JP6704561B2 - Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method - Google Patents

Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method Download PDF

Info

Publication number
JP6704561B2
JP6704561B2 JP2017150308A JP2017150308A JP6704561B2 JP 6704561 B2 JP6704561 B2 JP 6704561B2 JP 2017150308 A JP2017150308 A JP 2017150308A JP 2017150308 A JP2017150308 A JP 2017150308A JP 6704561 B2 JP6704561 B2 JP 6704561B2
Authority
JP
Japan
Prior art keywords
groove
color
image
light
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017150308A
Other languages
Japanese (ja)
Other versions
JP2019025860A (en
Inventor
正義 平井
正義 平井
Original Assignee
合同会社ルミノカラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社ルミノカラー filed Critical 合同会社ルミノカラー
Priority to JP2017150308A priority Critical patent/JP6704561B2/en
Priority to PCT/JP2018/028515 priority patent/WO2019026863A2/en
Publication of JP2019025860A publication Critical patent/JP2019025860A/en
Application granted granted Critical
Publication of JP6704561B2 publication Critical patent/JP6704561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、装飾体並びにその装飾体を製造する装飾体製造装置及び装飾体製造方法に関する。
The present invention is decorative body and to decorative body manufacturing apparatus and ornamental body manufacturing method for manufacturing the decorative body.

従来、特許文献1及び特許文献2に記載の発明のように、互いに異なる色の複数の板や紙等を積層し、その積層の一部を除去することによって、断面に内部の着色層を表出させる、という造形方法や造形物が知られている。 Conventionally, as in the inventions described in Patent Document 1 and Patent Document 2, by stacking a plurality of plates or papers of different colors and removing a part of the stack, the internal colored layer is exposed in the cross section. There is known a molding method and a molded object of making it appear.

特開平10−123933号公報JP-A-10-123933 特開2005−179844号公報JP, 2005-179844, A

上記の特許文献に記載の造形材料や装飾品では、表面と互いに平行でない面が露出した部分に表面とは異なる色が現れるものの、その視覚的特性は等方的であった。つまり、観察者が視点の位置や造形材料又は装飾品に相対する角度を変更しても、単に隠れたり現れたりする部分が異なるにすぎず、対象が全体として示す特徴に変化はなかった。すなわち、上記の特許文献では、造形物が見方によって別の様相を呈するような技術及び技術思想は開示されていない。 In the molding material and the ornamental article described in the above-mentioned patent documents, although the color different from the surface appears in the exposed portions of the surfaces that are not parallel to the surface, the visual characteristics are isotropic. That is, even if the observer changes the position of the viewpoint or the angle relative to the molding material or the ornament, only the parts that are hidden or shown are different, and there is no change in the characteristics of the object as a whole. That is, the above-mentioned patent documents do not disclose a technique and a technical idea in which the modeled article has a different aspect depending on the viewpoint.

本発明は、上記各特許文献に記載の発明とは異なり、多様な視覚的状態を示す造形物・造形物展示体・造形物照明設備、その造形物を製造する造形物製造装置及び造形物製造方法の提供を課題とする。 The present invention is different from the inventions described in each of the above patent documents, a molded article, a molded article exhibitor, a molded article lighting facility, which shows various visual states, a molded article manufacturing apparatus for manufacturing the molded article, and a molded article manufacturing. The challenge is to provide a method.

本発明の1つの態様は、複数の溝部と、該複数の溝部の少なくとも一部が互いに重ならずにかつそれぞれの両端を含めて観察可能な第1の表面と、該第1の表面の少なくとも一部と対向する第2の表面と、前記複数の溝部のうち互いに隣り合う複数の溝部にそれぞれ挟まれた複数の間の部分と、該複数の間の部分の各々と前記複数の溝部の各々とが接する複数の側面と、を有する装飾体であって、前記複数の溝部の少なくとも一部を有する前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行であり、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が互いに平行であり、前記互いに平行である前記複数の溝部の少なくとも一部の幅方向の中心どうしの間隔が一定であり、前記間隔が一定である前記装飾体の少なくとも一部において、前記複数の溝部以外の部分の屈折率をnとすると、前記複数の溝部の少なくとも一部のうち任意の溝部・該任意の溝部に隣接する前記間の部分・該間の部分に前記任意の溝部が接する第1の側面・該第1の側面に前記間の部分を挟んで向かい合う第2の側面に関し、前記任意の溝部の深さが、前記第2の側面における前記第1の表面の少なくとも一部に最も近い部分内の第1の点と、前記第1の側面における前記第1の点に最も近い第2の点及び前記第1の点を通り前記第1の表面の少なくとも一部に垂直な平面と前記第1の側面との交線上の前記第2の表面の少なくとも一部に最も近い第3の点から前記第1の表面の少なくとも一部に下ろした垂線又は法線を含む直線との最短距離のcot[arcsin(1/n)]倍より大きく、前記任意の溝部の深さが前記最短距離のcot[arcsin(1/n)]倍より大きい前記装飾体の少なくとも一部において、前記複数の間の部分の最小の幅が前記複数の溝部の少なくとも一部の最大の幅以上であり、前記最小の幅が前記最大の幅以上である前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が、一方の側から他方を、一方及び前記複数の間の部分を透過して互いに観察可能であることを特徴とする装飾体である。
また、複数の溝部と、該複数の溝部の少なくとも一部が互いに重ならずにかつそれぞれの両端を含めて観察可能な第1の表面と、該第1の表面の少なくとも一部と対向する第2の表面と、前記複数の溝部のうち互いに隣り合う複数の溝部にそれぞれ挟まれた複数の間の部分と、該複数の間の部分の各々と前記複数の溝部の各々とが接する複数の側面と、を有する装飾体であって、前記複数の溝部の少なくとも一部を有する前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行であり、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が互いに平行であり、前記互いに平行である前記複数の溝部の少なくとも一部の幅方向の中心どうしの間隔が一定であり、前記間隔が一定である前記装飾体の少なくとも一部において、溝部深間隔率が最小溝部深間隔率より大きく、前記溝部深間隔率が最小溝部深間隔率より大きい前記装飾体の少なくとも一部において、前記複数の間の部分の最小の幅が前記複数の溝部の少なくとも一部の最大の幅以上であり、前記最小の幅が前記最大の幅以上である前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が、一方の側から他方を、一方及び前記複数の間の部分を透過して互いに観察可能であることを特徴とする装飾体である。
One aspect of the present invention is to provide a plurality of groove portions, a first surface where at least some of the groove portions do not overlap with each other and are observable including both ends thereof, and at least the first surface. A second surface facing a part, a plurality of portions sandwiched by a plurality of groove portions adjacent to each other of the plurality of groove portions, each of the plurality of groove portions and each of the plurality of groove portions. And a plurality of side surfaces that are in contact with each other, and in at least a part of the decorative body having at least a part of the plurality of groove portions, at least a part of the first surface and the second surface. At least a part of each of the plurality of groove portions is parallel to each other, and at least a part of the first surface and at least a part of the second surface are parallel to each other. At least a portion is parallel to each other, at least a portion of the widthwise centers of at least a portion of the plurality of groove portions that are parallel to each other is constant, at least a portion of the decorative body the distance is constant, When the refractive index of the portion other than the plurality of groove portions is n, any groove portion of at least a part of the plurality of groove portions, the portion adjacent to the arbitrary groove portion, the arbitrary groove portion in the portion between The first side face that is in contact with the second side face that faces the first side face with the portion interposed therebetween, the depth of the arbitrary groove is at least one of the first surfaces of the second side face. Perpendicular to at least a portion of the first surface through a first point in the portion closest to the part, a second point closest to the first point on the first side and the first point A straight line including a normal or a normal line drawn from at least a third point closest to at least a part of the second surface on a line of intersection between the flat surface and the first side surface to at least a part of the first surface. And at least a part of the decorative body in which the depth of the arbitrary groove is greater than cot[arcsin(1/n)] times the shortest distance, The minimum width of the portion between the plurality is at least the maximum width of at least a portion of the plurality of groove portions, in the at least a portion of the decorative body, the minimum width is greater than or equal to the maximum width, At least a part of the first surface and at least a part of the second surface are observable from each other through one side to the other side and one and the plurality of parts. Is.
In addition, a plurality of groove portions, a first surface where at least some of the plurality of groove portions do not overlap each other and are observable including both ends thereof, and a first surface which faces at least a portion of the first surface 2, a plurality of portions of the plurality of groove portions sandwiched between the plurality of groove portions adjacent to each other, and a plurality of side surfaces contacting each of the plurality of groove portions and each of the plurality of groove portions. And in at least a part of the decorative body having at least a part of the plurality of groove portions, at least a part of the first surface and at least a part of the second surface are In at least a part of the ornamental body that is parallel to each other and at least a part of the first surface and at least a part of the second surface are parallel to each other, at least a part of the plurality of groove portions is parallel to each other. The distance between the centers in the width direction of at least a part of the plurality of groove portions that are parallel to each other is constant, and at least a part of the decorative body in which the distance is constant, the groove portion deep interval ratio is the minimum. At least a portion of the decorative body that is larger than the groove portion deep interval ratio and the groove portion deep interval ratio is larger than the minimum groove portion deep interval ratio, the minimum width of the portion between the plurality is the maximum of at least a part of the plurality of groove portions At least a portion of the first surface and at least a portion of the second surface having a minimum width that is equal to or greater than the maximum width, and one and the other from one side to the other. The ornamental body is characterized in that it can be seen through each other through a portion between.

前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が前記互いに観察可能である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が楔状であり、かつ該楔状の前記複数の溝部それぞれの両側の前記側面のなす角度の小さい側が0°より大きく10°以下でもよく、前記第1の表面の少なくとも一部又は前記第2の表面の少なくとも一部の少なくとも一方が平面でもよい。At least a part of the plurality of grooves is wedge-shaped in at least a part of the ornamental body in which at least a part of the first surface and at least a part of the second surface are observable with each other, and The side having a smaller angle formed by the side surfaces on both sides of each of the plurality of wedge-shaped grooves may be greater than 0° and 10° or less, and at least one of at least a part of the first surface or at least a part of the second surface. May be flat.

前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が前記互いに観察可能である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部の各々の全体が前記装飾体の表面に露出していなくてもよく、前記複数の溝部の少なくとも一部が前記第1の表面の少なくとも一部又は前記第2の表面の少なくとも一部の少なくとも一方と互いに垂直でもよい。In at least a part of the decorative body in which at least a part of the first surface and at least a part of the second surface are observable with each other, the entire of each of at least a part of the plurality of groove portions is the decoration. It may not be exposed on the surface of the body, and at least a part of the plurality of groove portions may be perpendicular to at least one of at least a part of the first surface or at least a part of the second surface.

前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が前記互いに観察可能である前記装飾体の少なくとも一部において、前記複数の溝部の一部が前記装飾体の表面の少なくとも一部に露出してもよい。
In at least a part of the decorative body in which at least a part of the first surface and at least a part of the second surface are observable with each other, a part of the plurality of grooves is at least a surface of the decorative body. You may expose it to a part.

前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が前記互いに観察可能である前記装飾体の少なくとも一部において、前記複数の間の部分の最小の幅が前記複数の溝部の少なくとも一部の最大の幅の5倍以上でもよく、前記複数の溝部の少なくとも一部により画像・文字・ロゴ・図形・模様・断面図の少なくともいずれかの少なくとも一部を表示してもよい。In at least a part of the ornament in which at least a part of the first surface and at least a part of the second surface are observable from each other, the minimum width of the part between the plurality of grooves is the plurality of groove parts. 5 times or more of the maximum width of at least a part of the above, and at least a part of at least one of an image, a character, a logo, a figure, a pattern, and a sectional view may be displayed by at least a part of the plurality of groove portions. ..

本発明の別の態様は、画像を取得する画像取得部と、前記画像に基づき材料を加工し、複数の溝部と、該複数の溝部の少なくとも一部が互いに重ならずにかつそれぞれの両端を含めて観察可能な第1の表面と、該第1の表面の少なくとも一部と対向する第2の表面と、前記複数の溝部のうち互いに隣り合う複数の溝部にそれぞれ挟まれた複数の間の部分と、該複数の間の部分の各々と前記複数の溝部の各々とが接する複数の側面と、を有する装飾体であって、前記複数の溝部の少なくとも一部を有する前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行であり、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が互いに平行であり、前記互いに平行である前記複数の溝部の少なくとも一部の幅方向の中心どうしの間隔が一定であり、前記間隔が一定である前記装飾体の少なくとも一部において、前記複数の溝部以外の部分の屈折率をnとすると、前記複数の溝部の少なくとも一部のうち任意の溝部・該任意の溝部に隣接する前記間の部分・該間の部分に前記任意の溝部が接する第1の側面・該第1の側面に前記間の部分を挟んで向かい合う第2の側面に関し、前記任意の溝部の深さが、前記第2の側面における前記第1の表面の少なくとも一部に最も近い部分内の第1の点と、前記第1の側面における前記第1の点に最も近い第2の点及び前記第1の点を通り前記第1の表面の少なくとも一部に垂直な平面と前記第1の側面との交線上の前記第2の表面の少なくとも一部に最も近い第3の点から前記第1の表面の少なくとも一部に下ろした垂線又は法線を含む直線との最短距離のcot[arcsin(1/n)]倍より大きく、前記任意の溝部の深さが前記最短距離のcot[arcsin(1/n)]倍より大きい前記装飾体の少なくとも一部において、前記複数の間の部分の最小の幅が前記複数の溝部の少なくとも一部の最大の幅以上であり、前記最小の幅が前記最大の幅以上である前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が、一方の側から他方を、一方及び前記複数の間の部分を透過して互いに観察可能であることを特徴とする装飾体を製造する加工部とを具えることを特徴とする造形物製造装置である。
Another aspect of the present invention is an image acquisition unit for acquiring an image, a material is processed based on the image, and a plurality of groove portions and at least a part of the plurality of groove portions do not overlap each other and both ends thereof are Between a first surface observable inclusive, a second surface facing at least a part of the first surface, and a plurality of grooves sandwiched by a plurality of groove portions adjacent to each other among the plurality of groove portions. A decorative body having a portion and a plurality of side surfaces in which each of the plurality of portions is in contact with each of the plurality of groove portions, wherein at least one of the decorative body having at least a part of the plurality of groove portions. Part, at least a part of the first surface and at least a part of the second surface are parallel to each other, and at least a part of the first surface and at least a part of the second surface are In at least a part of the ornaments that are parallel to each other, at least a part of the plurality of groove portions are parallel to each other, and a distance between centers in the width direction of at least a part of the plurality of groove portions that are parallel to each other is constant. And, in at least a part of the decorative body with the constant spacing, when the refractive index of a portion other than the plurality of groove portions is n, any groove portion of the at least a portion of the plurality of groove portions Regarding the portion between the portions adjacent to the groove portion, the first side surface where the arbitrary groove portion is in contact with the portion between the second side surface facing the first side surface with the portion between the first surface and the second side surface facing each other, A first point within the portion whose depth is closest to at least a portion of the first surface on the second side, a second point closest to the first point on the first side, and From a third point closest to at least a part of the second surface on a line of intersection of the first side surface and a plane that passes through the first point and is perpendicular to at least a part of the first surface, 1 is greater than cot[arcsin(1/n)] times the shortest distance from a straight line including a normal or a normal line drawn on at least a part of the surface of 1, and the depth of the arbitrary groove is cot[arcsin of the shortest distance. (1/n)] times at least, the minimum width of the portion between the plurality is equal to or larger than the maximum width of at least a portion of the plurality of groove portions, and the minimum width is At least a part of the first surface and at least a part of the second surface in at least a part of the decorative body having a width equal to or larger than the maximum width, from one side to the other, between the one and the plurality. And a processing part for manufacturing a decorative body, which is characterized in that it can be seen through each other. It is an object manufacturing apparatus characterized by comprising.

本発明の別の態様は、画像を取得する画像取得工程と、前記画像に基づき材料を加工し、複数の溝部と、該複数の溝部の少なくとも一部が互いに重ならずにかつそれぞれの両端を含めて観察可能な第1の表面と、該第1の表面の少なくとも一部と対向する第2の表面と、前記複数の溝部のうち互いに隣り合う複数の溝部にそれぞれ挟まれた複数の間の部分と、該複数の間の部分の各々と前記複数の溝部の各々とが接する複数の側面と、を有する装飾体であって、前記複数の溝部の少なくとも一部を有する前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行であり、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が互いに平行であり、前記互いに平行である前記複数の溝部の少なくとも一部の幅方向の中心どうしの間隔が一定であり、前記間隔が一定である前記装飾体の少なくとも一部において、前記複数の溝部以外の部分の屈折率をnとすると、前記複数の溝部の少なくとも一部のうち任意の溝部・該任意の溝部に隣接する前記間の部分・該間の部分に前記任意の溝部が接する第1の側面・該第1の側面に前記間の部分を挟んで向かい合う第2の側面に関し、前記任意の溝部の深さが、前記第2の側面における前記第1の表面の少なくとも一部に最も近い部分内の第1の点と、前記第1の側面における前記第1の点に最も近い第2の点及び前記第1の点を通り前記第1の表面の少なくとも一部に垂直な平面と前記第1の側面との交線上の前記第2の表面の少なくとも一部に最も近い第3の点から前記第1の表面の少なくとも一部に下ろした垂線又は法線を含む直線との最短距離のcot[arcsin(1/n)]倍より大きく、前記任意の溝部の深さが前記最短距離のcot[arcsin(1/n)]倍より大きい前記装飾体の少なくとも一部において、前記複数の間の部分の最小の幅が前記複数の溝部の少なくとも一部の最大の幅以上であり、前記最小の幅が前記最大の幅以上である前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が、一方の側から他方を、一方及び前記複数の間の部分を透過して互いに観察可能であることを特徴とする装飾体を製造する加工工程とを具えることを特徴とする造形物製造方法である。
Another aspect of the present invention is an image acquisition step of acquiring an image, a material is processed based on the image, a plurality of groove portions and at least a part of the plurality of groove portions do not overlap each other and both ends thereof are Between a first surface observable inclusive, a second surface facing at least a part of the first surface, and a plurality of grooves sandwiched by a plurality of groove portions adjacent to each other among the plurality of groove portions. A decorative body having a portion and a plurality of side surfaces in which each of the plurality of portions is in contact with each of the plurality of groove portions, wherein at least one of the decorative body having at least a part of the plurality of groove portions. Part, at least a part of the first surface and at least a part of the second surface are parallel to each other, and at least a part of the first surface and at least a part of the second surface are In at least a part of the ornaments that are parallel to each other, at least a part of the plurality of groove portions are parallel to each other, and a distance between centers in the width direction of at least a part of the plurality of groove portions that are parallel to each other is constant. And, in at least a part of the decorative body with the constant spacing, when the refractive index of a portion other than the plurality of groove portions is n, any groove portion of the at least a portion of the plurality of groove portions Regarding the portion between the portions adjacent to the groove portion, the first side surface where the arbitrary groove portion is in contact with the portion between the second side surface facing the first side surface with the portion between the first surface and the second side surface facing each other, A first point within the portion whose depth is closest to at least a portion of the first surface on the second side, a second point closest to the first point on the first side, and From a third point closest to at least a part of the second surface on a line of intersection of the first side surface and a plane that passes through the first point and is perpendicular to at least a part of the first surface, 1 is greater than cot[arcsin(1/n)] times the shortest distance from a straight line including a normal or a normal line drawn on at least a part of the surface of 1, and the depth of the arbitrary groove is cot[arcsin of the shortest distance. (1/n)] times at least, the minimum width of the portion between the plurality is equal to or larger than the maximum width of at least a portion of the plurality of groove portions, and the minimum width is At least a part of the first surface and at least a part of the second surface in at least a part of the decorative body having a width equal to or larger than the maximum width, from one side to the other, between the one and the plurality. For manufacturing a decorative body characterized by being able to see through each other A method for manufacturing a shaped article, comprising:

本発明による造形物は、観察者が造形物を観察する方向を変更したり、その他の条件が変化したりすると造形物が異なって見える効果(以下、異方性視覚効果と記載する)を有し、観察者が造形物を見る方向や造形物に当たる光の方向等が変化することにより、多様な見え方を呈する。 The modeled object according to the present invention has an effect (hereinafter referred to as an anisotropic visual effect) in which the modeled object looks different when the observer changes the direction in which the modeled object is observed or when other conditions change. However, by changing the direction in which the observer sees the modeled object, the direction of the light that strikes the modeled object, and the like, various appearances are exhibited.

造形物製造装置の構成を示す図である。It is a figure which shows the structure of the molded article manufacturing apparatus. 造形物製造方法のフローチャートである。It is a flowchart of the manufacturing method of a molded article. 画像取得部が取得する画像及び画像処理部が変更した画像の例を示す図である。It is a figure which shows the example of the image which the image acquisition part acquired and the image which the image processing part changed. 造形物の溝部の断面図である。It is sectional drawing of the groove part of a molded article. 造形物の溝部と視線との関係を示す断面図である。It is sectional drawing which shows the relationship between the groove part of a molded article, and a line of sight. 造形物全体と視線との関係を示す側面図である。It is a side view which shows the relationship between the whole molded article and a line of sight. 溝部深間隔率及び溝部幅間隔率に係る部位を示す断面図である。It is sectional drawing which shows the site|part which concerns on a groove part deep space ratio and a groove part width space ratio. 溝部狭長率に係る部位を示す等角図である。It is an isometric view which shows the site|part which concerns on a groove part narrowing rate. 造形物を見る視線の方向と見える部分の関係を示す等角図である。It is an isometric view which shows the relationship of the direction of the line of sight which looks at a modeled object, and a visible part. 造形物における光の屈折及び反射と溝部の角度との関係を示す断面図である。It is sectional drawing which shows the relationship between the refraction|bending and reflection of the light in a molded article, and the angle of a groove part. 造形物を見る視線の方向と見える部分の関係を示す別の等角図である。It is another isometric view which shows the relationship of the direction of the line of sight which sees a modeled object, and a visible part. 複数の方向の万線によってなる画像を示す図である。It is a figure which shows the image which consists of parallel lines of a some direction. 画像における複数の部分領域に異なる方向の万線を配置する2つの方法を示す図である。It is a figure which shows two methods which arrange the parallel lines of a different direction in several partial area|regions in an image. 複数の色からなる造形物を示す等角図である。It is an isometric view which shows the modeling thing which consists of a plurality of colors. 部分領域ごとに万線の位相が異なる画像を示す図である。It is a figure which shows the image where the phase of the parallel line differs for every partial area. 複数の色からなる溝部を示す正面図である。It is a front view which shows the groove part which consists of a plurality of colors. 造形物照明設備からの光と移動する観察者の関係を示す平面図である。It is a top view which shows the relationship between the light from a molded article illumination equipment, and the observer who moves. 造形物照明設備の入射光と出射光の関係を示す側面図である。It is a side view which shows the relationship of the incident light and outgoing light of a molded article illumination equipment. 造形物の別の溝部の断面図である。It is sectional drawing of another groove part of a molded article. 第2の実施形態に係る、底面部が広い造形物を示す等角図である。It is an isometric view which shows the modeling thing with a wide bottom part based on 2nd Embodiment. 第4の実施形態に係るディスプレイを示す等角図である。It is an isometric view which shows the display which concerns on 4th Embodiment. ディスプレイ製造装置の構成を示す図である。It is a figure which shows the structure of a display manufacturing apparatus. ディスプレイ製造方法のフローチャートである。It is a flowchart of a display manufacturing method.

[第1の実施形態]
《造形物製造装置の構成及び動作》
図1は、本発明の造形物製造装置10の構成を示す図である。図2は、造形物製造方法のフローチャートである。以下、図1及び図2を参照して、造形物製造装置10の構成及び動作を説明する。造形物製造装置10は画像取得部11・画像処理部12・材料取得部13・加工部14・仕上げ部15を具える。また造形物製造方法は、画像取得工程S11・画像処理工程S12・材料取得工程S13・加工工程S14・仕上げ工程S15よりなる。
[First Embodiment]
<<Structure and operation of model manufacturing apparatus>>
FIG. 1 is a diagram showing a configuration of a molded article manufacturing apparatus 10 of the present invention. FIG. 2 is a flowchart of the method for manufacturing a modeled article. Hereinafter, the configuration and operation of the molded article manufacturing apparatus 10 will be described with reference to FIGS. 1 and 2. The molded article manufacturing apparatus 10 includes an image acquisition unit 11, an image processing unit 12, a material acquisition unit 13, a processing unit 14, and a finishing unit 15. Further, the method for manufacturing a modeled object includes an image acquisition step S11, an image processing step S12, a material acquisition step S13, a processing step S14, and a finishing step S15.

画像取得部11は、加工に用いる平面的パターンのデータ等である画像1を取得又は生成する(S11)。画像取得部11は例えば公知のコンピュータを有し、記憶媒体に記憶されたデータを読み出して使用してもよく、加工のつど外部からデータを取得してもよく、取得したデータをもとに別のデータを生成してもよく、演算等によってデータを新たに生成してもよく、カメラやスキャナ等を具えデータ入力を受けてもよく、それらを合成してもよい。画像1は単純な平行線や格子柄や幾何学模様でもよく、図3aのような画像化された文字やロゴ、写真画像・イラスト・CG・各種図形・地図・模様等でもよく、CAD等による三次元画像データでもよく、数式等によって記述されてもよい。造形物製造装置10はアナログ工程処理もでき、その場合画像1はアナログ画像信号や、フィルム・紙焼き等の物理的媒体も含み、画像取得部11はそれらを扱うことができる。 The image acquisition unit 11 acquires or generates the image 1 that is data of a planar pattern used for processing (S11). The image acquisition unit 11 has, for example, a well-known computer, may read and use the data stored in the storage medium, may acquire the data from the outside each time the processing is performed, and separately acquire the data based on the acquired data. Data may be generated, data may be newly generated by calculation or the like, data may be received by a camera, a scanner, or the like, or they may be combined. The image 1 may be a simple parallel line, a lattice pattern, or a geometric pattern, and may be an imaged character or logo as shown in FIG. 3a, a photographic image/illustration/CG, various figures/maps/patterns, etc. It may be three-dimensional image data or may be described by a mathematical formula or the like. The model manufacturing apparatus 10 can also perform analog process processing. In that case, the image 1 also includes an analog image signal and a physical medium such as film or paper baking, and the image acquisition unit 11 can handle them.

画像処理部12はコンピュータ等により、画像取得部11から送られた画像1に適宜変更を加えることができる(S12)。例えば、画像処理部12は画像1をラスタ画像からベクタ画像に変換する等、加工に適した形式に変換したり、画像1のサイズを変倍したりする。画像処理部12は画像1に含まれる輪郭の抽出等により画像1を複数の部分領域に分割することができ、各部分領域にそれぞれ異なる万線を配置してもよい。画像処理部12は、図3aのような画像1を、各種加工方法に適したピッチ等の、例えば図3b・図3cのような万線画像に変換してもよく、画像取得部11がはじめから万線画像の状態で取得してもよい。画像処理部12は画像1を、図3dのように網点等の複数のドットによる画像・図3e・fのように複数の方向の線が集合した画像・自由な線による線画等に変換してもよい。また、画像処理部12は図3e等のように部分領域の一部に万線等を配置しなくてもよい。そして、画像処理部12は加工に最適化された画像1を加工部14に渡す。なお、本明細書では、画像取得部11が取得する画像と、画像処理部12が変更を加えた画像を区別せず、一律に画像1として扱う。 The image processing unit 12 can appropriately change the image 1 sent from the image acquisition unit 11 by a computer or the like (S12). For example, the image processing unit 12 converts the image 1 from a raster image into a vector image, converts the image into a format suitable for processing, and scales the size of the image 1. The image processing unit 12 can divide the image 1 into a plurality of partial areas by extracting the contours included in the image 1 or the like, and different lines may be arranged in each partial area. The image processing unit 12 may convert the image 1 shown in FIG. 3a into a parallel line image having a pitch suitable for various processing methods, for example, as shown in FIGS. 3b and 3c. May be acquired in the state of a line image. The image processing unit 12 converts the image 1 into an image formed by a plurality of dots such as halftone dots as shown in FIG. 3d, an image formed by gathering lines in a plurality of directions as shown in FIGS. 3e and f, and a line drawing formed by free lines. May be. Further, the image processing unit 12 does not have to arrange a line or the like in a part of the partial area as in FIG. Then, the image processing unit 12 transfers the image 1 optimized for processing to the processing unit 14. In this specification, the image acquired by the image acquisition unit 11 and the image modified by the image processing unit 12 are not distinguished and are uniformly treated as the image 1.

本明細書において万線画像とは、方向を伴う長さを有する複数の線が平面上で互いに略平行に配置された画像である。線は長さの方向に直交する幅を有してもよい。長さの方向に直交する方向を幅の方向とする。線の間にも幅及び幅の方向が適用される。線の間は線とは異なる色であってもよい。複数の線は、線の幅方向における数mm・数cm・数インチといった単位区間において複数本が配置されてもよく、その単位区間が複数反復されてもよい。その場合万線の最小数は4となる。複数の線のピッチが一定でもよい。また線は直線に限られず、図3gのような波線、曲線、平行曲線、同心円、螺線、連続しない点線・破線、放射状、あるいは図3fのXの文字部分のような入れ子状又は等高線状の図形の輪郭線等を含む。万線が波線で、線の方向が連続的に変化する個々の部分が全体として一定の方向に収斂している場合には、その一定の方向を波線の方向とする。万線が放射状の場合、均等な異方性視覚効果を得るためには、1つの線の幅や複数の線どうしの間隔の変化の度合が制限されることにより、平行線に近似した放射状である方がよい。例えば幅又は間隔が最も狭い部分と最も広い部分の比が1:4以下又は1:2以下であるか、両端の線がなす角度が30°以下又は15°以下が好ましい。上記様々な万線は自由に組み合わされてよい。なお、万線において線は単数でもよく、例えば螺旋状の万線は単数である。 In the present specification, a parallel line image is an image in which a plurality of lines having lengths with directions are arranged substantially parallel to each other on a plane. The line may have a width orthogonal to the length direction. The direction orthogonal to the length direction is the width direction. Widths and width directions also apply between lines. The color between the lines may be different from that of the lines. A plurality of lines may be arranged in a unit section of several mm, several cm, or several inches in the width direction of the line, and the unit section may be repeated a plurality of times. In that case, the minimum number of lines is four. The pitch of the plurality of lines may be constant. The line is not limited to a straight line, and may be a wavy line, a curved line, a parallel curve, a concentric circle, a spiral line, a discontinuous dotted line/dashed line, a radial line as shown in FIG. Includes contour lines of figures. If the line is a wavy line and the individual parts in which the direction of the line changes continuously converge in a certain direction as a whole, the certain direction is defined as the wavy line direction. If the lines are radial, in order to obtain a uniform anisotropic visual effect, the width of one line and the degree of change in the spacing between the lines are limited, so that the lines are approximated to parallel lines. Better to have. For example, it is preferable that the ratio between the narrowest part and the widest part is 1:4 or less or 1:2 or less, or the angle between the lines at both ends is 30° or less or 15° or less. The various lines described above may be freely combined. In addition, the line may be a single line, for example, a spiral line is a single line.

材料取得部13は、加工に供する材料2を外部から取得又は製造する(S13)。以下、本明細書ではABS・EP・FRP・PC・PCL・PET・PLA・PMMA・PVC等の透明樹脂製の材料2を中心に記載するが、本発明にはそれ以外の材料、例えば金属・木材・紙・各種繊維・ガラス・セラミック・カーボン素材等の固形物及び固化する液状物や、それらをもとに材料取得部13が積層等を行って製造した、複数の色を有する材料2も採用可能である。 The material acquisition unit 13 externally acquires or manufactures the material 2 to be processed (S13). Hereinafter, in the present specification, description will be made focusing on the transparent resin material 2 such as ABS/EP/FRP/PC/PCL/PET/PLA/PMMA/PVC, but other materials such as metal Solid materials such as wood, paper, various fibers, glass, ceramics, carbon materials, etc., and liquid materials that solidify, as well as materials 2 having a plurality of colors, which are manufactured by the material acquisition unit 13 by stacking based on these Can be adopted.

本発明が提供する造形物は立体物でもよく、表面が曲面でもよいが、本明細書では、説明の都合上、平面的板状造形物の製造を前提に説明する。また、本発明が提供する造形物の表面の形状は様々である。表面は平滑でもよい。造形物が凹凸を有する場合、表面は凸部の先端の平面をさすこともあり、複数の凸部の先端によってなる仮想的な平面又は平面の集合又は曲面をさすこともある。 Although the three-dimensional object provided by the present invention may be a three-dimensional object or the surface may be a curved surface, in the present specification, for the sake of convenience of description, description will be made on the premise of manufacturing a planar plate-shaped object. Further, the shape of the surface of the modeled object provided by the present invention is various. The surface may be smooth. When the molded article has irregularities, the surface may refer to the flat surface of the tip of the convex portion, or may refer to a virtual plane or a set or curved surface of the plural convex portions.

加工部14は、機械加工・電気的加工・化学加工・砥粒吹付加工・光学的加工・溶断・ウォータージェット切断・接着・溶着・3Dプリンティング・印刷・射出成形及び多色成形等、材料の一部の除去又は破壊あるいは材料からの形成等による各種の材料加工の1つ以上を用いることができる。加工部14は画像1に基づき、上記加工設備等により、材料取得部13から送られた材料2に例えば断面が図4のような溝部Gを加工し、造形物3とする(S14)。溝部Gは、例えば厚さ10mmの透明板に彫刻された幅0.4mm深さ8mmの微細な溝であり、板を貫通してもよく、裏側から加工され、開口部の反対側から観察されてもよい。
溝部Gの幅wは、画像1における幅と同様、溝の長さ方向に直交し表面と平行な方向の長さで、図4a・b・cのように溝部Gの各部で太さが異なる場合には、最も広い部分の幅である。溝部Gの開口部の肩部は、図4aのように丸みを帯びて角ではないことがあるが、幅wは、図4b・cのような表面部Sと溝側面Fとが交わる仮想的位置を基準として測定される。また、溝部Gの深さは、表面部Sに直交する方向の深さである。加工部14が表面部Sに対して垂直に加工すれば、表面部Sと溝部Gのなす角度は略90°となる。溝部Gの両側の溝側面Fは図4dのように平行でもよいが、加工法によっては両側の溝側面Fに傾斜がつき、溝部Gがテーパー状になることがある。例えば射出成形では抜き勾配が必要となる。特に微細かつ深さの大きい溝部Gでは、図4a・b・cのような楔状の方が容易に生産性高く仕上がりよく加工可能である。両側の溝側面Fがなす二面角の角度を本明細書では溝部楔角θGと記載する。楔状の溝部Gでは0<θG≦10が好ましく、0.5≦θG≦7がより好ましく、1≦θG≦5がさらに好ましい。また、楔状の溝部Gの先端は、仔細に観察すると、図4aのような完全な二面角状ではなく、図4bのような曲面や、図4cのような凹凸が溝の方向につれて変化する乱雑な形状となりがちである。このような楔状の溝部Gの先端部分の幅weは無視できるほど狭い。なお、図4bの場合のweは溝部G断面の先端部分の曲線に近似した円の直径とする。溝部Gが鋭利なほど先端部分を二面角状に加工するのが難しく、楔の角度が広がれば幅に比して先端部分の幅を狭くする必要があるため、weとwの比率は溝部楔角θGに応じて変動する。本明細書ではwe/wを溝部楔率と記載する。楔状の溝部Gでは溝部楔率は0〜1/(3+θG)が好ましく、θGが5°なら0〜1/8、7°なら0〜1/10である。このような楔状の溝部Gにおいて、両側の溝側面Fがなす二面角を二等分する面はこの場合表面部Sに対し垂直であり、本明細書ではこれを溝部Gが表面部Sに直交すると記載する。加工部14は、この角度を垂直以外にしてもよい。
The processing unit 14 is one of materials such as mechanical processing, electrical processing, chemical processing, abrasive grain spraying processing, optical processing, fusing, water jet cutting, adhesion, welding, 3D printing, printing, injection molding and multicolor molding. One or more of a variety of material processing, such as removal or destruction of parts or formation from material, can be used. Based on the image 1, the processing unit 14 processes the material 2 sent from the material acquisition unit 13 into a groove G having a cross section as shown in FIG. The groove G is a fine groove having a width of 0.4 mm and a depth of 8 mm engraved on a transparent plate having a thickness of 10 mm, for example, which may penetrate the plate, is processed from the back side, and is observed from the opposite side of the opening. May be.
The width w of the groove portion G is the length in the direction orthogonal to the length direction of the groove and parallel to the surface, like the width in the image 1, and the thickness is different in each portion of the groove portion G as shown in FIGS. 4a, 4b, and 4c. In the case, it is the width of the widest part. The shoulder portion of the opening of the groove portion G may be rounded and not a corner as shown in FIG. 4a, but the width w has a virtual width where the surface portion S and the groove side face F intersect as shown in FIGS. 4b and 4c. Measured relative to position. The depth of the groove portion G is the depth in the direction orthogonal to the surface portion S. If the processed portion 14 is processed perpendicularly to the surface portion S, the angle formed by the surface portion S and the groove portion G will be approximately 90°. The groove side faces F on both sides of the groove part G may be parallel as shown in FIG. 4d, but depending on the processing method, the groove side faces F on both sides may be inclined and the groove part G may be tapered. For example, injection molding requires a draft. Particularly in the case of a groove G having a fine and large depth, a wedge shape as shown in FIGS. 4a, 4b, and 4c can be processed easily with high productivity and with good finish. In the present specification, the angle of the dihedral angle formed by the groove side surfaces F on both sides is referred to as the groove wedge angle θG. In the wedge-shaped groove portion G, 0<θG≦10 is preferable, 0.5≦θG≦7 is more preferable, and 1≦θG≦5 is further preferable. Further, when the tip of the wedge-shaped groove portion G is closely observed, it is not a perfect dihedral shape as shown in FIG. 4a, but a curved surface as shown in FIG. 4b or unevenness as shown in FIG. 4c changes in the groove direction. It tends to have a messy shape. The width we of the tip portion of the wedge-shaped groove portion G is so small that it can be ignored. Note that in the case of FIG. 4b, we is the diameter of a circle that approximates the curve of the tip of the groove G cross section. The sharper the groove portion G, the more difficult it is to process the tip portion into a dihedral shape, and the wider the angle of the wedge, the smaller the width of the tip portion compared to the width thereof. It varies depending on the wedge angle θG. In the present specification, we/w is described as a groove wedge ratio. In the wedge-shaped groove portion G, the groove portion wedge ratio is preferably 0 to 1/(3+θG), 0 to 1/8 when θG is 5°, and 0 to 1/10 when 7°. In such a wedge-shaped groove portion G, a surface that bisects the dihedral angle formed by the groove side surfaces F on both sides is perpendicular to the surface portion S in this case. Described as orthogonal. The processing unit 14 may make this angle other than vertical.

加工部14は、図4aのように溝側面Fを塗料等で溝部色CGに着色してもよく、さらに図4bのように溝部Gの全部又は一部を透明樹脂等で埋め充填部Fiとしてもよい。なお、本明細書において造形物の色には色相・明度・彩度・透過率・光沢といった視覚的特性が含まれ、無色透明も色の1つである。加工部14は、着色後に表面部Sの塗料等を拭き取る、表面を研磨して塗料等を除去する、着色時に一部を隠す等により造形物3の一部のみを選択的に着色することができる。加工部14は、図4cのように塗料等を充填部Fiとしてもよく、溝側面Fと充填部Fiの両方に着色してもよい。着色された充填部Fiに透過性があれば、溝部G各部の厚みの差により溝部色CGの明度が変化する。また図4aのように溝側面Fのみが着色された場合でも、溝部Gの開口部寄りの上部と奥の下部とで、塗料の厚さの差等により、溝部色CGの色味は同じ傾向ながら、明度が異なることがある。後述のように複数の溝部が並ぶ場合、斜め方向から見た時に、同じ溝部G中の深さ方向が異なる各部で溝部色CGの明度が異なることで、複数の溝部Gが波打つような独特の効果が得られる。明度の差はマンセル表色系において2〜10が好ましく、3〜10がより好ましく、4〜10がさらに好ましい。この効果は、溝部色CGが急に切り替わるのでは得られず、溝部Gの中でグラデーション状に徐々に移行することで得られる。複数の溝部色CGは溝部Gの深さ方向又は溝側面Fの面沿いの深さ方向の全体で変化するのが最も好ましいが、深さ方向の1/2までの変化でそれに準じた効果が得られる。すなわち複数の色が溝部Gの深さの1/2から全体にかけての範囲で連続的に変化してもよい。また、溝部G内に全く異なる色相、具体的にはマンセル色相環において近い側が25〜50歩度分離れた色相の溝部色CGが混在していれば、複数の溝の層が重なっているかのような別種の効果を呈する。測色には例えばコニカミノルタ株式会社製CM−5等の分光測色計やCR−5等の色彩色差計が用いられるが、測色範囲が狭い等の理由で測定が困難な場合には、目視比較が併用されてもよい。色を定量化した本明細書の他の記載でも同様である。溝側面Fと底面部Bの色又は色調が同じ、又は溝部Gの開口部を除く部分の色又は色調が同じでもよく、それらが異なってもよい。なお、溝側面F・底面部B・充填部Fiは溝部Gの一部である。
加工部14は、さらに図4dのように、充填部Fiの露出部分に溝部色CGと異なる充填露出部色CFiを重ねて溝部Gを目立たなくしてもよい。充填露出部色CFiは彩度の低いグレーか、溝部色CG等が透明の場合には溝部色CGの補色系が好適であり、後者の場合には、例えば正面からは溝部色CGと混色されることで溝部Gがグレーに近く見える。溝部色CGは鏡面状でもよく、蓄光塗料・可塑性発光体・電気的発光物等の充填部Fiにより溝部Gが光ってもよい。
As shown in FIG. 4a, the processed portion 14 may color the groove side face F with a groove color CG with a paint or the like, and further, as shown in FIG. Good. In this specification, the color of the modeled object includes visual characteristics such as hue, brightness, saturation, transmittance, and gloss, and colorless and transparent is one of the colors. The processed part 14 can selectively color only a part of the modeled article 3 by wiping off the paint or the like on the surface S after coloring, polishing the surface to remove the paint or the like, or hiding a part during coloring. it can. The processed portion 14 may be paint or the like as the filling portion Fi as shown in FIG. 4C, or both the groove side face F and the filling portion Fi may be colored. If the colored filling portion Fi is transparent, the lightness of the groove color CG changes due to the difference in the thickness of each portion of the groove G. Even when only the groove side face F is colored as shown in FIG. 4a, the color tone of the groove part color CG tends to be the same in the upper part near the opening of the groove part G and the lower part in the inner part due to the difference in paint thickness and the like. However, the brightness may be different. When a plurality of groove portions are arranged as will be described later, when viewed from an oblique direction, the lightness of the groove portion color CG is different in each portion of the same groove portion G having different depth directions, so that a plurality of unique groove portions G wavy. The effect is obtained. In the Munsell color system, the difference in lightness is preferably from 2 to 10, more preferably from 3 to 10, even more preferably from 4 to 10. This effect cannot be obtained by abrupt switching of the groove color CG, but can be obtained by gradually shifting to a gradation in the groove G. It is most preferable that the plurality of groove colors CG change in the depth direction of the groove portion G or in the depth direction along the surface of the groove side face F, but it is possible to obtain a similar effect by changing the depth direction up to 1/2. can get. That is, a plurality of colors may continuously change in a range from ½ of the depth of the groove G to the entire depth. Also, if the groove portions G have completely different hues, specifically, the groove portion colors CG having hues separated by 25 to 50 steps on the near side in the Munsell hue circle are mixed, it is as if a plurality of groove layers overlap. Has a different kind of effect. For the color measurement, for example, a spectrocolorimeter such as CM-5 manufactured by Konica Minolta Co., Ltd. or a color difference meter such as CR-5 is used, but when the measurement is difficult due to a narrow colorimetric range or the like, Visual comparison may be used in combination. The same applies to other descriptions of the present specification in which color is quantified. The groove side surface F and the bottom surface portion B may have the same color or color tone, or the portion of the groove portion G excluding the opening may have the same color or color tone, or may have different colors. The groove side surface F, the bottom surface portion B, and the filling portion Fi are a part of the groove portion G.
As shown in FIG. 4d, the processed portion 14 may overlap the exposed portion of the filling portion Fi with a filling exposed portion color CFi different from the groove portion color CG to make the groove portion G inconspicuous. The filled exposed portion color CFi is preferably gray with low saturation, or a complementary color system of the groove portion color CG when the groove portion color CG or the like is transparent. In the latter case, for example, from the front side, it is mixed with the groove portion color CG. As a result, the groove G looks almost gray. The groove portion color CG may be mirror-like, or the groove portion G may be illuminated by a filling portion Fi of a phosphorescent paint, a plastic luminescent material, an electroluminescent material, or the like.

図5V1のように、観察者が造形物3を充分な距離をとって正面から見た場合、溝部Gは幅が狭いため見えないか、又は略見えない。なお、この図は概念図であり、この図の溝部Gと同じスケールの造形物3と視点との距離はより大きいことが多い。以下の図面でも同様である。
次に図5V2のように、観察者が造形物3に対する視線方向を傾けて斜めから見ると、溝部Gの溝側面Fが見えるようになる。これにより、正面から見た場合とは色が変化して見える。
図5V3のように、観察者が造形物3に対する視線方向をより傾けて横に近い斜めから見ると、溝側面Fがより広く見えることでさらに色味が変化する。このように、溝部Gの見え方が視線方向で異なることにより、造形物3が示す色合が一変する。これが本発明の目的とする異方性視覚効果の一種、異方性カラーリング効果である。
As shown in FIG. 5V1, when an observer looks at the modeled article 3 from the front with a sufficient distance, the groove portion G is invisible or almost invisible because of its narrow width. In addition, this figure is a conceptual diagram, and the distance between the modeled object 3 having the same scale as the groove portion G in this figure and the viewpoint is often larger. The same applies to the following drawings.
Next, as shown in FIG. 5V2, when the observer tilts the line-of-sight direction with respect to the modeled object 3 and obliquely views it, the groove side face F of the groove part G becomes visible. As a result, the color looks different from that when viewed from the front.
As shown in FIG. 5V3, when the observer tilts the line-of-sight direction with respect to the modeled object 3 and looks at it from an angle close to the side, the groove side face F looks wider, and the tint further changes. In this way, the appearance of the groove portion G differs depending on the line-of-sight direction, so that the hue of the modeled article 3 changes completely. This is an anisotropic coloring effect, which is one of the anisotropic visual effects aimed at by the present invention.

画像1が図3bのような万線状である場合、これに基づき加工部14が加工した造形物3には、無数の互いに平行な(より正確には、両側の溝側面Fがなす二面角を二等分する面が互いに平行な)溝部Gが造形される。このような造形物3では、観察者の視点が図5V3のような位置にあると透明な部分が見えなくなり、一面溝部色CGに見えることがある。そのような溝部Gが多数並ぶことで、観察者が斜めから見た造形物3は、単なる溝部色CGの縞模様ではない、独特の幻覚感を醸成するひとかたまりの色の面として見える。 When the image 1 has a parallel line shape as shown in FIG. 3b, a number of parallel to each other (more accurately, two surfaces formed by the groove side surfaces F on both sides of the object 3 processed by the processing unit 14 based on the parallel line shape). A groove G is formed in which the surfaces that divide the corner into two are parallel to each other. In such a modeled object 3, when the observer's viewpoint is at a position as shown in FIG. 5V3, the transparent part may not be visible, and the one-sided groove color CG may appear. By arranging a large number of such groove portions G, the modeled object 3 viewed obliquely by the observer is not a mere stripe pattern of the groove portion color CG, but appears as a surface of a group of colors that creates a unique hallucination.

造形物3が平面的板状の場合、図6aに示すように、視点V4の観察者が造形物3を正面から見ている場合でも、視線が表面部Sに垂直であるのは造形物3の一点に対してのみであり、そこから遠い部分ほど視線の傾きは大きくなっていく。つまり、造形物3の中心を正面から見ているなら、造形物3の外周に近くなるほど溝側面Fが見える。これは、造形物と目の距離が大きければ無視できるが、近接すると目立つようになる。そして、前段落記載の効果と合わせて、造形物3の各部に複雑な色合が浮かび上がる。例えば、造形物3の中心部に比較的近い部分は略透明に見え、その周囲では一部が溝部色CGに、その間が透明に見え、その外側では溝部色CGのみが見え、さらに外側では前後の溝側面Fが重なって見え、溝部色CGの濃い部分と薄い部分が交互に見える、というように、位置によって見え方が変化する。加えて、観察者が視点V4を移動させたり造形物3を傾けたりすると、そのような異方性カラーリングの中心が造形物3の別の箇所へと移動し、その点を中心とした異方性カラーリングの関係が出現する。こうして各部の色合が微妙に変化することで、造形物3は特有の視覚的効果を発揮する。 When the modeled object 3 has a planar plate shape, the line of sight is perpendicular to the surface portion S even when the observer at the viewpoint V4 looks at the modeled object 3 from the front as shown in FIG. 6a. It is only for one point, and the inclination of the line of sight becomes larger as it goes farther. That is, when the center of the modeled object 3 is viewed from the front, the groove side face F can be seen as it approaches the outer periphery of the modeled object 3. This can be ignored if the distance between the modeled object and the eye is large, but it will be noticeable if they are close to each other. Then, in combination with the effect described in the preceding paragraph, a complicated color tone appears in each part of the molded article 3. For example, a part relatively close to the center of the modeled object 3 looks almost transparent, a part of it looks transparent to the groove color CG, and a space between them looks transparent, and only the groove color CG is visible on the outer side, and the front and rear on the outer side. The side surfaces F of the groove are seen to overlap with each other, and a dark portion and a thin portion of the groove color CG are seen alternately, and the appearance changes depending on the position. In addition, when the observer moves the viewpoint V4 or tilts the modeled object 3, the center of such anisotropic coloring moves to another part of the modeled object 3, and the difference is centered on that point. The relationship of isotropic coloring appears. In this way, the color of each part changes subtly, so that the modeled object 3 exhibits a unique visual effect.

加工部14は、溝側面Fが表面部Sとなす角度を、造形物3の各部で変更することができる。例えば加工部14は、ガルバノ式等のレーザヘッドが固定された加工機を用いることで、図6bのように、溝部Gが、造形物3の中心部では表面部Sと略直交するが、周辺部では表面部Sから奥に向かって放射状に広がるように加工できる。これにより、加工時にレーザ照射方向が交わっていた位置V5から観察者が見た時に、図6aとは異なり、造形物3全体の溝側面Fが見えないという効果が得られる。加工部14は、3Dプリンタを用いて、溝側面Fが表面部Sとなす角度を造形物3各部でより複雑に変更することもできる。 The processed portion 14 can change the angle formed by the groove side surface F with the surface portion S in each portion of the modeled article 3. For example, the processing section 14 uses a processing machine to which a galvano type laser head is fixed, so that the groove G is substantially orthogonal to the surface section S at the center of the modeled object 3 as shown in FIG. The portion can be processed so as to spread radially from the surface portion S toward the back. Thereby, when the observer looks at the position V5 where the laser irradiation directions intersect at the time of processing, unlike the case of FIG. 6a, the groove side face F of the entire modeled object 3 cannot be seen. The processing unit 14 can use a 3D printer to more complicatedly change the angle formed by the groove side face F with the surface S in each part of the modeled object 3.

仕上げ部15は、表面等の研磨、別の部材との組合せ、追加着色、保護のための処理、加工後の洗浄、検品等を行い、造形物3を製品として完成させる(S15)。仕上げ部15は、照明光の拡散性の向上や色の変更・造形物の保護等の目的で、造形物3の裏面ないし表面に半透明樹脂板等を装着又は接着し、造形物展示体4とすることもできる。樹脂板はフィルム・シート・塗膜等の薄膜でもよく、その色は様々でよく、光を反射してもよく、この部分には溝が加工されなくてもよい。仕上げ部15は、造形物に照明器具等を装着又は組み合わせ造形物照明設備5としてもよい。 The finishing unit 15 polishes the surface and the like, combines with another member, performs additional coloring, protects, cleans after processing, inspects, and completes the modeled article 3 as a product (S15). The finishing unit 15 attaches or adheres a semitransparent resin plate or the like to the back surface or the front surface of the molded article 3 for the purpose of improving the diffusion of illumination light, changing the color, protecting the molded article, and the like. It can also be The resin plate may be a thin film such as a film, a sheet, or a coating film, may have various colors, may reflect light, and may not be grooved in this portion. The finishing unit 15 may be a shaped object lighting equipment 5 in which a lighting device or the like is attached to or combined with the shaped object.

以上、造形物製造装置10が画像取得部11・画像処理部12・材料取得部13・加工部14・仕上げ部15の順に実行する形態を説明したが、造形物製造装置10がそれらを実行する順序は任意であり、ある処理を別の工程部が行ってもよく、ある処理を複数の工程部で分担して行ってもよく、ある工程部に進んだのちに元の工程部に戻ってもよい。例えば材料取得部13・仕上げ部15を加工部14が兼ねてもよい。 The form in which the model manufacturing apparatus 10 executes the image acquisition unit 11, the image processing unit 12, the material acquisition unit 13, the processing unit 14, and the finishing unit 15 in this order has been described above, but the model manufacturing apparatus 10 executes them. The order is arbitrary, and a certain process may be performed by another process unit, a certain process may be shared by a plurality of process units, and after proceeding to a certain process unit, returning to the original process unit. Good. For example, the processing unit 14 may serve as the material acquisition unit 13 and the finishing unit 15.

《造形物の実施形態の諸条件》
造形物3が異方性視覚効果を得るための条件を、溝部深間隔率・溝部幅間隔率・溝部狭長率等として以下に定式化する。
<<Conditions of the embodiment of the molded article>>
The conditions for the molded article 3 to obtain an anisotropic visual effect are formulated below as groove depth interval ratio, groove width interval ratio, groove narrowing ratio, and the like.

図7は万線状の画像1に基づく溝部Gの溝方向に直交する断面の図である。造形物3の溝部G以外の部分である基材部Mに透過性がある場合、溝部Gが深いほど溝部色CGが連続して見える視点の範囲が広くなり、異方性カラーリング効果が向上する。図7において、深さがdeで、表面部Sと直交し、隣接する溝部Gとの幅方向の中心どうしの間隔di及び溝部Gの幅wが一定で、溝側面Fが平面で、底面部Bの幅weが0で、互いに平行な複数の溝部Gを、充分な距離を隔てた観察者V6が溝方向に表面部S上で直交する方向から観察する場合を考える。基材部Mの屈折率をn、空気の屈折率を1とすると、表面部Sに対する垂線又は法線と視線のなす角度(以下視線角度と記載)すなわち基材部Mへの入射角θVと、基材部M中の屈折角θrとの関係は、スネルの法則より1・sinθV=n・sinθrであるから、溝部Gの屈折像の表面部Sにおける見かけの深さdehは

Figure 0006704561
ここで、複数の溝部Gが隙間なくつながって見えるためには、dehがdi−w/2以上であればよく、
Figure 0006704561
となり、この時のde/(di−w/2)は、
Figure 0006704561
であり、de/(di−w/2)を本明細書では溝部深間隔率と記載する。溝部深間隔率が大きいほど所期の効果が高い。ソーダガラス等の一般的なガラスの屈折率は、波長にもよるが1.5前後、樹脂の屈折率は、PCで1.6、PMMAで1.49、PVCで1.54前後であるから、n=1.5とし、θV=45°とすれば、数3より溝部深間隔率が1.87083…以上であればよい。つまり、深さdeが間隔diから幅wの半分を減じた値の1.87倍以上であれば、表面方向において溝側面Fと視線が直交する場合に、視線角度が45°以上で、複数の溝側面Fが連続して見えることで、その部分の略全域が溝部色CGに見える。これは、その部分の基材部Mがそれのみでは見えず、必ず溝部Gを通して見えているということでもある。さらに視線角度θVが60°なら、溝部深間隔率が21/2以上で、造形物3に対してとりうる視線角度の範囲180°の1/3において、当該部分の一面が溝部色CGに見える。なお、we>0の場合には、溝部深間隔率はde/(di−w/2−we/2)である。
また、溝部Gが隙間なくつながって見えるための最小の溝部深間隔率は、θV=90°の場合で、cot[arcsin(1/n)]である。造形物3の基材部Mの屈折率に応じて一意に定まるこの値を最小溝部深間隔率と記載する。n=1.5なら1.1180…である。ただしθV=90では実際には溝部Gは表面からは見えないので、ある部分が一面溝部色CGに見えるためには、溝部Gの深さは隣接する溝部Gとの幅方向の中心どうしの間隔から幅wの半分を減じた値と最小溝部深間隔率との積より大きくなければならない。
出願時点で加工可能な造形物3における最大の溝部深間隔率は、深さdeが28mm、幅wが0.2mm、間隔diが0.8mmであるから40であり、これが溝部深間隔率の上限である。ただし、今後の材料の改良や製造技術の向上等により、この上限値は改善される可能性がある。本発明の技術的範囲は出願時に実施可能な範囲に限定されないのであり、後述の溝部間隔率・溝部狭長率の下限等においても同様に変更の可能性があるか、同じ理由から各種条件の上限又は下限が明示されないことがある。
なお、図7の造形物3外の2本の一点鎖線は同一視点V6からの視線を示し、実際の視点V6は図7に示すより遠方にあるので、各溝部Gに向かう視線は実用上略平行である。また、溝部Gが表面部Sに直交しない場合にも、見る方向によっては、同じ溝部深間隔率が適用できる。表面部S等に反射防止のためのコーティングやフィルム等の層が加工されている場合には、その部分の屈折率が基材部Mとは異なるが、その層の厚さが0.2mm程度以下で無色・平滑・高透過率・低ヘーズなら光路にはほとんど影響を与えないので、無視してよい。以下の記載でも同様である。
FIG. 7 is a cross-sectional view of the groove portion G based on the parallel line image 1 and orthogonal to the groove direction. When the base material portion M, which is a portion other than the groove portion G of the molded article 3, is permeable, the deeper the groove portion G, the wider the range of viewpoints in which the groove portion color CG can be continuously seen, and the anisotropic coloring effect is improved. To do. In FIG. 7, the depth is de, it is orthogonal to the surface portion S, the distance di between the centers of the adjacent groove portions G in the width direction and the width w of the groove portion G are constant, the groove side surface F is a flat surface, and the bottom surface portion is Consider a case where the width V of B is 0, and a plurality of parallel groove portions G are observed by a viewer V6 that is separated by a sufficient distance from the direction orthogonal to the groove direction on the surface portion S. Assuming that the refractive index of the base material portion M is n and the refractive index of air is 1, an angle formed by a line of sight and a normal or normal to the surface portion S (hereinafter referred to as a line-of-sight angle), that is, an incident angle θV to the base material portion M, , The relationship with the refraction angle θr in the base material portion M is 1·sin θV=n·sin θr according to Snell's law. Therefore, the apparent depth deh of the refraction image of the groove portion G at the surface portion S is
Figure 0006704561
Here, in order for the plurality of groove portions G to appear to be connected without a gap, deh should be di-w/2 or more,
Figure 0006704561
And de/(di-w/2) at this time is
Figure 0006704561
And de/(di-w/2) is referred to as a groove portion deep interval ratio in the present specification. The larger the groove depth interval ratio, the higher the desired effect. The refractive index of general glass such as soda glass is around 1.5 depending on the wavelength, and the refractive index of resin is 1.6 for PC, 1.49 for PMMA, and 1.54 for PVC. , N=1.5, and θV=45°, it is sufficient if the groove portion deep interval ratio is 1.70883... That is, if the depth de is 1.87 times or more of the value obtained by subtracting half of the width w from the interval di, when the line of sight F is orthogonal to the groove side face F in the surface direction, the line of sight angle is 45° or more, Since the groove side face F is continuously seen, almost the entire area of that portion looks like the groove color CG. This also means that the base material portion M at that portion cannot be seen by itself, but is always seen through the groove portion G. Furthermore, if the line-of-sight angle θV is 60°, the groove depth ratio is 2 1/2 or more, and in one-third of the range of line-of-sight angle 180° that can be taken with respect to the modeled object 3, one surface of the relevant part has the groove color CG. appear. In the case of we>0, the groove interval depth interval ratio is de/(di-w/2-we/2).
In addition, the minimum groove portion deep interval ratio for allowing the groove portions G to appear to be connected without any gap is cot [arcsin(1/n)] when θV=90 ° . This value, which is uniquely determined according to the refractive index of the base material M of the modeled article 3, is referred to as the minimum groove portion deep interval ratio. If n=1.5, it is 1.1180.... However, when θV=90, the groove portion G is not actually visible from the surface. Therefore, in order to make a certain portion look like the one-sided groove portion CG, the depth of the groove portion G is the distance between the centers of the adjacent groove portions G in the width direction. Must be greater than the product of the value obtained by subtracting half of the width w from the minimum groove depth spacing ratio.
The maximum groove depth interval ratio in the modeled article 3 that can be processed at the time of filing is 40 because the depth de is 28 mm, the width w is 0.2 mm, and the interval di is 0.8 mm. It is the upper limit. However, there is a possibility that this upper limit will be improved due to future improvements in materials and manufacturing technologies. The technical scope of the present invention is not limited to a feasible range at the time of filing, and there is a possibility that the lower limit of the groove width ratio, the groove narrowness ratio, etc. described below may be changed in the same manner, or various conditions may be satisfied for the same reason. Upper or lower limits may not be specified.
It should be noted that the two single-dot chain lines outside the modeled object 3 in FIG. 7 show the line of sight from the same viewpoint V6, and the actual viewpoint V6 is farther than that shown in FIG. 7, so the line of sight toward each groove G is practically omitted. Parallel. Even when the groove portion G is not orthogonal to the surface portion S, the same groove portion deep interval ratio can be applied depending on the viewing direction. When a coating such as a film for preventing reflection or a layer such as a film is processed on the surface portion S or the like, the refractive index of the portion is different from that of the base material portion M, but the thickness of the layer is about 0.2 mm. In the following, colorlessness, smoothness, high transmittance, and low haze have almost no effect on the optical path and can be ignored. The same applies to the following description.

図7V6のように、観察者が造形物3への視線を傾ければ、溝部色CGで略埋め尽くされて見える。一方図7V7のように、観察者が造形物3を正面から見れば、溝部色CGがほとんど見えない。この対比によって異方性カラーリング効果が得られる。ここで、溝部Gの幅wが間隔diに対して充分に狭ければ、観察者が正面から見た時にその部分が略透明に見え、溝部色CGがほとんど見えない。そこでw/diを溝部幅間隔率と記載し、その値を溝部色CGが最も目立たない時とより目立つ時とを比較する尺度とする。この幅wは、後述の溝がない場合の溝部色CGの厚さにもあてはまる。また、溝部Gが表面部Sに直交しない場合にも、同様にw/diが適用できる。ところで、図4a・bのCrのように、溝部Gからさらに微細な溝ないしヒビが枝分かれしてもよい。この微細溝Crは溝部とは異なる角度の光を反射して装飾効果を付与する。微細溝Crが溝部Gの深さ方向とは異なる方向に延び、溝部Gと比較して長さや幅が短く具体的には1/5以下で、溝の位置・長さ等が不規則、の少なくともいずれかであれば、溝部Gと比較して全体への視覚的影響が小さいので、wやde等には含まない。 As shown in FIG. 7V6, when the observer tilts the line of sight to the modeled object 3, the groove color CG appears to be substantially filled. On the other hand, as shown in FIG. 7V7, when the observer looks at the modeled object 3 from the front, the groove color CG is almost invisible. An anisotropic coloring effect is obtained by this comparison. Here, if the width w of the groove portion G is sufficiently narrower than the distance di, that portion looks almost transparent when viewed from the front by the observer, and the groove portion color CG is barely visible. Therefore, w/di is described as a groove width ratio, and the value is used as a scale for comparing when the groove color CG is the most inconspicuous and when it is more conspicuous. This width w also applies to the thickness of the groove portion color CG when there is no groove, which will be described later. Further, when the groove portion G is not orthogonal to the surface portion S, w/di can be similarly applied. By the way, finer grooves or cracks may be branched from the groove portion G like Cr in FIGS. 4A and 4B. The fine grooves Cr reflect light at an angle different from that of the groove portion and give a decorative effect. The fine groove Cr extends in a direction different from the depth direction of the groove portion G, has a length and width shorter than that of the groove portion G, specifically 1/5 or less, and the position and length of the groove are irregular. If it is at least one of them, the visual effect on the whole is smaller than that of the groove portion G, and therefore it is not included in w, de, or the like.

溝部幅間隔率は、溝部色CGが最も目立たない時とより目立つ時とを比較する尺度であるから、後述のように溝部Gの底面部Bが溝側面Fと異なる色の場合には、底面部Bの幅をwから差し引く必要がある。その場合、溝側面Fの幅、すなわち溝部Gの幅から底面部Bの幅を減じた値をwFとし、wF/diを溝側面幅間隔率とする。また、溝部幅間隔率と溝側面幅間隔率が一致する場合、それらを併せて溝幅間隔率とする。溝部幅間隔率についての記載は溝側面幅間隔率及び溝幅間隔率にも適用される。 The groove portion width interval ratio is a scale for comparing the time when the groove portion color CG is the most inconspicuous and the time when the groove portion color CG is more noticeable. It is necessary to subtract the width of part B from w. In that case, the width of the groove side surface F, that is, the value obtained by subtracting the width of the bottom surface portion B from the width of the groove portion G is defined as wF, and wF/di is defined as the groove side surface width interval ratio. When the groove portion width interval ratio and the groove side surface width interval ratio are the same, they are collectively referred to as the groove width interval ratio. The description about the groove width interval ratio also applies to the groove side surface width interval ratio and the groove width interval ratio.

溝部幅間隔率及び溝幅間隔率は小さいほどよい。基材部Mが不透明で、溝部Gの断面が等脚台形状で表面に近い部分の幅より底面に近い部分の幅の方が広い場合、wは0又は負の値となるが、いずれにせよ視点の位置によっては溝部色CGが全く見えないことがあるので、異方性カラーリング効果は高い。本願発明者による試験では、例えば6mm厚の透明板に直交する溝部Gにおいて、溝部Gの幅w約0.4mm、間隔diが4mmで、溝部幅間隔率が約1/10であったが、発明者が正面から観察して溝部色CGがあまり目につかず、良好な異方性カラーリング効果を得られた。別の例では、8mm厚の透明板に溝部Gの幅w約0.4mm、間隔diが6mmで溝部幅間隔率が約1/15、発明者が正面から観察して溝部色CGがほとんど目につかず、より良好な結果であった。また、アルミ板上に橙のアクリル塗料の層を重ねて0.6mm厚とし、その上に青のアクリル塗料をごく薄く重ねた材料では、間隔diが1.6mmに対し溝部深間隔率が約1/4で、正面から橙がやや見え、異方性カラーリング効果は限定的であった。発明者は、このような試作を多数積み重ね、いずれも異方性カラーリング効果というこれまでにない有利な効果を得られるものではあるが、溝部幅間隔率は1/6以下で所期の効果が認められ、1/8以下で差が明らかなので好ましく、1/10以下でより好ましいとの結論を得た。基材部Mに透過性がある場合、wを0にすることは難しいが、diは無制限に広げることができるので、溝部幅間隔率は0より大である。 The smaller the groove width interval ratio and the groove width interval ratio, the better. When the base material M is opaque and the cross section of the groove G is isosceles trapezoidal and the width of the portion close to the bottom surface is wider than the width of the portion close to the surface, w becomes 0 or a negative value. In some cases, depending on the position of the viewpoint, the groove color CG may not be seen at all, so the anisotropic coloring effect is high. In the test by the inventor of the present application, for example, in the groove portion G orthogonal to the transparent plate having a thickness of 6 mm, the width w of the groove portion G is about 0.4 mm, the interval di is 4 mm, and the groove portion width interval ratio is about 1/10. When the inventor observed from the front, the groove color CG was not noticeable so that a good anisotropic coloring effect was obtained. In another example, the width w of the groove portion G is about 0.4 mm, the gap di is 6 mm, and the groove width interval ratio is about 1/15 on a transparent plate having a thickness of 8 mm. The result was better. Also, in a material in which a layer of orange acrylic paint is overlaid on an aluminum plate to a thickness of 0.6 mm, and a blue acrylic paint is overlaid very thinly on it, the distance di is 1.6 mm and the groove interval depth ratio is about At 1/4, orange was slightly visible from the front, and the anisotropic coloring effect was limited. The inventors of the present invention have piled up a number of such prototypes, and all of them have an anisotropic coloring effect, which is an unprecedented advantageous effect. However, the groove width interval ratio is 1/6 or less, and the desired effect is obtained. Was observed, and the difference was obvious at 1/8 or less, and it was concluded that it is more preferable at 1/10 or less. When the base material M is permeable, it is difficult to set w to 0, but since di can be expanded without limitation, the groove width interval ratio is greater than 0.

図8は造形物3に含まれる溝部Gを示す。溝部Gの両側の溝側面Fがなす二面角を二等分する、又は溝部Gの両側の互いに平行な溝側面Fからの距離が等しい平面P1と、平面P1及び表面部Sを含む平面S1と直交する平面P2との交線において、溝部G及び平面S1で区切られた線分をL1、その長さをl1とし、平面P1に直交し2つの溝側面Fに区切られた線分のうち最も長い線分をL2、その長さをl2とする。溝側面Fが平面の場合、溝部狭長率はl2/l1の値である。溝側面Fが曲面の場合、溝方向の長さが無限小である溝部Gの連続を想定し、そのうちの最大のl2に上記を適用する。 FIG. 8 shows the groove portion G included in the modeled article 3. A plane P1 that divides the dihedral angle formed by the groove side surfaces F on both sides of the groove portion G into two equal parts or is equal in distance from the parallel groove side surfaces F on both sides of the groove portion G and a plane S1 including the plane P1 and the surface portion S. In the line of intersection with the plane P2 that is orthogonal to, the line segment that is divided by the groove portion G and the plane S1 is L1, and its length is l1, and the line segment that is orthogonal to the plane P1 and that is divided into two groove side faces F The longest line segment is L2, and its length is l2. When the groove side surface F is a flat surface, the groove portion narrowing ratio has a value of 12/11. When the groove side surface F is a curved surface, it is assumed that the groove portion G having an infinitely small length in the groove direction is continuous, and the above is applied to the maximum 12 thereof.

溝部Gが表面と直交する場合、基材部Mの屈折率が1.5で視線角度が45°の場合に、溝部狭長率が溝部Gの幅が0.4mmに対して深さが4mm以上、すなわち溝部狭長率が1/10以下であれば溝部Gの屈折像の表面部Sにおける見かけの深さdehが幅wの10/1.87≒5.4倍に見える。深さが6mm以上、溝部狭長率が1/15であればdehが幅wの15/1.87≒8.0倍に見え、視線角度が45°の時の溝部Gの深さに比して、正面から見た時の溝部Gの幅が無視できる程度に狭く見え、所期の効果が得られる。溝部狭長率が1/19でdehが幅wのほぼ10倍に見え、より好ましい。他の条件が同一であれば溝部狭長率は低いほどよい。出願時に製造可能な溝部狭長率の下限は、大型の造形物3では1/140、微細な造形物3では1/200である。 When the groove portion G is orthogonal to the surface, when the refractive index of the base material portion M is 1.5 and the line-of-sight angle is 45°, the groove portion narrowing ratio has a depth of 4 mm or more with respect to the width of the groove portion G of 0.4 mm. That is, if the groove narrowing ratio is 1/10 or less, the apparent depth deh on the surface S of the refractive image of the groove G appears to be 10/1.87≈5.4 times the width w. If the depth is 6 mm or more and the groove narrowing ratio is 1/15, deh looks 15/1.87 ≈ 8.0 times the width w, which is greater than the depth of the groove G when the line-of-sight angle is 45°. As a result, the width of the groove portion G when viewed from the front looks so small that it can be ignored, and the desired effect is obtained. It is more preferable that the groove narrowing ratio is 1/19 and deh is almost 10 times the width w. If the other conditions are the same, the narrower the groove narrowing ratio, the better. The lower limit of the groove narrowing ratio that can be manufactured at the time of filing is 1/140 for the large model 3 and 1/200 for the fine model 3.

造形物3が透過性を有する基材部Mによってなる場合、要求される異方性視覚効果はその用途次第で様々である。例えば店舗のショウウインドウに造形物3が使用され、正面のごく狭い範囲からのみ店内が見えて、それ以外の広い範囲からはブランドロゴが見えることが望ましい場合には、溝部深間隔率が大きく溝部狭長率が小さい方がよい。後述するエレベータの外装用で、広い範囲で外の景色が見え、昇降につれて時おり異方性視覚効果が発現することが求められる場合には、逆に溝部深間隔率が小さく溝部狭長率が大きい方がよい。いずれの場合にも、溝部幅間隔率が小さい方が正面から見た場合の透過率が上がるが、溝部間隔率が大きければ異方性視覚効果は低下し、例えば正面から見た時にも、斜めから見た時ほどではないものの溝部Gが見える。表札や装身具等ではこれが好まれることもありうる。ただし、異方性視覚効果が発揮されるためには、造形物3の反対側が少なくとも溝部Gと同じ量見える必要がある。また、加工部14が溝部楔角θGが10°以下の溝部Gを加工するには、溝部Gの間は幅wと少なくとも同じだけ離れている必要があり、また強度上も溝部Gのピッチはdi≧2wの必要がある。よって溝部幅間隔率は1/2以下でなければならない。造形物製造装置10は、そのような造形物3の使用条件に応じて、溝部Gの幅・深さ・ピッチ・表面部Sとなす角度の関係を調整し、さらに断面形状・正面から見た場合の形状・方向・色・各部での位相・面粗さも併せて調整し、目的に適合した造形物3を製造することができる。より具体的には、画像処理部12及び加工部14は、造形物3のサイズ及び使用条件等のパラメータに応じた各種プリセット等を用いて、溝部深間隔率が最小溝部深間隔率より大きく実施可能な最大値までの範囲内で調整され、溝部幅間隔率が0以上1/2以下の範囲内で調整されることで、条件に合致した異方性視覚効果を発揮する造形物3を製造することができる。
When the molded article 3 is composed of the base material M having transparency, the anisotropic visual effect required varies depending on its use. For example, when the molded article 3 is used in a show window of a store, and it is desirable that the inside of the store can be seen only from a very narrow area in front and the brand logo can be seen from a wide area other than that, the groove portion deep interval ratio is large. The narrowness rate is better. For exterior use of elevators, which will be described later, when the outside scenery can be seen in a wide range and the anisotropic visual effect is sometimes expressed as the elevator goes up and down, conversely the groove depth interval ratio is small and the groove narrowness ratio is large. Better. In any case, the smaller the groove width interval ratio, the higher the transmittance when viewed from the front, but if the groove width interval ratio is large, the anisotropic visual effect decreases, for example, when viewed from the front, The groove portion G can be seen, though it is not as great as when viewed obliquely. This may be preferred for nameplates and accessories. However, in order to exert the anisotropic visual effect, it is necessary that at least the same amount of the opposite side of the shaped article 3 as the groove portion G is visible. Further, in order for the processed portion 14 to process the groove portion G having the groove wedge angle θG of 10° or less, the groove portions G must be separated from each other by at least the width w, and in terms of strength, the pitch of the groove portions G is also different. It is necessary that di≧2w. Therefore, the groove width interval ratio must be 1/2 or less. The model manufacturing apparatus 10 adjusts the relationship between the width of the groove G, the depth, the pitch, and the angle with the surface S according to the usage conditions of the model 3, and further, the sectional shape and the front view. In this case, the shape, direction, color, phase at each portion, and surface roughness can also be adjusted to manufacture the modeled article 3 suitable for the purpose. More specifically, the image processing unit 12 and the processing unit 14 implement the groove depth interval ratio larger than the minimum groove depth interval ratio by using various presets or the like according to parameters such as the size of the modeled object 3 and usage conditions. By adjusting within the range of the maximum possible value and adjusting the groove width interval ratio within the range of 0 or more and 1/2 or less, a molded article 3 that exhibits an anisotropic visual effect matching the conditions is manufactured. can do.

造形物3は屋外設置も可能であるから、屋外も含む様々な環境下での耐久性が要求される。そこで最大の問題が耐光性である。ソーダガラス・PC・PMMA等は一般に紫外線を通しにくく、300nm以下の紫外線の透過率は0%に近い。そのためこれらによってなる基材部Mでは紫外線による劣化の懸念が少ない。しかし、溝部Gが着色されている場合、溝部色CGの褪色の可能性がある。この問題は、無機顔料等の紫外線に強い色材の採用により改善が見込まれるが、色の選択の幅が狭まり、また無機顔料でも長期の直射日光照射による劣化は避けられない。それゆえ、溝部色CGが直接露出する部分の縮小という対策も併用されなければならない。造形物3の開口部側を透明の被膜・保護層・保護板等で覆うという方法もあるが、コスト・板厚・透明の層の反射による溝部Gの見えづらさといった理由で、この方法が望ましくない局面もある。そのため、室内外を問わず、長期にわたり造形物3の装飾性を維持するためには、溝部狭長率を低く抑え、溝部Gの開口部を極力狭くする必要がある。また、それにより雨水等の影響を含む耐候性全般が向上する。図4cのように溝部Gに不透明の充填部Fiがあれば、著しい経年劣化は充填部Fiの開口部にとどまる。側面部Fは基材部Mにより紫外線から遮断される。図4aのように溝部Gに充填部Fiがない場合、あるいは図4bのように充填部Fiが透過性を有し、さらにその紫外線透過率が高い場合には、上部近辺の経年劣化が激しく、一方溝部Gの奥は紫外線の到達量が減るため元の色合いを維持する。紫外線及び短波長光は散乱して各方向から溝部Gに入射するが、特に影響が大きいのは溝側面Fの上部近辺に対し略45〜90°で入射する紫外線である。これにより、溝部G上部の、上端から幅と略同じ深さの部分が徐々に色褪せ、奥の元の色との対比で老朽感を醸す。この特に色褪せやすい部分が目立たないためには、溝部Gの幅wは深さdeの1/10以下がよく、1/20以下なら褪色部分が略目につかない。この点からも、溝部狭長率は1/10以下が好ましい。この効果は、溝部楔角θGが0.5〜15、好ましくは1〜8°より好ましくは2〜4°となることによっても、同様に開口部が狭くなることで得られる。 Since the modeled article 3 can be installed outdoors, it is required to have durability in various environments including outdoors. Therefore, the biggest problem is light resistance. Generally, soda glass, PC, PMMA, etc. do not easily pass ultraviolet rays, and the transmittance of ultraviolet rays of 300 nm or less is close to 0%. Therefore, there is little concern that the base material M made of these may deteriorate due to ultraviolet rays. However, when the groove portion G is colored, the groove portion color CG may be faded. This problem is expected to be improved by using a coloring material such as an inorganic pigment that is strong against ultraviolet rays, but the range of color selection is narrowed, and even the inorganic pigment is inevitably deteriorated by long-term direct sunlight irradiation. Therefore, a measure to reduce the portion where the groove color CG is directly exposed must be used together. There is also a method of covering the opening side of the molded article 3 with a transparent coating, a protective layer, a protective plate, etc. However, this method is used because of the cost, the plate thickness, and the difficulty of seeing the groove G due to the reflection of the transparent layer. There are some undesirable aspects. Therefore, in order to maintain the decorativeness of the shaped article 3 for a long period of time regardless of whether it is indoors or outdoors, it is necessary to keep the groove narrowing ratio low and make the opening of the groove G as narrow as possible. Further, as a result, the overall weather resistance including the effect of rainwater is improved. If there is an opaque filling portion Fi in the groove portion G as shown in FIG. 4C, the remarkable deterioration over time is limited to the opening portion of the filling portion Fi. The side surface portion F is shielded from ultraviolet rays by the base material portion M. When there is no filling portion Fi in the groove portion G as shown in FIG. 4a, or when the filling portion Fi is transparent and has a high ultraviolet transmittance as shown in FIG. 4b, aging deterioration near the upper portion is severe, On the other hand, in the inner part of the groove portion G, the amount of ultraviolet rays reaching is reduced, so that the original color is maintained. The ultraviolet rays and the short-wavelength light are scattered and are incident on the groove portion G from each direction, but the ultraviolet rays having a large influence are incident on the vicinity of the upper portion of the groove side surface F at approximately 45 to 90°. As a result, a portion of the upper portion of the groove portion G having a depth substantially equal to the width from the upper end is gradually faded, and a feeling of deterioration is produced in comparison with the original color at the back. In order to make the particularly fading-free portion inconspicuous, the width w of the groove portion G is preferably 1/10 or less of the depth de, and if it is 1/20 or less, the fading portion is almost invisible. Also from this point, the groove narrowing ratio is preferably 1/10 or less. This effect can also be obtained when the groove wedge angle θG is 0.5 to 15, preferably 1 to 8°, more preferably 2 to 4°, and the opening is also narrowed.

造形物3は、溝部Gを除き、又は裏面部Rと溝部Gを除き、少なくとも一部で略同じ色でもよい。略同じ色とは、一般的な使用において識別されない程度に近い色ということであり、例えば無色透明のPCに無色透明のPVCを貼り合わせた材料2では、それぞれの層の色は厳密には互いに異なるが、実用上同じと見なしてよい。この場合の色差を本明細書では許容色差と記載し、これはΔE*ab25.0以下が好ましく、ΔE*ab13.0以下又はそれと略同等のマンセル表色系における1歩度差以下がより好ましく、ΔE*ab6.5以下がさらに好ましい。下限は測定限界値であり、基材部Mが同一の材料からなる場合等には0である。 The molded article 3 may have substantially the same color in at least a part thereof except for the groove portion G or the back surface portion R and the groove portion G. The substantially the same color means a color that is not nearly discernible in general use. For example, in the material 2 in which colorless and transparent PVC is attached to colorless and transparent PC, the colors of the respective layers are strictly different from each other. Although different, they may be considered the same in practice. In this specification, the color difference in this case is referred to as an allowable color difference, which is preferably ΔE*ab25.0 or less, more preferably ΔE*ab13.0 or less or one rate difference or less in the Munsell color system substantially equivalent thereto. ΔE*ab6.5 or less is more preferable. The lower limit is a measurement limit value and is 0 when the base material portion M is made of the same material.

《造形物の実施形態の展開と条件》
図3bのような万線状の画像1に基づく溝部Gによってなる造形物3では、溝の方向と視線の方向の関係によって色の見え具合が多様に変化する。図9には、溝部Gと視線の表面上の方向が直交する視点V8と、溝部Gと視線が同一平面上にある視点V9とが示されている。V8では、V9と比較して、溝部Gが広く見え、無色透明に見える部分は狭い。V9では全体が無色透明に見え、溝部Gがあまり見えない。つまり、例えば、造形物3が垂直に壁にかけられている場合、正面から見た場合と斜めから見た場合とで色が異なって見えるだけでなく、横側の斜めから見た場合と下側の斜めから見た場合とでも色が異なって見える。
<<Development and conditions of embodiment of molded article>>
In the modeled object 3 including the groove portion G based on the linear image 1 as shown in FIG. 3B, the appearance of color changes variously depending on the relationship between the direction of the groove and the direction of the line of sight. FIG. 9 shows a viewpoint V8 in which the groove G and the direction of the line of sight are orthogonal to each other, and a viewpoint V9 in which the groove G and the line of sight are on the same plane. In V8, as compared with V9, the groove portion G looks wider and the colorless and transparent portion is narrower. In V9, the whole looks colorless and transparent, and the groove G is not so visible. That is, for example, when the modeled object 3 is hung vertically on a wall, not only the colors look different when viewed from the front and when viewed from an angle, but also when viewed from an angle on the side and below. The color looks different even when viewed from an angle.

〈異方性ライティング効果〉
図9においてV8及びV9が視点ではなく光源位置であると考えると、V8に光源がある場合には溝部Gが明るく照らされるが、V9に光源がある場合には溝部Gにはあまり光が当たらないため、観察者が正面以外の視点、例えばV8から見た場合でも溝部色CGが見えにくい。一方、溝部Gが少なくとも一部の光を吸収するなら、前者では溝部Gの影が一部にできるが、後者ではほとんど影ができずにまんべんなく照明が当たる。このような、照明の方向等が異なると造形物3の形状等を反映して各部の明るさが異なる効果も、異方性視覚効果の一種であり、これを本明細書では異方性ライティング効果と記載する。
<Anisotropic lighting effect>
Considering V8 and V9 in FIG. 9 as light source positions, not the viewpoint, the groove G is illuminated brightly when there is a light source in V8, but when the light source is in V9, too much light hits the groove G. Since it is not present, the groove color CG is difficult to see even when the observer sees it from a viewpoint other than the front, for example, V8. On the other hand, if the groove portion G absorbs at least a part of the light, the shadow of the groove portion G can be formed in a part in the former case, but the shadow can be hardly formed in the latter case and the illumination is evenly illuminated. Such an effect that the brightness of each part is different when the direction of illumination is different and the shape of the molded article 3 is reflected is also a kind of anisotropic visual effect. Described as an effect.

〈異方性反射効果〉
溝側面Fが光を反射する場合、異方性視覚効果の一種である異方性反射効果がさらに得られる。つまり、光が当たる角度や見る方向の差により各部で輝き具合が変化し、より意匠性が向上する。その反射は乱反射に近くてもよいが、正反射に近い方が効果が高い。よって研磨・塗装等により溝側面Fの反射率が改善されてもよい。この異方性反射効果は溝部色CGが無色透明でも得られるので、図4のような溝部Gが特に着色されず、基材部Mと同じ色又は略同じ色でもよい。溝側面Fが反射を起こすためには、それが界面である必要がある。溝部Gは充填部Fiのない空隙か、充填部Fiがあれば基材部Mと屈折率が大きく異なれば反射が起きやすい。つまり溝部Gの屈折率及び透過率により、透明度・反射効果・明度・コントラスト・遮蔽効果等が変化する。溝部Gは溝状でなくともよく、透明樹脂板やガラス板の内部にレーザ加工等で形成されたクラック・微小な破壊面等でもよい。溝部Gの一部に凹凸があればさらに細かく光って見える。溝部Gが万線に基づいていれば、複数の溝側面F間や表面部S及び裏面部Rと複雑に反射しあうことで、造形物3各部に多様な効果が発生する。
以下、溝部Gが反射を返すための条件を検討する。造形物3の表面部Sと裏面部Rとが互いに平行であり、溝部Gが表面部Sと直交し、充填部Fiがないものとし、材部Mの屈折率をnとする。図10は、xyz座標空間において、裏面部Rがyz平面と平行であり、溝部Gの両側の溝側面Fによってなる二面角を二等分する平面がzx平面と平行であるような造形物3の、xy平面と平行な断面の図である。x軸正方向が0°、時計回りが正の向き、矢印が光の進行方向で、光路は断面と平行である。溝部Gの上側の溝側面Fによる光の反射に着目する。
I 溝部Gの開口部の反対側から光が入射する場合(θG1≦0)
図10aにおいて、溝部楔角θG1・基材部Mへの光の入射角θ1・屈折角θ2・溝側面Fへの入射角θ3・反射角θ4・空気との界面への入射角θ5・出射角θ6の関係は、sinθ1=n・sinθ2、θ2−θ3+90−θG1/2=180、−θ3=θ4、θ4−θ5+90+θG1/2=180、n・sinθ5=sinθ6であるから、次の式が導かれる。

Figure 0006704561
(1)−2arcsin(1/n)<θG1≦0の場合(図10a・b)
光が上側の溝側面Fに反射するためにはθ2≧θG1/2、出射光が光源と反対側の観察者に見えるためにはθ6>−90であるから、観察者に反射が見えるθ1の範囲は
Figure 0006704561
となり、θG1が大きいほどθ1の範囲は溝側面Fの下側で広がり、上側で狭まることがわかる。θ1が数5の範囲を上回ればθ5≧arcsin(1/n)となり臨界角を超えるのでθ6の出射は起こらず基材部M内での全反射となり、観察者からは溝側面Fの反射が直接には見えない。θ1が数5の範囲を下回れば上側の溝側面Fにθ2の屈折角の光が届かない。またθ6のとりうる範囲は
Figure 0006704561
である。例えばn=1.5、θG1=−10であれば、−7,512…≦θ1<52.248…、−90<θ6≦−7,512…となり、光源(図示しない)からのある溝側面Fに対する入射光θ1がθ1>52.248となる位置に光源が置かれると、その溝側面Fには反射が見えない。また45≦θ1≦52といった範囲の時、θ6が水平方向に近ければ、視線が造形物3に正対する部分周辺では反射がほとんど見えず、後述のように奥の景色がよく見え、θ6が水平方向から遠ければ、視線方向と入射角が正面衝突に近い状態にならず、反射部分と光源が観察者の視野内で重なることが少ない。θG1=−3であれば、−2.250…≦θ1<70,071…、−90<θ6≦−2.250…という広い範囲から観察者が異方性反射効果を観察できる。特に造形物3が比較的周辺部から見られる時に反射が見える必要がある用途には有用である。観察者(図示しない)はθ6の反対の方向の視線によりθ1の入射角で入射した光の反射を観察することができる。
図10bのように、θG1が大きいほど全反射する範囲が広がり、外から反射を観察可能な範囲が狭くなる。数6の範囲の入射光は観察者に見えるが、その範囲は図10aより狭く、図10bの点線前後のわずか数度である。この条件では、観察者から見た光源と反射する部分の方向が正面衝突に近いために見づらい。また、反射面の溝側面Fが視線に対して平行に近い側に傾斜しているため溝側面Fが狭く見え、しかも溝側面Fへの入射角が大きいため反射光が暗く不鮮明である。
(2)2arcsin(1/n)−180<θG1≦−2arcsin(1/n)の場合(図10c)
溝側面Fからの反射光のすべてで空気との界面への入射角が臨界角を超え、基材部Mの内部で全反射を繰り返す。反射光が別の溝側面Fに当たれば、その角度によっては外から観察できることもあるが、光量の減衰等により所期の効果が得られないことが多い。n=1.5であればθG1≦−83.349…である。
(3)−180<θG1≦2arcsin(1/n)−180の場合(図10d)
溝側面Fで反射した光が裏面部R側に向かい、空気との界面への入射角の絶対値がarcsin(1/n)未満なら光源と同じ側に反射光が見え、それ以上なら基材部Mの内部で全反射する。溝部楔角θGが大きいため、得られる異方性視覚効果は限定的である。
なお、arcsin(1/n)≧45すなわちn≦2−2の場合には、(2)がなくθG1≦−2arcsin(1/n)で(3)となる。
II 溝部Gの開口部側から光が入射する場合(θG2≧0)
図10eにおいて、溝部楔角θG2・基材部Mへの光の入射角θ7・屈折角θ8・溝側面Fへの入射角θ9・反射角θ10・空気との界面への入射角θ11・出射角θ12の関係より、同様に次の式が導かれる。
Figure 0006704561
(4)0≦θG2<2arcsin(1/n)の場合(図10e)
光源の反対側の観察者に反射が見えるθ7の範囲は
Figure 0006704561
であり、θ12のとりうる範囲は
Figure 0006704561
である。なお
Figure 0006704561
の範囲の入射光θ7は上下いずれの溝側面Fにも当たらないので、開口部側から光が入射する実施形態は水平方向の入射光には不向きである。例えばn=1.5、θG2=10であれば、7,512…≦θ7<90、−52.248…<θ12≦7,512…となる。光源(図示しない)が例えば70<θ7<90になるような外側に置かれた場合、視線方向と入射角とがぶつかることがなく、反射部分と光源とが観察者の視野内で視覚的に干渉することが少ないので好ましい。また観察者(図示しない)は造形物3の中心部の比較的近くで反射を観察できる。θG2=3であれば、2.250…≦θ7<90、−70,071…<θ12≦2.250…となり、観察者が反射を観察可能な範囲がより広がる。この場合、反射面の溝側面Fは視線に対して直交する側に傾斜しているため、上記(1)より反射面が広く見えて有利である。
加工法によっては、溝部Gの底面部Bが微細な凹凸状等に荒れていることがある。溝部Gの開口部の反対側から見る場合には、その部分が目につきやすく、その部分に当たる光の角度次第では見栄えが下がる。この点では(1)の方が好ましい。
(5)2arcsin(1/n)≦θG2<180の場合(図10f)
裏面部Rから基材部Mに入射するあらゆる方向の光が、溝側面Fで反射することなく、表面部S側へ透過する。溝部Gに直接入射した光は、溝内部で反射するなどして光源と同じ側の観察者から見えることがある。
なお、基材部M内の入射角が臨界角未満の場合には、全反射は起こらず一部の光が溝部Gの外へ出射する。図10fの溝側面Fでの反射でも一部の光は透過する。
したがって、溝側面Fの反射光が異方性反射効果を伴って見えるθGの範囲は−2arcsin(1/n)<θG<2arcsin(1/n)である。上記では溝部Gの上側の溝側面Fが表面部Sに対する垂線又は法線となす角度θFをθG=2θFとしてθG1及びθG2に代えることができる。したがって、下側の溝側面Fの角度にかかわらず、−arcsin(1/n)<θF<arcsin(1/n)で上記の関係が数10等を除いて成り立ち、溝部Gが表面部Sと直交しなくてもよい。溝部Gの方向を考慮しない、つまり角の向きを考えず角度の絶対値をとらえるならば、上記範囲は0≦θG<2arcsin(1/n)又は0≦θF<arcsin(1/n)である。下側の溝側面Fの反射についても同様に扱うことができる。加工部14は、造形物3の使用目的・使用条件・サイズ等に応じてθG又はθF及び表面と裏面のうち加工する側を変更することで、所期の効果が得られる光の入射方向及び視線方向の範囲を調整することができる。加工部14は、造形物3の各部でθG又はθFを変更してもよい。上記(1)の場合の数5の範囲の光の入射角θ1及び上記(4)の場合の数8の範囲の入射角θ7を合わせて本明細書では出射可能入射角と記載する。
光路は図10のようにxy平面と平行でなくともよい。様々な方向からの入射光による光路は、例えば図10のようなxy平面への正射影及びzx平面への正射影の組合せで記述できる。前者には数4又は数7が適用できる。後者ではθ1=θ6、θ2=θ5、θ3=θ4であり、−90°より大きく90°未満の入射角の入射光が同じ出射角で出射される。
<Anisotropic reflection effect>
When the groove side surface F reflects light, an anisotropic reflection effect, which is a kind of anisotropic visual effect, is further obtained. In other words, the degree of shine changes at each part due to the difference in the angle of light and the viewing direction, and the design is further improved. The reflection may be close to irregular reflection, but the closer to regular reflection, the higher the effect. Therefore, the reflectance of the groove side face F may be improved by polishing or painting. Since this anisotropic reflection effect can be obtained even if the groove color CG is colorless and transparent, the groove G as shown in FIG. 4 is not particularly colored and may be the same color or substantially the same color as the base material M. In order for the groove side surface F to cause reflection, it needs to be an interface. The groove portion G is a void without the filling portion Fi, or if the filling portion Fi is present, reflection is likely to occur if the refractive index is significantly different from the base material portion M. That is, the transparency, the reflection effect, the brightness, the contrast, the shielding effect, etc. change depending on the refractive index and the transmittance of the groove portion G. The groove portion G does not have to be a groove shape, and may be a crack, a minute fracture surface, or the like formed by laser processing or the like inside a transparent resin plate or a glass plate. If a part of the groove portion G has unevenness, it will appear to shine more finely. If the groove portion G is based on a parallel line, various effects are generated in each part of the modeled object 3 by being reflected intricately between the groove side surfaces F, the front surface portion S, and the back surface portion R.
Hereinafter, conditions for the groove G to return reflection will be examined. Surface portion S of the shaped object 3 and the back surface R are parallel to one another, the groove G is perpendicular to the surface portion S, and that there is no filling part Fi, the refractive index of the substrate portion M and n. FIG. 10 is a modeled object in which the back surface R is parallel to the yz plane in the xyz coordinate space, and the plane bisecting the dihedral angle formed by the groove side surfaces F on both sides of the groove G is parallel to the zx plane. 3 is a view of a cross section parallel to the xy plane of FIG. The x-axis positive direction is 0°, the clockwise direction is the positive direction, the arrow is the traveling direction of light, and the optical path is parallel to the cross section. Attention is paid to the reflection of light by the groove side face F above the groove part G.
I When light enters from the side opposite to the opening of the groove G (θG1≦0)
In FIG. 10a, groove wedge angle θG1, light incident angle θ1 on the base material M, refraction angle θ2, groove side face F incident angle θ3, reflection angle θ4, air interface incident angle θ5, and emission angle. Since the relationship of θ6 is sin θ1=n·sin θ2, θ2-θ3+90−θG1/2=180, −θ3=θ4, θ4-θ5+90+θG1/2=180, n·sin θ5=sin θ6, the following formula is derived.
Figure 0006704561
(1)-2 arcsin(1/n)<θG1≦0 (FIGS. 10a and 10b)
Since θ2≧θG1/2 is required for the light to be reflected on the groove side surface F on the upper side, and θ6>−90 is for the emitted light to be seen by the observer on the side opposite to the light source, the reflection is seen by the observer at θ1. The range is
Figure 0006704561
Therefore, it can be seen that the larger θG1 is, the wider the range of θ1 is on the lower side of the groove side surface F, and narrower on the upper side. If θ1 exceeds the range of several 5, θ5≧arcsin (1/n) and the critical angle is exceeded, so that the emission of θ6 does not occur and total reflection occurs in the base material portion M, and the reflection of the groove side surface F is observed from the observer. Not directly visible. If θ1 is less than the range of Equation 5, light having a refraction angle of θ2 does not reach the upper groove side face F. The range of θ6 is
Figure 0006704561
Is. For example, if n=1.5 and θG1=−10, then −7,512... ≦θ1<52.248..., −90<θ6≦−7,512..., and a certain groove side surface from the light source (not shown). When the light source is placed at a position where the incident light θ1 on F is θ1>52.248, no reflection is visible on the groove side face F. Further, in the range of 45≦θ1≦52, if θ6 is close to the horizontal direction, almost no reflection can be seen around the part where the line of sight is directly facing the modeled object 3, and the scenery in the back can be seen well, and θ6 is horizontal. If it is far from the direction, the line-of-sight direction and the incident angle are not close to a frontal collision, and the reflective portion and the light source rarely overlap with each other in the observer's visual field. If θG1=−3, the observer can observe the anisotropic reflection effect from a wide range of −2.250...≦θ1<70,071..., −90<θ6≦−2.250. In particular, it is useful for applications where the reflection needs to be visible when the shaped article 3 is seen from a relatively peripheral portion. An observer (not shown) can observe the reflection of the light incident at the incident angle of θ1 by the line of sight in the direction opposite to θ6.
As shown in FIG. 10b, the larger θG1 is, the wider the range of total reflection becomes, and the narrower the range in which the reflection can be observed from the outside. The incident light in the range of Expression 6 is visible to the observer, but the range is narrower than that in FIG. 10a, and is only a few degrees before and after the dotted line in FIG. 10b. Under this condition, it is difficult to see because the direction of the portion that reflects the light source from the observer is close to a head-on collision. Further, since the groove side face F of the reflecting surface is inclined toward the side close to the line of sight, the groove side face F looks narrow, and since the incident angle on the groove side face F is large, the reflected light is dark and unclear.
(2) In the case of 2arcsin(1/n)-180<θG1≦-2arcsin(1/n) (FIG. 10c)
The angle of incidence of all the reflected light from the groove side face F on the interface with air exceeds the critical angle, and total reflection is repeated inside the base material portion M. If the reflected light hits another groove side face F, it may be observed from the outside depending on the angle, but the desired effect is often not obtained due to the attenuation of the light amount or the like. If n=1.5, then θG1≦−83.349.
(3) In the case of −180<θG1≦2arcsin(1/n)−180 (FIG. 10d)
The light reflected by the groove side face F goes to the back surface R side, and if the absolute value of the incident angle to the interface with air is less than arcsin (1/n), the reflected light can be seen on the same side as the light source. Total reflection occurs inside the part M. Due to the large groove wedge angle θG, the anisotropic visual effect obtained is limited.
When arcsin(1/n)≧45, that is, n≦2 −2 , there is no (2) and θG1≦ −2 arcsin(1/n) becomes (3).
II When light enters from the opening side of the groove G (θG2≧0)
In FIG. 10e, groove wedge angle θG2, light incident angle θ7 on base material M, refraction angle θ8, incident angle θ9 on groove side face F, reflection angle θ10, incident angle θ11 on the interface with air, and emission angle. The following equation is similarly derived from the relationship of θ12.
Figure 0006704561
(4) When 0≦θG2<2 arcsin (1/n) (FIG. 10e)
The range of θ7 where the observer on the opposite side of the light source can see the reflection is
Figure 0006704561
And the possible range of θ12 is
Figure 0006704561
Is. Note that
Figure 0006704561
Since the incident light θ7 in the range does not hit the upper and lower groove side faces F, the embodiment in which the light is incident from the opening side is not suitable for the incident light in the horizontal direction. For example, if n=1.5 and θG2=10, then 7,512... ≦θ7<90, −52.248... <θ12≦7,512. When the light source (not shown) is placed outside such that 70<θ7<90, the line-of-sight direction and the incident angle do not collide with each other, and the reflection part and the light source are visually recognized in the observer's visual field. It is preferable because it causes less interference. An observer (not shown) can observe the reflection relatively near the center of the modeled object 3. When θG2=3, 2.250... ≦θ7<90, −70,071...<θ12≦2.250, and the range in which the observer can observe the reflection is further expanded. In this case, since the groove side surface F of the reflecting surface is inclined toward the side orthogonal to the line of sight, the reflecting surface can be seen wider than in (1) above, which is advantageous.
Depending on the processing method, the bottom surface portion B of the groove portion G may be roughened into fine irregularities. When viewed from the side opposite to the opening of the groove portion G, that portion is easily noticeable, and the appearance is reduced depending on the angle of the light hitting the portion. In this respect, (1) is preferable.
(5) When 2arcsin(1/n)≦θG2<180 (FIG. 10f)
Light in all directions that enters the base material portion M from the back surface portion R is transmitted to the front surface portion S side without being reflected by the groove side surface F. The light directly incident on the groove portion G may be seen by an observer on the same side as the light source due to reflection inside the groove.
When the incident angle in the base material portion M is less than the critical angle, total reflection does not occur and a part of the light goes out of the groove portion G. Light is also a part in reflection by the groove side F of FIG. 10 f is transmitted.
Therefore, the range of θG in which the reflected light on the groove side face F is seen with the anisotropic reflection effect is −2arcsin(1/n)<θG<2arcsin(1/n). In the above, the angle θF formed by the groove side face F on the upper side of the groove part G with the normal or normal to the surface part S can be replaced with θG1 and θG2 with θG=2θF. Therefore, irrespective of the angle of the groove side surface F on the lower side, −arcsin(1/n)<θF<arcsin(1/n) holds, and the above relationship is satisfied except for the equation 10 and the groove portion G and the surface portion S. It does not have to be orthogonal. If the absolute value of the angle is taken into consideration without considering the direction of the groove portion G, that is, without considering the direction of the angle, the above range is 0≦θG<2 arcsin (1/n) or 0≦θF<arcsin (1/n). .. The reflection on the lower groove side face F can be treated similarly. The processing unit 14 changes θG or θF and the side to be processed of the front surface and the back surface according to the purpose of use, usage conditions, size, etc. of the modeled object 3 to obtain the desired incident direction of light and The range of the line-of-sight direction can be adjusted. The processing unit 14 may change θG or θF in each part of the modeled object 3. The incident angle θ1 of the light in the range of Expression 5 in the case of (1) and the incident angle θ7 in the range of Expression 8 in the case of (4) are collectively referred to as the exitable incident angle in this specification.
The optical path does not have to be parallel to the xy plane as shown in FIG. Optical paths due to incident light from various directions can be described by a combination of an orthogonal projection on the xy plane and an orthogonal projection on the zx plane as shown in FIG. 10, for example. Equation 4 or Equation 7 can be applied to the former. In the latter case, θ1=θ6, θ2=θ5, and θ3=θ4, and incident light with an incident angle larger than −90° and smaller than 90° is emitted at the same emission angle.

〈異方性屈折効果〉
透明の溝部Gは反射と透過の性質を併せ持つ。つまり、斜めから見た時、光源方向と視点方向に対応する部分の溝側面Fが光って見えるが、それ以外の溝側面Fは手前の風景を反射し、また向こうの背景を透過・反射する。その際、溝部G・基材部M・造形物3の外部で屈折率が異なるために屈折現象が発生し、背景が複雑かつ多様に変容して見える。これは、造形物3を正面から見た時に単なる透明ガラスを通したように見えるのとは異質の世界の見え方であり、異方性視覚効果の一種であるこの効果を、本明細書では異方性屈折効果と記載する。さらに視点の移動による変化や、条件によっては屈折に伴う分光による虹状の発色も加わり、これまでにない視覚的異化作用を発揮する。そのためには溝部幅間隔率が小さく、基材部Mの透過率及び溝側面Fの平滑度が高いと同時に、溝部Gの透明の度合も高い方がよい。
<Anisotropic refraction effect>
The transparent groove portion G has both reflective and transmissive properties. That is, when viewed obliquely, the groove side surface F of the portion corresponding to the light source direction and the viewpoint direction appears to be shining, but the other groove side surface F reflects the landscape in the foreground and transmits/reflects the background beyond. .. At that time, since the refractive index is different between the groove portion G, the base material portion M, and the outside of the molded article 3, a refraction phenomenon occurs, and the background appears to be transformed in a complicated and diverse manner. This is an appearance of a world different from what it looks like through a transparent glass when the molded article 3 is viewed from the front, and this effect, which is a kind of anisotropic visual effect, is referred to in this specification. It is described as an anisotropic refraction effect. In addition, changes due to the movement of the viewpoint and, depending on the conditions, rainbow-like color development due to the spectrum associated with refraction are also added to exert an unprecedented visual catabolic effect. For that purpose, it is preferable that the groove portion width interval ratio is small, the transmittance of the base material portion M and the smoothness of the groove side face F are high, and at the same time, the degree of transparency of the groove portion G is high.

〈異方性透過効果〉
基材部Mが透明で溝部Gが不透明なら、例えば正面からは造形物3の背景が透過して見えるが、斜めからは不透明な溝部Gの連続により背景が見えず、溝部Gが透明なら、視線角度によっては背景からの光をほとんど透過しないか別の方向の光を反射することで背景が見えにくい、という効果が得られる。裏面部Rの一部が文字等の形状に着色されていれば、正面からはこの文字等が見え、斜めからは見えないか見えにくい。これも異方性視覚効果の一種であり、本明細書では異方性透過効果と記載する。
造形物3が異方性透過効果を得るためには、溝部Gどうしの間の表面部Sが幅を有し、溝部幅間隔率が小さく、基材部Mの透過率が高い必要がある。幅を有する複数の表面部Sが、裏面部Rと平行であるか、同一の平面に含まれることで、複数の表面部Sを通して背景がゆがまずに見える。前者では表面部Sと裏面部Rとの距離が各部で異なっても、すなわち造形物3の厚みが異なってもよい。その場合には正面から見た場合のみ背景がゆがまずに見え、やや斜めから見た場合には、それぞれの表面部Sを通して見える背景の屈折の度合いが異なることにより、表面部Sのつなぎ目で背景がデコボコして見える。後者では複数の表面部Sを含む平面と裏面部Rとが平行でなくともよい。その場合には背景はつながって見えるが、表面部Sと裏面部Rとがなす角度及び見る方向によっては背景が変形して見え、色収差が生じる。複数の表面部Sが裏面部Rと平行かつ1つの平面に含まれていれば、通常の板ガラスのように自然に背景が透過して見える。また、加工法によっては、表面部Sのうち溝側面Fに接する部分の近辺が図4aのように凹むか、逆に盛り上がっていることがあり、そのような部分では背景がややゆがんで見えることがある。表面部Sすなわち複数の溝部Gの間に、上記前後者の少なくともいずれかであるような部分が0より大きい幅を有していれば、少なくともその部分を通して見える背景だけはゆがまない。材料加工において端部にこのような設計上の形状又は理想的な形状からの誤差が生じるのは不可避であるから、表面部Sの幅はそれを見越した値に設定される必要があり、間隔diの1/2以上が好ましい。このような平坦で幅を有する表面部Sは、それを通して異方性反射等が見えるためにも必要である。それらが溝部Gを通して明瞭かつゆがみなく見えることは少ないからである。造形物3は円筒の一部のような曲面状でもよく、その場合には曲面の裏面部Rと各々の表面部Sとが平行である。
基材部Mの全光線透過率(以下JIS K 7375に準拠する。これに対応する国際規格は出願時点で未制定であるが、JIS K 7375はISO 13468−1と同じ規格を含み、さらに厚さが10mmを超える材料や不透明な材料等の測定も可能となっている。また、本発明の材料は本規格の対象に限定されるものではない。例えばガラスでも上記全光線透過率に相当する透過度を有していれば材料2として用いることができる)は、基材部Mが厚い場合でも70%以上がよく、基材部Mを通して見る背景が素抜けの状態と比較して見劣りしないために、PVC等の無色透明樹脂10〜30mm板に相当する80%以上が好ましく、よりクリアに見えるために、PC・PET等の無色透明樹脂厚板並の85%以上がより好ましく、90%以上ならソーダガラス等の一般的なガラス同様に見えるのでさらに好ましい。これは高いほどよく、上限は理想的には100%だが、実際には多層膜コート処理された特に透過性が高い材料でも高々99%台か98%程度である。同時に拡散性が低い方がいいので、基材部Mのヘーズ(ISO 14782)は0〜5%が好ましく、0〜2%がより好ましく、0〜1%がさらに好ましい。上記2点は基材部Mを通して溝部Gが鮮明に見え、また充分な反射や屈折が起きるための条件でもある。一方溝部Gは背景を透過しないほど異方性透過効果に寄与する。不透明な溝部Gは、光を透過しにくい金属等のスパッタリング等で薄膜形成された溝側面F、無機顔料等の不透明な色材を用いた製品や不透明塗料として供給される隠蔽性の高い製品で着色された充填部Fi等により実現される。溝部Gの幅が狭ければ100%の遮光は困難であり、また光の回り込みがあるのでその必要もなく、色材が特性として不透明であり、例えば可視光の平均の透過率が0〜10%で、実用上色材を通して向こう側が透けて見えなければよい。それにより、斜めから見た場合の遮蔽効率が向上し、正面から見た場合との差異が大きくなる。基材部M又は溝部Gが蛍光色を含む場合には、その影響分は除外される。
また、隣接する複数の溝部Gの溝部色CGが透明かつ互いに異なると、それらによる光の反射と透過が影響し合ってさらに複雑な効果が得られる。直接観察された光だけでなく、床等に投影された透過光も意匠性に富む。
<Anisotropic transmission effect>
If the base material portion M is transparent and the groove portion G is opaque, for example, the background of the molded article 3 can be seen through from the front, but the background is not visible due to the continuous opaque groove portions G from an oblique direction, and if the groove portion G is transparent, Depending on the line-of-sight angle, the light from the background is hardly transmitted or the light in the other direction is reflected, which makes it difficult to see the background. If a part of the back surface R is colored in a shape such as a letter, the letter or the like can be seen from the front and cannot be seen or cannot be seen obliquely. This is also a type of anisotropic visual effect, and is referred to as an anisotropic transmission effect in the present specification.
In order for the molded article 3 to obtain the anisotropic transmission effect, it is necessary that the surface portion S between the groove portions G has a width, the groove portion width interval ratio is small, and the base material portion M has a high transmittance. The plurality of front surface portions S having a width are parallel to the back surface portion R or included in the same plane, so that the background can be seen without distortion through the plurality of front surface portions S. In the former case, the distance between the front surface portion S and the back surface portion R may be different in each portion, that is, the thickness of the molded article 3 may be different. In that case, the background does not appear distorted only when viewed from the front, and when viewed from a slight angle, the degree of refraction of the background seen through the respective surface portions S is different, so that the surface portion S is joined. The background looks uneven. In the latter case, the plane including the plurality of front surface portions S and the back surface portion R do not have to be parallel. In that case, the background appears to be connected, but the background appears to be deformed and chromatic aberration occurs depending on the angle formed by the front surface S and the back surface R and the viewing direction. If the plurality of front surface portions S are parallel to the back surface portion R and are included in one plane, the background naturally appears to be transparent like normal plate glass. In addition, depending on the processing method, the vicinity of the portion in contact with the groove side face F of the surface portion S may be dented as shown in FIG. 4a or may be bulged conversely, and in such a portion, the background may appear slightly distorted. There is. If the surface portion S, that is, the plurality of groove portions G has a width greater than 0 between at least one of the front and rear portions, at least only the background visible through the portion is not distorted. Since it is unavoidable that an error from such a designed shape or an ideal shape occurs at the end portion in the material processing, the width of the surface portion S needs to be set to a value in consideration of it, It is preferably 1/2 or more of di. Such a flat surface portion S having a width is necessary so that anisotropic reflection and the like can be seen therethrough. This is because they are rarely seen clearly and without distortion through the groove portion G. The molded article 3 may have a curved surface like a part of a cylinder, and in this case, the back surface R of the curved surface and each front surface S are parallel to each other.
Total light transmittance of the base material portion M (hereinafter conforming to JIS K 7375. An international standard corresponding to this is not established at the time of filing, but JIS K 7375 includes the same standard as ISO 13468-1, It is also possible to measure a material having a diameter of more than 10 mm, an opaque material, etc. Further, the material of the present invention is not limited to the object of this standard, for example, even glass is equivalent to the above total light transmittance. 70% or more is preferable even when the base material portion M is thick, and the background seen through the base material portion M is not inferior to that in a bare state. Therefore, 80% or more corresponding to a colorless transparent resin 10 to 30 mm plate such as PVC is preferable, and 85% or more equivalent to a colorless transparent resin plate such as PC/PET is more preferable, because it looks clearer, 90% The above is more preferable because it looks like general glass such as soda glass. The higher the value, the better, and the upper limit is ideally 100%, but in reality, even a material with a particularly high permeability that has been subjected to a multilayer film coating treatment is at most about 99% or 98%. At the same time, the lower the diffusivity is, the more preferable the haze (ISO 14782) of the base material portion M is from 0 to 5%, more preferably from 0 to 2%, even more preferably from 0 to 1%. The above-mentioned two points are conditions under which the groove portion G can be clearly seen through the base material portion M and sufficient reflection and refraction occur. On the other hand, the groove portion G contributes to the anisotropic transmission effect so as not to transmit the background. The opaque groove portion G is a groove side surface F formed by sputtering or the like of a metal that does not easily transmit light, a product using an opaque coloring material such as an inorganic pigment, or a product with high concealing property supplied as an opaque paint. It is realized by the colored filling portion Fi and the like. If the width of the groove G is narrow, it is difficult to block 100% of light, and there is no need for light to wrap around, and the coloring material is opaque as a characteristic. For example, the average transmittance of visible light is 0 to 10 %, it is good if the other side cannot be seen through the coloring material for practical purposes. As a result, the shielding efficiency when viewed from an angle is improved, and the difference from when viewed from the front becomes large. When the base material part M or the groove part G contains a fluorescent color, the influence part is excluded.
Further, when the groove color CG of the plurality of adjacent groove portions G is transparent and different from each other, reflection and transmission of light by them affect each other, and a more complicated effect is obtained. Not only the light that is directly observed, but also the transmitted light that is projected on the floor is rich in design.

上記各効果のためには、表面部S・裏面部R・溝側面Fは平坦又は平滑であることが望ましい。しかし、加工精度の限界等により、溝側面Fにわずかな凹凸や歪みが生じることがある。理想的な基準面からの溝側面Fの誤差、つまり溝部の方向と直交する溝部の断面における溝部の側面の全部が直線である場合からの前記側面のずれの量は、溝部Gの幅wの0〜1/4が好ましく、0〜1/8がより好ましく、0〜1/12がさらに好ましい。また表面部S・裏面部R・溝側面Fの表面粗さRzは200未満が好ましく、50未満がより好ましく、12.5未満がさらに好ましい。下限は測定限界値である。 For each of the above effects, it is desirable that the front surface portion S, the back surface portion R, and the groove side surface F be flat or smooth. However, slight unevenness or distortion may occur on the groove side surface F due to the limit of processing accuracy. The error of the groove side face F from the ideal reference surface, that is, the amount of deviation of the side face from the case where all the side faces of the groove part in the cross section of the groove part orthogonal to the direction of the groove part are straight lines, is the width w of the groove part G. 0 to 1/4 is preferable, 0 to 1/8 is more preferable, and 0 to 1/12 is further preferable. The surface roughness Rz of the front surface portion S, the back surface portion R, and the groove side surface F is preferably less than 200, more preferably less than 50, and even more preferably less than 12.5. The lower limit is the measurement limit value.

〈複数の方向の溝部〉
画像1が図3eのように複数の方向の線を有する場合や図3bのように複数の方向の万線によってなる複数の部分領域を有する場合、これに基づく造形物3には複数の方向の溝部Gが造形される。このような造形物3では、1つの造形物の中で溝部色CGの見え具合が様々に異なる状態が同居し、さらに照明光の方向に応じて各部の明るさが変化する異方性ライティング効果等も働き、より複雑で変化に富んだ効果が得られる。図3bのように画像1の複数の部分領域の間で万線の方向が異なれば、異方性視覚効果により造形物3上で画像が表示される。溝部Gの方向が多いほど、視線を傾けた状態で360°どの方向から見ても、いずれかの部分で溝部色CGがはっきりと見え、別の部分では溝部色CGがそれほど見えない、というふうに各種異方性視覚効果の差を同時に観察可能なので好ましい。これは造形物3表面における複数の溝部Gの方向の対比によるので、そのためには溝部Gの方向の数が2以上である必要がある。溝部Gの方向の数が3以上であれば、反対側から見た場合も含めて6方向から、つまり平均して60°ごとに上記の効果が得られるので好ましい。溝部Gの異なる方向の数が4以上であれば、8方向から、平均して45°ごとに上記の効果が得られ、どの角度から見ても上記の効果が得られる状態に近くなるため、より好ましい。画像1の少なくとも一部が曲線であれば上記の効果が連続的に得られ、さらに例えば円のように360°すべての方向を有する曲線を含んでもよい。ただし、溝部Gが直線又は波線でも振幅が小さい等直線に近い線に基づいている方が、異方性カラーリング効果や異方性反射効果が強い。なお、溝部Gの方向の数は、造形物の拡大や複雑化に伴い無制限に増加する可能性があり、また溝側面Fが曲面の場合には無限と考えられるので、上限を定めない。
<Grooves in multiple directions>
When the image 1 has lines in a plurality of directions as shown in FIG. 3e or has a plurality of partial areas made of lines in a plurality of directions as shown in FIG. 3b, the modeled object 3 based on this has a plurality of directions in a plurality of directions. The groove portion G is formed. In such a model 3, an anisotropic lighting effect in which the appearance of the groove color CG varies in one model, and the brightness of each part changes according to the direction of the illumination light. Etc. also work, and more complex and varied effects can be obtained. If the directions of the lines are different among the partial regions of the image 1 as shown in FIG. 3B, the image is displayed on the model 3 by the anisotropic visual effect. The more the direction of the groove G, the more clearly the groove color CG can be seen in any part, and the groove color CG is not so visible in another part when viewed from any direction of 360° with the line of sight tilted. Moreover, it is preferable because the difference in various anisotropic visual effects can be observed at the same time. This depends on the comparison of the directions of the plurality of groove portions G on the surface of the modeled object 3, and for that purpose, the number of the groove portions G in the direction needs to be two or more. It is preferable that the number of the grooves G in the direction is 3 or more because the above effect can be obtained from 6 directions including the case of being viewed from the opposite side, that is, every 60° on average. If the number of the groove portions G in different directions is 4 or more, the above effect is obtained every 45° on average from 8 directions, and the state is close to the state where the above effect is obtained from any angle. More preferable. If at least a part of the image 1 is a curve, the above effect can be continuously obtained, and a curve having all directions of 360° such as a circle may be included. However, the anisotropic coloring effect and the anisotropic reflection effect are stronger when the groove portion G is based on a straight line or a line close to a straight line such as a wavy line having a small amplitude. The number of the grooves G in the direction may increase without limit as the modeled object expands or becomes complicated, and is considered to be infinite when the groove side surface F is a curved surface.

互いに異なる方向の溝部Gの組合せで最も有効なのは、それらが90°の角度をなす場合である。図11のように、溝部G1と溝部G2とが直交している場合、視点V10からの視線が溝部G1と略平行なら、溝部G1が最も見えない(なお本明細書において、例えば溝部Gでは、末尾に数字等を付さない符号は一般的な溝部Gを指し、溝部Gを区別する必要がある場合に末尾に数字等を付す)。同時に、同じ視線の表面上の方向が溝部G2と直交しており、溝部G2が最もよく見える。溝部Gの反射率が高ければ、異方性反射についても視点又は1つの光源に対して同様の関係が成り立つ。視点V11からは溝部G1及びG2との関係がそれぞれ逆になる。つまり、図9のV8及びV9と溝部Gとの関係が、1つの視点に対して同時に起こっていることになる。この際、溝部G1及びG2のなす角度は90°前後である88°から92°が効果的であり、85°から95°でもほとんど同等の効果が得られるが、80°から100°まではそれに準ずる効果が得られ、72°から108°まではそれに近似した効果が得られる。そのような角度をなす溝部Gの方向の組合せが、造形物3に複数含まれてもよい。このような90°前後の角度は本明細書の他の記載にも適用される。なお、後述のように溝部Gどうしが交差してもよいが、造形物3が互いに平行な溝部Gによってなる複数の部分領域を有し、それぞれの部分領域において前記溝部Gの方向が異なる場合、個々の溝部Gが図11のように交差しない方が上記の効果が高い。 The most effective combination of the grooves G in different directions is when they form an angle of 90°. As shown in FIG. 11, when the groove portion G1 and the groove portion G2 are orthogonal to each other, if the line of sight from the viewpoint V10 is substantially parallel to the groove portion G1, the groove portion G1 is most invisible (in this specification, for example, in the groove portion G, The reference numeral without a numeral or the like at the end indicates a general groove portion G, and the numeral or the like is added at the end when it is necessary to distinguish the groove portions G). At the same time, the direction of the same line of sight on the surface is orthogonal to the groove portion G2, and the groove portion G2 is most visible. If the reflectance of the groove portion G is high, the same relationship holds for the viewpoint or one light source for anisotropic reflection. From the viewpoint V11, the relationship with the groove portions G1 and G2 is reversed. That is, the relationship between V8 and V9 in FIG. 9 and the groove portion G simultaneously occurs for one viewpoint. At this time, the angle formed by the groove portions G1 and G2 is effective from 88° to 92°, which is around 90°, and almost the same effect can be obtained from 85° to 95°, but from 80° to 100° A similar effect is obtained, and an effect similar to that is obtained from 72° to 108°. A plurality of combinations of the directions of the groove portions G forming such an angle may be included in the molded article 3. Such an angle of around 90° also applies to other descriptions in this specification. In addition, although the groove portions G may intersect with each other as described later, when the molded article 3 has a plurality of partial regions including the parallel groove portions G, and the direction of the groove portion G is different in each partial region, The above effect is higher when the individual groove portions G do not intersect as shown in FIG.

図3bでは、Xの文字の部分領域に含まれる万線とその周囲の部分領域に含まれる万線とが90°の角度をなし、Y字の部分領域とその周囲の部分領域とが45°又は135°の角度をなしている。このような画像1に基づく造形物3では、Xの部分領域とその周囲の部分領域とは、観察者が造形物3を見る方向によってはその視認性が排他的関係にある。つまり、上から見た時にはXに対応する部分の溝部Gがほぼ見えずその周囲の溝部Gが見える。一方、Yの溝部Gとその周囲の溝部Gとはそのように排他的ではなく、上から見た場合にYの溝部もやや見えるが、左上方向から見た時ほど鮮明ではない。さらに、Zの部分領域の溝部Gの方向はYとも異なるため、見え方も異なる。ここで、画像1における水平方向を0°とすると万線のとりうる角度は0°以上180°未満である。3つの部分領域が互いに隣り合っている場合、それぞれの万線の方向を180°の範囲から分割する必要があるが、これを図12aのように0°・60°・120°と均等に割るべきか、それとも図12bのように0°・45°・90°と不均等かつ一部に重点的に振るべきかは、個々の場合ごとに判断される必要がある。画像処理部12は、各部分領域の面積比や形状の差や境界線長の割合等を踏まえ、用意された各種規準等に従って、万線が最終的に造形物3に加工された段階での各部の方向の関係を総合的に演算し、それぞれの万線の方向の組合せが最も効果的となるよう、隣接した又は離れた複数の部分領域の間で万線の方向を調整することができる(S12)。その規準の一例としては、同じ万線方向が複数の部分領域で重複せず、近接した部分領域間で万線方向が近くなりすぎないよう案配する、というものがある。また例えば、部分領域の外形の多くが直線からなる場合、画像処理部12は、画像内容に応じて、最も長い直線部分と万線がなす角度を、図12cのようにその境界線の片側で45°、もう片側で135°(又は−45°)に近づけることで万線と境界線との視覚的方向の干渉を低減してもよく、逆に、図12dのように主要部分で0°、背景で90°に近づけることで主要部分に動感を演出してもよい。
その際、画像処理部12は、画像やその意味内容を解析する機械学習アルゴリズム等により、画像1に含まれる図形的要素等を認識した上で、画像1に基づく各部分領域の万線の方向の関係を最適化できる。例えば、画像処理部12は、公知のOCR等によって、画像に含まれる図形的要素を、あらかじめ登録された各国語の文字形状と比較の上で文字として読み取り、複数の部分領域を一群の文字からなる1つのグループと判断する。あるいは画像1の中心付近に位置する横幅・線幅又は高さの少なくともいずれかが同等の複数の部分領域を同様に1つのグループと判断する。これに基づき、画像処理部12は、前掲の規準にかかわらず、図13cのように該グループで万線の方向を揃えてもよい。さらに画像処理部12は、該グループが重要な要素であると自動的に評価すれば、周囲の背景に対して最も目立つよう、図13cのように該グループと背景との万線のなす角度を90°又はその近辺の85〜95°等の上記の角度の範囲にしてもよい。画像処理部12は、図13aのci1のように内部に別の部分領域を含む部分領域が、別の2つの図形が重なった二重丸か、それとも数字の0であって内側の円は中窓か、あるいは大文字のOか、はたまた小文字のoか、さらには記号の白丸〇かを、周囲の部分領域との関係等から上記の機序によって判別可能である。そこから画像処理部12は、例えば二重丸であれば図13bのように背景bg1と内側の円ci2と外側の円ci3の万線方向をそれぞれ異なるものとし、文字又は記号であれば図13cのように背景bg2と内側の円ci4の万線方向を一致させ、外側の円ci5の万線方向のみを異なるものとしてもよい。画像処理部12は、図3fのように、文字形の部分領域を、少なくとも一部の輪郭に沿った入れ子状の形状の万線にしてもよい。また、図3hのX及びYの文字の部分のように、文字の周辺部と芯の部分とで万線方向を変更し、凹又は凸状に見えるようにしてもよい。文字の外側をこうしてもよい。文字形の部分領域の文字の輪郭の内側(図3hのz4)又は外側(図3hのz5)に、縁取りやドロップシャドウのような処理が施されてもよい。図3hの背景部分bgのように、部分領域の角部や突端に別の部分領域の線の延長線が接するか、別の部分領域の線が部分領域への接線と重なれば、部分領域の角部や突端から別の部分領域の線があたかも影のように伸びて見える。図3b・cのようにこれがずれていると、つながっているように見えない。ずれの幅が万線ピッチの1/4以下であれば略つながっているように見える。部分領域の突起部や輪郭の外側から線が伸びている状態に見えるように、万線ピッチや万線の位相が調整され、部分領域への接線に重ねられてもよい。ただし、図3hでは説明のために万線ピッチが部分によって大きく異なるが、溝部深間隔率等が過度にばらつかずほぼ一定の効果が保たれるよう、実際にはより小さな変更、具体的には万線ピッチの1/4又は1/8までの変更がよい。また、画像処理部12は、搭載する辞書を参照して、読み取った文字から文意を組立て、複数の部分領域を例えば単語ごと・文節ごと又は文脈上の区切りごとにまとめて、それぞれの万線方向を変更することもできる。画像1がフォントの属性を有する文字データを含む場合も上記と同様に処理可能である。
画像処理部12は各国の国旗等の著名図形を記憶し、あるいは取得した画像1に含まれる文字等の各種特徴から各企業のロゴ等を識別する機能を具え、それらの図形を識別して文字同様の扱いとすることもできる。
各万線方向の選定にあたっては、例えば設置された造形物3を通行人が見る時の効果が向上するよう、造形物3のサイズ・設置位置の高さ・光源との位置関係等の使用条件が加味されてもよい。例えば、造形物3が高さ3mで、地面から垂直に設置され、平均した目の高さ1.5mの通行人が造形物3と平行に移動しながら水平方向の視線で見ることが想定されるなら、元となる画像1の万線の方向はすべて垂直で、溝部Gの色が各部で変えられてもよい。また、造形物3が高さ3mに設置され、その斜め上方に照明が設置され、同様の通行人が下から仰ぎ見るなら、万線方向は45°及び135°をベースとして組立てられてもよい。いずれも溝部Gの表面部S上の方向と視線が直交し、所期の効果の最大化が見込まれる。
あるいは、部分領域の幅が狭い場合、万線の方向によって効果がまちまちである。例えば図3bにおいて、Yの左上の斜画部分y1と右上の斜画部分y2とでは、y1の方が個々の万線が短いために他の部分との区別が困難になる。文字のウェイトが細いほど万線が短くなるので、その回避のため、画像処理部12は、幅又は長さの少なくとも一方が所定値より短い、具体的には万線ピッチの数倍以下、さらに具体的には4倍から8倍程度以下の部分領域を検知した場合、1方向の万線とせずに、図3eのように該部分領域の輪郭としてもよく、図3fのように該輪郭に基づく複数の線にしてもよい。図3eや図3fのような場合の部分領域は、互いに平行な万線のみを含む複数の部分領域(図3fのZでは隣接する互いに平行な複数の万線よりなるz1・z2・z3の3つの部分領域)にさらに分割されるという扱いでもよい。また、図3eや図3fのような部分領域の太さ又はサイズの少なくとも一方は万線ピッチ程度の所定値分拡大又は縮小されてもよい。以上の各所定値は造形物3の用途やサイズ等に合わせて実験の上変更されてもよい。また図3fのYにおいて、左上の斜画部分y3・右上の斜画部分y4・縦画部分y5の交差する三角形の部分y6の線はy3とつながっているが、y4と線をつなげるのではなくこのようにするという決定も画像処理部12には可能である。画像処理部12は、万線ピッチ・加工部14の加工限界や加工所要時間等の条件との兼ね合いないし部分領域相互のバランス等の理由により、画像1から得た部分領域そのものに変形・単純化等の変更を施してもよい。
画像処理部12は、万線の方向と同様に、位置・ピッチ・線の形状等を調整することもできる。例えば、図3bのX字の部分領域の先端位置x1の溝部Gが短くなりすぎないように、あるいは隣接する部分領域の万線と接しないように万線を左右に動かして位相をずらしたりピッチを部分的に変更したりしてもよく、部分領域の細部が忠実に再現されるように、部分領域の形状に合わせて平行曲線としその曲線の曲率や図3gのような波線の波長・波の振幅を調整してもよい。加えて、加工部14は、上記のような画像処理部12による画像1の解析の結果を受けて、各部分領域の溝部色CGや溝部Gの幅・深さ・面粗さ・断面形状・溝部以外の部分の色等の様々なパラメータを調整できる。なお溝部Gの形状は画像1における線の形状に基づく溝部Gの形状及び溝部Gの断面形状を含む。
このように、画像1及び画像1から導かれた各部分領域に基づいて造形物3各部の溝部G及び場合により部分領域自体が調整されることで、次のような造形物3が、属人的能力に依存せず、効率的・迅速かつ安定した品質で製造可能となる。すなわちそれは、大量の画像1に含まれる千差万別の内容を反映した多様な形状の部分領域を有し、該部分領域がそれぞれの溝部Gの特徴から生じる異方性視覚効果によって明瞭に識別される多数の造形物3である。
なお、上記画像処理部12と同様の動作によって万線画像を生成する万線画像生成プログラム及び万線画像生成方法及び万線画像生成装置も提供可能である。
In FIG. 3b, the lines included in the partial area of the X character form an angle of 90° with the parallel lines included in the surrounding partial area, and the Y-shaped partial area and the surrounding partial area form 45°. Alternatively, the angle is 135°. In the modeled object 3 based on the image 1 as described above, the visibility of the partial region of X and the surrounding partial region is in an exclusive relationship depending on the direction in which the observer views the modeled object 3. That is, when viewed from above, the groove portion G of the portion corresponding to X is almost invisible, and the groove portion G around it can be seen. On the other hand, the groove portion G of Y and the groove portion G around it are not so exclusive, and although the groove portion of Y is slightly visible when viewed from above, it is not as clear as when viewed from the upper left direction. Furthermore, since the direction of the groove G in the partial area of Z is different from that of Y, the appearance is also different. Here, assuming that the horizontal direction in the image 1 is 0°, the angle that the line can take is 0° or more and less than 180°. When the three partial regions are adjacent to each other, it is necessary to divide the direction of each parallel line from the range of 180°, but this is equally divided into 0°, 60°, and 120° as shown in FIG. 12a. It is necessary to judge for each individual case whether or not it should be shaken, or whether it should be unevenly distributed to 0°, 45°, and 90° as shown in FIG. The image processing unit 12 considers the area ratio of each partial area, the difference in shape, the ratio of the boundary line length, etc., and according to various prepared standards, the lines are finally processed into the modeled object 3. The direction of the lines can be adjusted between a plurality of adjacent or distant sub-regions so that the combination of the directions of the lines is most effective by comprehensively calculating the relationship of the directions of the parts. (S12). An example of the criterion is that the same line direction does not overlap in a plurality of partial regions and the line directions are not too close to each other between adjacent partial regions. Further, for example, when most of the outer shape of the partial region is a straight line, the image processing unit 12 determines the angle formed by the longest straight line portion and the line on one side of the boundary line as shown in FIG. 12c according to the image content. By approaching 45° and 135° (or −45°) on the other side, the visual direction interference between the lines and the boundary may be reduced, and conversely, 0° at the main part as in FIG. 12d. Alternatively, a moving feeling may be produced in the main part by approaching 90° in the background.
At that time, the image processing unit 12 recognizes the graphic elements and the like included in the image 1 by a machine learning algorithm or the like that analyzes the image and its meaning, and then determines the direction of the line of each partial area based on the image 1. The relationship can be optimized. For example, the image processing unit 12 reads a graphic element included in an image as a character by comparing it with a character shape of a pre-registered national language by a known OCR or the like, and reads a plurality of partial areas from a group of characters. Judged as one group. Alternatively, a plurality of partial areas located near the center of the image 1 and having at least one of the same width, line width, or height is similarly determined as one group. Based on this, the image processing unit 12 may align the directions of the lines in the group as shown in FIG. 13c, regardless of the above criteria. Further, when the image processing unit 12 automatically evaluates that the group is an important element, the image processing unit 12 determines the angle formed by the lines between the group and the background as shown in FIG. It may be in the range of the above-mentioned angle such as 90° or its vicinity of 85 to 95°. The image processing unit 12 is a double circle in which another two figures overlap each other, or a partial area including another partial area inside as in ci1 of FIG. Whether it is a window, an uppercase letter O, a lowercase letter o, or a symbol white circle ◯ can be discriminated by the above mechanism from the relationship with the surrounding partial area. From there, for example, in the case of a double circle, the image processing unit 12 sets the background bg1, the inner circle ci2, and the outer circle ci3 to different line directions as shown in FIG. As described above, the line directions of the background bg2 and the inner circle ci4 may be made to coincide with each other, and only the line direction of the outer circle ci5 may be different. As shown in FIG. 3f, the image processing unit 12 may make the character-shaped partial area a line having a nested shape along at least a part of the contour. Further, like the X and Y character portions in FIG. 3h, the line direction may be changed between the peripheral portion of the character and the core portion so that the character looks concave or convex. You may do this outside the letters. Processing such as edging or drop shadow may be applied to the inside (z4 of FIG. 3h) or the outside (z5 of FIG. 3h) of the outline of the character in the character-shaped partial area. As in the background portion bg in FIG. 3h, if the extension line of the line of another partial region touches the corner or the tip of the partial region, or if the line of another partial region overlaps the tangent to the partial region, the partial region Lines of other partial areas from the corners and tips of the are seen as if they were extending like shadows. If they are displaced as shown in FIGS. 3b and 3c, they do not appear to be connected. If the width of the deviation is 1/4 or less of the line pitch, it looks as if they are substantially connected. The line pitch or the phase of the lines may be adjusted so that the lines appear to extend from the outside of the protrusion or the contour of the partial region, and the lines may be overlapped with the tangent to the partial region. However, in FIG. 3h, the line pitch greatly differs depending on the portion for the sake of explanation, but in practice, a smaller change, specifically, a smaller change, to keep a substantially constant effect without excessive variation of the groove spacing ratio, etc. Is preferably changed to 1/4 or 1/8 of the line pitch. Further, the image processing unit 12 refers to the dictionary installed therein, assembles the meaning of the read characters, collects a plurality of partial regions, for example, for each word, each phrase, or for each demarcation in the context, and draws each line. You can also change the direction. Even when the image 1 includes character data having a font attribute, the same processing as above can be performed.
The image processing unit 12 stores a famous figure such as a national flag of each country, or has a function of identifying a logo or the like of each company from various characteristics such as a letter included in the acquired image 1, and identifies the figure to identify the letter. It can be treated similarly.
When selecting each line direction, for example, the usage conditions such as the size of the modeled object 3, the height of the installed position, the positional relationship with the light source, and the like, so that the effect when a person passing the modeled object 3 sees is improved. May be added. For example, it is assumed that the modeled object 3 has a height of 3 m and is installed vertically from the ground, and a passerby with an average eye height of 1.5 m moves in parallel with the modeled object 3 and looks at it in a horizontal line of sight. In this case, all the lines of the original image 1 may be vertical, and the color of the groove G may be changed in each part. Also, if the modeled object 3 is installed at a height of 3 m and the lighting is installed diagonally above it, and if a similar passerby looks up from below, the line direction may be assembled based on 45° and 135°. .. In both cases, the direction on the surface S of the groove G is perpendicular to the line of sight, and the desired effect is expected to be maximized.
Alternatively, when the width of the partial region is narrow, the effect varies depending on the direction of the line. For example, in FIG. 3b, in the upper left oblique image portion y1 and the upper right oblique image portion y2, it is difficult to distinguish y1 from other portions because the individual lines are shorter. As the weight of the character is smaller, the line becomes shorter. Therefore, in order to avoid the line, the image processing unit 12 determines that at least one of the width and the length is shorter than a predetermined value, specifically, several times the line pitch or less. Specifically, when a partial region of 4 to 8 times or less is detected, the contour of the partial region may be set as shown in FIG. 3e instead of a parallel line in one direction, and as shown in FIG. It may be a plurality of lines based on. In the case of FIG. 3e or FIG. 3f, the partial areas include a plurality of partial areas including only parallel lines (in FIG. 3f, Z, z1, z2, z3 of a plurality of parallel parallel lines). It may be treated as being further divided into one partial area). Further, at least one of the thickness and the size of the partial region as shown in FIGS. 3e and 3f may be enlarged or reduced by a predetermined value of about the line pitch. Each of the above predetermined values may be changed through experimentation in accordance with the use and size of the modeled article 3. Further, in Y of FIG. 3f, the line of the triangular portion y6 where the upper left oblique image portion y3, the upper right oblique image portion y4, and the vertical image portion y5 intersect is connected to y3, but it is not connected to y4. The image processing unit 12 can also decide to do this. The image processing unit 12 transforms/simplifies into the partial region itself obtained from the image 1 for reasons such as balance with the parallel line pitch, the processing limit of the processing unit 14, the processing required time, and the like, or the balance between the partial regions. Etc. may be changed.
The image processing unit 12 can also adjust the position, pitch, line shape, etc., as in the direction of the lines. For example, in order not to make the groove portion G at the tip position x1 of the X-shaped partial region in FIG. 3b too short, or to move the lines to the left or right so as not to contact the lines in the adjacent partial regions, the phase may be shifted or the pitch may be changed. May be partially changed, and in order to faithfully reproduce the details of the partial area, a parallel curve is formed according to the shape of the partial area and the curvature of the curve and the wavelength/wave of the wavy line as shown in FIG. 3g. May be adjusted in amplitude. In addition, the processing unit 14 receives the analysis result of the image 1 by the image processing unit 12 as described above, and receives the groove color CG of each partial region and the width/depth/surface roughness/cross-sectional shape/shape of the groove G. Various parameters such as the color of the portion other than the groove can be adjusted. The shape of the groove G includes the shape of the groove G and the cross-sectional shape of the groove G based on the shape of the line in the image 1.
In this way, the groove portion G of each part of the modeled object 3 and the partial region itself are adjusted based on the image 1 and each partial region derived from the image 1. It is possible to manufacture efficiently, quickly and with stable quality without depending on the physical capacity. That is, it has partial regions of various shapes that reflect the various contents contained in a large amount of image 1, and the partial regions are clearly identified by the anisotropic visual effect caused by the features of the respective groove portions G. It is a large number of shaped objects 3 to be formed.
Note that it is also possible to provide a parallel line image generation program, a parallel line image generation method, and a parallel line image generation device that generate a parallel line image by the same operation as that of the image processing unit 12.

また、後述する造形物3に対して複数の色の照明を照射する造形物照明設備5では、図3bに基づく造形物3のYの部分領域に、例えば上から赤、左から緑の光が当たった場合、光の加色によりこの部分領域が黄に光って見える。図3bのZのように溝部Gの方向が少し異なれば、それに応じて2色の光の比率が変化するので色が変わる。これによって造形物3により複雑な色合いが生起する。
ここから、造形物3が基づく画像1は図3のような2階調化されたものばかりでなく、中間調を含む多階調画像であってもよい。階調数が3であれば、3つの方向の溝部Gによって表示可能である。つまり、例えば画像1の黒の部分領域が図3bの文字の周囲の部分のような水平方向の、白が図3bのX字部分のような垂直方向の、グレーが図3bのY字部分のような斜め45°方向の溝部Gによって表示されればよい。溝部Gの方向が増えればより多くの階調数が表示可能である。
Further, in the modeling object lighting equipment 5 that illuminates the modeling object 3 to be described later with illumination of a plurality of colors, for example, red light from above and green light from left to the Y partial region of the modeling object 3 based on FIG. 3b. When hit, this partial area appears to glow yellow due to the addition of light. If the direction of the groove G is slightly different, as in Z of FIG. 3b, the ratio of the two colors of light changes accordingly, so that the color changes. As a result, the modeled object 3 has a complicated color tone.
From this, the image 1 on which the modeled object 3 is based is not limited to the two-tone image as shown in FIG. 3, but may be a multi-tone image including halftone. If the number of gradations is 3, display is possible by the groove portions G in three directions. That is, for example, the black partial area of the image 1 is the horizontal direction such as the peripheral portion of the character in FIG. 3b, the white is the vertical direction such as the X-shaped portion of FIG. 3b, and the gray is the Y-shaped portion of FIG. 3b. It suffices to be displayed by such a groove portion G in an oblique 45° direction. If the direction of the groove G is increased, a larger number of gradations can be displayed.

造形物3において、複数の互いに平行な溝部Gからなる複数の部分領域の溝部Gの方向が互いに異なる場合、複数の方向の万線によってなる複数の部分領域による画像の表示や、それに類似した効果を求める場合には、上記複数の部分領域の境界線がその画像の輪郭となるため、上記複数の部分領域の間の距離が狭い方がよい。その距離が0であり、それらが互いに直に接していれば、それぞれの領域が明確に識別され、最も好ましい。上記距離が間隔diの0〜2倍であれば、上記複数の部分領域が見かけ上連続して見えるので実用上充分な効果が得られる。上記距離が間隔diの0〜4倍であれば、上記複数の領域が明確に分割されているのではなく、輪郭をぼかした状態で描き分けられているという効果が得られる。このように、互いに異なる方向の溝部Gからなる複数の部分領域の距離が間隔diの4倍以下であることで互いに略接していてもよい。間隔diが均等ではない場合には、溝部Gの間隔diの平均値が用いられてもよい。本明細書の他の記載においても同様である。 In the molded article 3, when the directions of the groove portions G of the plurality of partial areas including the plurality of parallel groove portions G are different from each other, an image is displayed by a plurality of partial areas formed by parallel lines in a plurality of directions and an effect similar thereto. In order to obtain, the boundary line between the plurality of partial areas becomes the outline of the image, and therefore it is preferable that the distance between the plurality of partial areas is narrow. It is most preferred if the distance is 0 and they are in direct contact with each other as each region is clearly identified. When the distance is 0 to 2 times the distance di, the plurality of partial regions appear to be continuous, so that a practically sufficient effect can be obtained. If the distance is 0 to 4 times the distance di, the effect that the plurality of regions are not clearly divided but drawn with the outline blurred is obtained. As described above, the distances between the plurality of partial regions formed by the groove portions G in different directions may be substantially equal to each other because the distance is 4 times or less the distance di. If the intervals di are not uniform, the average value of the intervals di of the groove portions G may be used. The same applies to other descriptions in this specification.

一方で、溝部G等の色が互いに異なる複数の部分領域が隣接している場合、それらの間は図12の画像1に基づく造形物3のようにある程度離れていた方がよい。例えば溝部色CGが赤の部分領域と青の部分領域が近接しすぎていると、観察者が斜め方向から見た時、青の溝部Gが裏面部Rに反射して映り込んだ像と赤の溝部Gとが重複して見えるために混色することがあるからである。また、図14のようにある溝部Gの端部が別の溝部Gとつながっている場合、これらを互いに異なる色で塗り分けるのは、加工法によっては困難である。さらに、図11のように複数の溝部GがT字型に接している場合や交差している場合、諸方向の応力が交点に集中し破壊されやすい。よって互いに異なる方向の溝部Gはやや離れている方がよいが、前段落の理由で離れすぎない方がよい。具体的には、それらの距離は間隔diの0〜4倍が好ましく、1/2〜3倍がより好ましく、1〜2倍なら溝部深間隔率が1.87の造形物3を表面部Sに対して45°の方向から見た時に異なる色の溝部Gが略重ならずに見え、しかもそれぞれの色の部分領域が近接して見えるのでさらに好ましい。 On the other hand, when a plurality of partial regions having different colors such as the groove G are adjacent to each other, it is preferable that the partial regions are separated from each other to some extent as in the modeled article 3 based on the image 1 in FIG. For example, if the red partial area and the blue partial area of the groove color CG are too close to each other, the image and the red image of the blue groove G reflected on the back surface R when viewed by an observer from an oblique direction are shown. This is because the groove portion G of FIG. When the end of one groove G is connected to another groove G as shown in FIG. 14, it is difficult to apply different colors to each other depending on the processing method. Further, as shown in FIG. 11, when the plurality of groove portions G are in contact with each other in a T shape or intersect each other, stresses in various directions concentrate on the intersections and are easily broken. Therefore, it is preferable that the groove portions G in different directions are slightly separated from each other, but it is preferable that the groove portions G are not too separated from each other for the reason of the preceding paragraph. Specifically, those distances are preferably 0 to 4 times the distance di, more preferably 1/2 to 3 times, and if the distance is 1 to 2 times, the molded article 3 having a groove portion deep interval ratio of 1.87 is surface portion S. It is more preferable that the groove portions G of different colors can be seen without overlapping when viewed from the direction of 45°, and the partial regions of the respective colors can be seen close to each other.

《造形物の変形・応用及び造形物展示体》
〈変形例1〉
造形物3の各部で溝部色CGが異なってもよい。さらに、溝部Gの方向の変更と溝部色CGの変更が組み合わされてもよい。例えば図14aでは、造形物3に複数の部分領域があり、内側の部分領域では溝部色CGが橙O、外側の部分領域では溝部色CGが黄Yであり、加えて溝部Gの方向が内側と外側とでは90°異なっている。この場合、視線が橙Oと平行である左手前上の視点V12からは外側の部分領域の黄Yが見え、視線が黄Yと平行である右手前上の視点V13からは内側の部分領域の橙Oが見える。つまり、左からは絵柄の地の部分が黄に、図の部分は透明に見え、右からは絵柄の図の部分が橙に、その周囲は透明に見える。これにより、見る方向で図−地関係が反転し色も変わる従来なかった効果が得られる。なお、橙O及び黄Yは透明でも不透明でもよい。また、複数の部分領域の間で、溝部Gの方向と同様に、曲率・溝部の形状・ピッチ・幅・深さ・面粗さ・波長・波の振幅・位相・表面部Sや裏面部Rや基材部Mの色等が異なってもよい。これらの少なくともいずれかと溝部色CGの変更が組み合わされてもよい。造形物が複数の部分領域を有し、該複数の部分領域の少なくとも一部が前記複数の溝部の一部を有し、該複数の溝部の一部を有する複数の部分領域ごとに該複数の溝部の一部の方向・曲率・形状・ピッチ・幅・深さ・面粗さ・波長・波の振幅・位相の少なくともいずれか及び該複数の溝部の一部の色・該複数の溝部の一部以外の部分の色の少なくとも一方が異なってもよい。複数の部分領域において溝部色CGは変更されず、上記パラメータのうち複数の変更が組み合わされてもよい。
《Transformation/application of the model and display object of the model》
<Modification 1>
The groove color CG may be different in each part of the modeled article 3. Further, the change of the direction of the groove portion G and the change of the groove portion color CG may be combined. For example, in FIG. 14a, the molded article 3 has a plurality of partial areas, the groove color CG is orange O in the inner partial area, the groove color CG is yellow Y in the outer partial area, and the direction of the groove G is inward. And the outside are different by 90°. In this case, the yellow Y in the outer partial area is visible from the viewpoint V12 on the front left side, which is parallel to the orange O, and the inside Y is visible from the viewpoint V13 on the front right, which is parallel to the yellow Y. Orange O is visible. In other words, from the left, the background of the picture appears yellow, the part of the figure appears transparent, and from the right, the part of the picture appears orange and the surroundings appear transparent. As a result, it is possible to obtain an effect which has been heretofore unavailable, in which the figure-ground relationship is reversed and the color is changed in the viewing direction. The orange O and the yellow Y may be transparent or opaque. Further, between the plurality of partial regions, as in the direction of the groove portion G, the curvature, the shape of the groove portion, the pitch, the width, the depth, the surface roughness, the wavelength, the amplitude of the wave, the phase, the front surface portion S and the rear surface portion R are formed. The color or the like of the base material portion M may be different. At least one of them may be combined with the change of the groove color CG. The molded article has a plurality of partial areas, at least a part of the plurality of partial areas has a part of the plurality of groove portions, and the plurality of plurality of partial areas having a part of the plurality of groove portions At least one of the direction, curvature, shape, pitch, width, depth, surface roughness, wavelength, wave amplitude, and phase of a part of the groove part, and the color of part of the plurality of groove parts, one of the plurality of groove parts At least one of the colors of the parts other than the parts may be different. The groove color CG may not be changed in a plurality of partial areas, and a plurality of changes among the above parameters may be combined.

〈変形例2〉
造形物3の裏面部Rが着色され、造形物展示体4とされてもよい。その場合、溝部色CGが不透明であれば、正面等からは裏面部Rの色が見えるが、一部の斜め方向からは溝部色CGのみが見えて裏面部Rの色は溝部Gに隠れる、という異方性透過効果が得られる。例えば図14bでは、裏面部Rに着色された四角形Qが視点V14からは見えるが、視点V15からは略見えない。溝部色CGが透明であれば、視点V15からは溝部色CGと四角形Qの色が重なって見える。図14aと図14bが組み合わされると、図14cのように、溝部Gの方向と溝部色CGと裏面部Rの色とが同じ画像に基づいて変更されていれば、ある部分領域と別の部分領域とで、溝部Gの方向と、溝部色CG・裏面部Rの色・裏面部R以外の基材部Mの色の少なくともいずれかとが共に異なり、図14aの効果が強調される。図14dのように、溝部Gの方向及び溝部色CGと裏面部Rの色とが互いに異なる画像に基づいて変更されていれば、見る方向により絵柄が変化して見える。例えば溝部色CGが部分領域aと部分領域bとで青、部分領域cで赤、裏面部Rの色が部分領域aで緑、部分領域bと部分領域cとで黄というように、部分領域ごとに一部のみが異なってもよい。
上記のように、ある部分領域では他の部分領域より各色の明度が一律に高いとか各色が等しく青みがかるといった単調な色の変更ではなく、例えばある部分領域では裏面部Rの色が赤で溝部色CGが青、別の部分領域では裏面部Rの色が青で溝部色CGが赤、のように互い違いの組合せや、ある部分領域では裏面部Rの色が赤で溝部色CGが青、別の部分領域では裏面部Rの色が緑で溝部色CGが黄、のようにそれぞれの色相が全く異なる組合せで、しかも各色の彩度が高いと、部分領域どうしのメリハリがついて効果的である。具体的には、色相については、マンセル色相環において近い側が25〜50歩度分離れていれば明らかに別の色と識別できるので好ましく、35〜50なら主要原色のいずれかの色の色相の差に相当するのでより好ましく、45〜50なら補色どうしに近いのでさらに好ましい。又は複数の溝部色CGがHSV色空間のH値において離れている小さい側の角度が、90〜180°なら明らかに別の色と識別できるので好ましく、120〜180°ならRGB系又はCMY系の一方の原色系等のいずれかの色の色相の差に相当するのでより好ましく、150〜180°なら補色どうしに近いのでさらに好ましい。溝部色CGの彩度は、色相にもよるが、概してマンセル表色系における彩度で4以上が好ましく、6以上がより好ましく、8以上がさらに好ましい。溝部色CGの明度は、3〜10が好ましく、4〜10がより好ましく、5〜9がさらに好ましい。さらに上記の組合せとして、溝部色CGは彩度4以上かつ明度3以上が好ましく、彩度6以上かつ明度3以上がより好ましく、彩度6以上かつ明度4以上がさらに好ましく、彩度8以上かつ明度4以上が一層好ましい。なおマンセル表色系では、将来の新しい色材の開発等により安定的色再現域が広がることで、色票が彩度方向に拡張されていく可能性が提唱されている。また、JIS Z 8721において7.5PBの彩度として34や38が示されているが、蛍光色の場合にはこれを超える可能性がある。したがって、彩度の上限は示さない。この溝部色CGの条件は、溝部Gの個別の細部にもあてはまる。また、溝部色CGが複数の場合に限らず、溝部色CGが有色の場合には一般に、溝部色CGの彩度又は明度が上記の条件を満たしていれば、背景の色等にかかわらず溝部Gの色が際立つので、異方性カラーリング効果が向上する。
<Modification 2>
The back surface portion R of the molded article 3 may be colored to form the molded article display body 4. In that case, if the groove color CG is opaque, the color of the back surface R can be seen from the front surface, but only the groove color CG can be seen from some oblique directions and the color of the back surface R is hidden by the groove G. The anisotropic transmission effect is obtained. For example, in FIG. 14b, the colored rectangle Q on the back surface R is visible from the viewpoint V14, but is substantially invisible from the viewpoint V15. If the groove color CG is transparent, the groove color CG and the color of the quadrangle Q appear to overlap from the viewpoint V15. When FIG. 14a and FIG. 14b are combined, as shown in FIG. 14c, if the direction of the groove portion G, the groove portion color CG, and the back surface portion R are changed based on the same image, one partial region and another portion The direction of the groove portion G and the color of the groove portion CG, the color of the back surface portion R, and/or the color of the base material portion M other than the back surface portion R are different between the regions, and the effect of FIG. 14a is emphasized. As shown in FIG. 14d, if the direction of the groove G and the color CG of the groove and the color of the back surface R are changed based on different images, the pattern looks different depending on the viewing direction. For example, the groove color CG is blue in the partial areas a and b, red in the partial area c, the color of the back surface R is green in the partial area a, and yellow in the partial areas b and c. Only a part of each may be different.
As described above, in one partial area, the color of the back surface R is red and the groove portion is not a monotonous color change such that the brightness of each color is uniformly higher than other partial areas or the colors are equally bluish. The color CG is blue, the back surface R is blue in another partial area, and the groove color CG is red. In some partial areas, the back surface R is red and the groove color CG is blue. In another partial area, the color of the back surface R is green and the groove color CG is yellow, so that the hues are completely different, and if the saturation of each color is high, the partial areas will be sharp and effective. is there. Specifically, regarding the hue, it is preferable that the closer side in the Munsell hue circle is separated by 25 to 50 steps, so that it is clearly distinguishable from another color, and if it is 35 to 50, the difference in hue between any of the main primary colors is preferable. Is more preferable, and if it is 45 to 50, it is more preferable because it is close to complementary colors. Alternatively, if the angle on the small side where the plurality of groove colors CG are separated in the H value of the HSV color space is 90 to 180°, it is clearly distinguishable from another color, and if it is 120 to 180°, it is preferable that the RGB system or the CMY system. It is more preferable because it corresponds to the hue difference of one of the primary colors and the like, and it is more preferable if it is 150 to 180° because it is close to the complementary colors. Although the saturation of the groove color CG depends on the hue, it is generally 4 or more, preferably 6 or more, more preferably 8 or more in terms of saturation in the Munsell color system. The lightness of the groove color CG is preferably 3 to 10, more preferably 4 to 10, and further preferably 5 to 9. Furthermore, as the above combination, the groove color CG preferably has a saturation of 4 or more and a lightness of 3 or more, more preferably a saturation of 6 or more and a lightness of 3 or more, further preferably a saturation of 6 or more and a lightness of 4 or more, and a saturation of 8 or more and A brightness of 4 or more is more preferable. In the Munsell color system, there is a possibility that the color gamut will be expanded in the saturation direction by expanding the stable color gamut due to the development of new color materials in the future. Moreover, JIS Z 8721 shows 34 or 38 as the saturation of 7.5 PB, but in the case of a fluorescent color, it may exceed this. Therefore, the upper limit of saturation is not shown. The condition of the groove color CG also applies to the individual details of the groove G. Further, not only when the groove color CG is plural, but in general when the groove color CG is colored, as long as the saturation or brightness of the groove color CG satisfies the above condition, the groove color is not affected by the background color. Since the color of G stands out, the anisotropic coloring effect is improved.

〈変形例3〉
図14のように、造形物3の複数の溝部Gが互いに平行で、裏面部Rの一部が着色され、溝部色CGが不透明で、部分領域ごとに溝部色CGが異なれば、例えば正面からは裏面部Rによる文字が見えるが、横からは裏面部Rが溝部Gで隠れ、別の文字が複数の溝部色CGによって見える。その場合の画像1は、溝部色CGが切り替わる部分領域の境界線部分で、図15aのように処理されてもよい。図15aでは、それぞれの部分領域の万線がまっすぐに並ばず、万線ピッチの半分ずつずれることで位相が異なっている。これに基づく造形物3では、複数の溝部色CGの塗り分けを容易にでき、また境界線部のがたつきが減ってより滑らかに見える。3以上の部分領域が互いに接している箇所では、図15bの画像1のように、3の部分領域が接していれば、部分領域ごとに万線ピッチの1/3分をずらすというように、ピッチの1/(互いに接する部分領域の数)分ずらしてもよい。
<Modification 3>
As shown in FIG. 14 e , if the plurality of groove portions G of the molded article 3 are parallel to each other, a part of the back surface portion R is colored, the groove portion color CG is opaque, and the groove portion color CG is different for each partial region, for example, the front surface From the side, characters on the back surface portion R can be seen, but from the side, the back surface portion R is hidden by the groove portion G, and another character is seen by a plurality of groove portion colors CG. Image 1 in that case may be processed as shown in FIG. 15a in the boundary part of the partial area where the groove color CG is switched. In FIG. 15a, the lines in the respective partial areas are not aligned in a straight line, but the phases are different by shifting by half the line pitch. In the molded article 3 based on this, it is possible to easily paint the plurality of groove colors CG separately, and it is possible to reduce the rattling of the boundary portion and to make it look smoother. At a position where three or more partial regions are in contact with each other, as shown in image 1 of FIG. 15b, if three partial regions are in contact with each other, 1/3 of the line pitch is shifted for each partial region. The pitch may be shifted by 1/(the number of partial areas in contact with each other).

〈変形例4〉
分光性塗料・偏光性塗料のように、見る方向により色が変わる色材は、造形物に玉虫色のような効果をさらに付加するが、そのような特殊な塗料によらずに同様の効果を得ることもできる。つまり、例えば、左側から見た場合と右側から見た場合とで溝側面Fが別の色に見える造形物3も製造可能である。例えば3Dプリンティングによる造形物3において、図16aのように縦方向の溝部Gの左側の溝側面F1が不透明の青に、右側の溝側面F2が不透明の橙に着色されれば、左側からは青に見え、右側からは橙に見える。また、複数の溝側面F1が画像1に基づいて赤と青で塗り分けられ、複数の溝側面F2が別の画像1aに基づいて緑と黄で塗り分けられれば、複数の色で絵柄が表示され、見る方向により全く別の色の組合せによる別の絵柄に変わる効果が得られる。
溝部色CGが不透明の場合、図16bのように隣接する2つの溝部G3と溝部G4とで溝部色CGが互いに異なれば、左側からは青に見え、右側からは橙に見える効果に近い効果が得られ、溝側面F1及びF2を異なる色で塗り分けるよりも製造が容易である。これは、図16aのような溝部Gを異なる色の2つの溝部Gに分割したものであり、2つの溝部Gで一組とみなされるので、溝部Gの間隔diは溝部G3及び溝部G4の一組の幅の中央から、それらに隣接する別の溝部G3及び溝部G4の幅の中央までの距離である。また、この場合の溝部Gの幅wはw1及びw2の和である。後述のように、溝部G3の反対側の面から溝部G4が加工されてもよい。
さらに、溝部Gがドットに基づく穴状の場合、図16c・dのように溝部Gの上側の溝側面F3・右側の溝側面F4・下側の溝側面F5・左側の溝側面F6がそれぞれ別の色で着色されれば、4方向で異なる色に見える。溝部Gは図16cのような円や楕円に基づく円柱状等、図16dのような多角形に基づく多角柱状等でもよく、途中まででなく板の裏まで貫通していてもよい。
<Modification 4>
Coloring materials that change color depending on the viewing direction, such as spectral paints and polarizing paints, add an iridescent effect to the model, but similar effects can be obtained without using such special paints. You can also That is, for example, it is possible to manufacture the modeled article 3 in which the groove side face F looks different in color when viewed from the left side and when viewed from the right side. For example, in the modeled object 3 produced by 3D printing, if the left side groove F1 of the vertical groove G is colored opaque blue and the right side groove F2 is colored opaque orange, as shown in FIG. , And orange from the right. Further, if the plurality of groove side surfaces F1 are separately painted in red and blue based on the image 1 and the plurality of groove side surfaces F2 are separately painted in green and yellow based on another image 1a, the patterns are displayed in a plurality of colors. Thus, the effect of changing to another pattern by a completely different color combination can be obtained depending on the viewing direction.
When the groove portion color CG is opaque, if two adjacent groove portions G3 and G4 have different groove portion colors CG as shown in FIG. 16b, it looks like blue from the left side and orange from the right side. It is easier to manufacture than the case where the groove side surfaces F1 and F2 are coated with different colors. This is one in which the groove portion G as shown in FIG. 16A is divided into two groove portions G of different colors, and since the two groove portions G are regarded as one set, the interval di between the groove portions G is one of the groove portions G3 and G4. It is the distance from the center of the width of the set to the center of the width of another groove G3 and groove G4 adjacent to them. The width w of the groove G in this case is the sum of w1 and w2. As described below, the groove portion G4 may be processed from the surface opposite to the groove portion G3.
Further, when the groove portion G is a hole based on dots, the upper groove side surface F3, the right groove side surface F4, the lower groove side surface F5, and the left groove side surface F6 are different from each other as shown in FIGS. If it is colored with, it will look different in four directions. The groove portion G may have a circular shape such as that shown in FIG. 16c or a cylindrical shape based on an ellipse, or may have a polygonal shape such as a polygonal shape such as that shown in FIG. 16d, and may penetrate to the back of the plate not halfway.

〈変形例5〉
変形例1のような効果は異方性ライティング及び異方性反射によっても得られる。例えば図14aの造形物3の溝部色CGがすべて無色透明であれば、図14aの橙Oと平行に黄の照明が当たると、黄Y部分が黄に光るのをV12の観察者が観察でき、図の黄Yと平行に橙の照明が当たると、橙O部分が橙に光るのをV13の観察者が観察できる。溝部色CGは有色透明でもよく、それぞれの照明が交互に発光してもよく、両方が同時に光ってもよく、照明光の色が切り替わってもよく、周期的にそれらが反復してもよい。そのような照明器具Iが造形物3に追加又は併設されることで、造形物照明設備5となる。光が拡散光であれば黄Y部分がやや赤く、橙O部分がやや黄になり、また全体にムラなく光が行き渡る。光が平行光線であれば混色が少なくなり、光源の像が溝側面Fに見える。溝部Gが不透明で乱反射性が高ければ、溝部Gと平行に180°反対の2方向からそれぞれ別の色の光が当たっても、透明の場合と異なり光が混ざらずに、直交する溝部Gのそれぞれの側の溝側面Fに当たって見えるので、溝部Gの方向の2倍の数の光の色が使い分けられ、図16aと類似の効果が得られる。さらに、複数方向の溝部Gに異なる色の照明を照射することで、着色より容易に、別方向の溝部色CGを別の色にでき、またその色を自由に変更できる。複数の溝部Gが互いに直交し、照明器具Iが、それぞれの溝部Gの方向と平行に光を照射すれば、このような効果が最大化される。造形物3と照明器具Iの少なくとも一方が動くことで照明効果に変化を与えてもよい。溝部色CGが有色の造形物でも、複数の色の照明を照射することで色が変化して見える。造形物照明設備5では、造形物3と照明器具Iが一体であってもよく、それらが別個で、組合せて用いられてもよい。
<Modification 5>
The effect of the first modification can also be obtained by anisotropic lighting and anisotropic reflection. For example, if all of the groove color CG of the modeled object 3 of FIG. 14a is colorless and transparent, the V12 observer can observe that the yellow Y portion shines yellow when the yellow illumination is parallel to the orange O of FIG. 14a. When an orange illumination strikes parallel to the yellow Y in the figure, the observer of V13 can observe that the orange O portion shines orange. The groove color CG may be colored and transparent, the respective lights may alternately emit light, both may simultaneously emit light, the colors of the illumination light may be switched, and they may be periodically repeated. When such a lighting fixture I is added to or attached to the modeled object 3, the modeled object lighting equipment 5 is obtained. If the light is diffused light, the yellow Y portion will be slightly red and the orange O portion will be slightly yellow, and the light will be evenly distributed over the entire area. If the light is parallel rays, there is less color mixing, and the image of the light source is visible on the groove side face F. If the groove portion G is opaque and has a high diffuse reflectance, even if light of different colors strikes from two directions parallel to the groove portion 180 and 180° opposite to each other, the light does not mix as in the case of being transparent, and the orthogonal groove portion G does not mix. Since it can be seen by hitting the groove side face F on each side, twice the number of colors of light in the direction of the groove G can be used properly, and an effect similar to that of FIG. 16a can be obtained. Further, by irradiating the groove portions G in a plurality of directions with illuminations of different colors, the groove portion color CG in another direction can be changed to another color more easily than coloring, and the color can be freely changed. If the plurality of groove portions G are orthogonal to each other and the luminaire I irradiates light in parallel to the direction of each groove portion G, such an effect is maximized. The lighting effect may be changed by moving at least one of the modeled article 3 and the lighting fixture I. Even a modeled object having a colored groove CG can be seen to change in color by being illuminated with a plurality of colors of illumination. In the modeled object lighting equipment 5, the modeled object 3 and the lighting fixture I may be integrated, or they may be used separately or in combination.

〈変形例6〉
造形物照明設備5において、照明器具I・造形物3・観察者のなす位置関係は3通りである。第1では、図17aのように、照明器具Iが、造形物3の裏面部Rを含む平面に対して観察者Vと異なる側に位置する、つまり造形物3に対して観察者Vの反対側にある。裏面部Rに対する光の入射角の絶対値は90°未満である。この時、照明器具Iが造形物3を通して観察者のほぼ正面にあると、照明器具Iから造形物3内を反射せずに直進した透過光が直接視野に入り、反射光の効果が同じ色の光によって減殺されてしまう。よって、視点が想定される範囲からは照明器具Iが直接見えないような位置に照明器具Iが設置されることが望ましい。照明器具Iは、そこからの造形物3各部への入射光Irの入射角が出射可能入射角の範囲内にあり、かつ観察者から見えにくいような、例えば斜め上方の位置に設置されてもよい。第2では、照明器具Iが、造形物3の表面部Sを含む平面に対して、図17aとは逆の観察者Vと同じ側に位置する。表面部Sに正面から(図17aでは右方向から)入射する光の入射角を0°とすると、第2の場合の表面部Sに対する光の入射角の絶対値も90°未満である。照明器具Iが観察者の比較的近くにあると、表面部Sの反射率次第では、照明器具Iの像が表面部Sに映ることで、やはり溝部Gからの反射光の効果が打ち消される。またこの場合、観察者と造形物3の間に照明器具Iが位置すると造形物3の一部が照明器具Iに隠れて見えないことがある。照明器具Iが遠方に位置し、観察者が造形物3と照明器具Iの間に位置すると、観察者の動きにつれてその影が造形物3に投影されることとなり見苦しい。よって、この場合でも照明器具Iは造形物3の中心を通る垂直軸から離れた斜め方向から光を照射するのがよい。第3では、照明器具Iが造形物3の表面部Sと裏面部Rの間から光を照射する。つまり、造形物3が周知技術の導光板のように働く。裏面部R及び表面部Sに対する照明器具Iからの光の入射角の絶対値は90°以上である。この場合、溝部楔角θGが90°以上の大きな角度であれば導光板としてある程度機能するが、通常の導光板と異なり、光源から離れた部分での光量低下が大きい。溝部楔角θGが小さくなるほどその傾向が強く、溝部楔角θGが10°以下の溝部Gでは、基材部Mを通るほとんどの光が光源近くの数本の溝部Gによって反射されてしまい、光源から離れた溝部Gまでは届かないため、造形物3の各部で著しい光量ムラが発生し、使用に耐えない。この光量ムラは、造形物3各部で溝部楔角θGが135°から180°近くまで大きければ解消可能であるが、これは所期の効果を損なう。したがって、照明器具Iは、造形物3の中心付近から外れた周辺部であり、かつ表面部S又は裏面部Rに対する光の入射角が90°未満であるか、入射角が溝部Gに対して出射可能入射角の範囲となる位置に設置されるのがよい。溝側面Fの角度θFの調整により、特定の位置からのみ反射が見えるようにすることもできる。想定される観察者の位置は、造形物照明設備5の用途や規模、使用条件に応じてその都度定められてよい。
図17では、造形物3への入射光Irと造形物3からの出射光Orとが実線・点線・破線・一点鎖線で示され、同じ線種の入射光Ir及び出射光Orがそれぞれ対応している。さらに観察者Vが造形物3の前を矢印方向に水平に行き来するさまが上から示される。同じ線種の間の狭い側が、同じ照明器具Iからの入射光Ir及び出射光Orが届く範囲であり、観察者Vは出射光Orのその範囲内でそれぞれの出射光Orを観察可能である。複数の照明器具Iが同じ高さ(観察者Vの視点より高く、その視野には直接入らない)の異なる位置から造形物3の同じ高さに向けて、異なる線種で示される2以上の異なる色の入射光Irを照射すれば、観察者Vの動きにつれて造形物3の色が多様に切り替わったり連続して徐々に変化したりして見える。異なる色の入射光Irが、図17a及び図17bのように造形物3の同じ部分に当たっていればその部分が、図17cのように造形物3のそれぞれ別の部分に当たっていれば順次別の部分が、観察者Vの動きに伴い異なる色になる。また、溝部Gの方向が、図17a及び図17cのように垂直(観察者Vの移動方向と直交)であれば出射光Orの範囲が水平方向に狭く垂直方向に広くなり、図17bのように水平(観察者Vの移動方向と平行)であれば逆になる。前者では、溝部楔角θGが狭ければ溝側面Fと入射光Irが平行に近い部分で反射がほとんど見えない。これにより照明の色が同一のままで色の変化が得られる。また、街頭のような場所で多数の観察者が同時に行きかっていても、個々の動きにシンクロした変化を各々が観察できる。色を変更するための人感センサ等の大掛かりな仕掛けが不要でコストを抑えられるが、コストの制約がなければ、各照明器具Iの光の色の変更や照射方向及び位置の移動といった動作の追加により更なる効果が得られる。それぞれの光の指向性が高ければ明確に色が切り替わり、拡散光等であれば各色が切れ目なく自然に移行する。図17各図のように複数の照明器具Iが水平等の直線状に並び、それらの照射範囲の高さも同じで、つまりそれらの照射方向が同一平面に含まれることで、例えば同じ視線の高さの観察者に色の変化が見える。照明の照度が最大の部分の1/2になる範囲を照明器具Iから見込む角度を照射角度とすると、同一平面からの照射方向の差が照射角度の1/2以内であり、効果を意図する範囲が照射されていれば、照明器具Iの照射方向が多少異なったり、高さが多少異なったりしても、ほぼ同一平面上にある。そうではなく、照射範囲の高さをまちまちにして色もばらばらにすることで、背の異なる観察者には別の色が見えるようにしてもよい。
このように溝部Gの表面上の方向及びそれと観察者の視線との関係によっても異方性ライティング効果は変化するので、図17のように観察者が水平に歩行しながら造形物3を観察する用途や、エスカレーターの壁面に造形物3が設置され、観察者が斜めに移動しながら観察する用途といった、観察者との位置関係の変化等の条件も踏まえた上で、造形物3の各部の溝部Gの方向が決められてもよい。異方性ライティング効果だけでなく、異方性カラーリング効果等の他の効果にもこれが当てはまる。また、溝部Gが波線等に基づく曲面状なら、溝部Gの方向の変化による効果の変化が連続して発生する。
図18aの照明器具Iはライトカッターを具えているが、このようにバーンドアやレンズ等により照射範囲が制限され、狭い部分にスポットライト状に投光するよう調節されれば、色のコントラストが一層向上する。また照射範囲の制限により、観察者に直接光源が見えず、まぶしさが軽減される。ある色の照明が特定の部分領域のみに当たり、それ以外の部分に当たらないよう、その部分領域の形状に沿ったマスク等で照射範囲が制限されてもよい。
照明光の収束性等の特性によっても造形物照明設備5の見え方が変わる。図18は図17bの造形物照明設備5をSVの方向から見た図である(ただし照明器具Iの形状・特性等は一部異なる)。照明器具Iが図18aのような点光源に近ければ、入射光Irが発散光となり、出射光Orが届く範囲内の視点からは造形物3の広い部分で反射が見える。例えば造形物照明設備5が飲食店の通路に設置され、観察者の目の高さが数10cm程度の限られた範囲内にあり、造形物3との距離もほぼ一定であれば、これが適用されてもよい。さらに、溝部楔角θG又はθFの調整、あるいは造形物3全体の設置角度の調整によって、反射が見える位置が目標とする目の高さの範囲に適合されてもよい。図18bのように入射光Irが平行光に近ければ、ある視点において反射が見える部分は狭くなるが、観察者(図示しない)は出射光Orが届く広い範囲から反射を観察できる。例えば造形物照明設備5が広い空間に設置され、幅のある年齢層で様々な身長の観察者に遠近多様な距離から観察されるなら、これが適用されてもよい。図18cのように入射光Irが様々な方向の成分を含むなら、造形物3の各部で反射が観察できるが、異なる方向の溝部Gに異なる色の光を当てようとしても混色しがちである。造形物3において照明器具Iから遠い部分は近い部分より光量が低下する場合には、光量が全域で均一に近づくようグラデーションフィルター等により補正されてもよい。造形物3各部での照度差はΔ200lx以下が好ましく、Δ100lx以下がより好ましく、Δ50lx以下がさらに好ましい。また造形物3の照度は、色にもよるが200〜2000lxが好ましく、300〜1000lxがより好ましい。1000lxを超える明るい照明下で周囲が暗く照度差が大きいと、明るすぎてまぶしく、溝部G間での二次反射が顕在化し、また入射角が90°に近いほど裏面部R及び表面部Sの埃や傷が目立ち、効果が損なわれることがある。
造形物3が表面部Sと裏面部Rの両側あるいはそれ以上から観察される場合は、両側かそれ以上から照明を当てればそれぞれの側から反射が見える。その場合、それぞれの側で照明の色が異なってもよい。溝部Gが1方向であっても、照明が点滅すれば、溝部Gによる文字等が見えたり見えなかったりするという効果が得られる。溝部Gが万線に基づく複数の平行な溝部Gであればその効果がより高い。
造形物3の裏側に半透明樹脂板Tが設置された造形物展示体4では拡散光照明に近い効果が得られる。さらに導光板等の照明器具Iが装着され造形物照明設備5とされてもよい。可搬的な造形物照明設備5においても、照明器具I・環境光や使用状況との関係に応じて造形物3及び照明器具Iの諸パラメータが調整可能である。例えば、装身具に埋め込まれた造形物3が向きにより一瞬だけ光って見える、といった演出がありうる。
このように、造形物3の屈折率、造形物3の溝部の方向・θG又はθF、造形物3全体の方向、並びに照明器具Iの位置及び照射方向・照射範囲・色・造形物3各部に与える光量・光の収束や拡散の特性等が調整されることで、様々な条件に応じた異方性視覚効果を有する造形物3及び造形物照明設備5の提供が可能である。
<Modification 6>
In the modeled object lighting equipment 5, there are three positional relationships among the lighting fixture I, the modeled object 3, and the observer. 17A, the luminaire I is located on the side different from the observer V with respect to the plane including the back surface R of the modeled object 3, that is, the observer V is opposite to the modeled object 3 as shown in FIG. 17A. On the side. The absolute value of the angle of incidence of light on the back surface R is less than 90°. At this time, if the lighting fixture I is almost in front of the observer through the modeled object 3, the transmitted light that travels straight from the lighting fixture I without reflecting inside the modeled object 3 directly enters the visual field, and the effect of the reflected light is the same color. Will be diminished by the light of. Therefore, it is desirable that the lighting fixture I is installed at a position where the lighting fixture I cannot be seen directly from the range in which the viewpoint is assumed. Even if the lighting fixture I is installed at an obliquely upper position, for example, the angle of incidence of the incident light Ir on each part of the modeled article 3 from the lighting fixture I is within the range of the incident angle that can be emitted, and is difficult for the observer to see. Good. 2ndly, the illuminating device I is located in the same side as the observer V opposite to FIG. 17a with respect to the plane containing the surface part S of the molded article 3. When the incident angle of light incident on the surface S from the front (from the right direction in FIG. 17a) is 0°, the absolute value of the incident angle of light on the surface S in the second case is also less than 90°. When the luminaire I is relatively close to the observer, the image of the luminaire I is reflected on the surface S depending on the reflectance of the surface S, so that the effect of the reflected light from the groove G is canceled. Further, in this case, when the lighting fixture I is located between the observer and the modeled object 3, part of the modeled object 3 may be hidden by the lighting device I and may not be seen. When the luminaire I is located at a distance and the observer is located between the modeled object 3 and the luminaire I, the shadow is projected on the modeled object 3 as the observer moves, which is unsightly. Therefore, even in this case, it is preferable that the luminaire I emits light from an oblique direction away from the vertical axis passing through the center of the modeled object 3. 3rdly, the lighting fixture I irradiates light from between the surface part S and the back surface part R of the molded article 3. That is, the modeled object 3 works like a light guide plate of a known technique. The absolute value of the incident angle of the light from the lighting fixture I with respect to the back surface R and the front surface S is 90° or more. In this case, if the groove wedge angle θG is a large angle of 90° or more, it functions as a light guide plate to some extent, but unlike a normal light guide plate, a decrease in the amount of light is large in a portion away from the light source. Groove wedge angle θG is small Kunaruhodo tendency is strong, the groove groove wedge angle θG is 10 ° or less G, will be reflected by several of the grooves G near most of the light passing through the base portion M is a light source, Since it does not reach the groove portion G away from the light source, remarkable unevenness in the amount of light occurs in each part of the modeled article 3 and it cannot be used. This uneven light amount can be eliminated if the groove wedge angle θG is large from 135° to nearly 180° in each part of the modeled object 3, but this impairs the desired effect. Therefore, the lighting fixture I is a peripheral portion deviated from the vicinity of the center of the molded article 3 and the incident angle of light with respect to the front surface portion S or the rear surface portion R is less than 90° or the incident angle with respect to the groove portion G. It is preferable to install it in a position within the range of the incident angle that can be emitted. By adjusting the angle θF of the groove side face F, it is possible to make the reflection visible only from a specific position. The assumed position of the observer may be determined each time in accordance with the use and scale of the modeled object lighting equipment 5 and use conditions.
In FIG. 17, the incident light Ir to the modeling object 3 and the outgoing light Or from the modeling object 3 are shown by a solid line, a dotted line, a broken line, and an alternate long and short dash line, and the incident light Ir and the outgoing light Or of the same line type correspond to each other. ing. Further, the manner in which the observer V moves horizontally in front of the modeled object 3 in the direction of the arrow is shown from above. The narrow side between the same line types is a range where the incident light Ir and the outgoing light Or from the same luminaire I reach, and the observer V can observe each outgoing light Or within the range of the outgoing light Or. .. Two or more luminaires I are indicated by different line types from different positions of the same height (higher than the viewpoint of the observer V and do not directly enter the visual field) toward the same height of the modeled object 3. When the incident light Ir of different color is irradiated, the color of the modeled object 3 appears to be changed in various ways or continuously and gradually changed as the observer V moves. If the incident lights Ir of different colors hit the same part of the modeled object 3 as shown in FIGS. 17a and 17b, if that part hits different parts of the modeled object 3 as shown in FIG. , The color becomes different according to the movement of the observer V. If the direction of the groove G is vertical as shown in FIGS. 17a and 17c (orthogonal to the moving direction of the observer V), the range of the emitted light Or becomes narrow in the horizontal direction and wide in the vertical direction, as shown in FIG. 17b. If it is horizontal (parallel to the moving direction of the observer V), it will be reversed. In the former case, if the groove wedge angle θG is narrow, almost no reflection can be seen in the portion where the groove side face F and the incident light Ir are nearly parallel. This provides a color change while the illumination color remains the same. Further, even if many observers are simultaneously arriving at a place such as a street, each can observe a change synchronized with each movement. The cost can be suppressed by not requiring a large-scale device such as a human sensor for changing the color, but if there is no cost constraint, the operation such as changing the color of light of each lighting fixture I or moving the irradiation direction and position can be performed. Further effects can be obtained by the addition. If the directivity of each light is high, the color is clearly switched, and if it is diffused light or the like, each color shifts seamlessly and naturally. As shown in each drawing of FIG. 17, a plurality of lighting fixtures I are arranged in a straight line such as a horizontal line, and their irradiation ranges have the same height, that is, their irradiation directions are included in the same plane. The color change is visible to the observer. Assuming that the irradiation angle is an angle in which the illuminance of the illumination is ½ of the maximum, the difference between the irradiation directions from the same plane is within ½ of the irradiation angle, and the effect is intended. As long as the range is illuminated, the illumination fixture I will be on substantially the same plane even if the illumination direction is slightly different or the height is slightly different. Instead, the heights of the irradiation ranges may be varied and the colors may be scattered so that viewers of different heights can see different colors.
As described above, the anisotropic lighting effect changes depending on the direction of the surface of the groove portion G and the relationship between the groove portion G and the line of sight of the observer. Therefore, as shown in FIG. 17, the observer observes the model 3 while walking horizontally. Based on the use and conditions such as the positional relationship with the observer, such as the use of the modeled object 3 installed on the wall surface of the escalator and the observer moving diagonally, the parts of the modeled object 3 The direction of the groove G may be determined. This applies not only to anisotropic lighting effects, but also to other effects such as anisotropic coloring effects. If the groove portion G has a curved surface shape based on wavy lines or the like, a change in the effect due to a change in the direction of the groove portion G occurs continuously.
The luminaire I of FIG. 18a is equipped with a light cutter. However, if the irradiation range is limited by the barn door, the lens, etc., and if it is adjusted so as to project in a spotlight shape in a narrow area, the color contrast is further improved. improves. Also, due to the limitation of the irradiation range, the light source cannot be seen directly by the observer, and the glare is reduced. The irradiation range may be limited by a mask or the like conforming to the shape of the partial area so that the illumination of a certain color hits only a specific partial area and does not hit the other area.
The appearance of the modeled object lighting equipment 5 also changes depending on characteristics such as the convergence of the illumination light. FIG. 18 is a view of the shaped object lighting equipment 5 of FIG. 17b as viewed from the SV direction (however, the shape and characteristics of the lighting fixture I are partially different). When the luminaire I is close to the point light source as shown in FIG. 18a, the incident light Ir becomes divergent light, and reflection can be seen in a wide portion of the modeled object 3 from a viewpoint within the range where the emitted light Or reaches. For example, if the object lighting equipment 5 is installed in a passage of a restaurant, the eye height of the observer is within a limited range of several tens of centimeters, and the distance to the object 3 is almost constant, this is applied. May be done. Further, by adjusting the groove wedge angle θG or θF, or adjusting the installation angle of the entire modeling object 3, the position where the reflection is visible may be adapted to the target eye height range. If the incident light Ir is close to the parallel light as shown in FIG. 18b, the portion where the reflection can be seen is narrowed at a certain viewpoint, but an observer (not shown) can observe the reflection from a wide range where the emitted light Or reaches. This may be applied, for example, when the modeled object lighting equipment 5 is installed in a wide space and is observed by viewers of various heights in various age groups from various distances. If the incident light Ir includes components in various directions as shown in FIG. 18c, reflection can be observed in each part of the modeled object 3, but the colors tend to be mixed even if the different colors of light are applied to the groove G in different directions. .. When the amount of light in the part farther from the lighting fixture I in the modeled object 3 is lower than that in the near part, it may be corrected by a gradation filter or the like so that the amount of light becomes closer to uniform over the entire region. The illuminance difference in each part of the molded article 3 is preferably Δ200 lx or less, more preferably Δ100 lx or less, and further preferably Δ50 lx or less. The illuminance of the molded article 3 is preferably 200 to 2000 lx, more preferably 300 to 1000 lx, though it depends on the color. If the surroundings are dark and the illuminance difference is large under bright illumination exceeding 1000 lx, it is too bright and dazzling, and the secondary reflection between the groove portions G becomes apparent, and the closer the incident angle is to 90°, the more the back surface portion R and the front surface portion S become. Dust and scratches may be noticeable and the effect may be impaired.
When the modeled object 3 is observed from both sides of the front surface S and the back surface R or more, reflection can be seen from each side by applying illumination from both sides or more. In that case, the illumination color may be different on each side. Even if the groove portion G is in one direction, if the illumination blinks, an effect that characters or the like due to the groove portion G can be seen or not can be obtained. The effect is higher if the groove portion G is a plurality of parallel groove portions G based on the lines.
In the molded object display body 4 in which the semitransparent resin plate T is installed on the back side of the molded object 3, an effect similar to diffused light illumination can be obtained. Further, a lighting fixture I such as a light guide plate may be attached to form the shaped article lighting equipment 5. Even in the portable molded object lighting equipment 5, various parameters of the molded object 3 and the lighting device I can be adjusted according to the relationship between the lighting device I, the ambient light, and the usage status. For example, there may be an effect that the modeled object 3 embedded in the accessory appears to shine for a moment depending on the direction.
In this way, the refractive index of the model 3, the direction of the groove of the model 3, θG or θF, the direction of the model 3 as a whole, and the position and irradiation direction of the luminaire I, the irradiation range, the color, and each part of the model 3 are determined. By adjusting the amount of light to be applied, the characteristics of convergence and diffusion of light, and the like, it is possible to provide the modeled object 3 and the modeled object lighting equipment 5 having an anisotropic visual effect according to various conditions.

〈変形例7〉
LED等により、例えば複数の平行な溝部Gのうち1本おきのグループを同時に光らせ、残りの1本おきのグループは暗くし、それぞれのグループが一定周期ごとに点滅を繰り返すようにして、それぞれのグループごとに色や複数の部分を組み合わせてなる絵柄を別にしてもよい。
異なる色どうしの境界部分では、色が明確に異なってもよく、徐々に連続的に変化してもよい。例えば溝部色CGと周囲の透明色の境界部分がグラデーション状に移行することで、はっきり切り替わるのとは異なる効果が得られる。これが、隣り合う溝部Gの溝部色CGが異なることで実現されてもよい。
<Modification 7>
For example, by using LEDs or the like, every other group of the plurality of parallel groove portions G is made to illuminate at the same time, the remaining every other group is made dark, and each group repeats blinking at regular intervals so that each A color or a pattern formed by combining a plurality of parts may be different for each group.
At the boundary between different colors, the colors may be distinctly different or may change gradually and continuously. For example, when the boundary portion between the groove color CG and the surrounding transparent color shifts to a gradation shape, an effect different from the clear switching can be obtained. This may be realized by the groove color CG of the adjacent groove G being different.

〈変形例8〉
溝部Gが図3dのようなドットに基づく柱状等の場合、図19aのように円錐状・角錐状・半球状・多角形状等に大きくテーパーがついた形状でもよい。その場合、各方向から別の色の照明が照射された造形物を任意の方向から見る観察者には、各溝部Gの一部にいずれかの色の光が反射することで、一帯が見る方向に応じた色に見える。つまり、図16c・dと同様の効果が異方性ライティング及び異方性反射によって得られる。溝部Gは他にも、螺旋状・開口部より底面部の方が広がった形状・中心軸に対して又は対向する面が非対称な孔状等様々な形状が可能である。観察者が視点を移動させれば、造形物3の同じ一帯に別の色の反射光が見える。このような造形物3は正面等から光を投映するためのスクリーンとしても使用できる。正面以外から映像等が投映される場合、投映機が造形物3の周辺部やその面の延長に対して正対するように設置され、レンズにアオリがかかる、つまりシフトによってレンズ光軸が平行移動されることで、投映機は斜め方向から投射しながら、造形物3の中心に正対したのと同じように、遠近法の歪みなく、全面にピントが合った状態で投映することができる。このようにして1つの造形物3に多方向から複数の像等を投映し、観察者が見る位置によって像が変化するという造形物照明設備5も可能である。図19aに示すように表裏の両側から溝部Gが加工されれば、溝部Gの分布の密度が上がり、反射の輝度及びコントラストが向上する。溝部Gの充填部Fiが金属粉等の反射材でもよく、充填部Fiが蛍光塗料・特殊発光塗料等で、照明光が紫外線等でもよい。
<Modification 8>
When the groove portion G has a dot-like columnar shape as shown in FIG. 3d, it may have a shape with a large taper such as a conical shape, a pyramid shape, a hemispherical shape, or a polygonal shape as shown in FIG. 19a. In that case, an observer who sees the modeled object illuminated by illumination of a different color from each direction sees the entire area by reflecting light of any color on a part of each groove G. It looks like a color depending on the direction. That is, the same effect as in FIGS. 16c and 16d is obtained by anisotropic lighting and anisotropic reflection. In addition, the groove portion G can have various shapes such as a spiral shape, a shape in which the bottom surface portion is wider than the opening portion, and a hole shape in which the surface facing the central axis or the facing surface is asymmetric. When the observer moves his or her viewpoint, reflected light of another color can be seen in the same area of the modeled object 3. Such a modeled article 3 can also be used as a screen for projecting light from the front or the like. When images are projected from other than the front, the projector is installed so as to face the periphery of the modeled object 3 and the extension of its surface, and the lens is tilted, that is, the lens optical axis moves in parallel due to the shift. As a result, the projector can project the image in an in-focus state without perspective distortion, just as if it were facing the center of the model 3 while projecting from an oblique direction. In this way, it is also possible to provide the modeling object illumination equipment 5 in which a plurality of images and the like are projected from one direction on one modeling object 3 and the images change depending on the position viewed by the observer. If the groove portions G are processed from both the front and back sides as shown in FIG. 19a, the distribution density of the groove portions G is increased, and the reflection brightness and contrast are improved. The filling portion Fi of the groove portion G may be a reflective material such as metal powder, the filling portion Fi may be a fluorescent paint, a special light emitting paint, or the like, and the illumination light may be ultraviolet light or the like.

〈変形例9〉
基材部Mが透明の造形物3において、複数の方向の溝部Gが同じ部分で重なる場合、造形物3の同じ面で格子状に交差してもよいが、図19bに断面を示すように、例えば加工部14が厚さ30mmの材料2の片面から垂直方向の複数の平行な溝部Gを加工し、逆の面から水平方向の複数の平行な溝部Gを加工し、両者を貫通させなければ、それぞれを別の色に着色し分けるのが容易である。これにより、同じ部分領域において、見る方向により異なる色が見える効果を呈する。さらに造形物3の表裏の溝部Gがそれぞれ別の画像に基づいていれば、見る方向や光の方向次第で異なる絵柄が見える。
表面と裏面の両側からの加工には、片側であれば加工精度等の理由から連続して行う必要があった工程を両側の各部に分散させることで、加工部14の時間的・装置的負荷等を小分けできる利点がある。また、隣接する部分領域が表面と裏面とに分かれていれば、加工部14は複数の色を容易に塗り分けできる。さらに、上記加工は視覚的効果にも寄与をもたらす。表面から加工した溝部Gと裏面から加工した溝部Gとで表面ないし裏面からの距離が異なることで、それらが同居する造形物3は、各種異方性視覚効果の重層化・奥行き感の強調・浮遊感の演出といった効果を得る。平行な面状の溝部Gの場合、同じ位置で複数の方向の溝部Gが交差していると、それぞれの方向の溝部Gが別の方向の溝部Gに分断されて効果が低下することがあるが、複数の方向の溝部Gが両面に分かれて加工されていれば、直接には交差しないので、そのような問題がない。
<Modification 9>
In the molded article 3 in which the base material portion M is transparent, when the groove portions G in a plurality of directions are overlapped at the same portion, they may intersect in a grid pattern on the same surface of the molded article 3, but as shown in a cross section in FIG. 19b. For example, the processing portion 14 should process a plurality of vertical parallel groove portions G from one surface of the material 2 having a thickness of 30 mm, and a plurality of horizontal parallel groove portions G from the opposite surface so as to penetrate both. For example, it is easy to color each one differently. Thereby, in the same partial area, different colors can be seen depending on the viewing direction. Furthermore, if the groove portions G on the front and back of the modeled article 3 are based on different images, respectively, different patterns can be seen depending on the viewing direction and the light direction.
When processing from both sides of the front and back sides, if one side is used, it is necessary to continuously perform the process for reasons such as processing accuracy. Etc. can be subdivided. Further, if the adjacent partial areas are divided into the front surface and the back surface, the processed portion 14 can easily paint different colors. Furthermore, the above processing also contributes to the visual effect. Since the groove portion G processed from the front surface and the groove portion G processed from the back surface have different distances from the front surface or the back surface, the three-dimensional object 3 in which they coexist is multi-layered with various anisotropic visual effects and emphasizes a sense of depth. Get the effect of floating feeling. In the case of the parallel planar groove portions G, if the groove portions G in a plurality of directions intersect at the same position, the groove portions G in each direction may be divided into the groove portions G in another direction and the effect may be reduced. However, if the groove portions G in a plurality of directions are processed separately on both sides, they do not intersect directly, so there is no such problem.

〈変形例10〉
さらに、造形物3の表面以外の各部から溝部Gが加工されてもよい。溝部Gの深さの方向が複数の造形物3、このような板状造形物が積層された多層構造の立体状造形物3、透明等のパーツが追加されたり切削等により変形した複雑な形状の造形物3がその例である。裏面だけでなく、直方体状の造形物3の側面に溝部Gがあってもよく、造形物3の表面が多面体又は曲面であってもよい。それらでは、表面から加工した溝部Gと裏面から加工した溝部Gとで表面からの距離が異なり、加えて側面から加工した溝部Gの表面からの距離がそれぞれ異なり、さらに表面から加工した溝部Gと表面との距離が、表面に凹凸があることにより異なる。つまり、表面と複数の溝部Gとの距離が複数であるか、表面が複数であるか、表面が曲面であるかの少なくともいずれかであってもよい。その場合、図19c・dのように溝部Gの開口部がある複数の面がそれぞれ外側を向いてもよく、逆に内側を向いてもよく、同じ方向に揃っていてもよく、90°等の角度で溝部Gの方向が異なってもよく、溝部Gの少なくとも一部が表面と平行でもよい。
<Modification 10>
Further, the groove G may be machined from each part other than the surface of the molded article 3. A plurality of moldings 3 having a plurality of groove portions G in the depth direction, a three-dimensional molding 3 having a multilayer structure in which such plate-shaped moldings are stacked, a complex shape in which parts such as transparency are added or deformed by cutting or the like 3D is an example. The groove G may be provided not only on the back surface but also on the side surface of the rectangular parallelepiped shaped article 3, and the surface of the shaped article 3 may be a polyhedron or a curved surface. In them, the groove portion G processed from the front surface and the groove portion G processed from the back surface have different distances from the front surface, and the groove portions G processed from the side surfaces have different distances from the surface. The distance to the surface differs due to the unevenness of the surface. That is, the distance between the surface and the plurality of groove portions G may be plural, the surface may be plural, and/or the surface may be a curved surface. In that case, as shown in FIGS. 19C and 19D, the plurality of surfaces having the opening of the groove G may face outward, respectively, and may face inward, or may be aligned in the same direction, such as 90°. The direction of the groove portion G may be different depending on the angle, and at least a part of the groove portion G may be parallel to the surface.

〈変形例11〉
図19cのように、同じ位置に両面から溝部Gが向かい合わせに加工され、それぞれの側で色を変更して、溝部色CGが途中で別になってもよく、色がグラデーション状に変化してもよい。また、図19dのように、無数のドットや万線で構成された画像1が両面から別の2色で重ならないように加工され、各部で2色の比率が異なることで画像の階調再現が可能である。階調の調整は、ドットの数や分布、網点のようなドットの面積の増減、ドットの深さ、それらの併用のいずれで行われてもよい。片面から加工した溝部Gがシアンで着色され、さらにこの面に同様にマゼンタの溝部Gが加工され、その後に表面を研磨するなどしてシアンの上にマゼンタが重ならないようにし、裏面にも同様に加工すれば、3色以上のカラー画像の加工もできる。これにより連続階調の写真等が加工された造形物3は、異方性反射によって輝き、奥行き方向に広がって見えるという、通常の平面的な写真では得られない効果を奏する。
<Modification 11>
As shown in FIG. 19c, the groove portions G may be processed facing each other from both sides at the same position, the color may be changed on each side, and the groove portion color CG may be different on the way. Good. In addition, as shown in FIG. 19d, the image 1 composed of innumerable dots and lines is processed so that the two colors do not overlap with each other from both sides, and the gradation of the image is reproduced by the ratio of the two colors being different in each part. Is possible. The gradation may be adjusted by any of the number and distribution of dots, the increase or decrease of the area of dots such as halftone dots, the depth of dots, and the combination thereof. The groove G processed from one side is colored with cyan, and the groove G of magenta is also processed on this surface in the same manner, and then the surface is polished so that magenta does not overlap with cyan, and the same applies to the back side. If it is processed into a color image, it is possible to process a color image of three or more colors. As a result, the modeled object 3 on which a continuous-tone photograph or the like is processed shines due to anisotropic reflection and appears to spread in the depth direction, which is an effect that cannot be obtained by a normal planar photograph.

〈変形例12〉
加工部14は、平面的板状の材料2に溝部Gを形成した後に加熱するなどして変形させ、表面が曲面の造形物3を製造してもよい。その場合、加工部14は、溝部Gの開口部側が凸面となるように曲げてもよく、溝部Gを図19aのようにテーパー状とし、開口部側が凹面となるように曲げてもよい。そのような溝部Gが複数方向に交差していれば、より複雑な曲げ加工も可能となる。
<Modification 12>
The processed portion 14 may be deformed by heating after forming the groove portion G in the planar plate-shaped material 2 to manufacture the shaped article 3 having a curved surface. In that case, the processed portion 14 may be bent such that the opening side of the groove portion G has a convex surface, or the groove portion G may be tapered as shown in FIG. 19a and the opening portion side may be bent so as to have a concave surface. If such groove portions G intersect in a plurality of directions, more complicated bending can be performed.

〈変形例13〉
複数の造形物3が重ねられた造形物展示体4も可能である。それぞれの造形物3の溝部Gが、立体を輪切りにした断面図状の画像1に基づいていれば、これらを並べた造形物展示体4では溝部Gが積層型の立体地図のように元の立体を再現する。これに溝部Gの方向に対応した照射方向から光が当たれば、それぞれの溝部Gが輝く光の彫刻が実現する。複数の造形物3は密着又は接着されても距離があってもよい。なお、2色の平面画像による本変形例及び次変形例の図は複雑になりすぎ、簡明な図示が困難であるため、省略する。
<Modification 13>
It is also possible to have a molded object display body 4 in which a plurality of molded objects 3 are stacked. If the groove G of each of the three-dimensional objects 3 is based on the cross-sectional image 1 in which the three-dimensional object is sliced, the groove parts G of the three-dimensional object display body 4 in which the three-dimensional objects are arranged side by side are the same as in the stacked three-dimensional map. Reproduce the solid. When light is applied to this from an irradiation direction corresponding to the direction of the groove portion G, engraving of light in which each groove portion G shines is realized. The plurality of shaped objects 3 may be in close contact with each other or adhered to each other, or may have a distance. It should be noted that the drawings of the present modified example and the next modified example based on the two-color planar image are too complicated and difficult to be illustrated in a simple manner, and therefore omitted.

〈変形例14〉
複数の造形物3が重なっていると溝部Gどうしのモアレが発生することがあり、各種異方性視覚効果が相乗的に作用する。少なくとも一方の溝部Gが互いに平行な曲面状か、両方の間隔diが同じか整数比、あるいはそれらに近似し、その差が狭い方の25%以下か好ましくは12%以下だとさらに効果が大きい。それぞれの色が異なると特有の効果を奏し、少なくとも一方が上下左右前後に動いたり回転したりすると(例えばスライド式自動ドアの前後透明板への施工)、際立った動的変化を示す。造形物展示体4の各部が独立して動いてもよく、ある造形物3の表面と別の造形物3の溝部Gとのなす角度が変化するように動いてもよい。
<Modification 14>
When the plurality of shaped objects 3 overlap, moire may occur between the groove portions G, and various anisotropic visual effects act synergistically. If at least one of the groove portions G has a curved surface parallel to each other, or both distances di are the same or an integer ratio, or an approximation thereof, and the difference is 25% or less, preferably 12% or less, the effect is further increased. .. Different colors have unique effects, and when at least one moves up, down, left, right, front and back, or rotates (for example, installation on a front and rear transparent plate of a sliding automatic door), a remarkable dynamic change is shown. Each part of the modeled object display body 4 may move independently, and may move so that the angle formed by the surface of one modeled object 3 and the groove G of another modeled object 3 changes.

〈変形例15〉
造形物3の例えば裏面部Rが鏡面であれば、透明な基材部Mを通して観察者の側の景色が映って見える。また、観察者の側に光源があれば鏡面で光が反射して、裏面側に光源や風景がなくてもそれらがあるのと同様の異方性反射効果・異方性透過効果等が得られる。
<Modification 15>
If, for example, the back surface R of the molded article 3 is a mirror surface, the view on the observer's side can be seen through the transparent base material M. Also, if there is a light source on the observer's side, the light is reflected on the mirror surface, and even if there is no light source or scenery on the back side, the same anisotropic reflection effect/anisotropic transmission effect can be obtained. Be done.

〈変形例16〉
複数の角柱状の材部Mが並び、それらの間が溝部Gである造形物3も可能である。それぞれがモーター等により回転してもよく、柔軟な材料2が用いられれば曲面でも回転可能である。それぞれが固定されてもよい。
<Modification 16>
A molded article 3 in which a plurality of prismatic base material portions M are arranged and a groove portion G is provided between them is also possible. Each may be rotated by a motor or the like, and can be rotated even on a curved surface if the flexible material 2 is used. Each may be fixed.

[第2の実施形態]
図20aのように、溝部Gの底面部Bが広く、凹部分の幅と凸部分の幅とが比較的近くてもよい。その場合の基材部Mが透明な造形物3を斜めから見ると、対向する2つの溝側面Fの片側が透明部分を通さずに見えるので、屈折で縮まずに長く見える。表面部Sを通して見える溝側面Fは屈折により短く見えるので、斜めから見た場合に一帯の溝側面Fがつながって見える効果を効率的に得るために、表面部Sの幅を底面部Bの幅より狭くしてもよい。溝側面F・底面部Bは透明でも不透明でもよい。
図20bのように、この造形物3が不透明であれば、底面部Bの色及び表面部Sの色が溝側面Fの色と異なってもよい。底面部Bの色と表面部Sの色とは異なっても同じでもよい。溝側面Fは表面部Sより光を吸収する色であってもよい。底面部Bも同様である。第1の実施形態に記載の構成・効果・変形例等の一部は、本実施形態にもあてはまる。例えば、溝側面Fが表面部Sに対して略垂直であれば、正面から見た場合に溝側面Fが略見えず、第1の実施形態と同様に異方性カラーリング効果が得られる。造形物3のある部分領域と別の部分領域とで、溝部Gの方向・曲率・形状・ピッチ・幅・深さ・面粗さ・波長・波の振幅・位相・溝部Gの有無の少なくともいずれかと、表面部S・裏面部R・基材部M・溝側面F・底面部Bの少なくともいずれかの両方が異なってもよい。造形物が複数の部分領域を有し、該複数の部分領域の少なくとも一部が前記複数の溝部の一部を有し、該複数の溝部の一部を有する複数の部分領域ごとに該複数の溝部の一部の方向・曲率・形状・ピッチ・幅・深さ・面粗さ・波長・波の振幅・位相の少なくともいずれか及び該複数の溝部の一部の色・該複数の溝部の一部以外の部分の色の少なくとも一方が異なってもよい。
不透明な造形物3では、表面部Sの幅と長さの少なくとも一方を各部で変更することで、表面部Sと、溝側面F又は底面部Bの少なくとも一方との、視野内の一定の範囲における面積比を変化させることができ、これにより、表面部Sの色と溝側面F又は底面部Bの少なくとも一方の色の少なくとも2色の配合を様々に変更して階調を表し、写真画像・CG・イラスト等の画像を表示することができる。表示される画像が文字や線画の場合には、例えば階調数が2階調でもよく、写真の場合には3階調以上の多階調でもよく、それが2階調化された画像でもよい。具体的には、画像処理部12等は、画像1が多階調画像の場合、万線・曲線状の万線・網点・ディザパターンドット等の様々なスクリーンやパターン等を使用して、例えば図3c・gのように面積比で階調を表示する2階調画像にすることができる。このスクリーンやパターン等は、画像処理部12等が記憶しているデータを読み出してもよく、処理の都度新たに取得してもよい。このような画像1に基づき、加工部14は、少なくとも2層が互いに異なる色で着色された3層以上の材料2の一部を除去する工程、2層2色の板材を抜き加工し第3層を貼り合わせる工程、透明等の材料で凹凸の形状を造形後に表面部S・溝側面F・底面部Bに2以上の異なる色で着色する工程・3Dプリンティング等で造形物3を製造する。このような造形物3は、表面部Sの色と底面部Bの色とが異なる場合にはその2色の組合せの比率により、例えば正面から見た場合に階調を表してもよく、表面部Sの色と溝側面Fの色とが異なる場合にはその組合せにより、例えば斜めから見た場合に階調を表してもよく、表面部Sの色と溝側面Fの色と底面部Bの色がすべて異なる場合には、それら3色すべての組合せを使ってもよい。また、画像処理部12等は、万線や網点の幅又は長さの少なくとも一方を一定とし、その数や密度や分布量の増減により階調を変化させてもよいし、面積の調整と数や分布状態の調整とを併用してもよい。
[Second Embodiment]
As shown in FIG. 20a, the bottom surface portion B of the groove portion G may be wide, and the width of the concave portion and the width of the convex portion may be relatively close. In that case, when the molded article 3 in which the base material portion M is transparent is viewed obliquely, one of the two opposing groove side surfaces F can be seen without passing through the transparent portion, and thus can be seen long without being contracted by refraction. Since the groove side surface F seen through the surface portion S appears to be short due to refraction, the width of the surface portion S is set to be equal to the width of the bottom surface portion B in order to efficiently obtain the effect that the entire groove side surface F is connected when viewed obliquely. May be narrower. The groove side surface F/bottom surface B may be transparent or opaque.
As shown in FIG. 20b, if the shaped object 3 is opaque, the color of the bottom surface portion B and the color of the surface portion S may be different from the color of the groove side surface F. The color of the bottom surface portion B and the color of the surface portion S may be different or the same. The groove side surface F may be a color that absorbs light from the surface portion S. The bottom part B is also the same. Some of the configurations, effects, modifications, and the like described in the first embodiment also apply to this embodiment. For example, if the groove side surface F is substantially perpendicular to the surface portion S, the groove side surface F is almost invisible when viewed from the front, and the anisotropic coloring effect is obtained as in the first embodiment. At least one of the direction, the curvature, the shape, the pitch, the width, the depth, the surface roughness, the wavelength, the amplitude of the wave, the phase, the presence or absence of the groove portion G of the groove portion G in one partial area of the modeled object 3 and another partial area. At least one of the surface portion S, the back surface portion R, the base material portion M, the groove side surface F, and the bottom surface portion B may be different. The molded article has a plurality of partial areas, at least a part of the plurality of partial areas has a part of the plurality of groove portions, and the plurality of plurality of partial areas having a part of the plurality of groove portions At least one of the direction, curvature, shape, pitch, width, depth, surface roughness, wavelength, wave amplitude, and phase of a part of the groove part, and the color of part of the plurality of groove parts, one of the plurality of groove parts At least one of the colors of the parts other than the parts may be different.
In the opaque shaped article 3, by changing at least one of the width and the length of the surface portion S in each part, a constant range in the visual field between the surface portion S and at least one of the groove side surface F and the bottom surface portion B is obtained. It is possible to change the area ratio, and thereby to change the combination of at least two colors of the color of the surface portion S and at least one of the groove side surface F or the bottom surface portion B to express gradation,・Images such as CG and illustrations can be displayed. When the image to be displayed is a character or a line drawing, the number of gradations may be 2 gradations, and in the case of a photograph, it may be 3 gradations or more, or even an image converted to 2 gradations. Good. Specifically, when the image 1 is a multi-tone image, the image processing unit 12 or the like uses various screens or patterns such as lines, curved lines, halftone dots, and dither pattern dots, For example, as shown in FIGS. 3c and 3g, it is possible to form a two-gradation image in which gradation is displayed by the area ratio. The screen, the pattern, or the like may read the data stored in the image processing unit 12 or the like, or may newly acquire the data each time the processing is performed. Based on the image 1 as described above, the processing unit 14 removes a part of the material 2 of three or more layers in which at least two layers are colored in mutually different colors, and punches and processes a plate material of two layers and two colors. The step of attaching the layers, the step of coloring the surface portion S, the groove side surface F, and the bottom surface portion B with two or more different colors after modeling the uneven shape with a transparent material, etc. When the color of the surface portion S and the color of the bottom surface portion B are different from each other, such a modeled object 3 may represent a gradation when viewed from the front, depending on the ratio of the combination of the two colors. When the color of the part S and the color of the groove side face F are different, the gradation may be expressed by the combination, for example, when viewed obliquely, and the color of the surface part S, the color of the groove side face F, and the bottom part B If all the colors are different, a combination of all three colors may be used. Further, the image processing unit 12 or the like may set at least one of the width and the length of the lines or halftone dots constant and change the gradation by increasing or decreasing the number, density or distribution amount, or by adjusting the area. You may use together with adjustment of a number and a distribution state.

[第3の実施形態]
3Dプリンティングによる造形物3では、溝部Gが溝状でなく、ごく薄い膜状で、2面の溝側面Fがきわめて近接していてもよい。それと同様に、例えば薄手の透明等のフィルムが一定の幅で裁断され、その片面又は両面に着色された複数の帯が、一方の切り口を基底材上に固定する形で並べられ溝部Gとされた造形物3も可能である。この帯の立った状態での保持と保護のため、帯の間に透明又は半透明の樹脂等が充填され図14や図21aと同様の外観とされてもよく、帯が樹脂内に浮いた状態でもよく、その際、樹脂等から帯の一部が露出してもしなくてもよい。フィルムの切り口は正面から見えるが、切り口が目立たないよう溝側面Fとは別の色で着色されてもよい。フィルム全体が同じ色でもよく、溝側面Fの色の変化が詳細で、複数の溝側面Fにより複雑な画像が表示されてもよい。さらに互いに隣り合う複数の溝部Gの方向が複数でもよく、溝部Gが曲面でもよく、互いに平行でなく自由に多様な方向を向いてもよい。溝部色CGが溝部Gごとに異なってもよく、各溝側面Fの各部でさらに異なってもよい。第1及び第2の実施形態に記載の構成・効果・変形例等の一部は、本実施形態にもあてはまる。
[Third Embodiment]
In the molded article 3 produced by 3D printing, the groove portion G may have a very thin film shape instead of the groove shape, and the two groove side surfaces F may be extremely close to each other. Similarly, for example, a thin transparent film is cut into a certain width, and a plurality of bands colored on one side or both sides thereof are arranged in a manner to fix one cut on the base material to form a groove G. A shaped object 3 can also be used. In order to hold and protect the band in a standing state, a transparent or translucent resin or the like may be filled between the bands to give an appearance similar to that shown in FIGS. 14 and 21a, and the band floats in the resin. It may be in a state, in which case a part of the band may be exposed or not from the resin or the like. Although the cut edge of the film is visible from the front, it may be colored with a color different from that of the groove side face F so that the cut edge is not conspicuous. The entire film may have the same color, the color change of the groove side face F may be detailed, and a complicated image may be displayed by the plurality of groove side faces F. Further, the plurality of groove portions G adjacent to each other may have a plurality of directions, the groove portions G may have a curved surface, and may not be parallel to each other but may freely face in various directions. The groove part color CG may be different for each groove part G, and may be further different for each part of each groove side face F. Some of the configurations, effects, modifications and the like described in the first and second embodiments are also applicable to this embodiment.

[第4の実施形態]
本発明における第4の実施形態が実現するディスプレイ7では、例えば有機EL等の薄型で細長い短冊状のディスプレイモジュールDが溝側面Fとなっている。図21のように、複数のディスプレイモジュールDが互いに平行かつ一定ピッチで配置されてもよい。また、表示コントローラCがディスプレイモジュールDと有線又は無線で接続されるかディスプレイモジュールDに内蔵され、この表示コントローラCにより画像や動画が短冊状に分断されるなどして、各々のディスプレイモジュールDに振り分けられて表示されてもよい。これにより、斜め横方向からは動画等(図21では「B」の文字)が見え、正面からは見えない、という効果が得られる。ディスプレイモジュールDが両面で互いに異なる動画等を表示可能なら、観察者が左右から見た時にそれぞれ別の動画等を鑑賞でき、正面からは向こうの景色を透過して見ることができる。ディスプレイモジュールDは、携帯端末用等の小型ディスプレイモジュールが縦に並べられ繋がれたもの2枚が背中合わせに張り合わせられたものでもよい。その際、強度向上のため表裏の継ぎ目が重ならないほうがよい。両側の画面は互いに平行でもよく、表面部S側あるいはその逆側を頂角とし底辺側が開いた三角形状でもよい。
複数のディスプレイモジュールDの固定方法には、例えば以下の3通りがある。方法1:図21aのように、複数のディスプレイモジュールDの間が、第3の実施形態同様透明の樹脂等の基材部Mで埋められている。基材部Mを通して見ることで屈折が発生し、ディスプレイモジュールDの高さhが小さく見える分、これを大きくする必要がある。放熱等のため、ディスプレイモジュールDの少なくとも一部が基材部Mから露出した状態でもよい。また、各要素の熱膨張率を近づける等の温度対策が必要である。方法2:図21bのように、基材部Mが板状であって、その上にディスプレイモジュールDが固定されている。基材部Mとの固定部分がディスプレイモジュールDの幅をはみ出さないほうが目立たない。基材部Mに溝が彫られ、ディスプレイモジュールDの一部がそこに差し込まれてもよい。方法3:図21cのように、複数のディスプレイモジュールDが上端付近又は下端付近の少なくとも一方にある基材部Mで連結されていて、それ以外のディスプレイモジュールDどうしの間は空間である。各ディスプレイモジュールDが芯材等により補強されてもよい。方法2及び3では、ディスプレイ7の表面部Sは複数のディスプレイモジュールDの正面側を通る仮想的な面である。隣り合うディスプレイモジュールDの片側がたがいにつながって、曲がりくねった1枚のディスプレイモジュールDでもよい。ディスプレイ7は平面状でもよく、斜め方向から見た際のそれぞれのディスプレイモジュールDの見え方が改善するよう、中心部がくぼんだ又は凸状の弧状でもよい。弧状の場合、複数のディスプレイモジュールDは、互いに平行でもよく、それらを含む面が1つの線で交差してもよく、ディスプレイモジュールDと表面部Sとの角度が一定、例えば90°でもよい。ディスプレイ7は駆動電源を内蔵してもよく、外部から固定部分等経由で電力供給を受けてもよい。
本形態はマルチビューディスプレイ技術に関する。旧来、特開2008−527440号公報・特開2008−513807号公報・特開2008−164702号公報のようなマルチビューディスプレイ技術が知られている。これらでは視差バリアや光学系等を用いて、1つのディスプレイ上で複数の画像や動画を表示することができるが、それぞれの表示の視野角が狭く、例えば観察者が略真横に近いような側方から見ると表示がほとんど見えないという問題があった。本実施形態ではこのような問題を解決し、画面への垂線又は法線と視線とのなす角度が75°以上90°未満といったきわめて深い角度から観察者が見た場合にも表示が見えるディスプレイを提供可能である。また、ディスプレイモジュールDの視野角が充分に広ければ、ディスプレイモジュールDの高さhや複数のディスプレイモジュールDの間隔の変更によって、表示が見える範囲が、正面近くまで拡張されたり、逆に側方のみに限られたりといった調整も可能である。本実施形態は、例えば、街中において通行人が店先に設置されたディスプレイ7の前を通過する時、遠くからディスプレイ7の正面に向かって歩いてくる途上ではディスプレイ7の表示内容が見え、ディスプレイ7の正面では店の中が見え、ディスプレイ7の正面を通り過ぎて振り返ると再度ディスプレイ7の表示が見える、という効果を奏する。
ディスプレイ7を製造するディスプレイ製造装置20は、図22のように管理部21・組立部22・配線部23・固定部24・仕上げ部25・検査部26を具える。ディスプレイ7を製造するディスプレイ製造方法は、図23のように管理工程S21・組立工程S22・配線工程S23・固定工程S24・仕上げ工程S25・検査工程S26よりなる。管理部21はディスプレイ7の部品配置や作業手順等を記述した指示データ6を取得し、それに基づきディスプレイ製造装置20の各部を制御する(S21)。組立部22はディスプレイモジュールDや基底材等の材料2を取得し、管理部21の制御に従ってディスプレイモジュールD等の配置を行う(S22)。配線部23は管理部21の制御に従って各種配線を行う(S23)。固定部24は管理部21の制御に従ってディスプレイモジュールD等の間に樹脂を充填して基材部Mとする等動作し、ディスプレイ7の構造を形成する(S24)。仕上げ部25はディスプレイ7の表面の研磨等を行い完成品とするが、さらに別の部品を追加してディスプレイ集合体8としてもよい(S25)。検査部26は完成品の動作確認等を行う(S26)。各部は別の工程部を含んでもよく、各部の動作順が変更されてもよい。
第1から第3の実施形態に記載の構成・効果・変形例等の一部は、本実施形態にもあてはまる。例えば、ディスプレイ製造装置20は、ディスプレイ7の裏面に大型のディスプレイモジュールD1を装着し、正面と斜め方向とで互いに異なる動画等を表示可能な、図21dのようなディスプレイ集合体8を製造してもよい。ディスプレイ7とディスプレイモジュールD1とは固定されずに設置されてもよい。ディスプレイ集合体8では、基材部Mの代わりに、ディスプレイモジュールD1に複数のディスプレイモジュールDが直接固定されてもよい。また、ディスプレイモジュールDが不透明であれば、異方性透過効果が得られるだけでなく、異方性カラーリング効果に相当する効果が得られ、これを本明細書では異方性表示効果と記載する。さらにまた、ディスプレイ7の一部の方向が図14aのように他と異なることで、例えば視点V12から見た場合にディスプレイモジュールDが見える部分領域と見えない部分領域が存在し、これらにより、ディスプレイの表示内容とは別にロゴ等が表示されてもよい。複数のディスプレイモジュールDの互いに異なる複数の方向のなす角度が図11のように90°又は72〜108°であれば、この効果がより向上する。
本形態が提供する1態様は、複数のディスプレイモジュールを有するディスプレイであって、該ディスプレイの少なくとも一部において該複数のディスプレイモジュールの表示面の方向が該ディスプレイの表面と平行でないディスプレイである。前記複数のディスプレイモジュールの少なくとも一部が互いに平行でもよく、前記複数のディスプレイモジュールの少なくとも一部が前記表面となす角度が一定でもよく、前記ディスプレイの少なくとも一部が透過性を有してもよく、前記ディスプレイのうち前記複数のディスプレイモジュール以外の部分の少なくとも一部が透過性を有してもよい。前記複数のディスプレイモジュールの方向が複数でもよく、前記ディスプレイにおける複数の部分領域ごとに前記複数の方向が異なってもよく、前記複数の部分領域が画像に基づいてもよく、画像に基づいて調整されてもよい。また、前記複数のディスプレイモジュールが1つの画像又は映像を複数に分けてそれぞれを表示してもよい。本形態が提供する別の態様は、前記ディスプレイの表面と異なる側に前記複数のディスプレイモジュールと平行ではないディスプレイモジュールを具えるディスプレイ集合体である。さらに別の態様は、複数のディスプレイモジュールを含む材料から、複数のディスプレイモジュールを有するディスプレイであって、該ディスプレイの少なくとも一部において該複数のディスプレイモジュールの表示面の方向が該ディスプレイの表面と平行でないディスプレイを製造する組立部を具えるディスプレイ製造装置である。
[Fourth Embodiment]
In the display 7 realized by the fourth embodiment of the present invention, a thin and elongated strip-shaped display module D such as an organic EL is the groove side face F. As shown in FIG. 21, a plurality of display modules D may be arranged in parallel with each other at a constant pitch. Further, the display controller C is connected to the display module D by wire or wirelessly or is built in the display module D, and the display controller C divides an image or a moving image into strips. It may be sorted and displayed. As a result, a moving image or the like (the letter “B” in FIG. 21) can be seen from the diagonal lateral direction, but cannot be seen from the front. If the display module D is capable of displaying different moving images or the like on both sides, an observer can view different moving images and the like when viewed from the left and right, and can see through the scenery from the front. The display module D may be a small display module for a mobile terminal or the like, which is vertically arranged and connected, and two pieces which are stuck back to back. At that time, it is better that the front and back seams do not overlap to improve the strength. The screens on both sides may be parallel to each other, or may have a triangular shape with the apex angle on the surface S side or the opposite side and the bottom side being open.
There are the following three methods for fixing the plurality of display modules D, for example. Method 1: As shown in FIG. 21a, a space between the plurality of display modules D is filled with a base material M such as a transparent resin as in the third embodiment. Refraction occurs when viewed through the base material portion M, and the height h of the display module D appears to be small, so that it must be increased. At least a part of the display module D may be exposed from the base material part M for heat dissipation or the like. Further, it is necessary to take measures against temperature such as making the thermal expansion coefficients of the respective elements close to each other. Method 2: As shown in FIG. 21b, the base material part M has a plate shape, and the display module D is fixed thereon. It is more inconspicuous if the fixed portion with the base material portion M does not extend beyond the width of the display module D. A groove may be engraved in the base material portion M, and a part of the display module D may be inserted therein. Method 3: As shown in FIG. 21c, a plurality of display modules D are connected by a base material part M near at least one of the upper end and the lower end, and the other display modules D are spaces. Each display module D may be reinforced by a core material or the like. In the methods 2 and 3, the surface portion S of the display 7 is a virtual surface that passes through the front side of the plurality of display modules D. One display module D may be a meandering display module D in which one side of adjacent display modules D is connected to each other. The display 7 may have a flat shape, or may have a concave or convex arc shape at the center thereof so that the appearance of each display module D when viewed from an oblique direction is improved. In the case of the arc shape, the plurality of display modules D may be parallel to each other, the planes including them may intersect with one line, and the angle between the display module D and the surface portion S may be constant, for example, 90°. The display 7 may have a built-in driving power source, or may be supplied with power from outside via a fixed part or the like.
This embodiment relates to a multi-view display technology. Conventionally, multi-view display technologies such as JP-A-2008-527440, JP-A-2008-513807, and JP-A-2008-164702 are known. With these, a parallax barrier and an optical system can be used to display a plurality of images and moving images on one display, but the viewing angle of each display is narrow, and for example, the side where an observer is close to the side. There was a problem that the display was almost invisible from the perspective of one. In the present embodiment, such a problem is solved, and a display that allows the display to be seen even when the observer sees from an extremely deep angle such that the angle between the normal line or normal to the screen and the line of sight is 75° or more and less than 90° is provided. It is possible to provide. Further, if the viewing angle of the display module D is sufficiently wide, the range in which the display can be viewed is expanded to the front or the side is changed by changing the height h of the display module D or the intervals between the plurality of display modules D. It is also possible to make adjustments such as being limited to only. In the present embodiment, for example, when a passerby passes in front of the display 7 installed at the storefront in the city, the contents displayed on the display 7 can be seen while walking toward the front of the display 7 from a distance. The effect is that the inside of the store can be seen in the front of, and the display of the display 7 can be seen again when passing through the front of the display 7 and turning around.
A display manufacturing apparatus 20 for manufacturing the display 7 includes a management unit 21, an assembly unit 22, a wiring unit 23, a fixing unit 24, a finishing unit 25, and an inspection unit 26 as shown in FIG. A display manufacturing method for manufacturing the display 7 includes a management step S21, an assembly step S22, a wiring step S23, a fixing step S24, a finishing step S25, and an inspection step S26 as shown in FIG. The management unit 21 acquires the instruction data 6 describing the component arrangement of the display 7 and the work procedure, and controls each unit of the display manufacturing apparatus 20 based on the instruction data 6 (S21). The assembling unit 22 acquires the material 2 such as the display module D and the base material, and arranges the display module D and the like under the control of the management unit 21 (S22). The wiring unit 23 performs various wirings under the control of the management unit 21 (S23). Under the control of the management unit 21, the fixing unit 24 operates such as filling the space between the display modules D and the like with the resin to form the base member M, and forms the structure of the display 7 (S24). The finishing unit 25 polishes the surface of the display 7 to obtain a finished product, but another component may be added to form the display aggregate 8 (S25). The inspection unit 26 confirms the operation of the finished product (S26). Each unit may include another process unit, and the operation order of each unit may be changed.
Some of the configurations, effects, modifications, etc. described in the first to third embodiments are also applicable to this embodiment. For example, the display manufacturing apparatus 20 mounts the large-sized display module D1 on the back surface of the display 7 and manufactures the display assembly 8 as shown in FIG. Good. The display 7 and the display module D1 may be installed without being fixed. In the display aggregate 8, instead of the base material M, a plurality of display modules D may be directly fixed to the display module D1. Further, if the display module D is opaque, not only an anisotropic transmission effect is obtained, but also an effect corresponding to an anisotropic coloring effect is obtained, which is referred to as an anisotropic display effect in the present specification. To do. Furthermore, since the direction of a part of the display 7 is different from the other as shown in FIG. 14a, there are a partial region where the display module D can be seen and a partial region where the display module D cannot be seen when seen from the viewpoint V12. A logo or the like may be displayed separately from the display content of. If the angles formed by the different directions of the plurality of display modules D are 90° or 72 to 108° as shown in FIG. 11, this effect is further improved.
One aspect provided by the present mode is a display having a plurality of display modules, and a display surface direction of the plurality of display modules is not parallel to a surface of the display in at least a part of the display. At least some of the plurality of display modules may be parallel to each other, at least some of the plurality of display modules may form a constant angle with the surface, and at least some of the displays may be transparent. At least a part of the part of the display other than the plurality of display modules may be transparent. The plurality of display modules may have a plurality of directions, the plurality of directions may be different for each of a plurality of partial areas in the display, and the plurality of partial areas may be image-based and adjusted based on the image. May be. Further, the plurality of display modules may divide one image or video into a plurality of images and display each. Another aspect provided by the present embodiment is a display assembly including a display module that is not parallel to the plurality of display modules on a side different from the surface of the display. Yet another aspect is a display having a plurality of display modules made of a material including a plurality of display modules, wherein a display surface direction of the plurality of display modules is parallel to a surface of the display in at least a part of the display. A display manufacturing apparatus including an assembly unit for manufacturing a non-display.

本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The technical scope of the present invention is not limited to the scope described in the above embodiments. It is apparent to those skilled in the art that various modifications and improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiment added with such changes or improvements can be included in the technical scope of the present invention.

以上説明したように、本発明により、見る方向や光線の方向が異なることで色・明るさ・絵柄が変化して見えるという、これまでにない装飾効果を奏する造形物を提供することができる。
これにより、例えば看板・社名表示板・表札・案内板・掲示板・銘板等の各種サインに社名・人名や企業ロゴ等を表示する場合に、斬新な視覚的効果を付与することができる。また、そのような各種サインに写真画像を用いる場合や、記念品や贈り物等の写真加工品に、全く新しい意匠性を加えることもできる。装飾物・店舗等のガラス面の装飾・広告表示板・オブジェへの応用も可能である。風景が見えるエレベータの外装等に採用すれば斬新な効果を発揮する。本発明は他にも、商品のブランドロゴ、自動車のエンブレム、ステンドグラスとしての使用等、様々な分野に利用可能である。
As described above, according to the present invention, it is possible to provide a modeled object having an unprecedented decorative effect in which colors, brightness, and patterns appear to change due to different viewing directions and light ray directions.
Thereby, for example, when displaying a company name, a person's name, a company logo, or the like on various signs such as a signboard, a company name display board, a nameplate, a guide board, a bulletin board, and a nameplate, a novel visual effect can be added. Further, when a photographic image is used for such various signatures, or a photographic processed product such as a souvenir or a gift, a completely new design can be added. It can also be applied to decorations, glass decorations for shops, advertisement display boards, and objects. If it is applied to the exterior of an elevator where you can see the scenery, it will have a novel effect. The present invention is also applicable to various fields such as a brand logo of a product, an emblem of an automobile, and use as a stained glass.

10 造形物製造装置
11 画像取得部
12 画像処理部
13 材料取得部
14 加工部
15 仕上げ部
20 ディスプレイ製造装置
21 管理部
22 組立部
23 配線部
24 固定部
25 仕上げ部
26 検査部
1 画像
2 材料
3 造形物
4 造形物展示体
5 造形物照明設備
6 指示データ
7 ディスプレイ
8 ディスプレイ集合体
B 底面部
CG 溝部色
D ディスプレイモジュール
de 溝部の深さ
di 溝部の幅方向の中心どうしの間隔
F、F1、F2、F3、F4、F5、F6 溝側面
Fi 充填部
G、G1、G2、G3、G4 溝部
I 照明器具
M 基材部
R 裏面部
S、S1 表面部
V1、V2、V3、V4、V5〜V15 観察者・視点
DESCRIPTION OF SYMBOLS 10 Modeling manufacturing apparatus 11 Image acquisition section 12 Image processing section 13 Material acquisition section 14 Processing section 15 Finishing section 20 Display manufacturing apparatus 21 Management section 22 Assembly section 23 Wiring section 24 Fixing section 25 Finishing section 26 Inspection section 1 Image 2 Material 3 Modeled object 4 Modeled object display object 5 Modeled object lighting equipment 6 Instruction data 7 Display 8 Display assembly B Bottom part CG Groove part color D Display module de Groove depth di Gap between centers in width direction F, F1, F2 , F3, F4, F5, F6 Groove side surface Fi Filled part G, G1, G2, G3, G4 Groove part I Lighting fixture M Base material part R Back surface part S, S1 Surface part V1, V2, V3, V4, V5-V15 Observation Person/viewpoint

Claims (1)

複数の溝部と、該複数の溝部の少なくとも一部が互いに重ならずにかつそれぞれの両端を含めて観察可能な第1の表面と、該第1の表面の少なくとも一部と対向する第2の表面と、前記複数の溝部のうち互いに隣り合う複数の溝部にそれぞれ挟まれた複数の間の部分と、該複数の間の部分の各々と前記複数の溝部の各々とが接する複数の側面と、を有する、画像・文字・ロゴ・図形・模様の少なくともいずれかを表示する装飾体であって、
前記複数の溝部の少なくとも一部を有する前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行であり、
前記第1の表面の少なくとも一部と前記第2の表面の少なくとも一部とが互いに平行である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が互いに平行であり、
前記互いに平行である前記複数の溝部の少なくとも一部の幅方向の中心どうしの間隔が一定であり、
前記間隔が一定である前記装飾体の少なくとも一部において、前記複数の溝部以外の部分の屈折率をnとすると、前記複数の溝部の少なくとも一部のうち任意の溝部・該任意の溝部に隣接する前記間の部分・該間の部分に前記任意の溝部が接する第1の側面・該第1の側面に前記間の部分を挟んで向かい合う第2の側面に関し、前記任意の溝部の深さが、前記第2の側面における前記第1の表面の少なくとも一部に最も近い部分内の第1の点と、前記第1の側面における前記第1の点に最も近い第2の点及び前記第1の点を通り前記第1の表面の少なくとも一部に垂直な平面と前記第1の側面との交線上の前記第2の表面の少なくとも一部に最も近い第3の点から前記第1の表面の少なくとも一部に下ろした垂線又は法線を含む直線との最短距離のcot[arcsin(1/n)]倍より大きく、
前記任意の溝部の深さが前記最短距離のcot[arcsin(1/n)]倍より大きい前記装飾体の少なくとも一部において、前記複数の間の部分の最小の幅が前記複数の溝部の少なくとも一部の最大の幅以上であり、
前記最小の幅が前記最大の幅以上である前記装飾体の少なくとも一部において、前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が、一方の側から他方を、一方及び前記複数の間の部分を透過して互いに観察可能であり、
前記第1の表面の少なくとも一部及び前記第2の表面の少なくとも一部が一方の側から他方を一方及び前記複数の間の部分を透過して互いに観察可能である前記装飾体の少なくとも一部において、前記複数の溝部の少なくとも一部が空隙であり、
前記空隙である複数の溝部の少なくとも一部の深さが4mm以上であり、
前記深さが4mm以上である複数の溝部の少なくとも一部の複数の側面が、該複数の側面に接する前記複数の間の部分とは異なる色で着色された
ことを特徴とする装飾体。
A plurality of groove portions, a first surface where at least a part of the plurality of groove portions do not overlap with each other and are observable including both ends thereof, and a second surface facing at least a part of the first surface A surface, a plurality of portions sandwiched between a plurality of groove portions adjacent to each other among the plurality of groove portions, a plurality of side surfaces contacting each of the plurality of groove portions and each of the plurality of groove portions, A decorative body that has at least one of an image, a character, a logo, a figure, and a pattern,
In at least a part of the decorative body having at least a part of the plurality of groove portions, at least a part of the first surface and at least a part of the second surface are parallel to each other,
In at least a portion of the decorative body in which at least a portion of the first surface and at least a portion of the second surface are parallel to each other, at least a portion of the plurality of groove portions are parallel to each other,
The distance between the centers in the width direction of at least a part of the plurality of groove portions that are parallel to each other is constant,
In at least a part of the decorative body with a constant spacing, when a refractive index of a part other than the plurality of groove parts is n, any groove part of at least a part of the plurality of groove parts and adjacent to the arbitrary groove part With respect to the portion between the above, the first side surface in which the arbitrary groove portion is in contact with the portion between the two, and the second side surface facing the first side surface with the portion between the two, the depth of the arbitrary groove portion is A first point within the portion of the second side closest to at least a portion of the first surface, a second point of the first side closest to the first point and the first point. From the third point closest to at least a part of the second surface on a line of intersection between the first side surface and a plane perpendicular to at least a part of the first surface. Is greater than the minimum distance cot[arcsin(1/n)] times a straight line including a perpendicular or a normal drawn on at least a part of
In at least a part of the decorative body in which the depth of the arbitrary groove is greater than cot [arcsin(1/n)] times the shortest distance, the minimum width of the portion between the plurality is at least the plurality of grooves. More than some maximum width,
In at least a part of the decorative body in which the minimum width is greater than or equal to the maximum width, at least a part of the first surface and at least a part of the second surface are one side to the other side, and Ri observable der each other through the portion between the plurality,
At least a part of the decorative body in which at least a part of the first surface and at least a part of the second surface are observable from each other through one side and the other and a part between the plurality. In, at least a part of the plurality of groove portions are voids,
The depth of at least a part of the plurality of groove portions which are the voids is 4 mm or more,
An ornamental body characterized in that at least a part of a plurality of side surfaces of a plurality of groove portions having a depth of 4 mm or more is colored with a color different from that of a portion between the plurality of contacting the plurality of side surfaces .
JP2017150308A 2017-07-30 2017-08-02 Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method Expired - Fee Related JP6704561B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017150308A JP6704561B2 (en) 2017-08-02 2017-08-02 Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method
PCT/JP2018/028515 WO2019026863A2 (en) 2017-07-30 2018-07-30 Decorative body, decorative body lighting equipment, decorative body manufacturing apparatus, and decorative body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150308A JP6704561B2 (en) 2017-08-02 2017-08-02 Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method

Publications (2)

Publication Number Publication Date
JP2019025860A JP2019025860A (en) 2019-02-21
JP6704561B2 true JP6704561B2 (en) 2020-06-03

Family

ID=65477390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150308A Expired - Fee Related JP6704561B2 (en) 2017-07-30 2017-08-02 Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method

Country Status (1)

Country Link
JP (1) JP6704561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968486B1 (en) * 2020-04-13 2021-11-17 正義 平井 Decorative body, decorative body manufacturing equipment and decorative body manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660208B2 (en) * 1988-03-28 1997-10-08 柴田ハリオ硝子株式会社 Method of manufacturing decorative body
EP0354672A3 (en) * 1988-08-08 1990-10-10 Minnesota Mining And Manufacturing Company Light-collimating film
JP2513271Y2 (en) * 1989-12-05 1996-10-02 東京木材企業株式会社 Veneer
JPH0463298U (en) * 1990-10-05 1992-05-29
JP2576361Y2 (en) * 1992-10-30 1998-07-09 共同印刷株式会社 Decorative display
JP2002244596A (en) * 2001-02-20 2002-08-30 Art Laser Giken:Kk Assembled transparent body internally having bright drawing section
JP2007320266A (en) * 2006-06-02 2007-12-13 Polymatech Co Ltd Decorated molding and key sheet
JP4915561B2 (en) * 2006-08-11 2012-04-11 株式会社サカイヤ Method for forming a spin pattern on a plastic sheet
JP2008275740A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Display body and laminate
JP5148964B2 (en) * 2007-10-16 2013-02-20 紀伊産業株式会社 Method for producing combined molded body and combined molded body obtained thereby
WO2012150695A1 (en) * 2011-05-02 2012-11-08 独立行政法人産業技術総合研究所 Article with three-dimensional outer surface representation and die for three-dimensional outer surface representation
JP2013095120A (en) * 2011-11-04 2013-05-20 Kawanami Tekko Kk Image display panel, equipment for installing image display panel, and method of manufacturing image display panel
JP2015231805A (en) * 2014-06-10 2015-12-24 小島プレス工業株式会社 On-vehicle decoration unit

Also Published As

Publication number Publication date
JP2019025860A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US11882265B1 (en) Array of individually angled mirrors reflecting disparate color sources toward one or more viewing positions to construct images and visual effects
JP2019051691A (en) Molded article for decoration, lighting appliance for molded article for decoration, manufacturing device of molded article for decoration and manufacturing method of molded article for decoration
JP3455854B2 (en) Panel with light transmission image
CN1184497C (en) Durabe, open-faced retroreflective prismatic construction
JP2001312233A (en) Transparent display
JP2007510178A (en) Diffraction security element with halftone image
CA2749061A1 (en) Integral photography sheet by total reflection
CN108027128A (en) Color reflection unit
EP3637172A1 (en) Optical structure
JP6948030B2 (en) Color change printed matter
JP6704561B2 (en) Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method
JP6656723B1 (en) Decorative body, decorative body lighting equipment, decorative body manufacturing apparatus and decorative body manufacturing method
CN1126961C (en) Wide angle image-displaying sheet and system
JP4845414B2 (en) Pearl pattern decorative body
US9746590B2 (en) Retroreflective sheeting having a halftone printed front surface
US11422454B1 (en) Individually angled mirror array system specialty effects
US10895804B1 (en) Individually angled mirror array system specialty effects
JP2017213838A (en) Shaped article, manufacturing device of shaped article, and manufacturing method of shaped article
KR101220278B1 (en) Lens unit for accessory
WO2019026863A2 (en) Decorative body, decorative body lighting equipment, decorative body manufacturing apparatus, and decorative body manufacturing method
US20100079871A1 (en) Reflective surfaces capable of displaying different images under various lighting conditions
US9576377B1 (en) Individually angled mirror array system specialty effects
US20050134981A1 (en) Reflective multi-image surface
JP7133695B1 (en) DECORATION, DECORATION MANUFACTURING DEVICE AND DECORATION MANUFACTURING METHOD
JPH07164800A (en) Image forming body

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A764 Written withdrawal of priority claim

Free format text: JAPANESE INTERMEDIATE CODE: A764

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

A764 Written withdrawal of priority claim

Free format text: JAPANESE INTERMEDIATE CODE: A764

Effective date: 20180704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181211

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190728

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

R150 Certificate of patent or registration of utility model

Ref document number: 6704561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees