JP6705245B2 - Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody - Google Patents

Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody Download PDF

Info

Publication number
JP6705245B2
JP6705245B2 JP2016062541A JP2016062541A JP6705245B2 JP 6705245 B2 JP6705245 B2 JP 6705245B2 JP 2016062541 A JP2016062541 A JP 2016062541A JP 2016062541 A JP2016062541 A JP 2016062541A JP 6705245 B2 JP6705245 B2 JP 6705245B2
Authority
JP
Japan
Prior art keywords
antibody
reagent
human
tgab
thyroglobulin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016062541A
Other languages
Japanese (ja)
Other versions
JP2017173266A (en
Inventor
信之 河合
信之 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016062541A priority Critical patent/JP6705245B2/en
Publication of JP2017173266A publication Critical patent/JP2017173266A/en
Application granted granted Critical
Publication of JP6705245B2 publication Critical patent/JP6705245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、体外診断薬等に使用される抗サイログロブリン抗体測定免疫反応試薬の製造方法であって、固相に固定化するサイログロブリンを精製することにより、測定再現性及び測定感度を向上させるものである。 The present invention is a method for producing an anti-thyroglobulin antibody measuring immunoreaction reagent used for in vitro diagnostics and the like, which improves measurement reproducibility and measurement sensitivity by purifying thyroglobulin immobilized on a solid phase. is there.

サイログロブリン(以下、Tg)は分子量約66万の糖蛋白質で甲状腺ホルモンの合成の場として機能している。このTgに対する自己抗体すなわち抗サイログロブリン抗体(以下、TgAb)がバセドウ病や橋本病等の自己免疫性甲状腺疾患に関係することは従来から知られており、TgAbの測定は抗マイクロゾーム抗体とともにこれらの疾患の診断、治療の指標として広く用いられている。またTgAbは甲状腺疾患以外の自己免疫疾患に対して陽性を示すという報告もある。TgAbの測定には凝集法を測定原理とした半定量法が行われていたが、感度や特異性の点で十分ではなかった。そこで、ラジオイムノアッセイ(RIA法)やエンザイムイムノアッセイ(EIA法)、化学発光酵素免疫測定法(CLEIA法)、化学発光免疫測定法(CLIA法)等の定量法が報告されTgAb定量の有用性が明らかとなってきた。 Thyroglobulin (hereinafter, Tg) is a glycoprotein having a molecular weight of about 660,000 and functions as a site for thyroid hormone synthesis. It is conventionally known that this autoantibody against Tg, that is, an anti-thyroglobulin antibody (hereinafter, TgAb) is related to autoimmune thyroid diseases such as Graves' disease and Hashimoto's disease, and the measurement of TgAb together with anti-microsomal antibody It is widely used as an index for diagnosis and treatment of diseases. There is also a report that TgAb is positive for autoimmune diseases other than thyroid disease. A semi-quantitative method using an agglutination method as a measurement principle has been used for the measurement of TgAb, but it was not sufficient in terms of sensitivity and specificity. Therefore, quantitative methods such as radioimmunoassay (RIA method), enzyme immunoassay (EIA method), chemiluminescent enzyme immunoassay method (CLEIA method), and chemiluminescent immunoassay method (CLIA method) were reported, and the usefulness of TgAb quantification was clarified. Has become.

この免疫測定法の測定原理は固相法であり、ヒトTg抗原と抗ヒトIgG抗体を用いた2ステップサンドイッチ法である。固相に固定化されたTgと検体にて第一免疫反応が開始される。一定時間・一定温度でインキュベートした後、洗浄水で未反応の検体成分を除去する(B/F分離)。B/F分離後、酵素標識抗ヒトIgG抗体を加えることにより第二免疫反応が開始される。一定時間・一定温度でインキュベートした後、洗浄水で未反応の酵素標識抗体を除去する(B/F分離)。この後、固相に結合した酵素活性を測定するために基質を添加し、蛍光物質や発光物質の生成速度もしくは蛍光強度や発光強度を測定することにより、検体中のTgAb濃度を知ることができる。 The measuring principle of this immunoassay is a solid phase method, which is a two-step sandwich method using a human Tg antigen and an anti-human IgG antibody. The first immune reaction is initiated with the Tg immobilized on the solid phase and the sample. After incubating for a fixed time at a constant temperature, unreacted sample components are removed with washing water (B/F separation). After B/F separation, a second immune reaction is started by adding an enzyme-labeled anti-human IgG antibody. After incubating for a certain time at a certain temperature, unreacted enzyme-labeled antibody is removed with washing water (B/F separation). After that, a substrate is added to measure the enzyme activity bound to the solid phase, and the production rate of the fluorescent substance or the luminescent substance or the fluorescence intensity or the emission intensity is measured, whereby the TgAb concentration in the sample can be known. ..

この固相抗原に使用されるTg抗原は、遺伝子組み換え(リコンビナント)蛋白質ではなく、ヒト由来の蛋白質が用いられている。 As the Tg antigen used for this solid-phase antigen, a human-derived protein is used instead of a gene recombinant (recombinant) protein.

ヒトTg抗原提供者がTgに対する自己抗体(TgAb)を有している場合、免疫反応試薬として作製する以前からTgにTgAbが結合していることとなる。固相抗原の原料として、このTgAbが結合したTgを用いると、本来の測定値よりも高値に測定されてしまう、もしくはバックグラウンド上昇により高感度に測定ができないといった現象が発生する。 When the human Tg antigen donor has an autoantibody (TgAb) against Tg, it means that TgAb is bound to Tg before it is prepared as an immunoreaction reagent. When this Tg bound to TgAb is used as a raw material for the solid phase antigen, a phenomenon occurs in which the measured value is higher than the original measured value, or the background cannot be measured with high sensitivity.

更に抗原提供者毎や提供時期毎にTgAb保有量が異なる場合、固相抗原の原料としてのTgの品質が一定しない。その結果、ロット間差や測定再現性の悪化といった現象が発生する。 Furthermore, when the amount of TgAb possessed differs depending on the antigen provider and the timing of provision, the quality of Tg as a raw material for solid phase antigen is not constant. As a result, phenomena such as lot difference and deterioration of measurement reproducibility occur.

以上のことから、ヒト由来Tgを固相抗原の原料とすることに起因して、TgAb測定にて高精度に測定することが妨げられることが問題となっていた。 From the above, it has been a problem that human-derived Tg is used as a raw material for a solid-phase antigen, which hinders highly accurate TgAb measurement.

臨床検査の分野において、TgAbを高精度に測定するために、測定時におけるバックグラウンド上昇の抑制、ロット間差の抑制、測定再現性が同時に求められている。 In the field of clinical examination, in order to measure TgAb with high accuracy, suppression of background rise during measurement, suppression of difference between lots, and reproducibility of measurement are required at the same time.

そこで本発明の目的は、効果的にバックグラウンド上昇を抑制することができ、ロット間差を抑制することができ、かつ測定再現性が良好となる体外診断薬等に使用されるTgAb測定免疫反応試薬の製造方法を提供することである。 Therefore, an object of the present invention is to effectively suppress background rise, to suppress difference between lots, and to improve the reproducibility of measurement. It is to provide a method for producing a reagent.

本発明者らは、前記課題を解決すべく鋭意検討を行なった結果、ヒト由来Tgに結合している抗体を除去することによってTgを精製することにより、バックグラウンド上昇の抑制とロット間差の抑制と測定再現性が共に良好であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors purified Tg by removing the antibody bound to human-derived Tg, thereby suppressing the background increase and reducing lot-to-lot differences. The inventors have found that both suppression and measurement reproducibility are good, and have completed the present invention.

即ち本発明は以下のとおりである。
(1)ヒト由来Tgをアフィニティー精製し、得られたTgを使用してTgAb測定免疫反応試薬を製造することを特徴とする、免疫反応試薬の製造方法。
(2)アフィニティー精製がProtein A、Protein G及びProtein Lから選ばれた1種類又は2種類以上の組み合わせで行われる、(1)に記載の製造方法。
(3)アフィニティー精製して得られたTgを固相に固定化する工程を有する、(1)又は(2)に記載の製造方法。
(4)ヒト由来Tgを固相に固定化した後にアフィニティー精製する、(1)又は(2)に記載の製造方法。
That is, the present invention is as follows.
(1) A method for producing an immune reaction reagent, which comprises subjecting human-derived Tg to affinity purification, and using the obtained Tg to produce a TgAb measurement immune reaction reagent.
(2) The production method according to (1), wherein the affinity purification is performed with one kind or a combination of two or more kinds selected from Protein A, Protein G and Protein L.
(3) The production method according to (1) or (2), which has a step of immobilizing Tg obtained by affinity purification on a solid phase.
(4) The production method according to (1) or (2), wherein human-derived Tg is immobilized on a solid phase and then affinity-purified.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に用いられるヒト由来Tgは、ヒトから提供されたものである。そのため、Tgに対する自己抗体であるTgAbが結合している場合がある。 The human-derived Tg used in the present invention is provided by a human. Therefore, TgAb, which is an autoantibody against Tg, may be bound.

本発明において、ヒト由来Tgに結合している抗体の除去は、Protein A、Protein G、Protein L等が結合した樹脂や磁気ビーズを用いたアフィニティー精製により行われる。Protein A、Protein G、Protein L等の中から1種類を選択して使用してもよく、2種類以上を組み合わせて使用してもよい。このとき先にヒト由来Tgの精製を行い、次いで得られたTgの固相への固定化を行う場合には、アフィニティー精製は樹脂と磁気ビーズのいずれも使用することができる。磁性体を含むビーズや微粒子にヒト由来Tgを固定化した後に精製を行う場合には、アフィニティー精製は磁性体を含まない樹脂を使用することができる。磁性体を含まないビーズや微粒子にヒト由来Tgを固定化した後に精製を行う場合には、アフィニティー精製は磁気ビーズを使用することができる。 In the present invention, the removal of the antibody bound to human-derived Tg is performed by affinity purification using a resin to which Protein A, Protein G, Protein L, etc. are bound or magnetic beads. One type may be selected from Protein A, Protein G, Protein L and the like, or two or more types may be used in combination. At this time, when human-derived Tg is purified first and then the obtained Tg is immobilized on a solid phase, both resin and magnetic beads can be used for affinity purification. When human-derived Tg is immobilized on beads or fine particles containing a magnetic substance and then purified, a resin containing no magnetic substance can be used for affinity purification. When the human-derived Tg is immobilized on beads or fine particles that do not contain a magnetic substance and purification is performed, magnetic beads can be used for affinity purification.

このようにして精製されたTgを用いてTgAb測定免疫反応試薬を製造する。この試薬は例えば固相に固定化されたTgと酵素標識抗ヒトIgG抗体を有するものである。この免疫測定試薬の測定原理は固相法であり、ヒトTg抗原と抗ヒトIgG抗体を用いた2ステップサンドイッチ法である。固相に固定化されたTgと検体にて第一免疫反応が開始される。一定時間・一定温度でインキュベートした後、洗浄水で未反応の検体成分を除去する(B/F分離)。B/F分離後、酵素標識抗ヒトIgG抗体を加えることにより第二免疫反応が開始される。一定時間・一定温度でインキュベートした後、洗浄水で未反応の酵素標識抗体を除去する(B/F分離)。この後、固相に結合した酵素活性を測定するために基質を添加し、蛍光物質や発光物質の生成速度もしくは蛍光強度や発光強度を測定することにより、検体中のTgAb濃度を知ることができる。 The Tg thus purified is used to produce a TgAb measurement immunoreaction reagent. This reagent has, for example, Tg immobilized on a solid phase and an enzyme-labeled anti-human IgG antibody. The measuring principle of this immunoassay reagent is a solid phase method, which is a two-step sandwich method using a human Tg antigen and an anti-human IgG antibody. The first immune reaction is initiated with the Tg immobilized on the solid phase and the sample. After incubating for a fixed time at a constant temperature, unreacted sample components are removed with washing water (B/F separation). After B/F separation, a second immune reaction is started by adding an enzyme-labeled anti-human IgG antibody. After incubating for a certain time at a certain temperature, unreacted enzyme-labeled antibody is removed with washing water (B/F separation). After that, a substrate is added to measure the enzyme activity bound to the solid phase, and the production rate of the fluorescent substance or the luminescent substance or the fluorescence intensity or the emission intensity is measured, whereby the TgAb concentration in the sample can be known. ..

本発明において固相に固定化されたTgは、ビーズや微粒子などの固相担体に固定化したTgで、抗原抗体反応を行う溶液に不溶性のものを指すが、固相に直接Tgが結合していなくても、アビジン−酵素複合体を結合するためのビオチンを結合したTgで可溶性のものも含まれる。 In the present invention, Tg immobilized on a solid phase refers to Tg immobilized on a solid phase carrier such as beads or fine particles, which is insoluble in a solution in which an antigen-antibody reaction is carried out. If not, it also includes soluble Tg bound with biotin for binding an avidin-enzyme complex.

固相担体としては、ビーズや微粒子を使用することできる。特に微粒子が好ましく、ガラス、金属、セラミツクス等の無機物であってもよく、また高分子ポリマー等の有機物であってもよい。またそれらの微粒子は磁性体を含むものであってもよい。微粒子の粒子径は0.1から50μmが好ましく、さらには1から10μmが好ましい。 As the solid phase carrier, beads or fine particles can be used. Fine particles are particularly preferable, and they may be inorganic substances such as glass, metal and ceramics, or organic substances such as high molecular weight polymers. Further, those fine particles may contain a magnetic substance. The particle size of the fine particles is preferably 0.1 to 50 μm, more preferably 1 to 10 μm.

酵素標識抗ヒトIgG抗体は、酵素を結合した抗ヒトIgG抗体で、抗原抗体反応を行う溶液に可溶性のものを指すが、酵素を直接抗体に結合していなくても、アビジン−酵素複合体を結合するためのビオチンを結合した抗体で可溶性のものも含まれる。 The enzyme-labeled anti-human IgG antibody refers to an enzyme-conjugated anti-human IgG antibody that is soluble in a solution in which an antigen-antibody reaction is carried out. However, even if the enzyme is not directly bound to the antibody, an avidin-enzyme complex is generated. Also included are soluble biotin-conjugated antibodies for conjugation.

本発明における抗ヒトIgG抗体はポリクローナル抗体であっても、モノクローナル抗体であってもよく、抗体を産生する実際上任意の動物種、例えばウサギ、ヤギ、ヒツジ、ブタ、ウマ、マウスまたはラットなど由来の抗体が使用できる。抗体の形態には完全抗体や、それを酵素処理や化学処理により切断したF(ab’)やFab’等のような抗体断片であってもよい。 The anti-human IgG antibody in the present invention may be a polyclonal antibody or a monoclonal antibody, and is derived from virtually any animal species producing the antibody, for example, rabbit, goat, sheep, pig, horse, mouse or rat. Antibodies can be used. The form of the antibody may be a complete antibody or an antibody fragment such as F(ab′) 2 or Fab′ obtained by cleaving it with an enzyme treatment or a chemical treatment.

酵素としては特に限定されるものではないが、例えばアルカリ性ホスファターゼ、パーオキシダーゼ等があげられる。 The enzyme is not particularly limited, but examples thereof include alkaline phosphatase, peroxidase and the like.

本発明では、免疫反応試薬製造時に蛋白質を共存させてもよく、それらは特に限定されるものではないが、例えばウシ血清アルブミン、コラーゲンペプチド、カゼイン、カゼインナトリウム、スキムミルク等を使用することができる。0.1〜20%(重量/容量)の濃度範囲とすることが好ましく、特に1〜10%(重量/容量)の濃度範囲とすることが好ましい。また糖、緩衝液や塩類を共存させてもよく、それらは特に限定されるものではないが、糖であれば例えばスクロース、マンニトール、トレハロースやイノシトール等を使用することができる。緩衝液としては、例えばTris、MOPSO、MOPSやMES等を使用することができ、塩類としては、例えば塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化亜鉛等を使用することができる。なお、これら以外にも、必要に応じて他の試薬成分等を共存させることもできる。 In the present invention, a protein may be allowed to coexist during the production of the immunoreaction reagent, and they are not particularly limited, and for example, bovine serum albumin, collagen peptide, casein, casein sodium, skim milk and the like can be used. The concentration range of 0.1 to 20% (weight/volume) is preferable, and the concentration range of 1 to 10% (weight/volume) is particularly preferable. In addition, sugar, a buffer solution and salts may be coexistent, and they are not particularly limited, but sucrose, mannitol, trehalose, inositol and the like can be used as long as they are sugar. As the buffer solution, for example, Tris, MOPSO, MOPS, MES or the like can be used, and as the salt, for example, sodium chloride, potassium chloride, magnesium chloride, zinc chloride or the like can be used. In addition to these, other reagent components and the like may coexist as necessary.

このようにして、ヒト由来Tgを精製することにより、Tg提供者由来の自己抗体(TgAb)を除去し、その後に精製Tgを固相に固定化し、これを固相抗原とするTgAb測定免疫反応試薬を製造することができる。また、ヒト由来Tgを固相に固定化し、その後に精製することにより、Tg提供者由来の自己抗体(TgAb)を除去し、これを固相抗原とするTgAb測定免疫反応試薬を製造することができる。 In this way, by purifying human-derived Tg, autoantibodies (TgAb) derived from Tg donors are removed, and then purified Tg is immobilized on a solid phase, which is used as a solid-phase antigen. TgAb measurement immunoreaction Reagents can be manufactured. Further, by immobilizing human-derived Tg on a solid phase and then purifying it, an autoantibody (TgAb) derived from a Tg donor can be removed, and a TgAb measuring immunoreaction reagent using this as a solid-phase antigen can be produced. it can.

本発明によれば、効果的にバックグラウンド上昇を抑制することができ、ロット間差を抑制することができ、かつ測定再現性が良好となる体外診断薬等に使用されるTgAb測定免疫反応試薬を得ることが可能となる。例えば、本発明で得られたTgAb測定免疫反応試薬は精度よく測定することができるので、本発明によって高精度なTgAb測定も実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the TgAb measurement immunoreaction reagent used for the in-vitro diagnostic agent etc. which can suppress background rise effectively, can suppress the difference between lots, and has favorable measurement reproducibility. Can be obtained. For example, since the TgAb measurement immunoreaction reagent obtained in the present invention can be accurately measured, the present invention can also realize highly accurate TgAb measurement.

以下、実施例により本発明をさらに詳細に説明するが、本発明は本実施例により限定されるものではない。免疫測定装置として全自動エンザイムイムノアッセイ装置(AIA−CL2400、東ソー社製)と免疫測定用試薬として当該装置用免疫反応試薬を用い、2ステップサンドイッチ法により各測定を行った。なお、各免疫反応試薬は後述したようにして調製した。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the examples. Each measurement was carried out by a two-step sandwich method using a fully automatic enzyme immunoassay device (AIA-CL2400, manufactured by Tosoh Corporation) as an immunoassay device and an immunoreaction reagent for the device as an immunoassay reagent. In addition, each immunoreaction reagent was prepared as described below.

(実施例1)
ヒトTg抗原をProtein G樹脂にてアフィニティー精製を行い、精製Tgを得た。得られたTgを磁性微粒子(2.5μm)に固定化し、Tg固定化磁性微粒子を得た。このTg固定化磁性微粒子をウシ血清、コラーゲンペプチド、スクロース、塩化ナトリウムを含むTris緩衝液に加えて凍結乾燥を行った。一方、アルカリ性ホスファターゼ標識抗ヒトIgG抗体をコラーゲンペプチド、トレハロース、塩化マグネシウム、塩化亜鉛を含むTris緩衝液に加えて凍結乾燥を行った。
(Example 1)
Human Tg antigen was affinity-purified with Protein G resin to obtain purified Tg. The obtained Tg was immobilized on magnetic fine particles (2.5 μm) to obtain Tg-immobilized magnetic fine particles. The Tg-immobilized magnetic fine particles were added to a Tris buffer solution containing bovine serum, collagen peptide, sucrose and sodium chloride, and freeze-dried. On the other hand, alkaline phosphatase-labeled anti-human IgG antibody was added to a Tris buffer solution containing collagen peptide, trehalose, magnesium chloride and zinc chloride, and freeze-dried.

前記自動免疫測定装置で試薬に対して0濃度サンプル、血漿及び血清を測定し、アルカリ性ホスファターゼの基質である化学発光基質の発光強度を測定した。各サンプルは5回ずつ測定し、その平均値を測定値とした。0濃度サンプルの測定値と2SDを元に、低濃度検出限界(MDC)を算出した。血漿及び血清サンプルに関しては、その測定値を元に、濃度及び測定再現性を算出した。結果を表1に示す。 A zero-concentration sample, plasma, and serum were measured for the reagent with the above-mentioned automatic immunoassay device, and the luminescence intensity of a chemiluminescent substrate which is a substrate of alkaline phosphatase was measured. Each sample was measured 5 times, and the average value was used as the measured value. The low-concentration detection limit (MDC) was calculated based on the measured value of the 0-concentration sample and 2SD. For plasma and serum samples, concentration and measurement reproducibility were calculated based on the measured values. The results are shown in Table 1.

(実施例2)
ロットの異なるヒトTg抗原を使用した以外は、実施例1と同様の方法でTgを精製および試薬の調製を行った。前記自動免疫測定装置で試薬に対して、実施例1と同様の方法でサンプル測定を行った。結果を表1に示す。
(Example 2)
Tg was purified and reagents were prepared in the same manner as in Example 1 except that human Tg antigens in different lots were used. Sample measurement was performed on the reagent by the same method as in Example 1 using the automatic immunoassay device. The results are shown in Table 1.

(比較例1)
TgをProtein G樹脂にてアフィニティー精製を行わなかった以外は、実施例1と同一ロットのTgを用い、実施例1と同様の方法で試薬の調製を行った。前記自動免疫測定装置で試薬に対して、実施例1と同様の方法でサンプル測定を行った。結果を表1に示す。
(Comparative Example 1)
Reagents were prepared in the same manner as in Example 1, using the same lot of Tg as in Example 1 except that affinity purification of Tg was not performed with Protein G resin. Sample measurement was performed on the reagent by the same method as in Example 1 using the automatic immunoassay device. The results are shown in Table 1.

(比較例2)
実施例2と同一ロットのTgを用い、TgをProtein G樹脂にてアフィニティー精製を行わなかった以外は、実施例1と同様の方法で試薬の調製を行った。前記自動免疫測定装置で試薬に対して、実施例1と同様の方法でサンプル測定を行った。結果を表1に示す。
(Comparative example 2)
Reagents were prepared in the same manner as in Example 1 except that the same lot of Tg as in Example 2 was used and Tg was not affinity-purified with Protein G resin. Sample measurement was performed on the reagent by the same method as in Example 1 using the automatic immunoassay device. The results are shown in Table 1.

Figure 0006705245
0濃度サンプル品の発光強度(Count/sec.)は、比較例1の922に対して実施例1は136と、約800低減させる結果があり、低濃度検出限界(MDC)も0.368(IU/mL)から0.033(IU/mL)と10倍以上良好となる結果であった。また、比較例2の567に対して実施例2は164と、約400低減させる結果があり、低濃度検出限界(MDC)も0.243(IU/mL)から0.108(IU/mL)と2倍以上良好となる結果であった。さらに、比較例1と比較例2にておいては差が400以上ありロット間差が確認されたが、実施例1と実施例2にておいては差が30弱であり、ロット間差を抑制していることがわかる。
Figure 0006705245
The emission intensity (Count/sec.) of the 0-concentration sample product is 136 in Example 1 compared to 922 in Comparative Example 1, which is about 800, and the low-concentration detection limit (MDC) is 0.368 ( From IU/mL) to 0.033 (IU/mL), the result was 10 times or more favorable. In addition, Example 2 has a result of reducing by about 400 to 567 of Comparative Example 2 by 164, and the low concentration detection limit (MDC) is from 0.243 (IU/mL) to 0.108 (IU/mL). And the result was more than twice as good. Further, the difference between the lots was confirmed to be 400 or more between Comparative Example 1 and Comparative Example 2, but the difference between the lots was slightly less than 30 between Example 1 and Example 2, and the difference between lots was small. It can be seen that this is suppressed.

血漿及び血清サンプルの測定濃度の実施例1と実施例2の比較では、血漿サンプルで38.8(IU/mL)と37.0(IU/mL)、血清サンプルAで511.9(IU/mL)と489.7(IU/mL)、血清サンプルBで1,421.3(IU/mL)と1,443.5(IU/mL)であり、全てにおいて測定値の差は5%以内に収まっており、ロット間差を抑制していることがわかる。 Comparison of the measured concentrations of plasma and serum samples between Example 1 and Example 2 showed that plasma samples were 38.8 (IU/mL) and 37.0 (IU/mL) and serum sample A was 511.9 (IU/mL). mL) and 489.7 (IU/mL), and serum sample B is 1,421.3 (IU/mL) and 1,443.5 (IU/mL), and the difference between the measured values is within 5% in all cases. It can be seen that the difference between lots is suppressed.

血漿及び血清サンプルの測定再現性については、比較例1ではそれぞれ6.7%、4.8%、3.1%であるが、実施例1ではそれぞれ4.6%、1.3%、3.0%と全てのサンプルにおいて向上している結果であった。また、比較例2ではそれぞれ6.2%、2.5%、4.6%であるが、実施例2ではそれぞれ3.5%、2.3%、4.1%と全てのサンプルにおいて向上している結果であった。 The reproducibility of the plasma and serum samples was 6.7%, 4.8% and 3.1% in Comparative Example 1, respectively, but in Example 1, 4.6%, 1.3% and 3%, respectively. The result was an improvement of 0.0% in all the samples. Further, in Comparative Example 2, they are 6.2%, 2.5% and 4.6%, respectively, but in Example 2, they are 3.5%, 2.3% and 4.1%, respectively, which are improved in all the samples. It was the result.

以上の結果から、ヒト由来Tgを精製してTg提供者由来の自己抗体(TgAb)を除去することにより、免疫反応試薬の性能が向上したことを示している。 From the above results, it is shown that the performance of the immune reaction reagent was improved by purifying human-derived Tg and removing the autoantibody (TgAb) derived from the Tg provider.

Claims (1)

ヒト由来サイログロブリンをアフィニティー精製し、得られたサイログロブリンを使用して抗サイログロブリン抗体測定免疫反応試薬を製造する方法であって、アフィニティー精製がProtein A、Protein G及びProtein Lから選ばれた1種類又は2種類以上の組み合わせで行われるものであり、アフィニティー精製して得られたサイログロブリンを固相に固定化する工程を有し、かつ、抗サイログロブリン抗体測定免疫反応試薬が、固相に固定化されたサイログロブリンと酵素標識抗ヒトIgG抗体を有することを特徴とする、免疫反応試薬の製造方法。 A method for producing a human-derived thyroglobulin by affinity purification, and using the obtained thyroglobulin to produce an anti-thyroglobulin antibody assay immunoreaction reagent , wherein affinity purification is one or two selected from Protein A, Protein G and Protein L. It is carried out in a combination of more than one kind, has a step of immobilizing thyroglobulin obtained by affinity purification on a solid phase, and the anti-thyroglobulin antibody measurement immunoreaction reagent is a thyroglobulin immobilized on a solid phase And an enzyme-labeled anti-human IgG antibody .
JP2016062541A 2016-03-25 2016-03-25 Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody Active JP6705245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062541A JP6705245B2 (en) 2016-03-25 2016-03-25 Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062541A JP6705245B2 (en) 2016-03-25 2016-03-25 Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody

Publications (2)

Publication Number Publication Date
JP2017173266A JP2017173266A (en) 2017-09-28
JP6705245B2 true JP6705245B2 (en) 2020-06-03

Family

ID=59971949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062541A Active JP6705245B2 (en) 2016-03-25 2016-03-25 Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody

Country Status (1)

Country Link
JP (1) JP6705245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191913B2 (en) * 2019-10-29 2022-12-19 三洋化成工業株式会社 Immunoassay method and immunoassay kit

Also Published As

Publication number Publication date
JP2017173266A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US11169148B2 (en) Method for detecting test substance and reagent kit for detecting test substance
WO2017078119A1 (en) Reagent and method for cardiac troponin-i assay
US20220260557A1 (en) Methods for depletion and enrichment
KR20210049107A (en) Biomarker detection method
JP7138627B2 (en) Insulin measuring method and measuring reagent
JP2023521407A (en) Enrichment of antigen-specific antibodies for analytical and therapeutic use
CN117054645A (en) Thyroglobulin measurement method and measurement reagent
JP6705245B2 (en) Method for producing an immunoreaction reagent for measuring anti-thyroglobulin antibody
CN113711038B (en) Immunoassay method for free AIM in biological samples and method for detecting NASH in subjects
WO2020105700A1 (en) Antibody conjugate
CN113196057B (en) Method for detecting viral liver cancer
JPH0727764A (en) Antibody for immunological measurement blocking fc part, reagent for immunological measurement containing said antibody, immunological measuring method using said reagent for immunological measurement and block reagent blocking fc part
JP6697314B2 (en) Immunological assay for soluble interleukin-2 receptor
JP2015184125A (en) Immunoassay suppressing non-specific reaction
CN113728233B (en) Immunoassay method and assay kit for free AIM in biological samples
JP7268306B2 (en) Method for immunologically measuring substance to be measured in biological sample
JP7315966B2 (en) Immunological analysis method for free AIM in biological samples
JP2020148580A (en) Suppression of false high value in d-dimer measurement by additive
JPH0552845A (en) Reagent for immunoassay
JPH03197866A (en) Reagent for immune measurement having ability to make simultaneous decision of multiple items and immune measuring method for simultaneous decision of multiple items

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R151 Written notification of patent or utility model registration

Ref document number: 6705245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151