。本願発明の超高分子量ポリエチレン粒子においては、ポリエチレンの分子鎖が配向するなどして、高度に結晶化されているため、示差走査型熱量計(DSC)にて測定した際のTm1とTm2差であるΔTmが11℃以上30℃以下という極めて大きな差となると考えている。 In general polyethylene, an ethylene homopolymer belonging to high-density polyethylene is known as a polyethylene having a high melting point. However, the melting point of the high-density polyethylene is as low as about 130 to 135°C. On the other hand, the ultrahigh molecular weight polyethylene particles used in the compression molded article of the present invention have an extremely high melting point (Tm) as compared with conventionally known polyethylene, and for example, if it is an ethylene homopolymer. , Tm 1 has an extremely high melting point exceeding 140° C. In the ultrahigh molecular weight polyethylene particles of the present invention, the molecular chains of polyethylene are oriented and so highly crystallized that Tm 1 and Tm 2 when measured with a differential scanning calorimeter (DSC). It is considered that the difference ΔTm will be an extremely large difference of 11° C. or more and 30° C. or less.
さらに、該超高分子量ポリエチレン粒子は、チタンが原因で発生する変色(黄変)や酸化劣化等の抑制が可能で色調が良好なものとなり、耐候性にも優れる超高分子量ポリエチレン製圧縮成形体を提供することが可能となるから、チタンの含有量が少ないものであることが好ましく、特に(4)チタンの含有量が0.02ppm以下又は検出限界以下、のものが好ましい。なお、チタンの含有量は、化学滴定法、蛍光X線分析装置、ICP発光分析装置等による測定等により求めることができる。 Further, the ultra-high molecular weight polyethylene particles can suppress discoloration (yellowing) and oxidative deterioration caused by titanium and have a good color tone, and also an ultra-high molecular weight polyethylene compression molded article excellent in weather resistance. Therefore, it is preferable that the titanium content is low, and (4) the titanium content is preferably 0.02 ppm or less or the detection limit or less. The content of titanium can be determined by a chemical titration method, a fluorescent X-ray analyzer, an ICP emission analyzer, or the like.
該超高分子量ポリエチレン粒子は、より強靭な超高分子量ポリエチレン製圧縮成形体を提供することが可能となることから、(5)プレス温度190℃、プレス圧力20MPaで加熱圧縮した後、前記(3)により測定した2ndスキャンの融点(Tm2)より10℃〜30℃低い金型温度で冷却して成形したシートの引張破断強度(TS(MPa))が、下記関係式(a)を満たすものであることが好ましく、更により強靭で機械強度、耐摩耗性に優れる超高分子量ポリエチレン製圧縮成形体を提供することが可能となることから、下記関係式(c)を満たすものであることが好ましい。
TS≧1.35×Tm2−130 (a)
1.35×Tm2−130≦TS≦2×Tm2−175 (c)
なお、一般的なポリエチレンの引張破断強度は、最も高い高密度ポリエチレンでも45MPa程度と低いものである。また、従来の超高分子量ポリエチレンも、その高い分子量を十分生かすことができておらず、引張破断強度は一般的なポリエチレンと同等であり、50MPaを超えることはなかった。このため、高延伸倍率で圧延成形するなどにより配向させて、強度を高める方法がとられていた。
The ultra-high molecular weight polyethylene particles can provide a tougher ultra-high molecular weight polyethylene compression-molded article. Therefore, (5) the above-mentioned (3) after being heated and compressed at a press temperature of 190° C. and a press pressure of 20 MPa. The tensile breaking strength (TS (MPa)) of the sheet formed by cooling at a mold temperature 10° C. to 30° C. lower than the melting point (Tm 2 ) of the 2nd scan measured according to () satisfies the following relational expression (a). And it is possible to provide an ultrahigh molecular weight polyethylene compression-molded product which is even tougher, and has excellent mechanical strength and wear resistance, and therefore, the following relational expression (c) is satisfied. preferable.
TS≧1.35×Tm 2 −130 (a)
1.35×Tm 2 −130≦TS≦2×Tm 2 −175 (c)
Incidentally, the tensile breaking strength of general polyethylene is as low as about 45 MPa even for the highest high-density polyethylene. Further, the conventional ultra-high molecular weight polyethylene has not been able to fully utilize its high molecular weight, has a tensile breaking strength equivalent to that of general polyethylene and never exceeds 50 MPa. For this reason, a method has been adopted in which the strength is increased by orienting the material by rolling at a high draw ratio.
しかし、本発明の圧縮成形体に用いる超高分子量ポリエチレン粒子は、高分子鎖が適度に絡み合っているため、固有粘度が15dl/gを超える超高分子量ポリエチレンの領域であっても、更にその分子量を高くしても引張破断強度が低下せず、むしろ、さらに向上する傾向を示すものである。そして、本発明の圧縮成形体に用いる超高分子量ポリエチレン粒子としては、成形体とした際により強度が優れるものとなることから、高密度ポリエチレンの領域に属するものであるならば前記(5)により測定した引張破断強度として、40MPa以上を有するものであることが好ましく、より好ましくは50MPa以上を有するものである。 However, since the ultra-high molecular weight polyethylene particles used in the compression-molded article of the present invention have an appropriately entangled polymer chain, even if the intrinsic viscosity is in the ultra-high molecular weight polyethylene region of more than 15 dl/g, the molecular weight of Even if the value is increased, the tensile strength at break does not decrease, but rather it tends to be further improved. The ultrahigh molecular weight polyethylene particles used in the compression molded article of the present invention have excellent strength when formed into a molded article. The measured tensile breaking strength is preferably 40 MPa or more, more preferably 50 MPa or more.
なお、引張破断強度の測定条件としては、特に制限はなく、例えば厚み0.1〜5mm、幅1〜50mmの短冊形、ダンベル型等の試験片を、引張速度1mm/分〜500mm/分の速度で測定する方法を例示することができる。 There are no particular restrictions on the measurement conditions of the tensile breaking strength, and for example, a strip-shaped test piece having a thickness of 0.1 to 5 mm and a width of 1 to 50 mm, a dumbbell-shaped test piece, and the like, a pulling speed of 1 mm/min to 500 mm/min. A method of measuring the velocity can be exemplified.
該超高分子量ポリエチレン粒子は、比較的低分子量成分の含有量が低く、高分子鎖の適度な絡み合いが可能となり、特に耐熱性にも優れる超高分子量ポリエチレン製圧縮成形体となることから、(6)加熱圧縮成形したシートを、前記(3)により測定した2ndスキャンの融点(Tm2)より20℃高い温度で溶融延伸したときの破断応力(MTS(MPa))が2MPa以上を有するものであることが好ましく、更に3MPa以上を有するものであることが好ましい。 Since the ultra-high molecular weight polyethylene particles have a relatively low content of low-molecular weight components, a suitable entanglement of polymer chains is possible, and an ultra-high-molecular-weight polyethylene compression molded product having particularly excellent heat resistance is obtained. 6) It has a breaking stress (MTS (MPa)) of 2 MPa or more when melt-stretched at a temperature 20° C. higher than the melting point (Tm 2 ) of the 2nd scan measured in (3) above. It is preferable that it has a pressure of 3 MPa or more.
なお、分子量50万以下の一般的なポリエチレンは、融点(Tm)より20℃高い温度では、流動性が高く、自重で成形体が変形してしまい、溶融延伸はできない。また、従来の超高分子量ポリエチレンは、融点(Tm)より20℃高い温度でも、溶融延伸は可能であるが、含有する低分子量成分の影響により、歪み硬化が起きず、応力が低い状態のまま、1MPa前後の応力で破断してしまい、耐熱性に劣るものであった。 In addition, general polyethylene having a molecular weight of 500,000 or less has high fluidity at a temperature 20° C. higher than the melting point (Tm), and the molded body is deformed by its own weight, so that it cannot be melt-stretched. Further, conventional ultrahigh molecular weight polyethylene can be melt-stretched even at a temperature 20° C. higher than the melting point (Tm), but due to the influence of the low molecular weight component contained, strain hardening does not occur and the stress remains low. It was ruptured by a stress of about 1 MPa and was inferior in heat resistance.
そして、溶融延伸に用いる加熱圧縮成形シートの成形条件としては、制限はなく、例えばプレス温度100〜250℃、プレス圧力5〜50MPaの条件であり、その中でも特に前記(5)に記載した加熱圧縮成形法を例示することができる。また、溶融延伸方法としては、例えば厚み0.1〜5mm、幅1〜50mmの短冊形、ダンベル型等の試験片を、引張速度1mm/分〜500mm/分の速度で延伸する方法を例示することができる。さらに、溶融延伸時の破断応力としては、歪み硬化が起き、延伸に伴い応力が増加した場合はその最大値を破断応力とし、歪み硬化が起きず、延伸しても応力が増加しない場合は、降伏後の平坦領域の応力を破断応力とした。 The molding conditions of the heat-compression-molded sheet used for melt drawing are not particularly limited, and are, for example, a press temperature of 100 to 250° C. and a press pressure of 5 to 50 MPa, and among them, the heat compression described in (5) above is particularly preferable. A molding method can be exemplified. Further, as the melt drawing method, for example, a method of drawing a strip-shaped or dumbbell-shaped test piece having a thickness of 0.1 to 5 mm and a width of 1 to 50 mm at a drawing speed of 1 mm/min to 500 mm/min is exemplified. be able to. Further, as the rupture stress at the time of melt drawing, strain hardening occurs, and when the stress increases with drawing, the maximum value is taken as the breaking stress, strain hardening does not occur, and when the stress does not increase even after drawing, The stress in the flat region after yielding was taken as the breaking stress.
該超高分子量ポリエチレン粒子は、特に耐熱性に優れる超高分子量ポリエチレン製圧縮成形体となることから、(7)前記(6)により測定した溶融延伸したときの破断時の応力(MTS(MPa))と固有粘度([η])が、下記関係式(b)を満たすものであることが好ましく、特に溶融延伸性、成形性にも優れるものとなることから、下記関係式(d)を満たすものであることが好ましい。
MTS≧0.11×[η] (b)
0.11×[η]≦MTS≦0.32×[η] (d)
該超高分子量ポリエチレン粒子は、特に粉体としての流動性に優れ、成形加工性、物性に優れる超高分子量ポリエチレン製圧縮成形体となることから、(8)平均粒径が1μm以上1000μm以下であるものが好ましい。なお、平均粒径に関しては、例えばJIS Z8801で規定された標準篩を用いたふるい分け試験法等の方法により測定することができる。
Since the ultra-high-molecular-weight polyethylene particles become a compression-molded article made of ultra-high-molecular-weight polyethylene which is particularly excellent in heat resistance, (7) stress at break (MTS (MPa)) at the time of melt drawing measured according to (6) above. And the intrinsic viscosity ([η]) satisfy the following relational expression (b), and in particular, they have excellent melt stretchability and moldability, and thus satisfy the following relational expression (d). It is preferably one.
MTS≧0.11×[η] (b)
0.11×[η]≦MTS≦0.32×[η] (d)
Since the ultrahigh molecular weight polyethylene particles are compression molded articles made of ultrahigh molecular weight polyethylene, which are particularly excellent in fluidity as powders, and are excellent in molding processability and physical properties, (8) the average particle diameter is 1 μm or more and 1000 μm or less. Some are preferred. The average particle diameter can be measured by a method such as a sieving test method using a standard sieve defined in JIS Z8801.
本発明の超高分子量ポリエチレン製圧縮成形体に用いられる超高分子量ポリエチレン粒子の製造方法としては、該超高分子量ポリエチレン粒子の製造が可能であれば如何なる方法を用いても良く、例えばポリエチレン製造用触媒を用い、エチレンの単独重合、エチレンと他のオレフィンとの共重合を行う方法を挙げることができ、その際のα−オレフィンとしては、例えばプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン等を挙げることができる。また、重合方法としては、例えば溶液重合法、塊状重合法、気相重合法、スラリー重合法等の方法を挙げることができ、その中でも、特に粒子形状が整った超高分子量ポリエチレン粒子の製造が可能となると共に、高融点、高結晶化度を有し、機械強度、耐熱性、耐摩耗性に優れる超高分子量ポリエチレン製圧縮成形体を提供しうる超高分子量ポリエチレン粒子を効率よく安定的に製造することが可能となることからスラリー重合法であることが好ましい。また、スラリー重合法に用いる溶媒としては、一般に用いられている有機溶媒であればいずれでもよく、例えばベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン等が挙げられ、イソブタン、プロパン等の液化ガス、プロピレン、1−ブテン、1−オクテン、1−ヘキセンなどのオレフィンを溶媒として用いることもできる。 As a method for producing the ultrahigh molecular weight polyethylene particles used for the compression molded article of the ultrahigh molecular weight polyethylene of the present invention, any method may be used as long as the production of the ultrahigh molecular weight polyethylene particles is possible, for example, for producing polyethylene. Examples of the method include homopolymerization of ethylene using a catalyst and copolymerization of ethylene with another olefin. Examples of the α-olefin in this case include propylene, 1-butene, and 4-methyl-1-pentene. , 1-hexene, 1-octene and the like. Further, as the polymerization method, for example, a solution polymerization method, a bulk polymerization method, a gas phase polymerization method, a slurry polymerization method, and the like can be mentioned. Among them, particularly, the production of ultra-high molecular weight polyethylene particles having a regulated particle shape is possible. It is possible to provide ultra high molecular weight polyethylene particles that have a high melting point, high crystallinity, and can provide compression molded products of ultra high molecular weight polyethylene that are excellent in mechanical strength, heat resistance, and wear resistance, efficiently and stably. The slurry polymerization method is preferred because it enables production. The solvent used in the slurry polymerization method may be any commonly used organic solvent, for example, benzene, toluene, xylene, pentane, hexane, heptane and the like, isobutane, liquefied gas such as propane, Olefins such as propylene, 1-butene, 1-octene and 1-hexene can also be used as a solvent.
また、該超高分子量ポリエチレン粒子を製造するのに用いる、ポリエチレン製造用触媒としては、該超高分子量ポリエチレン粒子の製造が可能であれば如何なるものを用いることも可能であり、例えば少なくとも遷移金属化合物(A)、脂肪族塩にて変性した有機変性粘土(B)及び有機アルミニウム化合物(C)より得られるメタロセン系触媒を挙げることができる。 As the polyethylene-producing catalyst used for producing the ultra-high molecular weight polyethylene particles, any catalyst can be used as long as it is possible to produce the ultra-high molecular weight polyethylene particles. For example, at least a transition metal compound Examples thereof include (A), an organically modified clay (B) modified with an aliphatic salt and an organoaluminum compound (C).
そして、該遷移金属化合物(A)としては、例えば(置換)シクロペンタジエニル基と(置換)フルオレニル基を有する遷移金属化合物、(置換)シクロペンタジエニル基と(置換)インデニル基を有する遷移金属化合物、(置換)インデニル基と(置換)フルオレニル基を有する遷移金属化合物等を挙げることができ、その際の遷移金属としては、例えばジルコニウム、ハフニウム等を挙げることができ、その中でも特に超高分子量ポリエチレン粒子を効率よく製造することが可能となることから、(置換)シクロペンタジエニル基とアミノ基置換フルオレニル基を有するジルコニウム化合物、(置換)シクロペンタジエニル基とアミノ基置換フルオレニル基を有するハフニウム化合物であることが好ましい。 Examples of the transition metal compound (A) include a transition metal compound having a (substituted) cyclopentadienyl group and a (substituted) fluorenyl group, and a transition metal compound having a (substituted) cyclopentadienyl group and a (substituted) indenyl group. Examples thereof include a metal compound and a transition metal compound having a (substituted) indenyl group and a (substituted) fluorenyl group. Examples of the transition metal in this case include zirconium and hafnium. Since it becomes possible to efficiently produce molecular weight polyethylene particles, a zirconium compound having a (substituted) cyclopentadienyl group and an amino group-substituted fluorenyl group, and a (substituted) cyclopentadienyl group and an amino group-substituted fluorenyl group can be prepared. It is preferable that the compound has a hafnium compound.
そして、より具体的には、例えばジフェニルメチレン(1−インデニル)(9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(2,7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルシランジイル(シクロペンタジエニル)(4−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2,7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライドジフェニルメチレン(シクロペンタジエニル)(4−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(4−(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(4−(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジイソプロピルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジ−n−ブチル−アミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、7−ビス(ジベンジルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(3、6−ビス(ジ−n−プロピル−アミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジエチルアミノ)−9−フルオレニル)ジルコニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(2、5−ビス(ジイソプロピルアミノ)−9−フルオレニル)ジルコニウムジクロライドなどのジルコニウム化合物;これらのジクロロ体をジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体に変えたジルコニウム化合物、およびこれら化合物のジルコニウムをハフニウムに変えたハフニウム化合物などを例示することができる。 And more specifically, for example, diphenylmethylene(1-indenyl)(9-fluorenyl)zirconium dichloride, diphenylmethylene(1-indenyl)(2,7-di-t-butyl-9-fluorenyl)zirconium dichloride, diphenyl. Methylene(4-phenyl-1-indenyl)(2,7-di-t-butyl-9-fluorenyl)zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(2-(dimethylamino)-9-fluorenyl)zirconium Dichloride, diphenylsilanediyl(cyclopentadienyl)(2-(diethylamino)-9-fluorenyl)zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(2-(dibenzylamino)-9-fluorenyl)zirconium dichloride, Diphenylsilanediyl(cyclopentadienyl)(2,7-bis(dimethylamino)-9-fluorenyl)zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(2,7-bis(diethylamino)-9-fluorenyl) Zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(2,7-bis(dibenzylamino)-9-fluorenyl)zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(4-(dimethylamino)-9- Fluorenyl)zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(4-(diethylamino)-9-fluorenyl)zirconium dichloride, diphenylsilanediyl(cyclopentadienyl)(4-(dibenzylamino)-9-fluorenyl) Zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2-(dimethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2-(diethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene (Cyclopentadienyl)(2-(dibenzylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2,7-bis(dimethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene (Cyclopentadienyl)(2,7-bis(diethylamino)-9-fluorenyl)zirconium dichloride, diphenyl Methylene(cyclopentadienyl)(2,7-bis(dibenzylamino)-9-fluorenyl)zirconium dichloride Diphenylmethylene(cyclopentadienyl)(4-(dimethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene (Cyclopentadienyl)(4-(diethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(4-(dibenzylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl) Phenyl)(2,7-bis(dimethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2,7-bis(diethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadiene) Dienyl)(2,7-bis(diisopropylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2,7-bis(di-n-butyl-amino)-9-fluorenyl)zirconium Dichloride, diphenylmethylene(cyclopentadienyl)(2,7-bis(dibenzylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(3,6-bis(dimethylamino)-9- Fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(3,6-bis(diethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(3,6-bis(di-n-propyl) -Amino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2,5-bis(dimethylamino)-9-fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(2,5- Zirconium compounds such as bis(diethylamino)-9-fluorenyl)zirconium dichloride and diphenylmethylene(cyclopentadienyl)(2,5-bis(diisopropylamino)-9-fluorenyl)zirconium dichloride; Zirconium compounds in which diethyl compounds, dihydro compounds, diphenyl compounds, and dibenzyl compounds are converted, and hafnium compounds in which zirconium of these compounds is converted to hafnium The thing etc. can be illustrated.
該脂肪族塩にて変性した有機変性粘土(B)としては、例えばN,N−ジメチル−ベヘニルアミン塩酸塩、N−メチル−N−エチル−ベヘニルアミン塩酸塩、N−メチル−N−n−プロピル−ベヘニルアミン塩酸塩、N,N−ジオレイル−メチルアミン塩酸塩、N,N−ジメチル−ベヘニルアミンフッ化水素酸塩、N−メチル−N−エチル−ベヘニルアミンフッ化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミンフッ化水素酸塩、N,N−ジオレイル−メチルアミンフッ化水素酸塩、N,N−ジメチル−ベヘニルアミン臭化水素酸塩、N−メチル−N−エチル−ベヘニルアミン臭化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミン臭化水素酸塩、N,N−ジオレイル−メチルアミン臭化水素酸塩、N,N−ジメチル−ベヘニルアミンヨウ化水素酸塩、N−メチル−N−エチル−ベヘニルアミンヨウ化水素酸塩、N−メチル−N−n−プロピル−ベヘニルアミンヨウ化水素酸塩、N,N−ジオレイル−メチルアミンヨウ化水素酸塩、N,N−ジメチル−ベヘニルアミン硫酸塩、N−メチル−N−エチル−ベヘニルアミン硫酸塩、N−メチル−N−n−プロピル−ベヘニルアミン硫酸塩、N,N−ジオレイル−メチルアミン硫酸塩等の脂肪族アミン塩;P,P−ジメチル−ベヘニルホスフィン塩酸塩、P,P−ジエチル−ベヘニルホスフィン塩酸塩、P,P−ジプロピル−ベヘニルホスフィン塩酸塩、P,P−ジメチル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジエチル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジプロピル−ベヘニルホスフィンフッ化水素酸塩、P,P−ジメチル−ベヘニルホスフィン臭化水素酸塩、P,P−ジエチル−ベヘニルホスフィン臭化水素酸塩、P,P−ジプロピル−ベヘニルホスフィン臭化水素酸塩、P,P−ジメチル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジエチル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジプロピル−ベヘニルホスフィンヨウ化水素酸塩、P,P−ジメチル−ベヘニルホスフィン硫酸塩、P,P−ジエチル−ベヘニルホスフィン硫酸塩、P,P−ジプロピル−ベヘニルホスフィン硫酸塩等の脂肪族ホスフォニウム塩;等の脂肪族塩により変性された粘土を挙げることができる。 Examples of the organic modified clay (B) modified with the aliphatic salt include N,N-dimethyl-behenylamine hydrochloride, N-methyl-N-ethyl-behenylamine hydrochloride and N-methyl-Nn-. Propyl-behenylamine hydrochloride, N,N-dioleyl-methylamine hydrochloride, N,N-dimethyl-behenylamine hydrofluoride, N-methyl-N-ethyl-behenylamine hydrofluoride, N- Methyl-Nn-propyl-behenylamine hydrofluoride, N,N-dioleyl-methylamine hydrofluoride, N,N-dimethyl-behenylamine hydrobromide, N-methyl-N- Ethyl-behenylamine hydrobromide, N-methyl-Nn-propyl-behenylamine hydrobromide, N,N-dioleyl-methylamine hydrobromide, N,N-dimethyl-behenylamine Hydroiodide, N-methyl-N-ethyl-behenylamine hydroiodide, N-methyl-Nn-propyl-behenylamine hydroiodide, N,N-dioleyl-methylamine iodide Hydrogen salt, N,N-dimethyl-behenylamine sulfate, N-methyl-N-ethyl-behenylamine sulfate, N-methyl-N-n-propyl-behenylamine sulfate, N,N-dioleyl-methyl Aliphatic amine salts such as amine sulfate; P,P-dimethyl-behenylphosphine hydrochloride, P,P-diethyl-behenylphosphine hydrochloride, P,P-dipropyl-behenylphosphine hydrochloride, P,P-dimethyl-behenyl Phosphine hydrofluoride, P,P-diethyl-behenylphosphine hydrofluoride, P,P-dipropyl-behenylphosphine hydrofluoride, P,P-dimethyl-behenylphosphine hydrobromide, P ,P-diethyl-behenylphosphine hydrobromide, P,P-dipropyl-behenylphosphine hydrobromide, P,P-dimethyl-behenylphosphine hydroiodide, P,P-diethyl-behenylphosphine hydrobromide Hydrochloride, P,P-dipropyl-behenylphosphine hydroiodide, P,P-dimethyl-behenylphosphine sulfate, P,P-diethyl-behenylphosphine sulfate, P,P-dipropyl-behenylphosphine sulfate Examples thereof include an aliphatic phosphonium salt such as a salt; and clay modified with an aliphatic salt such as a salt.
また、該有機変性粘土(B)を構成する粘土化合物としては、粘土化合物の範疇に属するものであれば如何なるものであってもよく、一般的にシリカ四面体が二次元上に連続した四面体シートと、アルミナ八面体やマグネシア八面体等が二次元上に連続した八面体シートが1:1又は2:1で組合わさって構成されるシリケート層と呼ばれる層が何枚にも重なって形成され、一部のシリカ四面体のSiがAl、アルミナ八面体のAlがMg、マグネシア八面体のMgがLi等に同型置換されることにより層内部の正電荷が不足し、層全体として負電荷を帯びており、この負電荷を補償するために層間にはNa+やCa2+等の陽イオンが存在しているものとして知られているものである。そして、該粘土化合物としては天然品、または合成品としてのカオリナイト、タルク、スメクタイト、バーミキュライト、雲母、脆雲母、縁泥石等が存在し、これらを用いることが可能であり、その中でも入手のしやすさと有機変性の容易さからスメクタイトが好ましく、特にスメクタイトのなかでもヘクトライトまたはモンモリロナイトがさらに好ましい。 The clay compound constituting the organically modified clay (B) may be any clay compound as long as it belongs to the category of clay compounds. Generally, a tetrahedron in which silica tetrahedra are two-dimensionally continuous. A sheet called a silicate layer is formed by stacking a number of layers called a silicate layer, which is formed by combining a sheet and an octahedron sheet in which alumina octahedron, magnesia octahedron, etc. are two-dimensionally continuous in a 1:1 or 2:1 combination. , Si in some silica tetrahedra is Al, Al in alumina octahedra is Mg, and Mg in magnesia octahedra is replaced by Li and the like, so that the positive charge inside the layer is insufficient and the negative charge is generated in the entire layer. It is known that cations such as Na + and Ca 2+ exist between layers to compensate for this negative charge. As the clay compound, there are natural products or synthetic products such as kaolinite, talc, smectite, vermiculite, mica, brittle mica, curdstone, etc., and it is possible to use them. Smectites are preferred because of their ease of use and organic modification, and hectorite or montmorillonite is more preferred among the smectites.
該有機変性粘土(B)は、該粘土化合物の層間に該脂肪族塩を導入し、イオン複合体を形成することにより得る事が可能である。該有機変性粘土(B)を調製する際には、粘土化合物の濃度0.1〜30重量%、処理温度0〜150℃の条件を選択して処理を行うことが好ましい。また、該脂肪族塩は固体として調製して溶媒に溶解させて使用しても良いし、溶媒中での化学反応により該脂肪族塩の溶液を調製してそのまま使用しても良い。該粘土化合物と該脂肪族塩の反応量比については、粘土化合物の交換可能なカチオンに対して当量以上の脂肪族塩を用いることが好ましい。処理溶媒としては、例えばペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;エチルアルコール、メチルアルコール等のアルコール類;エチルエーテル、n−ブチルエーテル等のエーテル類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;アセトン;1,4−ジオキサン;テトラヒドロフラン;水、等を用いることができる。そして、好ましくは、アルコール類または水を単独もしくは溶媒の一成分として用いることである。 The organically modified clay (B) can be obtained by introducing the aliphatic salt between the clay compound layers to form an ionic complex. When preparing the organically modified clay (B), it is preferable to perform the treatment by selecting conditions such that the concentration of the clay compound is 0.1 to 30% by weight and the treatment temperature is 0 to 150°C. Further, the aliphatic salt may be prepared as a solid and dissolved in a solvent for use, or a solution of the aliphatic salt may be prepared by a chemical reaction in the solvent and used as it is. Regarding the reaction amount ratio of the clay compound and the aliphatic salt, it is preferable to use the aliphatic salt in an amount equal to or more than the amount of the exchangeable cation of the clay compound. Examples of the treatment solvent include aliphatic hydrocarbons such as pentane, hexane and heptane; aromatic hydrocarbons such as benzene and toluene; alcohols such as ethyl alcohol and methyl alcohol; ethers such as ethyl ether and n-butyl ether. Halogenated hydrocarbons such as methylene chloride and chloroform; acetone; 1,4-dioxane; tetrahydrofuran; water and the like can be used. And, it is preferable to use alcohols or water alone or as one component of the solvent.
また、本発明のポリエチレン製造用触媒を構成する有機変性粘土(B)の粒径に制限はなく、その中でも触媒調製時の効率、ポリエチレン製造時の効率に優れるものとなることから1〜100μmであることが好ましい。その際の粒径を調節する方法にも制限はなく、大きな粒子を粉砕して適切な粒径にしても、小さな粒子を造粒して適切な粒径にしても良く、あるいは粉砕と造粒を組み合わせても良い。また、粒径の調節は有機変性前の粘土に行っても、変性後の有機変性粘土に行っても良い。 The particle size of the organically modified clay (B) that constitutes the catalyst for producing polyethylene of the present invention is not limited, and among them, the efficiency during catalyst preparation and the efficiency during polyethylene production are excellent, so 1-100 μm. Preferably. There is no limitation on the method of adjusting the particle size at that time, and large particles may be crushed to an appropriate particle size, small particles may be granulated to an appropriate particle size, or crushing and granulation may be performed. May be combined. The particle size may be adjusted on the clay before the organic modification or on the organic modified clay after the modification.
該有機アルミニウム化合物(C)としては、有機アルミニウム化合物と称される範疇に属するものであれば如何なるものも用いることができ、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどのアルキルアルミニウムなどを挙げることができる。 As the organoaluminum compound (C), any compound can be used as long as it belongs to the category called an organoaluminum compound, and examples thereof include alkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum. You can
該ポリエチレン製造用触媒を構成する該遷移金属化合物(A)(以下(A)成分ということもある。)、該有機変性粘土(B)(以下、(B)成分ということもある。)、および該有機アルミニウム化合物(C)(以下、(C)成分ということもある。)の使用割合に関しては、ポリエチレン製造用触媒としての使用が可能であれば如何なる制限を受けるものでなく、その中でも、特に超高分子量ポリエチレン粒子を生産効率よく製造することが可能なポリエチレン製造用触媒となることから、(A)成分と(C)成分の金属原子当たりのモル比は(A成分):(C成分)=100:1〜1:100000の範囲にあることが好ましく、特に1:1〜1:10000の範囲であることが好ましい。また、(A)成分と(B)成分の重量比が(A成分):(B成分)=10:1〜1:10000にあることが好ましく、特に3:1〜1:1000の範囲であることが好ましい。 The transition metal compound (A) (hereinafter sometimes referred to as the component (A)) that constitutes the catalyst for producing polyethylene, the organically modified clay (B) (hereinafter sometimes referred to as the component (B)), and The use ratio of the organoaluminum compound (C) (hereinafter sometimes referred to as the component (C)) is not particularly limited as long as it can be used as a catalyst for producing polyethylene, and among them, particularly Since it becomes a catalyst for producing polyethylene capable of producing ultrahigh molecular weight polyethylene particles with high production efficiency, the molar ratio of component (A) and component (C) per metal atom is (component A):(component C). =100:1 to 1:100,000, and particularly preferably 1:1 to 1:10000. Further, the weight ratio of the component (A) and the component (B) is preferably (A component):(B component)=10:1 to 1:10000, and particularly 3:1 to 1:1000. Preferably.
該ポリエチレン製造用触媒の調製方法に関しては、該(A)成分、該(B)成分および該(C)成分を含むポリエチレン製造用触媒を調製することが可能であれば如何なる方法を用いてもよく、例えば各(A)、(B)、(C)成分に関して不活性な溶媒中あるいは重合を行うモノマーを溶媒として用い、混合する方法などを挙げることができる。また、これらの成分を反応させる順番に関しても制限はなく、この処理を行う温度、処理時間も制限はない。また、(A)成分、(B)成分、(C)成分のそれぞれを2種類以上用いてポリエチレン製造用触媒を調製することも可能である。 Regarding the method for preparing the polyethylene production catalyst, any method may be used as long as it is possible to prepare a polyethylene production catalyst containing the component (A), the component (B) and the component (C). For example, a method of mixing in a solvent inert with respect to each of the components (A), (B) and (C) or using a monomer for polymerization as a solvent can be mentioned. Further, there is no limitation on the order in which these components are reacted, and there is no limitation on the temperature or treatment time for this treatment. It is also possible to prepare a polyethylene production catalyst by using two or more kinds of each of the component (A), the component (B) and the component (C).
本発明の超高分子量ポリエチレン製圧縮成形体に用いられる超高分子量ポリエチレン粒子を製造する際の重合温度、重合時間、重合圧力、モノマー濃度などの重合条件については任意に選択可能であり、その中でも、重合温度0〜100℃、重合時間10秒〜20時間、重合圧力常圧〜100MPaの範囲で行うことが好ましい。また、重合時に水素などを用いて分子量の調節を行うことも可能である。重合はバッチ式、半連続式、連続式のいずれの方法でも行うことが可能であり、重合条件を変えて、2段以上に分けて行うことも可能である。また、重合終了後に得られるポリエチレン粒子は、従来既知の方法により重合溶媒から分離回収され、乾燥して得ることができる。 Polymerization conditions, such as polymerization temperature, polymerization time, polymerization pressure, and monomer concentration during the production of the ultrahigh molecular weight polyethylene particles used for the compression molded article made of the ultrahigh molecular weight polyethylene of the present invention can be arbitrarily selected, among them. The polymerization temperature is preferably 0 to 100° C., the polymerization time is 10 seconds to 20 hours, and the polymerization pressure is normal pressure to 100 MPa. It is also possible to control the molecular weight by using hydrogen or the like during the polymerization. The polymerization can be carried out by any of batch method, semi-continuous method and continuous method, and it is also possible to carry out the polymerization in two or more stages by changing the polymerization conditions. The polyethylene particles obtained after the completion of the polymerization can be obtained by separating and recovering from the polymerization solvent by a conventionally known method and drying.
本発明の超高分子量ポリエチレン製圧縮成形体は、該超高分子量ポリエチレン粒子を、圧縮成形機等で圧縮成形することにより製造することが可能であり、その際の圧縮成形方法としては、例えばラム押出機等で間歇圧縮しながら押出成形する方法等を挙げることができる。また、圧縮成形する成形温度としては、0℃以上300℃以下であり、より好ましく100℃以上250℃以下、更に好ましくは150℃以上250℃以下である。圧縮成形温度が0℃未満である場合、超高分子量ポリエチレン同士の融着性が著しく低下し、成形体が得られない。また、300℃を越える場合、超高分子量ポリエチレン粒子の酸化劣化が起きやすくなるため、成形体の変色、物性低下等が発生する。 The ultra-high molecular weight polyethylene compression-molded product of the present invention can be produced by compression-molding the ultra-high-molecular-weight polyethylene particles with a compression molding machine or the like. Examples thereof include a method of extrusion molding while intermittently compressing with an extruder or the like. The molding temperature for compression molding is 0°C or more and 300°C or less, more preferably 100°C or more and 250°C or less, and further preferably 150°C or more and 250°C or less. When the compression molding temperature is lower than 0°C, the fusion bond between the ultra-high molecular weight polyethylenes is remarkably reduced, and a molded product cannot be obtained. On the other hand, when the temperature exceeds 300° C., the ultra-high molecular weight polyethylene particles are apt to be oxidized and deteriorated, so that the molded product is discolored and the physical properties are deteriorated.
また、圧縮成形する際の樹脂圧力に制限はなく、中でも、特に強度、耐熱性、耐摩耗性に優れる超高分子量ポリエチレン製圧縮成形体を得ることが可能となることから、0.2MPa以上、特に0.5MPa以上500MPa以下とすることが好ましい。圧縮成形時間にも特に制限はなく、超高分子量ポリエチレンの分子量、密度や超高分子量ポリエチレン粒子の性状、圧縮成形条件等により選択可能であり、その中でも強度、耐熱性に優れる超高分子量ポリエチレン製圧縮成形体が得られることから0.1分以上48時間以内であることが好ましい。また、圧縮成形温度、圧縮成形圧力等の圧縮成形条件は、一定であってもよく、また、温度、圧力等を多段的に、連続的に変更しても良い。 In addition, there is no limitation on the resin pressure during compression molding, and above all, it is possible to obtain an ultrahigh molecular weight polyethylene compression molded article that is particularly excellent in strength, heat resistance, and wear resistance, so 0.2 MPa or more, In particular, it is preferably 0.5 MPa or more and 500 MPa or less. There is no particular limitation on the compression molding time, and it can be selected depending on the molecular weight and density of the ultra high molecular weight polyethylene, the properties of the ultra high molecular weight polyethylene particles, the compression molding conditions, etc. Among them, it is made of ultra high molecular weight polyethylene excellent in strength and heat resistance. It is preferably 0.1 minutes or more and 48 hours or less because a compression molded product is obtained. The compression molding conditions such as the compression molding temperature and the compression molding pressure may be constant, or the temperature, the pressure and the like may be continuously changed in multiple stages.
圧縮成形を行なう際の雰囲気は、大気中でも構わないが、超高分子量ポリエチレンの酸化劣化を低減するため、窒素、アルゴン等の不活性ガス雰囲気で圧縮成形を行うこともできる。また、真空下において圧縮成形しても良い。 The atmosphere for the compression molding may be the air, but in order to reduce the oxidative deterioration of the ultrahigh molecular weight polyethylene, the compression molding can be performed in an atmosphere of an inert gas such as nitrogen or argon. Further, compression molding may be performed under vacuum.
圧縮成形後、特に加熱圧縮成形後の冷却条件は任意であり、室温に近い冷却板、液体等に接触させて急冷する方法、結晶化温度に近い温度で徐冷する方法、圧縮機の加熱を止めて放冷する方法、温度、圧力を多段的に、又は連続的に変更しながら冷却していく方法等を例示できる。また、冷却は、加圧状態で行っても、無加圧状態で行ってもよい。 After compression molding, especially after heating and compression molding, the cooling conditions are arbitrary, such as a cooling plate close to room temperature, a method of rapidly cooling by contact with a liquid, a method of gradually cooling at a temperature close to the crystallization temperature, and a heating of a compressor. Examples thereof include a method of stopping and allowing to cool, a method of cooling while changing the temperature and pressure in multiple stages or continuously. The cooling may be performed in a pressurized state or a non-pressurized state.
本発明の超高分子量ポリエチレン製圧縮成形体は、本発明の目的を逸脱しない限りにおいて、耐熱安定剤、耐候安定剤、帯電防止剤、防曇剤、抗ブロッキング剤、スリップ剤、滑剤、核剤、顔料等;カーボンブラック、タルク、ガラス粉、ガラス繊維、金属粉等の無機充填剤または補強剤;有機充填剤または補強剤;難燃剤;中性子遮蔽剤等の公知の添加剤、更には、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(L−LDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン系樹脂、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物等の樹脂を配合していても良く、このような添加剤の添加方法としては、超高分子量ポリエチレン粒子に配合する方法、超高分子量ポリエチレン粒子と、成形の際にブレンドする方法、予めドライブレンドもしくはメルトブレンドする方法、等を挙げることができる。 The ultra-high molecular weight polyethylene compression-molded product of the present invention is a heat-resistant stabilizer, a weather-resistant stabilizer, an antistatic agent, an antifogging agent, an anti-blocking agent, a slip agent, a lubricant, a nucleating agent, unless it deviates from the object of the present invention. , Pigments and the like; inorganic fillers or reinforcing agents such as carbon black, talc, glass powder, glass fibers, metal powders; organic fillers or reinforcing agents; flame retardants; known additives such as neutron shielding agents, Density polyethylene (HDPE), linear low density polyethylene (L-LDPE), low density polyethylene (LDPE), polypropylene resin, poly-1-butene, poly-4-methyl-1-pentene, ethylene/vinyl acetate A resin such as a polymer, an ethylene/vinyl alcohol copolymer, polystyrene, or a maleic anhydride graft product thereof may be blended. As a method of adding such an additive, it is blended in ultrahigh molecular weight polyethylene particles. Examples thereof include a method, a method of blending with ultra-high molecular weight polyethylene particles at the time of molding, a method of dry blending or melt blending in advance, and the like.
本発明の超高分子量ポリエチレン製圧縮成形体は、優れた強度、耐熱性、耐摩耗性を有することから、産業用機械等の軸受部材、摺動部材、研磨材、各種テープ、スキー等のスポーツ用品のライニング等、シート、膜、プレート、ロッド、パイプ、多孔質膜、等の部材として用いることができる。 The ultra-high-molecular-weight polyethylene compression-molded product of the present invention has excellent strength, heat resistance, and wear resistance, so that it can be used as a bearing member for industrial machines, sliding members, abrasives, various tapes, sports such as skis. It can be used as a member for sheets, membranes, plates, rods, pipes, porous membranes, etc., for lining articles and the like.
本発明によって得られる超高分子量ポリエチレン製圧縮成形体は、強度、耐熱性、耐摩耗性に優れることから、産業用機械等の軸受部材、摺動部材、研磨材、各種テープ、スキー等のスポーツ用品のライニング等に好適に利用される。 The ultra-high-molecular-weight polyethylene compression-molded product obtained by the present invention is excellent in strength, heat resistance, and wear resistance, so that it can be used as a bearing member for industrial machines, sliding members, abrasives, various tapes, sports such as skis. It is preferably used for lining products.
以下に、実施例を示して本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
なお、断りのない限り、用いた試薬等は市販品、あるいは既知の方法に従って合成したものを用いた。 Unless otherwise specified, the reagents and the like used were commercially available products or those synthesized according to known methods.
有機変性粘土の粉砕にはジェットミル(セイシン企業社製、(商品名)CO−JET SYSTEM α MARK III)を用い、粉砕後の粒径はマイクロトラック粒度分布測定装置(日機装(株)製、(商品名)MT3000)を用いてエタノールを分散剤として測定した。 A jet mill (manufactured by Seishin Enterprise Co., Ltd., (trade name) CO-JET SYSTEM α MARK III) was used for crushing the organically modified clay, and the particle size after crushing was measured by a Microtrac particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., ( Ethanol was measured as a dispersant using a trade name) MT3000).
ポリエチレン製造用触媒の調製、ポリエチレンの製造および溶媒精製は全て不活性ガス雰囲気下で行った。トリイソブチルアルミニウムのヘキサン溶液(20wt%)は東ソーファインケム(株)製を用いた。 Preparation of a catalyst for producing polyethylene, production of polyethylene and solvent purification were all carried out under an inert gas atmosphere. A hexane solution of triisobutylaluminum (20 wt%) manufactured by Tosoh Finechem Co., Ltd. was used.
さらに、実施例における超高分子量ポリエチレン粒子の諸物性は、以下に示す方法により測定した。 Furthermore, various physical properties of the ultra high molecular weight polyethylene particles in the examples were measured by the methods described below.
〜固有粘度の測定〜
ウベローデ型粘度計を用い、ODCB(オルトジクロルベンゼン)を溶媒として、135℃において、超高分子量ポリエチレン濃度0.005wt%で測定した。
-Measurement of intrinsic viscosity-
Using an Ubbelohde viscometer, ODCB (orthodichlorobenzene) was used as a solvent at 135° C., and the ultrahigh molecular weight polyethylene concentration was measured at 0.005 wt %.
〜嵩密度の測定〜
JIS K6760(1995)に準拠した方法で測定した。
-Measurement of bulk density-
It was measured by a method according to JIS K6760 (1995).
〜Tm1とTm2の測定〜
示差走査型熱量計(DSC)(エスアイアイ・ ナノテクノロジー(株)製 (商品名)DSC6220)を用いて、0℃から10℃/分の昇温速度で230℃まで昇温(1stスキャン)し1stスキャンの結晶融解ピーク(Tm1)の測定を行った。その後、5分間放置後、10℃/分の降温速度で−20℃まで降温し、5分間放置後、再度、10℃/分の昇温速度で−20℃から230℃まで昇温(2ndスキャン)し2ndスキャンの結晶融解ピーク(Tm2)を測定した。その際の超高分子量ポリエチレンのサンプル量は6mgとした。
~Measurement of Tm 1 and Tm 2 ~
Using a differential scanning calorimeter (DSC) (SII Nanotechnology Co., Ltd. (trade name) DSC6220), the temperature was raised from 0° C. to 230° C. at a heating rate of 10° C./min (1st scan). The crystal melting peak (Tm 1 ) of the 1st scan was measured. Then, after standing for 5 minutes, the temperature is lowered to −20° C. at a temperature lowering rate of 10° C./minute, and after standing for 5 minutes, the temperature is again raised from −20° C. to 230° C. at a temperature rising rate of 10° C./minute (2nd scan). 2 ) The crystal melting peak (Tm 2 ) of the 2nd scan was measured. The sample amount of ultra high molecular weight polyethylene at that time was 6 mg.
〜チタン含有量の測定〜
超高分子量ポリエチレンを灰化し、アルカリ溶融して、調製した溶液を用いて、ICP発光分析装置((株)パーキンエルマー製、(商品名)Optima3000XL)により、超高分子量ポリエチレン中のチタン含有量を測定した。
-Measurement of titanium content-
Ultrahigh molecular weight polyethylene was ashed, melted with alkali, and the prepared solution was used to determine the titanium content in the ultrahigh molecular weight polyethylene with an ICP emission spectrometer (manufactured by Perkin Elmer Co., Ltd. (trade name) Optima3000XL). It was measured.
〜超高分子量ポリエチレン粒子の評価用シートの作成〜
圧縮成形体の成形に用いた超高分子量ポリエチレン粒子の評価用シートは以下の方法で成形した。すなわち、超高分子量ポリエチレン粒子をポリエチレンテレフタレートフィルムに挟んで、190℃で、5分間予熱した後、190℃、プレス圧力20MPaの条件にて加熱圧縮した。その後、金型温度110℃、10分間冷却し、厚さ0.3mmのプレスシートを作成した。
~ Preparation of evaluation sheet for ultra high molecular weight polyethylene particles ~
The evaluation sheet for the ultrahigh molecular weight polyethylene particles used for molding the compression molded product was molded by the following method. That is, the ultra high molecular weight polyethylene particles were sandwiched between polyethylene terephthalate films, preheated at 190° C. for 5 minutes, and then heated and compressed under the conditions of 190° C. and a press pressure of 20 MPa. Then, the mold temperature was cooled to 110° C. for 10 minutes to prepare a press sheet having a thickness of 0.3 mm.
〜引張破断強度の測定〜
圧縮成形体および超高分子量ポリエチレン粒子の評価用シートからダンベル型に切り出したサンプル(測定部の幅5mm)を、23℃にて48時間静置した後、引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンRTG−1210)にて、測定温度23℃、試験片の初期長さ20mm、引張速度20mm/分で引張試験をし、引張破断強度を求めた。
-Measurement of tensile breaking strength-
A dumbbell-shaped sample (width of the measurement part: 5 mm) cut out from the compression molded body and the evaluation sheet for ultra-high molecular weight polyethylene particles was allowed to stand at 23° C. for 48 hours, and then subjected to a tensile tester (A&And Co., Ltd.). Tensileon RTG-1210 manufactured by Dee) was used to perform a tensile test at a measurement temperature of 23° C., an initial length of the test piece of 20 mm, and a pulling speed of 20 mm/min to determine the tensile breaking strength.
〜溶融延伸時の破断応力の測定〜
上記引張破断強度の測定に記載の方法によりダンベル型に切り出したサンプル(測定部の幅10mm)を、23℃にて48時間静置した後、引張試験機((株)エイ・アンド・ディー製、(商品名)テンシロンUMT2.5T)にて、150℃で、試験片の初期長さ10mm、引張速度20mm/分で引張試験をし、溶融延伸時の破断応力を求めた。歪み硬化が起き、延伸に伴い応力が増加した場合はその最大値を破断応力とし、歪み硬化が起きず、延伸しても応力が増加しない場合は、降伏後の平坦領域の応力を破断応力とした。
-Measurement of breaking stress during melt drawing-
A sample (width of the measurement part: 10 mm) cut into a dumbbell shape by the method described in the measurement of the tensile breaking strength was allowed to stand at 23° C. for 48 hours, and then a tensile tester (manufactured by A&D Co., Ltd.). , (Trade name) Tensilon UMT2.5T), a tensile test was performed at 150° C. at an initial length of the test piece of 10 mm and a pulling speed of 20 mm/min to determine the breaking stress during melt drawing. When strain hardening occurs and the stress increases with stretching, the maximum value is taken as the breaking stress, and when strain hardening does not occur and the stress does not increase even after stretching, the stress in the flat area after yielding is called the breaking stress. did.
〜平均粒径の測定〜
JIS Z8801で規定された9種類の篩(目開き:710μm、500μm、425μm、300μm、212μm、150μm、106μm、75μm、53μm)を用いて、100gの超高分子量ポリエチレン粒子を分級した際に得られる各篩に残った粒子の重量を目開きの大きい側から積分した積分曲線において、50%の重量になる粒子径を測定することにより平均粒径を求めた。
~Measurement of average particle size~
Obtained when 100 g of ultrahigh molecular weight polyethylene particles are classified using 9 types of sieves defined by JIS Z8801 (openings: 710 μm, 500 μm, 425 μm, 300 μm, 212 μm, 150 μm, 106 μm, 75 μm, 53 μm) The average particle size was determined by measuring the particle size at which the weight of the particles remaining on each sieve was 50% in the integral curve obtained by integrating the weight of the particles from the side with the larger openings.
〜耐摩耗性の評価〜
超高分子量ポリエチレン製圧縮成形体を、平削り機にて切削加工して、直径5mm高さ8mmの丸棒の圧縮成形体を試験用サンプルとして調製し、摩擦摩耗試験機(オリエンテック(株)、型式EFM−III−EN)を用いて、JIS K7218に準拠して、速度2.0m/秒、荷重25MPa、時間360分、相手材料SS400の条件で摩耗量を測定した。摩耗量が少ないほど、耐摩耗性に優れている。
-Evaluation of wear resistance-
A compression molded product made of ultra-high molecular weight polyethylene was cut by a planing machine to prepare a compression molded product of a round bar having a diameter of 5 mm and a height of 8 mm as a test sample, and a friction wear tester (Orientec Co., Ltd.) was used. , Model EFM-III-EN), the amount of wear was measured according to JIS K7218 under the conditions of a speed of 2.0 m/sec, a load of 25 MPa, a time of 360 minutes, and a mating material SS400. The smaller the amount of wear, the better the wear resistance.
製造例1
(1)有機変性粘土の調製
1リットルのフラスコに工業用アルコール(日本アルコール販売社製、(商品名)エキネンF−3)300ml及び蒸留水300mlを入れ、濃塩酸15.0g及びジオレイルメチルアミン(ライオン(株)製、(商品名)アーミンM20)64.2g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製、(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mlで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより160gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を7μmとした。
Production example 1
(1) Preparation of organically modified clay Into a 1-liter flask, 300 ml of industrial alcohol (manufactured by Nippon Alcohol Sales Co., (trade name) Ekinen F-3) and 300 ml of distilled water were placed, and 15.0 g of concentrated hydrochloric acid and dioleylmethylamine. (Lion Co., Ltd., (brand name) Armin M20) 64.2 g (120 mmol) was added and heated to 45° C. to disperse 100 g of synthetic hectorite (Rockwood Additives, (brand name) Laponite RDS). After that, the temperature was raised to 60° C. and the mixture was stirred for 1 hour while maintaining the temperature. This slurry was filtered, washed twice with 600 ml of water at 60° C., and dried in a dryer at 85° C. for 12 hours to obtain 160 g of organically modified clay. The organically modified clay was pulverized by a jet mill to have a median diameter of 7 μm.
(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライドを0.795g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.7wt%)。
(2) Preparation of suspension of catalyst for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added, and then 0.795 g of diphenylmethylene(4-phenyl-1-indenyl)(2,7-di-t-butyl-9-fluorenyl)zirconium dichloride and 142 ml of 20% triisobutylaluminum were added and stirred at 60° C. for 3 hours. did. After cooling to 45° C., the supernatant was taken out and washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid content: 11.7 wt %).
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を356mg(固形分41.7mg相当)加え、40℃にした後、分圧が1.6MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで37.1gの超高分子量ポリエチレン粒子(1)を得た(活性:890g/g触媒)。得られた超高分子量ポリエチレン粒子(1)の物性は表1に示す。
(3) Production of Ultra High Molecular Weight Polyethylene Particles 1.2 liters of hexane, 1.0 ml of 20% triisobutylaluminum, and 356 mg of suspension of the polyethylene production catalyst obtained in (2) in an autoclave of 2 liters. (Solid content: 41.7 mg) was added, and the mixture was heated to 40° C., and ethylene was continuously supplied so that the partial pressure became 1.6 MPa to carry out slurry polymerization of ethylene. After 180 minutes, the pressure was released, the slurry was filtered off, and then dried to obtain 37.1 g of ultrahigh molecular weight polyethylene particles (1) (activity: 890 g/g catalyst). The physical properties of the obtained ultra high molecular weight polyethylene particles (1) are shown in Table 1.
製造例2
(1)有機変性粘土の調製及び(2)ポリエチレン製造用触媒の懸濁液の調製
製造例1と同様に実施した。
Production example 2
(1) Preparation of Organically Modified Clay and (2) Preparation of Polyethylene Production Catalyst Suspension It was carried out in the same manner as in Production Example 1.
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を326mg(固形分38.2mg相当)加え、30℃にした後、プロピレン5gを加え、分圧が1.6MPaになるようにエチレンを連続的に供給し、スラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで35.1gの超高分子量ポリエチレン粒子(2)を得た(活性:920g/g触媒)。得られた超高分子量ポリエチレン粒子(2)の物性は表1に示す。
(3) Production of ultra-high molecular weight polyethylene particles In a 2 liter autoclave, 1.2 liter of hexane, 1.0 ml of 20% triisobutylaluminum, and 326 mg of a suspension of the polyethylene production catalyst obtained in (2) ( Solid content (corresponding to 38.2 mg) was added, the mixture was heated to 30° C., 5 g of propylene was added, and ethylene was continuously supplied so that the partial pressure became 1.6 MPa to carry out slurry polymerization. After 180 minutes, the pressure was released, the slurry was filtered off, and dried to obtain 35.1 g of ultrahigh molecular weight polyethylene particles (2) (activity: 920 g/g catalyst). The physical properties of the ultra high molecular weight polyethylene particles (2) thus obtained are shown in Table 1.
製造例3
(1)有機変性粘土の調製
製造例1と同様に実施した。
Production Example 3
(1) Preparation of organically modified clay It was carried out in the same manner as in Production Example 1.
(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(シクロペンタジエニル)(2−(ジメチルアミノ)−9−フルオレニル)ジルコニウムジクロライドを0.600g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:11.5wt%)。
(2) Preparation of suspension of catalyst for polyethylene production After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added, and then 0.600 g of diphenylmethylene(cyclopentadienyl)(2-(dimethylamino)-9-fluorenyl)zirconium dichloride and 142 ml of 20% triisobutylaluminum were added and stirred at 60° C. for 3 hours. After cooling to 45° C., the supernatant was taken out, washed twice with 200 ml of hexane, and 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid content: 11.5 wt %).
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を89.9mg(固形分10.3mg相当)加え、50℃に昇温後、1−ブテン1.2gを加え、分圧が1.1MPaになるようにエチレンを連続的に供給しスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで70.2gの超高分子量ポリエチレン粒子(3)を得た(活性:6800g/g触媒)。得られた超高分子量ポリエチレン粒子(3)の物性は表1に示す。
(3) Production of ultra-high molecular weight polyethylene particles In a 2 liter autoclave, 1.2 liter of hexane, 1.0 ml of 20% triisobutylaluminum, and a suspension of the polyethylene production catalyst obtained in (2) of 89. After adding 9 mg (equivalent to a solid content of 10.3 mg) and raising the temperature to 50° C., 1.2 g of 1-butene was added, and ethylene was continuously supplied so that the partial pressure became 1.1 MPa to carry out slurry polymerization. After 180 minutes, the pressure was released, the slurry was filtered off, and then dried to obtain 70.2 g of ultrahigh molecular weight polyethylene particles (3) (activity: 6800 g/g catalyst). The physical properties of the obtained ultra high molecular weight polyethylene particles (3) are shown in Table 1.
製造例4
(1)有機変性粘土の調製
1リットルのフラスコに工業用アルコール(日本アルコール販売製、(商品名)エキネンF−3)300ml及び蒸留水300mlを入れ、濃塩酸15.0g及びジメチルベヘニルアミン(ライオン(株)製、(商品名)アーミンDM22D)42.4g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製、(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mlで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより125gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を7μmとした。
Production Example 4
(1) Preparation of organically modified clay Into a 1-liter flask, 300 ml of industrial alcohol (manufactured by Nippon Alcohol Co., Ltd. (trade name) Ekinen F-3) and 300 ml of distilled water were placed, and 15.0 g of concentrated hydrochloric acid and dimethylbehenylamine (lion After adding 42.4 g (120 mmol) of (trade name) Armin DM22D manufactured by Co., Ltd. and heating to 45° C. to disperse 100 g of synthetic hectorite (Rockwood Additives, trade name: Laponite RDS). The temperature was raised to 60° C. and the mixture was stirred for 1 hour while maintaining the temperature. This slurry was filtered, washed twice with 600 ml of water at 60° C., and dried in a dryer at 85° C. for 12 hours to obtain 125 g of organically modified clay. The organically modified clay was pulverized by a jet mill to have a median diameter of 7 μm.
(2)ポリエチレン製造用触媒の懸濁液の調製
温度計と還流管が装着された300mlのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108ml入れ、次いでジフェニルメチレン(シクロペンタジエニル)(2−(ジエチルアミノ)−9−フルオレニル)ハフニウムジクロライドを0.715g、及び20%トリイソブチルアルミニウム142mlを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mlのヘキサンにて2回洗浄後、ヘキサンを200ml加えてポリエチレン製造用触媒の懸濁液を得た(固形重量分:12.9wt%)。
(2) Preparation of suspension of catalyst for producing polyethylene After replacing a 300 ml flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 ml of hexane were added, and then 0.715 g of diphenylmethylene(cyclopentadienyl)(2-(diethylamino)-9-fluorenyl)hafnium dichloride and 142 ml of 20% triisobutylaluminum were added and stirred at 60° C. for 3 hours. After cooling to 45° C., the supernatant was taken out, washed twice with 200 ml of hexane, and then 200 ml of hexane was added to obtain a suspension of a catalyst for producing polyethylene (solid content: 12.9 wt %).
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を108.7mg(固形分14.0mg相当)加え、60℃に昇温後、分圧が1.3MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで115gの超高分子量ポリエチレン粒子(4)を得た(活性:8200g/g触媒)。得られた超高分子量ポリエチレン粒子(4)の物性は表1に示す。
(3) Production of ultra-high molecular weight polyethylene particles In a 2 liter autoclave, 1.2 liter of hexane, 1.0 ml of 20% triisobutylaluminum, and 108. of the suspension of the polyethylene production catalyst obtained in (2). After adding 7 mg (corresponding to a solid content of 14.0 mg), the temperature was raised to 60° C., and ethylene was continuously supplied so that the partial pressure became 1.3 MPa to carry out slurry polymerization of ethylene. After 180 minutes, the pressure was released, the slurry was filtered off, and dried to obtain 115 g of ultrahigh molecular weight polyethylene particles (4) (activity: 8200 g/g catalyst). The physical properties of the obtained ultra high molecular weight polyethylene particles (4) are shown in Table 1.
製造例5
(1)有機変性粘土の調製及び(2)ポリエチレン製造用触媒の懸濁液の調製
製造例4と同様に実施した。
Production Example 5
(1) Preparation of organically modified clay and (2) Preparation of suspension of catalyst for producing polyethylene The same procedure as in Production Example 4 was carried out.
(3)超高分子量ポリエチレン粒子の製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(2)で得られたポリエチレン製造用触媒の懸濁液を87.7mg(固形分11.3mg相当)加え、60℃に昇温後、水素を40ppm含む水素/エチレン混合ガスを分圧が1.2MPaになるように供給し、その後、分圧が1.3MPaになるようにエチレンを連続的に供給し、エチレンのスラリー重合を行った。180分経過後に脱圧し、スラリーを濾別後、乾燥することで86gの超高分子量ポリエチレン粒子(5)を得た(活性:7600g/g触媒)。得られた超高分子量ポリエチレン粒子(5)の物性は表1に示す。
(3) Production of ultra high molecular weight polyethylene particles In a 2 liter autoclave, 1.2 liter of hexane, 1.0 ml of 20% triisobutylaluminum, and a suspension of the polyethylene production catalyst obtained in (2) of 87. After adding 7 mg (corresponding to 11.3 mg of solid content) and raising the temperature to 60° C., a hydrogen/ethylene mixed gas containing 40 ppm of hydrogen was supplied so that the partial pressure was 1.2 MPa, and then the partial pressure was 1.3 MPa. Ethylene was continuously fed so that ethylene was slurry-polymerized. After 180 minutes, the pressure was released, the slurry was filtered off, and dried to obtain 86 g of ultrahigh molecular weight polyethylene particles (5) (activity: 7600 g/g catalyst). The physical properties of the obtained ultra high molecular weight polyethylene particles (5) are shown in Table 1.
製造例6
(1)固体触媒成分の調製
温度計と還流管が装着された1リットルのガラスフラスコに、金属マグネシウム粉末50g(2.1モル)およびチタンテトラブトキシド210g(0.62モル)を入れ、ヨウ素2.5gを溶解したn−ブタノール320g(4.3モル)を90℃で2時間かけて加え、さらに発生する水素ガスを排除しながら窒素シール下において140℃で2時間撹拌し、均一溶液とした。次いで、ヘキサン2100mlを加えた。
Production Example 6
(1) Preparation of solid catalyst component In a 1 liter glass flask equipped with a thermometer and a reflux tube, 50 g (2.1 mol) of magnesium metal powder and 210 g (0.62 mol) of titanium tetrabutoxide were placed, and iodine 2 was added. 320 g (4.3 mol) of n-butanol in which 0.5 g was dissolved was added at 90° C. over 2 hours, and the mixture was stirred at 140° C. for 2 hours under a nitrogen blanket while eliminating generated hydrogen gas to obtain a uniform solution. .. Then, 2100 ml of hexane was added.
この成分90g(マグネシウムで0.095モルに相当)を別途用意した500mlのガラスフラスコに入れ、ヘキサン59mlで希釈した。45℃でイソブチルアルミニウムジクロライド0.29モルを含むヘキサン溶液106mlを2時間かけて滴下し、さらに70℃で1時間撹拌し、固体触媒成分を得た。ヘキサンを用いて傾斜法により残存する未反応物および副生成物を除去し、組成を分析したところチタニウム含有量は8.6wt%であった。 90 g of this component (corresponding to 0.095 mol in magnesium) was placed in a separately prepared 500 ml glass flask and diluted with 59 ml of hexane. 106 ml of a hexane solution containing 0.29 mol of isobutylaluminum dichloride was added dropwise at 45°C over 2 hours, and further stirred at 70°C for 1 hour to obtain a solid catalyst component. The remaining unreacted materials and byproducts were removed by a gradient method using hexane, and the composition was analyzed. As a result, the titanium content was 8.6 wt %.
(2)超高分子量ポリエチレンの製造
2リットルのオートクレーブにヘキサンを1.2リットル、20%トリイソブチルアルミニウムを1.0ml、(1)で得られた固体触媒成分を4.2mg加え、85℃に昇温後、分圧が0.6MPaになるようにエチレンを連続的に供給した。90分経過後に脱圧し、スラリーを濾別後、乾燥することで180gの超高分子量ポリエチレン(6)を得た(活性:54000g/g触媒)。得られた超高分子量ポリエチレン(6)の物性は表1に示す。
(2) Production of ultra high molecular weight polyethylene To a 2 liter autoclave, 1.2 liter of hexane, 1.0 ml of 20% triisobutylaluminum, and 4.2 mg of the solid catalyst component obtained in (1) were added, and the mixture was heated to 85°C. After the temperature was raised, ethylene was continuously supplied so that the partial pressure became 0.6 MPa. After 90 minutes, the pressure was released, the slurry was filtered off, and dried to obtain 180 g of ultrahigh molecular weight polyethylene (6) (activity: 54000 g/g catalyst). The physical properties of the obtained ultra high molecular weight polyethylene (6) are shown in Table 1.
実施例1
製造例1で製造した超高分子量ポリエチレン粒子(1)を、15cm角の金型に充填し、190℃で予備加熱した後、プレス圧力を20MPaにして20分間、プレス成形した。その後、110℃、プレス圧力10MPaで10分間冷却し、厚さ10mmの平板状シートである超高分子量ポリエチレン製圧縮成形体を作成した。得られたシートの溶融延伸した際の破断応力、引張強度、耐摩耗性を表2に示す。
Example 1
The ultra-high molecular weight polyethylene particles (1) produced in Production Example 1 were filled in a 15 cm square die and preheated at 190° C., and then the press pressure was set to 20 MPa, and press molding was performed for 20 minutes. Then, it was cooled at 110° C. and a press pressure of 10 MPa for 10 minutes to prepare a compression molded body made of ultra-high molecular weight polyethylene, which is a flat sheet having a thickness of 10 mm. Table 2 shows the breaking stress, tensile strength, and abrasion resistance of the obtained sheet when melt-stretched.
比較例1
超高分子量ポリエチレン粒子(1)の代りに、製造例6で製造した超高分子量ポリエチレン(6)を用いた以外は、実施例1と同様の方法により圧縮成形体を製造した。得られたシートの溶融延伸時の破断応力、引張強度、耐摩耗性を表2に示す。溶融延伸した際の破断応力、引張強度、耐摩耗性のいずれもが劣るものであった。
Comparative Example 1
A compression molded article was produced in the same manner as in Example 1 except that the ultra high molecular weight polyethylene (6) produced in Production Example 6 was used in place of the ultra high molecular weight polyethylene particles (1). Table 2 shows the breaking stress, tensile strength, and abrasion resistance of the obtained sheet during melt drawing. The breaking stress, the tensile strength, and the abrasion resistance when melt-drawn were inferior.
実施例2
超高分子量ポリエチレン粒子(1)の代りに、製造例2で製造した超高分子量ポリエチレン粒子(2)を用い、200℃で予備加熱した後、圧力を15MPaにして30分間、プレス成形した以外は、実施例1と同様の方法により厚さ15mmの平板状シートである超高分子量ポリエチレン製圧縮成形体を製造した。得られたシートの溶融延伸したときの破断応力、引張強度、耐摩耗性を表2に示す。
Example 2
Ultrahigh molecular weight polyethylene particles (1) were used in place of the ultrahigh molecular weight polyethylene particles (1), preheated at 200° C., and then press-molded at a pressure of 15 MPa for 30 minutes. In the same manner as in Example 1, a compression molded body made of ultra-high molecular weight polyethylene, which is a flat sheet having a thickness of 15 mm, was manufactured. Table 2 shows the breaking stress, tensile strength, and abrasion resistance of the obtained sheet when melt-stretched.
実施例3
超高分子量ポリエチレン粒子(2)の代りに、製造例3で製造した超高分子量ポリエチレン粒子(3)を用いた以外は、実施例2と同様の方法により平板状シートである超高分子量ポリエチレン製圧縮成形体を製造した。得られたシートの溶融延伸したときの破断応力、引張強度、耐摩耗性を表2に示す。
Example 3
A flat sheet made of ultra high molecular weight polyethylene, which is a flat sheet, was prepared in the same manner as in Example 2 except that the ultra high molecular weight polyethylene particles (3) produced in Production Example 3 were used in place of the ultra high molecular weight polyethylene particles (2). A compression molded body was produced. Table 2 shows the breaking stress, tensile strength, and abrasion resistance of the obtained sheet when melt-stretched.
比較例2
超高分子量ポリエチレン粒子(3)の代りに、市販超高分子量ポリエチレンである(商品名)ハイゼックスミリオン240M(三井化学製)を用いた以外は、実施例3と同様の方法により圧縮成形体を製造した。得られたシートの溶融延伸時の破断応力、引張強度、伸びを表2に示す。溶融延伸した際の破断応力、引張強度、耐摩耗性のいずれもが劣るものであった。
Comparative example 2
A compression molded product was produced by the same method as in Example 3 except that commercially available ultrahigh molecular weight polyethylene (trade name) HYZEX Million 240M (manufactured by Mitsui Chemicals) was used in place of the ultrahigh molecular weight polyethylene particles (3). did. Table 2 shows the breaking stress, the tensile strength and the elongation at the time of melt drawing of the obtained sheet. The breaking stress, the tensile strength, and the abrasion resistance when melt-drawn were inferior.
実施例4
超高分子量ポリエチレン粒子(5)を、15cm角の金型に充填し、80℃、プレス圧力10MPaで10分間圧縮成形した後、210℃、プレス圧力30MPaで15分間、プレス成形した。その後、110℃、プレス圧力10MPaで20分間冷却し、厚さ20mmの平板状シートである超高分子量ポリエチレン製圧縮成形体を作成した。得られたシートの溶融延伸したときの破断応力、引張強度、耐摩耗性を表2に示す。
Example 4
The ultrahigh molecular weight polyethylene particles (5) were filled in a 15 cm square mold, compression-molded at 80° C. and a pressing pressure of 10 MPa for 10 minutes, and then press-molded at 210° C. and a pressing pressure of 30 MPa for 15 minutes. Then, it was cooled at 110° C. and a press pressure of 10 MPa for 20 minutes to prepare an ultrahigh molecular weight polyethylene compression-molded body which was a flat sheet having a thickness of 20 mm. Table 2 shows the breaking stress, tensile strength, and abrasion resistance of the obtained sheet when melt-stretched.
実施例5
超高分子量ポリエチレン粒子(5)を、15cm角の金型に充填し、100℃、プレス圧力10MPaで10分間圧縮成形した後、200℃、プレス圧力20MPaで30分間、プレス成形した。その後、80℃、プレス圧力10MPaで15分間冷却し、厚さ20mmの平板状シートである超高分子量ポリエチレン製圧縮成形体を作成した。得られたシートの溶融延伸したときの破断応力、引張強度、耐摩耗性を表2に示す。
Example 5
Ultra-high molecular weight polyethylene particles (5) were filled in a 15 cm square mold, compression-molded at 100° C. and a press pressure of 10 MPa for 10 minutes, and then press-molded at 200° C. and a press pressure of 20 MPa for 30 minutes. Then, it was cooled at 80° C. and a press pressure of 10 MPa for 15 minutes to prepare an ultrahigh molecular weight polyethylene compression molded body which was a flat sheet having a thickness of 20 mm. Table 2 shows the breaking stress, tensile strength, and abrasion resistance of the obtained sheet when melt-stretched.
本発明によって得られる超高分子量ポリエチレン製圧縮成形体は、強度、耐熱性、耐摩耗性に優れることから、産業用機械等の軸受部材、摺動部材、研磨材、各種テープ、スキー等のスポーツ用品のライニング等の各種用途に利用可能である。 The ultra-high-molecular-weight polyethylene compression-molded product obtained by the present invention is excellent in strength, heat resistance, and wear resistance, so that it can be used as a bearing member for industrial machines, sliding members, abrasives, various tapes, sports such as skis. It can be used for various purposes such as lining of products.
Claims (3)
(1)固有粘度([η])が15dl/g以上60dl/g以下、
(2)チタンの含有量が0.2ppm以下又は測定検出限界以下である。
(3)引張破断強度(TS(MPa))が40MPa以上である。 An ultrahigh molecular weight polyethylene melt compression molded article characterized by satisfying at least any of the following characteristics (1), (2) and (3) .
(1) The intrinsic viscosity ([η]) is 15 dl/g or more and 60 dl/g or less,
(2) The content of titanium is 0.2 ppm or less or the measurement detection limit or less.
(3) Tensile breaking strength (TS (MPa)) is 40 MPa or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018078060A JP6705467B2 (en) | 2018-04-16 | 2018-04-16 | Ultra high molecular weight polyethylene compression molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018078060A JP6705467B2 (en) | 2018-04-16 | 2018-04-16 | Ultra high molecular weight polyethylene compression molding |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014013257A Division JP6357781B2 (en) | 2014-01-28 | 2014-01-28 | Ultra high molecular weight polyethylene compression molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018115341A JP2018115341A (en) | 2018-07-26 |
JP6705467B2 true JP6705467B2 (en) | 2020-06-03 |
Family
ID=62985206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018078060A Active JP6705467B2 (en) | 2018-04-16 | 2018-04-16 | Ultra high molecular weight polyethylene compression molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6705467B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109847107B (en) * | 2019-01-28 | 2021-09-03 | 湖南博隽生物医药有限公司 | Medical artificial joint material and preparation method thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0570519A (en) * | 1991-09-17 | 1993-03-23 | Tosoh Corp | Production of ultrahigh-molecular-weight polyethylene |
US5721334A (en) * | 1996-02-16 | 1998-02-24 | Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom |
JPH09291112A (en) * | 1996-04-25 | 1997-11-11 | Tosoh Corp | Ultrahigh-molecular-weight ethylene polymer, powder thereof, process for preparing the same |
JPH10119070A (en) * | 1996-10-18 | 1998-05-12 | Sekisui Chem Co Ltd | Manufacture of resin molding of poor moldability |
JP4786065B2 (en) * | 2001-06-18 | 2011-10-05 | 三井化学株式会社 | Ultra high molecular weight polyethylene resin composition for cutting film, thick molded body for cutting film, method for producing ultra high molecular weight polyethylene cutting film, and cutting film |
CN100368173C (en) * | 2001-10-12 | 2008-02-13 | 斯蒂茨丁荷兰聚合物学会 | Process to sinter ultra high molecular weight polyethylene |
WO2004081064A1 (en) * | 2003-03-10 | 2004-09-23 | Asahi Kasei Chemicals Corporation | Ultrahigh-molecular ethylene polymer |
JP2005314544A (en) * | 2004-04-28 | 2005-11-10 | Asahi Kasei Chemicals Corp | Ultra-high-molecular-weight polyethylene resin composition and molded article made thereof |
JP5196752B2 (en) * | 2005-09-16 | 2013-05-15 | 東レバッテリーセパレータフィルム株式会社 | Polyethylene microporous membrane, method for producing the same, and battery separator |
JP5302534B2 (en) * | 2007-12-21 | 2013-10-02 | 旭化成ケミカルズ株式会社 | Ultra high molecular weight polyolefin sheet and method for producing the same |
JP2011144297A (en) * | 2010-01-15 | 2011-07-28 | Mitsui Chemicals Inc | Ethylene polymer, method for producing the same, and molded form including the polymer |
-
2018
- 2018-04-16 JP JP2018078060A patent/JP6705467B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018115341A (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6572520B2 (en) | Ultra high molecular weight polyethylene particles and molded articles comprising the same | |
KR102330629B1 (en) | Ultrahigh molecular weight polyethylene stretched porous film | |
JP6711022B2 (en) | Ultra high molecular weight polyethylene porous sintered body | |
JP2015081335A (en) | Ultrahigh molecular weight polyethylene particle body and molded body comprising the same | |
JP6357781B2 (en) | Ultra high molecular weight polyethylene compression molding | |
JP2017165938A (en) | Ultrahigh molecular weight polyethylene composition-made separator | |
JP2018145412A (en) | Ultra-high-molecular-weight polyethylene particle and molded body consisting of the same | |
JP6364774B2 (en) | Ultra high molecular weight polyethylene particles and molded articles comprising the same | |
JP6252322B2 (en) | Stretched microporous membrane made of ultrahigh molecular weight polyethylene composition | |
JP6686530B2 (en) | Ultrahigh molecular weight polyethylene composition and stretched microporous membrane comprising the same | |
JP6705467B2 (en) | Ultra high molecular weight polyethylene compression molding | |
JP6604398B2 (en) | Ultra high molecular weight polyethylene rolled compact | |
JP2015071737A (en) | Ultra-high molecular weight polyethylene particle and molded body composed of the same | |
JP6699258B2 (en) | Separator | |
JP6521027B2 (en) | Ultra-high molecular weight polyethylene copolymer | |
JP6349843B2 (en) | Ultra high molecular weight polyethylene rolled compact | |
JP6318649B2 (en) | Ultra high molecular weight polyethylene composition and molded article comprising the same | |
JP6747468B2 (en) | Ultra high molecular weight polyethylene cutting molding | |
JP6357820B2 (en) | Cutting film made of ultra high molecular weight polyethylene | |
JP6590020B2 (en) | Cutting film made of ultra high molecular weight polyethylene | |
JP7192212B2 (en) | Ultra high molecular weight polyethylene copolymer | |
JP6357819B2 (en) | Ultra high molecular weight polyethylene cutting | |
JP6405888B2 (en) | Ultra high molecular weight polyethylene composition and molded article comprising the same | |
JP2017145386A (en) | Ultrahigh-molecular weight polyethylene composition and drawn microporous film comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200427 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6705467 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |