JP6703871B2 - Variable capacity compressor - Google Patents

Variable capacity compressor Download PDF

Info

Publication number
JP6703871B2
JP6703871B2 JP2016057526A JP2016057526A JP6703871B2 JP 6703871 B2 JP6703871 B2 JP 6703871B2 JP 2016057526 A JP2016057526 A JP 2016057526A JP 2016057526 A JP2016057526 A JP 2016057526A JP 6703871 B2 JP6703871 B2 JP 6703871B2
Authority
JP
Japan
Prior art keywords
pressure
valve
compressor
rated
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057526A
Other languages
Japanese (ja)
Other versions
JP2017172409A (en
Inventor
真 五十嵐
真 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP2016057526A priority Critical patent/JP6703871B2/en
Publication of JP2017172409A publication Critical patent/JP2017172409A/en
Application granted granted Critical
Publication of JP6703871B2 publication Critical patent/JP6703871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,消費側に供給する圧縮気体の圧力(定格圧力)の設定を可変とした可変容量型圧縮機に関し,より詳細には,消費側に接続された空圧機器等の接続機器に対し許容圧力を超える圧縮気体が導入されることを防止することにより,前記接続機器を保護する保護装置を備えた可変容量型圧縮機に関する。 The present invention relates to a variable capacity compressor in which the setting of the pressure (rated pressure) of compressed gas supplied to the consumer side is variable, and more specifically, to a connected device such as a pneumatic device connected to the consumer side. The present invention relates to a variable capacity compressor including a protection device that protects the connected device by preventing the introduction of compressed gas exceeding the allowable pressure.

圧縮気体,例えば圧縮空気を生成する圧縮機は,土木作業現場や建築現場,工場施設等において掘削機器や回転工具などの空圧機器に対する圧縮空気の供給源として使用されており,特に,圧縮機本体の駆動源としてエンジンを備えたエンジン駆動圧縮機は,電源等の確保が困難な屋外等において広く使用されている。 Compressors that generate compressed gas, such as compressed air, are used as a source of compressed air for pneumatic equipment such as excavators and rotary tools at civil engineering work sites, construction sites, factory facilities, etc. Engine-driven compressors equipped with an engine as a drive source for the main body are widely used outdoors where it is difficult to secure a power source or the like.

このような圧縮機1’の構成例を図8に示す。図8に示す圧縮機1’は,圧縮機本体2として被圧縮気体を潤滑油と共に圧縮して気液混合流体として吐出する油冷式のスクリュ型である圧縮機本体2を備えたもので,このような油冷式の圧縮機本体2を備えた圧縮機1’では,圧縮機本体2や,この圧縮機本体2を駆動するモータやエンジン等の駆動源3の他に,圧縮機本体2が吐出した圧縮気体から潤滑油を分離するためのレシーバタンク4が設けられており,このレシーバタンク4内で潤滑油が分離された後の圧縮気体を,オイルセパレータ(図示せず)を介してさらにミストの状態で圧縮気体中に含まれる油分を除去した後,図示せざる空気作業機等が接続された消費側に供給することができるように構成されていると共に,レシーバタンク4内に回収された潤滑油を,オイル配管5及びオイルクーラ5aを介して圧縮機本体2に供給することができるように構成されている。 A configuration example of such a compressor 1'is shown in FIG. A compressor 1'shown in FIG. 8 includes a compressor body 2 which is an oil-cooled screw type that compresses a compressed gas together with lubricating oil as a compressor body 2 and discharges it as a gas-liquid mixed fluid. In the compressor 1 ′ provided with such an oil-cooled compressor body 2, in addition to the compressor body 2 and the drive source 3 such as a motor or an engine for driving the compressor body 2, the compressor body 2 Is provided with a receiver tank 4 for separating the lubricating oil from the compressed gas discharged by, and the compressed gas after the lubricating oil is separated in the receiver tank 4 is passed through an oil separator (not shown). Furthermore, after the oil content contained in the compressed gas is removed in the mist state, it can be supplied to the consumer side to which an air working machine (not shown) is connected, and is collected in the receiver tank 4. The lubricating oil thus prepared can be supplied to the compressor body 2 via the oil pipe 5 and the oil cooler 5a.

このような圧縮機1’では,消費側に対し所定圧力(定格圧力)の圧縮気体を供給することができるようにするために,圧縮機本体2の吐出側圧力,図示の構成ではレシーバタンク4内の圧力変化に対応して,圧縮機本体2の吸気量を制御する吸気制御装置20が設けられている。 In such a compressor 1', in order to be able to supply a compressed gas of a predetermined pressure (rated pressure) to the consuming side, the discharge side pressure of the compressor body 2, the receiver tank 4 in the illustrated configuration. An intake control device 20 is provided to control the intake amount of the compressor body 2 in response to the change in the internal pressure.

このような吸気制御装置20として,図8の圧縮機1’には,圧縮機本体2の吸入口2aに設けた吸気制御弁21と,この吸気制御弁21の閉弁受圧室21aとレシーバタンク4間を連通する制御流路22と,この制御流路22を開閉制御する圧力調整弁23’が設けられている。 As such an intake control device 20, in the compressor 1′ of FIG. 8, an intake control valve 21 provided at the intake port 2a of the compressor body 2, a closed valve pressure receiving chamber 21a of the intake control valve 21 and a receiver tank. A control flow path 22 communicating between the four and a pressure adjusting valve 23' for controlling the opening and closing of the control flow path 22 are provided.

そして,この圧力調整弁23’を,制御流路22を閉じた状態からレシーバタンク4内の圧力が定格圧力を越えると開き始めると共に圧力上昇に応じて開度を増し,その後全開となるように構成することで,この圧力調整弁23’を介して閉弁受圧室21aがレシーバタンク4と連通された吸気制御弁21は,レシーバタンク4内の圧力が定格圧力以下の低い状態では閉弁受圧室21aに対し作動圧力が導入されず圧縮機本体2の吸入口2aを全開とするが,レシーバタンク4内の圧力が定格圧力を超えると閉弁受圧室21aに対し圧縮気体の導入が開始されて圧縮機本体2の吸入口2aを絞り,その後,圧力調整弁23’が全開になると,圧縮機本体2の吸入口2aを全閉として無負荷運転に移行して圧縮気体の生成を停止することで,レシーバタンク4内の圧力は,この無負荷運転への移行時を最高圧力(本願において「無負荷最高圧力」という)として上昇を停止することで,消費側に供給される圧縮気体の圧力を定格圧力に近付ける,吸気制御を行う。 Then, when the pressure in the receiver tank 4 exceeds the rated pressure from the state in which the control flow path 22 is closed, the pressure adjusting valve 23 ′ starts to open, and the opening degree increases in accordance with the pressure increase, and then it is fully opened. With this configuration, the intake control valve 21 in which the closed valve pressure receiving chamber 21a communicates with the receiver tank 4 via the pressure adjusting valve 23' is used to close the closed valve pressure receiving pressure in a state where the pressure in the receiver tank 4 is lower than the rated pressure. The working pressure is not introduced into the chamber 21a and the suction port 2a of the compressor body 2 is fully opened. However, when the pressure in the receiver tank 4 exceeds the rated pressure, introduction of compressed gas into the valve closed pressure receiving chamber 21a is started. The suction port 2a of the compressor body 2 is squeezed, and when the pressure regulating valve 23' is fully opened thereafter, the suction port 2a of the compressor body 2 is fully closed to shift to no-load operation and stop the generation of compressed gas. Therefore, the pressure in the receiver tank 4 is stopped at the maximum pressure (referred to as “no-load maximum pressure” in the present application) at the time of the transition to the no-load operation, and the compressed gas supplied to the consumer side is stopped. Perform intake control to bring the pressure close to the rated pressure.

このような吸気制御装置20を備えた圧縮機において,消費側に供給する圧縮気体の圧力(定格圧力)の設定を可変とすることができるようにした,所謂「可変容量型」と呼ばれる圧縮機も提案されている。 In a compressor provided with such an intake control device 20, a so-called "variable capacity type" compressor in which the setting of the pressure (rated pressure) of the compressed gas supplied to the consumer side can be made variable Is also proposed.

このような可変容量型圧縮機の一例として,後掲の特許文献1には,図8を参照して説明した圧縮機における圧力調整弁23’を,入力された電気信号に応じて弁の開度を変化させる電空比例弁に変更すると共に,この電空比例弁の動作を制御する,電子制御装置である制御ユニットを設けた可変容量型圧縮機が記載されている。 As an example of such a variable displacement compressor, in Patent Document 1 described later, a pressure adjusting valve 23′ in the compressor described with reference to FIG. 8 is opened according to an input electric signal. There is described a variable displacement compressor provided with a control unit which is an electronic control device for changing the electro-pneumatic proportional valve to change the degree and controlling the operation of the electro-pneumatic proportional valve.

この可変容量型圧縮機では,制御ユニットに,定格圧力の設定値の変化に対する,レシーバタンク内の圧力と電空比例弁の開度との対応関係の変化の関係が予め記憶されており,制御ユニットは,ユーザが設定した定格圧力に基づいてレシーバタンク内の圧力と電空比例弁の開度の対応関係を特定し,圧力センサが検知したレシーバタンク内の圧力に基づいて電空比例弁に出力する制御信号を変化させることで,前述した圧力調整弁23’を使用した吸気制御装置と同様,レシーバタンク内の圧力を定格圧力に近付くように制御できるように構成されていると共に,ユーザが定格圧力の設定を変更すると,制御ユニットは,変更後の定格圧力に基づいてレシーバタンク内の圧力と電空比例弁の開度の対応関係を特定し,これに基づいて吸気制御を行うことで,消費側に供給する圧縮気体の圧力を任意に変更することができるように構成されている。 In this variable displacement compressor, the control unit stores in advance the relationship of the change in the correspondence relationship between the pressure in the receiver tank and the opening degree of the electropneumatic proportional valve with respect to the change in the set value of the rated pressure. The unit identifies the correspondence between the pressure in the receiver tank and the opening of the electro-pneumatic proportional valve based on the rated pressure set by the user, and determines the electro-pneumatic proportional valve based on the pressure in the receiver tank detected by the pressure sensor. By changing the output control signal, the pressure in the receiver tank can be controlled so as to approach the rated pressure, similarly to the intake control device using the pressure regulating valve 23', and the user can When the rated pressure setting is changed, the control unit identifies the correspondence between the pressure in the receiver tank and the opening of the electropneumatic proportional valve based on the changed rated pressure, and performs the intake control based on this. The pressure of the compressed gas supplied to the consumer side can be arbitrarily changed.

なお,このように定格圧力の設定を可変とした可変容量型圧縮機1では,設定した定格圧力(例えば1.40MPa)に対し,常用圧力や許容圧力が低い機器(例えば常用圧力0.7MPa,許容圧力1.0MPaの空圧機器)を誤って接続して運転を開始してしまうと,接続機器に対し許容圧力を超える圧縮気体が供給され,接続機器を破損させてしまうおそれがあるだけでなく,圧縮機の消費側から接続機器に至る配管が破裂,破壊するおそれがある等,危険である。 In addition, in the variable displacement compressor 1 in which the setting of the rated pressure is variable in this way, a device having a low normal pressure or an allowable pressure with respect to the set rated pressure (for example, 1.40 MPa) (for example, a normal pressure of 0.7 MPa, If you accidentally connect a pneumatic device with an allowable pressure of 1.0MPa) and start operation, compressed gas exceeding the allowable pressure will be supplied to the connected device, which may damage the connected device. However, there is a danger that the piping from the consumer side of the compressor to the connected equipment may burst or break.

そのため,前掲の特許文献1では,このような可変容量型圧縮機に対する誤接続を防止するために,オペレータが確認操作手段を操作した後に始動操作をしなければエンジンが始動しないように構成し,あるいは,確認操作手段を操作しないで始動操作を行った場合,設定可能な定格値の範囲内で最低の吐出圧力に設定されるように構成することで,誤接続に伴う空圧機器の破損や,接続配管の破裂や破壊を防止できるようにすることを提案している(特許文献1[0016]欄他)。 Therefore, in the above-mentioned patent document 1, in order to prevent such an erroneous connection to the variable displacement compressor, the engine is not started unless the operator operates the confirmation operation means and then starts the operation. Alternatively, when the starting operation is performed without operating the confirmation operation means, the lowest discharge pressure is set within the range of the rated value that can be set, so that the pneumatic equipment is not damaged due to incorrect connection or It has been proposed to prevent the connection pipe from bursting or breaking (Patent Document 1 [0016] column, etc.).

特許第4792015号公報Japanese Patent No. 4792015

前掲の特許文献1として紹介した可変容量型圧縮機では,オペレータが確認操作手段を操作しなければエンジンが始動せず,あるいは,定格圧力として設定可能な最低値の圧力が定格圧力として設定されるため,誤接続等の人為的なミス(ヒューマンエラー)を原因とする接続機器や配管の破損等の防止には一定の効果があると考えられる。 In the variable displacement compressor introduced as the above-mentioned Patent Document 1, the engine does not start unless the operator operates the confirmation operation means, or the minimum pressure that can be set as the rated pressure is set as the rated pressure. Therefore, it is considered that there is a certain effect in preventing damage to the connected equipment and piping caused by human error such as incorrect connection.

しかし,可変容量型圧縮機において設定した定格圧力と接続機器の許容圧力や常用圧力が一致しており,かつ,オペレータが定められた手順でエンジンを始動させた場合のように人為的なミス(ヒューマンエラー)が存在していない場合であっても,制御流路や,制御流路に設けた電空比例弁の故障によって,レシーバタンク内の圧力が定格圧力を超えても吸気制御弁の閉弁受圧室に圧縮気体が導入されず,あるいは制御流路で生じた漏れなどにより吸気制御弁を全閉とするに必要な圧力の圧縮気体が導入されない等の事態が生じると,接続機器の使用を停止して圧縮空気の消費量が減少し,これによりレシーバタンク内の圧力が上昇しても,吸気制御弁が圧縮機本体の吸入口を全閉とした無負荷運転には移行せず,圧縮機本体2が圧縮気体の生成を継続して,レシーバタンク内の圧力は前述した無負荷最高圧力を超えてもなお上昇を続ける。 However, the rated pressure set in the variable displacement compressor is equal to the allowable pressure or normal pressure of the connected equipment, and there is a human error (such as when the operator starts the engine in a prescribed procedure). Even if the human error does not exist, the intake control valve is closed even if the pressure in the receiver tank exceeds the rated pressure due to the failure of the control flow path or the electropneumatic proportional valve installed in the control flow path. If the compressed gas is not introduced into the valve pressure receiving chamber, or if the compressed gas at the pressure required to fully close the intake control valve is not introduced due to a leak or the like in the control flow path, the connected equipment will be used. Even if the pressure in the receiver tank rises due to a decrease in the amount of compressed air consumed by stopping the intake air, the intake control valve does not shift to no-load operation with the intake port of the compressor body fully closed. The compressor body 2 continues to generate compressed gas, and the pressure in the receiver tank continues to rise even if it exceeds the above-mentioned maximum no-load pressure.

このようにして,可変容量型圧縮機のレシーバタンク内の圧力,従って消費側に供給される圧縮気体の圧力が,設定された定格圧力に対する無負荷最高圧力を超えて更に上昇し,接続機器の許容圧力を超えると,接続機器を破損させる危険性がある。 In this way, the pressure in the receiver tank of the variable displacement compressor, and hence the pressure of the compressed gas supplied to the consumer side, further rises above the no-load maximum pressure for the set rated pressure, and Exceeding the permissible pressure may damage the connected equipment.

なお,通常圧縮機には,レシーバタンク内の圧力が定格圧力よりも所定の高い圧力まで上昇すると,安全弁(図示せず)が開いてレシーバタンク内の圧縮気体を放気することで,レシーバタンクや配管類が破損等することが防止されている。 It should be noted that in the normal compressor, when the pressure in the receiver tank rises to a predetermined higher pressure than the rated pressure, a safety valve (not shown) opens and the compressed gas in the receiver tank is released, so that the receiver tank And pipes are prevented from being damaged.

そのため,図8を参照して説明したように,定格圧力が固定されている一般的な圧縮機では,安全弁の吹き出し圧力を,消費側に接続する接続機器の許容圧力と同程度の圧力に設定することで,安全弁を圧縮機の保護装置として機能させるだけでなく,消費側に接続された接続機器に対する保護装置としても機能させることが可能である。 Therefore, as described with reference to FIG. 8, in a general compressor whose rated pressure is fixed, the blowout pressure of the safety valve is set to a pressure approximately equal to the allowable pressure of the connecting device connected to the consumer side. By doing so, the safety valve can function not only as a protective device for the compressor, but also as a protective device for the connected device connected to the consumer side.

しかし,安全弁は,これを定格圧力の設定が可変である可変容量型圧縮機に設ける場合,安全弁の吹き出し圧力を,定格圧力として設定可能な圧力の最大値よりも高い圧力に設定する必要がある。 However, when the safety valve is installed in a variable displacement compressor whose rated pressure is variable, it is necessary to set the blowout pressure of the safety valve to a pressure higher than the maximum value of the pressure that can be set as the rated pressure. ..

その結果,定格圧力として設定可能な圧力の範囲(一例として0.50〜1.45MPa)から比較的低い圧力(一例として0.7MPa)を定格圧力として選択・設定し,これに対応した常用圧力や許容圧力の空圧機器(一例として常用圧力0.7MPa,許容圧力1.0MPaの空圧機器)を接続して使用している場合,電空比例弁の故障によりレシーバタンク内の圧力が安全弁の吹き出し圧力(一例として1.7MPa)まで上昇すると,安全弁が作動した時点で,既に,空圧機器には許容圧力(一例として1.0MPa)を大幅に超える,安全弁の吹き出し圧力(一例として1.7MPa)の圧縮気体が導入されていることから,前述した安全弁は,接続機器に対する保護装置とはならない。 As a result, a relatively low pressure (0.7 MPa as an example) is selected and set as the rated pressure from the range of pressure that can be set as the rated pressure (0.50 to 1.45 MPa as an example), and the normal pressure corresponding to this is selected. When an air pressure device with an allowable pressure (for example, a pneumatic device with a normal pressure of 0.7 MPa and an allowable pressure of 1.0 MPa) is connected and used, the pressure in the receiver tank will be reduced due to the failure of the electropneumatic proportional valve. When the safety valve is activated, the pressure of the safety valve is already significantly higher than the allowable pressure (1.0 MPa as an example) when the safety valve is activated. Since the compressed gas of 0.7MPa) is introduced, the above-mentioned safety valve is not a protective device for the connected equipment.

そこで本発明は,上記従来技術における欠点を解消するために成されたものであり,定格圧力の設定を変更可能な可変容量型圧縮機において,定格圧力の設定値に拘わらず,設定圧力に対応して接続された空圧機器等の接続機器に対し許容圧力を越える過大な圧力が導入されることを防止して接続機器を保護する保護装置を備えた可変容量型圧縮機を提供することを目的とする。 Therefore, the present invention has been made in order to solve the above-mentioned drawbacks of the prior art. In a variable displacement compressor in which the setting of the rated pressure can be changed, the set pressure can be handled regardless of the set value of the rated pressure. To provide a variable displacement compressor equipped with a protective device that protects connected equipment by preventing excessive pressure exceeding the allowable pressure from being introduced to connected equipment such as pneumatic equipment To aim.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。 The means for solving the problems will be described below together with the reference numerals used in the modes for carrying out the invention. This code is for clarifying the correspondence between the description of the claims and the description of the modes for carrying out the invention, and needless to say, it is limitedly used for the interpretation of the technical scope of the present invention. It is not something that can be done.

上記目的を達成するために,本発明の可変容量型圧縮機1は,
圧縮機本体2の吸入口2aに設けた吸気制御弁21と,前記吸気制御弁21の閉弁受圧室21aを前記圧縮機本体2の吐出側(実施形態においてレシーバタンク4)に連通する制御流路22と,前記制御流路22を開閉する電空比例弁23と,設定された定格圧力と前記圧縮機本体2の吐出側圧力の検出値に基づいて前記電空比例弁23の動作を制御する電空比例弁制御手段24を備え,前記電空比例弁23による前記制御流路22の開閉および開度の増減によって前記吸気制御弁21を操作することで,前記圧縮機本体2の吐出側圧力が前記定格圧力に近付くように前記圧縮機本体2の吸気を制御する吸気制御装置20を備え,前記定格圧力の設定値を,所定の圧力範囲内で任意に設定可能とすることで,消費側に供給する圧縮気体の圧力の設定を可変とした可変容量型圧縮機1において,
前記電空比例弁23をバイパスして前記圧縮機本体2の吐出側(実施形態においてレシーバタンク4)と前記吸気制御弁21の閉弁受圧室21a間を連通するバイパス流路41と,前記バイパス流路41を開閉する電磁弁42,42’,及び,前記圧縮機本体2の吐出側圧力における圧力異常を監視すると共に判定し,該圧力異常の判定時,前記電磁弁42,42’を操作して前記バイパス流路41を開く電磁弁制御手段43を備えた保護装置40を含み,
前記電磁弁制御手段43が,
予め設定された対応関係に従い,前記定格圧力の前記設定値に基づいて,該設定値に対し所定の高い圧力で,かつ,該設定値に対応する常用圧力の接続機器が有する許容圧力未満の圧力である上限圧力を算出し,
算出した前記上限圧力と前記圧縮機本体2の吐出側圧力(実施形態においてレシーバタンク4内の圧力)の検出値を比較して,前記検出値が前記上限圧力以上になると,前記圧力異常を判定することを特徴とする(請求項1)。
In order to achieve the above object, the variable capacity compressor 1 of the present invention comprises:
A control flow that connects the intake control valve 21 provided at the intake port 2a of the compressor body 2 and the valve closing pressure receiving chamber 21a of the intake control valve 21 to the discharge side of the compressor body 2 (receiver tank 4 in the embodiment). A path 22, an electropneumatic proportional valve 23 that opens and closes the control flow path 22, and an operation of the electropneumatic proportional valve 23 based on the set rated pressure and the detected value of the discharge side pressure of the compressor body 2. The electropneumatic proportional valve control means 24 is provided to operate the intake control valve 21 by opening/closing the control flow path 22 and increasing/decreasing the opening degree of the electropneumatic proportional valve 23. The intake control device 20 for controlling the intake air of the compressor main body 2 is provided so that the pressure approaches the rated pressure, and the set value of the rated pressure can be arbitrarily set within a predetermined pressure range to reduce consumption. In the variable displacement compressor 1 in which the setting of the pressure of the compressed gas supplied to the side is variable,
A bypass flow passage 41 that bypasses the electro-pneumatic proportional valve 23 and connects the discharge side (the receiver tank 4 in the embodiment) of the compressor body 2 and the valve closing pressure receiving chamber 21a of the intake control valve 21; Solenoid valves 42, 42' for opening and closing the flow path 41, and pressure abnormality in the discharge side pressure of the compressor body 2 are monitored and determined, and when the pressure abnormality is determined, the solenoid valves 42, 42' are operated. And a protection device 40 having a solenoid valve control means 43 for opening the bypass passage 41,
The solenoid valve control means 43 is
According to a preset correspondence relationship, based on the set value of the rated pressure, a pressure that is a predetermined high pressure with respect to the set value, and is lower than the allowable pressure of the connected device at the normal pressure corresponding to the set value. Calculate the upper limit pressure which is
The calculated upper limit pressure is compared with the detected value of the discharge side pressure of the compressor body 2 (the pressure inside the receiver tank 4 in the embodiment), and when the detected value is equal to or higher than the upper limit pressure, the pressure abnormality is determined. It is characterized by (claim 1).

前記電磁弁制御手段43は,前記圧力異常の判定以降,前記圧縮機本体2からの吐出側圧力の検出値の変化に拘わらず,前記バイパス流路41を開いた状態に前記電磁弁42,42’を保持するように構成するものとしても良い(請求項2)。 After the determination of the pressure abnormality, the solenoid valve control means 43 keeps the bypass passage 41 open regardless of the change in the detected value of the discharge side pressure from the compressor body 2. 'May be configured to be retained (Claim 2).

前述の上限圧力は,前記定格圧力の前記設定値において正常動作時における前記圧縮機本体の吐出側圧力(レシーバタンク4内の圧力)が取り得る最大値である無負荷最高圧力に対し所定値β以上高い圧力に設定することができる(請求項3:図5及び図6参照)。 Upper limit pressure described above, the compressor body of the discharge pressure predetermined with respect to the no-load maximum pressure is the maximum value that can be taken (the pressure in the receiver tank 4) value in the normal operation in the set value before Symbol rated pressure it can be set to β or high pressure (claim 3: see FIGS. 5 and 6).

前記電磁弁制御手段43による圧力異常の判定時,予め求めた算出値または実測値等に基づいて設定した前記吸気制御弁21を全閉とするに必要な前記閉弁受圧室21aに供給される圧縮気体の圧力の設定値と,第2の圧力センサ51等で検知した前記閉弁受圧室21aに供給される圧縮気体の圧力の測定値とを比較し,前記測定値が前記設定値未満であるとき,前記圧縮機本体2の駆動源を非常停止させる非常停止手段52を更に設けるものとしても良い(請求項4)。 When the solenoid valve control means 43 determines a pressure abnormality, it is supplied to the valve closing pressure receiving chamber 21a necessary to fully close the intake control valve 21 set based on a calculated value or an actually measured value obtained in advance. The set value of the pressure of the compressed gas is compared with the measured value of the pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a detected by the second pressure sensor 51 or the like, and if the measured value is less than the set value. In some cases, an emergency stop means 52 for making an emergency stop of the drive source of the compressor body 2 may be further provided (claim 4).

前記圧縮機本体2を油冷式とし,前記圧縮機本体2が潤滑油と共に吐出した圧縮気体を貯留する,油分離装置(図示せず)を備えたレシーバタンク4を設け,
前記制御流路22およびバイパス流路41を,前記油分離装置の一次側で前記レシーバタンク4に接続して前記圧縮機本体2の吐出側と連通させるものとすることができる(請求項5)。
A receiver tank 4 provided with an oil separator (not shown) for storing the compressed gas discharged from the compressor body 2 together with the lubricating oil is provided.
The control channel 22 and the bypass channel 41 may be connected to the receiver tank 4 on the primary side of the oil separation device so as to communicate with the discharge side of the compressor body 2 (claim 5). ..

以上で説明した本発明の構成により,本発明の可変容量型圧縮機1では,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the variable capacity compressor 1 of the present invention can obtain the following remarkable effects.

電空比例弁23をバイパスして圧縮機本体2の吐出側と吸気制御弁21の閉弁受圧室21a間を連通するバイパス流路41と,前記バイパス流路41を開閉する電磁弁42,42’,及び,電磁弁制御手段43から成る保護装置40を設け,圧縮機本体2の吐出側圧力(レシーバタンク4内の圧力)の検出値が,設定された定格圧力に対応する所定の上限圧力を超えると,前記バイパス流路41を開くように構成したことで,制御流路22に設けた電空比例弁23が故障して開弁しない又は所定の開度にならない,吸気制御弁21の閉弁受圧室21aに制御用の圧縮気体が供給されず,または吸気制御弁21を全閉するために必要な圧力を備えた圧縮気体が導入されない等の事態が発生して,吸気制御弁21が閉弁しない又は閉弁が遅れる等の原因によって,圧縮機本体2の吐出側圧力(レシーバタンク4内の圧力)の検出値が,前記上限圧力に達すると,バイパス流路41が開いて吸気制御弁21を閉じてエンジン駆動圧縮機を無負荷運転に移行することで,圧縮機本体2の吐出側圧力(レシーバタンク4内の圧力)が更に上昇することを防止でき,消費側に接続される空圧機器に対し上限圧力を超える圧縮気体が供給されることを防止できた。 A bypass flow passage 41 that bypasses the electro-pneumatic proportional valve 23 to communicate between the discharge side of the compressor body 2 and the closed pressure receiving chamber 21a of the intake control valve 21, and solenoid valves 42, 42 that open and close the bypass flow passage 41. ', and the protection device 40 including the solenoid valve control means 43 is provided, and the detected value of the discharge side pressure of the compressor body 2 (pressure in the receiver tank 4) has a predetermined upper limit pressure corresponding to the set rated pressure. Since the bypass flow passage 41 is configured to open when the temperature exceeds the limit, the electropneumatic proportional valve 23 provided in the control flow passage 22 fails and does not open or does not reach a predetermined opening degree. When the compressed gas for control is not supplied to the valve closing pressure receiving chamber 21a, or the compressed gas having the pressure necessary to fully close the intake control valve 21 is not introduced, the intake control valve 21 When the detected value of the discharge side pressure of the compressor body 2 (the pressure in the receiver tank 4) reaches the upper limit pressure due to the reason that the valve is not closed or the valve is delayed, the bypass flow passage 41 is opened and the intake air is taken. By closing the control valve 21 and shifting the engine-driven compressor to no-load operation, it is possible to prevent the discharge side pressure of the compressor body 2 (pressure inside the receiver tank 4) from further increasing, and to connect to the consumption side. It was possible to prevent compressed gas exceeding the upper limit pressure from being supplied to pneumatic equipment.

前記電磁弁制御手段43が,前記圧力異常を判定した以降,前記バイパス流路41を開いた状態に前記電磁弁42,42’を保持するように構成した場合には,その後,圧縮機本体2の吐出側圧力が定格圧力以下に低下した場合であっても全負荷運転に移行せず,故障等の不具合が生じていることが疑われる電空比例弁23や制御流路22を使用した吸気制御が再開されることを防止できた。 When the solenoid valve control means 43 is configured to hold the solenoid valves 42 and 42′ in the state in which the bypass flow passage 41 is opened after the pressure abnormality is determined, then the compressor main body 2 Intake using the electro-pneumatic proportional valve 23 and the control flow path 22 in which it is suspected that a malfunction such as a failure does not occur even if the discharge side pressure of the device falls below the rated pressure It was possible to prevent the control from being restarted.

設定された前記定格圧力において前記圧縮機本体2の吐出側圧力が取り得る最大値である無負荷最高圧力よりも所定値β以上高い圧力であって,且つ,設定された定格圧力に対応する常用圧力の接続機器が有する許容圧力未満となる前記上限圧力を設定し,この上限圧力に達したときに前記バイパス流路41を開く構成としたことで,可変容量型圧縮機の公差(製造誤差,バラツキ)や,温暖時・寒冷時等運転環境の違いにより無負荷最高圧力に多少の変動が生じたとしても,バイパス流路に設けた電磁弁の誤作動を防止することができた。 At the set rated pressure, the discharge side pressure of the compressor main body 2 is a pressure higher than the maximum no-load maximum pressure, which is the maximum possible value, by a predetermined value β or more By setting the upper limit pressure below the allowable pressure of the pressure connecting device and opening the bypass flow passage 41 when the upper limit pressure is reached, the tolerance (manufacturing error, manufacturing error, It was possible to prevent malfunction of the solenoid valve provided in the bypass flow path, even if the maximum no-load pressure fluctuates slightly due to differences in operating environment such as during warm and cold weather.

前記電磁弁制御手段43による圧力異常の判定時,前記吸気制御弁21を全閉とするために必要な前記閉弁受圧室21aに供給される圧縮気体の圧力の設定値と,前記閉弁受圧室21aに供給される圧縮気体の圧力の測定値とを比較し,前記測定値が前記設定値未満であるとき,圧縮機本体2の駆動源3を非常停止させる非常停止手段52を設けた構成では,電空比例弁23に加えて更に電磁弁42,42’が故障した場合や,制御流路22またはバイパス流路41に目詰まりや破れ等の異常が生じて閉弁受圧室21aに対する導入圧力が低く圧縮機本体2が無負荷運転に移行しない場合であっても,駆動源3自体を停止して以後の圧力上昇を防止することができ,消費側に接続する接続機器に過剰な圧力の圧縮気体が導入されることをより確実に防止することができた。 When the solenoid valve control means 43 determines a pressure abnormality, the set value of the pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a necessary to fully close the intake control valve 21 and the valve closing pressure A structure provided with an emergency stop means 52 which compares the measured value of the pressure of the compressed gas supplied to the chamber 21a and when the measured value is less than the set value, causes the drive source 3 of the compressor body 2 to make an emergency stop Then, in addition to the electro-pneumatic proportional valve 23, when the solenoid valves 42 and 42′ further fail, or when an abnormality such as clogging or breakage occurs in the control flow passage 22 or the bypass flow passage 41, introduction into the valve closing pressure receiving chamber 21a is performed. Even when the pressure is low and the compressor body 2 does not shift to no-load operation, the drive source 3 itself can be stopped to prevent a subsequent pressure increase, and excessive pressure is applied to the connected device connected to the consumer side. It was possible to more reliably prevent the compressed gas from being introduced.

前記圧縮機本体2を油冷式とし,圧縮機本体2が吐出した圧縮気体を貯留する,油分離装置(図示せず)を有するレシーバタンク4を備えた可変容量型圧縮機1の構成では,前記制御流路22およびバイパス流路41を,前記油分離装置の一次側で前記レシーバタンク4と連通することで,双方の流路共にオイルミストを含む圧縮空気が供給され,電空比例弁23や電磁弁42,42’のピストンやバルブ等の摺動部品,その他の内部構成部品の動作がこのミストオイルによって円滑になると共に,これらの部品の防錆を図ることができた。 In the configuration of the variable displacement compressor 1 including the receiver tank 4 having an oil separation device (not shown) for storing the compressed gas discharged from the compressor body 2, the compressor body 2 is of an oil cooling type. By communicating the control flow path 22 and the bypass flow path 41 with the receiver tank 4 on the primary side of the oil separation device, compressed air containing oil mist is supplied to both flow paths, and the electropneumatic proportional valve 23 is supplied. The mist oil facilitated the operation of sliding parts such as the pistons and valves of the solenoid valves 42 and 42', and other internal components, and the rust prevention of these parts could be achieved.

また,両流路22,41の内面に油膜が形成されるため,流路22,41内で吐出空気中に含まれる水分が結露して水滴が生じたとしても,流路22,41内面に水滴が付着して留まることなく気体流と共に流下して,吸気制御弁21の閉弁受圧室21aから逃し流路21bを経由して圧縮機本体2の吸入口2aに吸引させることができた。 Further, since the oil film is formed on the inner surfaces of both the flow paths 22 and 41, even if water contained in the discharge air is condensed in the flow paths 22 and 41 to generate water drops, the inner surfaces of the flow paths 22 and 41 are formed. It was possible to cause water droplets to flow down together with the gas flow without adhering and staying, and to be sucked from the valve closing pressure receiving chamber 21a of the intake control valve 21 to the suction port 2a of the compressor body 2 via the escape passage 21b.

これにより,電空比例弁23,電磁弁42,42’の作動不良を低減できると共に,流路22,41内で水滴が凍結することにより制御不能となり,消費側に接続した接続機器に過剰な圧力がかかり破損することを防止することができた。 As a result, malfunctions of the electropneumatic proportional valve 23 and the solenoid valves 42, 42' can be reduced, and water droplets in the flow passages 22, 41 freeze and become uncontrollable, resulting in excess of connected devices connected to the consumer side. It was possible to prevent pressure and damage.

本発明の可変容量型圧縮機の説明図。Explanatory drawing of the variable displacement compressor of this invention. 本発明の可変容量型圧縮機の変形例を示す説明図。Explanatory drawing which shows the modification of the variable displacement compressor of this invention. 本発明の可変容量型圧縮機の別の変形例を示す説明図。Explanatory drawing which shows another modification of the variable displacement compressor of this invention. 圧縮機制御ユニットの機能ブロック図。The functional block diagram of a compressor control unit. 定格圧力と上限圧力の相関図(上限圧力を無段階に設定した例)。Correlation diagram of rated pressure and upper limit pressure (example of setting upper limit pressure to stepless). 定格圧力と上限圧力の相関図(上限圧力を段階的に設定した例)。Correlation diagram of rated pressure and upper limit pressure (example of setting upper limit pressure stepwise). 操作パネルの正面図。The front view of an operation panel. 従来の圧縮機の説明図。Explanatory drawing of the conventional compressor.

以下に,本発明の可変容量型圧縮機を,添付図面を参照しながら説明する。 The variable capacity compressor of the present invention will be described below with reference to the accompanying drawings.

なお,以下の説明において,本発明の可変容量型圧縮機を,圧縮機本体の駆動源がエンジンであると共に,圧縮機本体として圧縮作用空間の潤滑,冷却,密封に潤滑油を使用する,油冷式のスクリュ圧縮機を設けた構成例について説明するが,本発明の可変容量型圧縮機の構成は,これらの構成に限定されない。 In the following description, the variable displacement compressor according to the present invention will be described in such a manner that the drive source of the compressor body is an engine and that a lubricating oil is used as the compressor body for lubricating, cooling and sealing the compression action space. A configuration example in which a cold screw compressor is provided will be described, but the configuration of the variable capacity compressor of the present invention is not limited to these configurations.

〔エンジン駆動圧縮機の全体構成〕
図1中,符号1は,本発明の可変容量型圧縮機であり,この可変容量型圧縮機1は,駆動源であるエンジン3と,前記エンジン3によって駆動される油冷式のスクリュ圧縮機本体2,前記圧縮機本体2が潤滑油との気液混合流体として吐出した圧縮気体を貯留するレシーバタンク4を備え,このレシーバタンク4内で圧縮気体と潤滑油の気液分離を行って,潤滑油が分離された圧縮気体が逆止弁4aを介して消費側に供給されると共に,レシーバタンク4内で分離,回収された潤滑油が,オイル配管5を介してオイルクーラ5aで冷却された後,圧縮機本体2に再度供給されるように構成されている。
[Overall structure of engine-driven compressor]
In FIG. 1, reference numeral 1 is a variable displacement compressor of the present invention. The variable displacement compressor 1 includes an engine 3 as a drive source and an oil-cooled screw compressor driven by the engine 3. The main body 2, the compressor main body 2 is provided with a receiver tank 4 for storing compressed gas discharged as a gas-liquid mixed fluid with lubricating oil, and in the receiver tank 4, the compressed gas and the lubricating oil are separated into gas and liquid, The compressed gas from which the lubricating oil has been separated is supplied to the consumer side via the check valve 4a, and the lubricating oil separated and collected in the receiver tank 4 is cooled by the oil cooler 5a via the oil pipe 5. After that, the compressor main body 2 is supplied again.

この可変容量型圧縮機1には,消費側に対して供給する圧縮気体の圧力を,設定された定格圧力に近付けることができるようにするために,圧縮機本体の吐出側圧力(レシーバタンク4内の圧力)変化に応じて圧縮機本体2の吸気を制御する吸気制御装置20と,エンジン3の回転速度を制御する速度制御装置30を備えている。 In order to make the pressure of the compressed gas supplied to the consuming side close to the set rated pressure, the variable displacement compressor 1 has a discharge side pressure (receiver tank 4 An intake control device 20 that controls the intake air of the compressor body 2 according to the change in the internal pressure) and a speed control device 30 that controls the rotation speed of the engine 3 are provided.

このうちの吸気制御装置20は,圧縮機本体2の吸入口2aに設けられた吸気制御弁21と,この吸気制御弁21の閉弁受圧室21aと圧縮機本体2の吐出側,図示の例ではレシーバタンク4間を連通する制御流路22,及び前記制御流路22を開閉制御する電空比例弁23,及び前記電空比例弁23に対し制御信号を出力する電空比例弁制御手段24によって構成されており,本実施形態ではこの電空比例弁制御手段24を,可変容量型圧縮機1の動作を統括的に制御する後述の圧縮機制御ユニット6により実現するものとしており,電空比例弁制御手段24は,予め設定されている対応関係に従い,ユーザが設定した定格圧力と,圧力センサ7が検知した圧縮機本体2の吐出側圧力(レシーバタンク4内の圧力)によって特定される電空比例弁23が取るべき開度に対応した制御信号を出力する。 The intake control device 20 includes an intake control valve 21 provided at the intake port 2a of the compressor main body 2, a valve closing pressure receiving chamber 21a of the intake control valve 21 and a discharge side of the compressor main body 2. Then, a control flow path 22 that communicates between the receiver tanks 4, an electropneumatic proportional valve 23 that controls the opening and closing of the control flow path 22, and an electropneumatic proportional valve control means 24 that outputs a control signal to the electropneumatic proportional valve 23. In the present embodiment, the electro-pneumatic proportional valve control means 24 is realized by a compressor control unit 6 (which will be described later) that integrally controls the operation of the variable displacement compressor 1. The proportional valve control means 24 is specified by the rated pressure set by the user and the discharge side pressure of the compressor body 2 detected by the pressure sensor 7 (the pressure in the receiver tank 4) according to the preset correspondence relationship. The control signal corresponding to the opening that the electropneumatic proportional valve 23 should take is output.

制御流路22に設ける電空比例弁23は,電空比例弁制御手段24からの制御信号に応じて内部に設けた弁の開度を制御して,制御流路22の開閉のみならず通路面積を変化させることができるように構成されており,これにより,電空比例弁23の下流側における制御流路22に導入される圧縮気体を制御して,電空比例弁23の全閉時には吸気制御弁21を全開とし,レシーバタンク4内の圧力が定格圧力を超えると電空比例弁23が開弁し、圧力上昇に伴い電空比例弁23が開度を増加させてやがて全開となることで,圧縮機本体2の吸入口2aを絞り,又は閉じることができるように構成されている。 The electro-pneumatic proportional valve 23 provided in the control flow passage 22 controls the opening degree of the valve provided therein according to the control signal from the electro-pneumatic proportional valve control means 24 to open and close the control flow passage 22 as well as the passage. The area can be changed so that the compressed gas introduced into the control flow path 22 on the downstream side of the electropneumatic proportional valve 23 is controlled, and when the electropneumatic proportional valve 23 is fully closed. When the intake control valve 21 is fully opened and the pressure in the receiver tank 4 exceeds the rated pressure, the electro-pneumatic proportional valve 23 opens, and the electro-pneumatic proportional valve 23 increases in opening degree with the increase in pressure, and eventually becomes full open. Thus, the suction port 2a of the compressor body 2 can be narrowed or closed.

また,前述した速度制御装置30は,エンジン3に設けられているエンジンコントロールユニット(ECU)32と,前記ECU32に対し速度制御信号を出力する速度制御手段31によって構成されており,図示の実施形態にあっては,この速度制御手段31についても,後述の圧縮機制御ユニット6により実現している。 The speed control device 30 described above includes an engine control unit (ECU) 32 provided in the engine 3 and a speed control means 31 that outputs a speed control signal to the ECU 32. In this case, the speed control means 31 is also realized by the compressor control unit 6 described later.

〔保護装置〕
以上のように,可変容量型の圧縮機として構成された本発明の圧縮機には,前述した電空比例弁が故障等した場合であっても,消費側に接続される空圧機器等に対して空圧機器の許容圧力を超える圧縮気体が導入されることを防止するための保護装置40が設けられている。
[Protection device]
As described above, the compressor of the present invention configured as a variable displacement compressor can be used as a pneumatic device or the like connected to the consumer side even if the electropneumatic proportional valve described above fails. On the other hand, a protective device 40 is provided to prevent the introduction of compressed gas that exceeds the allowable pressure of the pneumatic equipment.

この保護装置40は,前記電空比例弁23をバイパスして前記圧縮機本体2の吐出側(図示の例ではレシーバタンク4)と,吸気制御弁21の閉弁受圧室21a間を連通するバイパス流路41と,前記バイパス流路41を開閉する電磁弁42,42’,及び,前記圧縮機本体2の吐出側(レシーバタンク4)における圧力異常を監視すると共に判定し,該圧力異常の判定時,前記電磁弁42,42’を操作して前記バイパス流路41を開く電磁弁制御手段43により構成されている。 This protection device 40 bypasses the electro-pneumatic proportional valve 23 and connects the discharge side of the compressor body 2 (receiver tank 4 in the example shown in the drawing) with the closed valve pressure receiving chamber 21 a of the intake control valve 21. A flow path 41, electromagnetic valves 42 and 42' for opening and closing the bypass flow path 41, and a pressure abnormality on the discharge side (receiver tank 4) of the compressor body 2 are monitored and determined, and the pressure abnormality is determined. At this time, the solenoid valve control means 43 is configured to open the bypass passage 41 by operating the solenoid valves 42 and 42'.

図示の例では,このバイパス流路41の両端を,電空比例弁23の一次側及び二次側において制御流路22に連通する構成を採用し,流路の一部を制御流路22と共用しているが,バイパス流路41は制御流路22とは別に,直接,レシーバタンク4と吸気制御弁21の閉弁受圧室21a間を連通する構成としても良い。 In the illustrated example, the both ends of the bypass flow passage 41 are connected to the control flow passage 22 on the primary side and the secondary side of the electropneumatic proportional valve 23, and a part of the flow passage is connected to the control flow passage 22. Although commonly used, the bypass flow passage 41 may be configured to directly communicate between the receiver tank 4 and the valve closing pressure receiving chamber 21a of the intake control valve 21 separately from the control flow passage 22.

図1及び図2に示す例では,バイパス流路41を開閉する電磁弁42として電磁開閉弁を設ける構成を採用したが,この構成に代え,図3に示すように,レシーバタンク4側における制御流路22とバイパス流路41との分岐点に三方電磁弁42’を設けるものとしても良く,この構成では,三方電磁弁42’によって制御流路22とバイパス流路41のいずれか一方を選択的にレシーバタンク4に連通させることで,バイパス流路41を開閉できるようにしている。 In the example shown in FIGS. 1 and 2, a configuration in which an electromagnetic on-off valve is provided as the electromagnetic valve 42 that opens and closes the bypass flow passage 41 is adopted, but instead of this configuration, as shown in FIG. 3, control on the receiver tank 4 side is performed. A three-way solenoid valve 42' may be provided at a branch point between the flow passage 22 and the bypass flow passage 41. In this configuration, either the control flow passage 22 or the bypass flow passage 41 is selected by the three-way solenoid valve 42'. By bypassing the receiver tank 4, the bypass flow channel 41 can be opened and closed.

この電磁弁42,42’の開閉制御を行うために,圧縮機制御ユニット6には,前述した電空比例弁制御手段24や速度制御手段31の他に,更に,電磁弁制御手段43が実現されており,この電磁弁制御手段43が,予め設定された定格圧力と上限圧力の対応関係に従い,ユーザが設定した定格圧力に基づいて,これに対する上限圧力を算出し,算出した上限圧力と,圧力センサ7によって検知されたレシーバタンク4内の圧力を比較して,レシーバタンク4内の圧力が上限圧力以上になると,レシーバタンク4の圧力異常を判定して,バイパス流路41を開く制御信号を電磁弁42,42’に出力する。 In order to control the opening/closing of the solenoid valves 42, 42', the compressor control unit 6 is further provided with a solenoid valve control means 43 in addition to the electropneumatic proportional valve control means 24 and the speed control means 31 described above. This solenoid valve control means 43 calculates the upper limit pressure for the rated pressure set by the user according to the preset correspondence relationship between the rated pressure and the upper limit pressure, and the calculated upper limit pressure, The pressure in the receiver tank 4 detected by the pressure sensor 7 is compared, and when the pressure in the receiver tank 4 becomes equal to or higher than the upper limit pressure, a pressure abnormality in the receiver tank 4 is determined, and a control signal for opening the bypass flow passage 41. To the solenoid valves 42, 42'.

このようにして電磁弁42,42’がバイパス流路41を開くことで,図1及び図2に示す構成では,レシーバタンク4内の圧縮気体がバイパス流路41を介して吸気制御弁21の閉弁受圧室21aに導入され,圧縮機本体2が吸気を停止することで圧縮気体の生成が停止して,レシーバタンク4内の圧力が上限圧力を超えて更に上昇することが防止される。 In this way, the solenoid valves 42, 42 ′ open the bypass flow passage 41, so that in the configuration shown in FIGS. 1 and 2, the compressed gas in the receiver tank 4 passes through the bypass flow passage 41 and the intake control valve 21 flows. It is prevented that the pressure in the receiver tank 4 exceeds the upper limit pressure and further rises when the pressure is introduced into the valve closing pressure receiving chamber 21a and the compressor main body 2 stops the intake to stop the generation of compressed gas.

図1及び図2に示した構成に代え,図3に示すようにレシーバタンク4側における制御流路22とバイパス流路41の分岐点に三方電磁弁42’を設けていずれか一方の流路(22又は41)を選択的にレシーバタンク4に連通可能とした構成では,バイパス流路41中に圧力調整弁44を設け,この圧力調整弁44の作動圧力を,可変設定可能な定格圧力の最低圧力に設定するように構成する。 Instead of the configuration shown in FIG. 1 and FIG. 2, as shown in FIG. 3, a three-way solenoid valve 42′ is provided at the branch point of the control flow passage 22 and the bypass flow passage 41 on the receiver tank 4 side, and either one of the flow passages is provided. In the configuration in which (22 or 41) can be selectively communicated with the receiver tank 4, a pressure adjusting valve 44 is provided in the bypass flow passage 41, and the operating pressure of the pressure adjusting valve 44 is set to a variably set rated pressure. Configure to set to minimum pressure.

この構成では,電磁弁制御手段43が,レシーバタンク4の圧力異常を判定すると,以後,レシーバタンク4内の圧力変化に拘わらずバイパス流路41を開いた状態とする切換位置に電磁弁42’を保持するように構成することで,電空比例弁23が故障などした場合,以後の吸気制御をバイパス流路41に設けた圧力調整弁44によって行うことができ消費側に対する圧縮気体の供給を継続することが可能となる。 In this configuration, when the solenoid valve control means 43 determines that the pressure in the receiver tank 4 is abnormal, the solenoid valve 42' is then set to the switching position in which the bypass passage 41 is opened regardless of the pressure change in the receiver tank 4. In the case where the electropneumatic proportional valve 23 fails, the intake air control thereafter can be performed by the pressure adjusting valve 44 provided in the bypass flow passage 41, and the compressed gas can be supplied to the consumer side. It is possible to continue.

この構成では,圧力調整弁44による定格圧力の設定は,可変設定可能な最低の圧力となっているため,圧力異常の判定前における定格圧力の設定が低圧,中圧,高圧のいずれの場合であったとしても,バイパス流路41と圧力調整弁44による吸気制御への移行後,消費側に接続された空圧機器の許容圧力を超える圧力の圧縮気体が供給されることがなく,接続されている空圧機器の破損を防止できる。 In this configuration, since the rated pressure set by the pressure adjusting valve 44 is the lowest pressure that can be variably set, the rated pressure before the pressure abnormality judgment is set to any of low pressure, medium pressure, and high pressure. Even if there is, after the transition to the intake control by the bypass flow passage 41 and the pressure adjusting valve 44, the compressed gas having a pressure exceeding the allowable pressure of the pneumatic equipment connected to the consumer side is not supplied and is connected. It is possible to prevent damage to the pneumatic equipment.

このようにバイパス流路41と圧力調整弁44による吸気制御に移行した後の圧縮機1において,中圧や高圧の空圧機器に対する圧縮気体の供給を行う場合,オペレータは,使用する空圧機器の圧力仕様に合わせて圧力調整弁44の圧力設定を調整すれば良く,これにより,低圧の空圧機器のみならず,中圧や高圧の空圧機器に対する圧縮気体の供給を継続することができる。 When the compressed gas is supplied to the medium-pressure or high-pressure pneumatic equipment in the compressor 1 after shifting to the intake control by the bypass flow passage 41 and the pressure adjusting valve 44 in this manner, the operator uses the pneumatic equipment to be used. It suffices to adjust the pressure setting of the pressure adjusting valve 44 in accordance with the pressure specification of No. 1, whereby the supply of the compressed gas to not only the low pressure pneumatic equipment but also the medium pressure or high pressure pneumatic equipment can be continued. ..

なお,圧力調整弁44は,予め可変設定可能な定格圧力として設定した定格圧力に対応した作動圧力に調整しておいても良い。この場合,オペレータは,定格圧力の設定を変更する毎に圧力調整弁44の設定についても変更することが必要となるが,圧力異常の判定によってバイパス流路41と圧力調整弁44による吸気制御に移行した後も,設定された定格圧力に対応した圧力の圧縮気体を消費側に接続された空圧機器に対し継続して供給することが可能となる。 The pressure adjusting valve 44 may be adjusted to an operating pressure corresponding to the rated pressure set in advance as a variable pressure that can be set. In this case, the operator is required to change the setting of the pressure adjusting valve 44 every time the setting of the rated pressure is changed. However, the intake control by the bypass flow passage 41 and the pressure adjusting valve 44 is performed by the determination of the pressure abnormality. Even after the transition, it is possible to continuously supply compressed gas having a pressure corresponding to the set rated pressure to the pneumatic equipment connected to the consumer side.

なお,図1に示した構成では,消費側に接続された接続機器に対する保護装置として,前述したバイパス流路41や開閉弁42,及び開閉弁制御手段43からなる保護装置40のみを設ける構成を示したが,これに加え,更に,図2及び図3に示すように,制御流路22や電空比例弁23側に目詰まりや故障等の不具合が生じた場合のみならず,バイパス流路41や電磁弁42,42’側に目詰まりや故障等の不具合が生じた場合であっても消費側に接続された接続機器に対し許容圧力を超える過大な圧力が供給されることを防止するための,非常停止装置50を設けるものとしても良い。 In the configuration shown in FIG. 1, only the protection device 40 including the bypass flow passage 41, the on-off valve 42, and the on-off valve control means 43 is provided as a protection device for the connected device connected to the consumer side. In addition to this, as shown in FIG. 2 and FIG. 3, in addition to the case where the control flow path 22 or the electropneumatic proportional valve 23 side has a problem such as clogging or failure, the bypass flow path is also provided. Even when a malfunction such as clogging or failure occurs on the side of 41 or the solenoid valves 42, 42', it is prevented that an excessive pressure exceeding the allowable pressure is supplied to the connected device connected to the consumer side. For this purpose, an emergency stop device 50 may be provided.

このような非常停止装置50として,図2及び図3の可変容量型圧縮機1は,吸気制御弁21の閉弁受圧室21aに供給される圧縮気体の圧力を検知する第2の圧力センサ51と,第2の圧力センサ51の検知信号に基づいて閉弁受圧室21aに供給される圧縮気体の圧力を監視すると共に,監視結果に基づきエンジン3のECU32に非常停止信号を出力する非常停止手段52を設けている。 As such an emergency stop device 50, the variable displacement compressor 1 shown in FIGS. 2 and 3 has a second pressure sensor 51 for detecting the pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21 a of the intake control valve 21. And an emergency stop means for monitoring the pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a based on the detection signal of the second pressure sensor 51 and outputting an emergency stop signal to the ECU 32 of the engine 3 based on the monitoring result. 52 is provided.

本実施形態において,この非常停止手段52は前述の圧力制御ユニット6により実現されており,非常停止手段52は,前述した保護装置40の電磁弁制御手段43がレシーバタンク4の圧力異常を判定してバイパス流路41を開く制御信号を電磁弁42,42’に対し出力している状態にあるときに,第2の圧力センサ51が検知した閉弁受圧室21aに供給される圧縮気体の圧力の測定値と,吸気制御弁21を全閉とするために必要な閉弁受圧室21aに供給される圧縮気体の圧力として設定した設定値とを比較し,測定値が設定値未満であるとき,前述した非常停止信号を出力してエンジンを非常停止させる。 In the present embodiment, the emergency stop means 52 is realized by the pressure control unit 6 described above, and the emergency stop means 52 is configured such that the solenoid valve control means 43 of the protection device 40 described above determines the pressure abnormality of the receiver tank 4. The pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a detected by the second pressure sensor 51 when the control signal for opening the bypass flow passage 41 is being output to the solenoid valves 42, 42'. When the measured value is less than the set value, the measured value is compared with the set value set as the pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a required to fully close the intake control valve 21. ,The above-mentioned emergency stop signal is output to stop the engine in an emergency.

〔電子制御系〕
(1)全体構成
以上で説明した電空比例弁制御手段24,速度制御手段31,電磁弁制御手段43,及び非常停止手段52は,いずれもマイクロプロセッサやMPU(Micro Processing Unit)等を備えた電子制御装置が所定のプログラムを実行することにより実現されるもので,本実施形態では,これらの各手段を,可変容量型圧縮機1の動作を統括的に制御するための電子制御装置である,圧縮機制御ユニット6により実現している。
[Electronic control system]
(1) Overall Configuration The electropneumatic proportional valve control means 24, speed control means 31, solenoid valve control means 43, and emergency stop means 52 described above each include a microprocessor, MPU (Micro Processing Unit), or the like. The electronic control device is realized by executing a predetermined program, and in the present embodiment, each of these means is an electronic control device for centrally controlling the operation of the variable displacement compressor 1. , Is realized by the compressor control unit 6.

従って,本発明の容量可変型圧縮機における圧縮機制御ユニット6は,電空比例弁制御手段24や速度制御手段31を元々備えている既知の容量可変型圧縮機1の圧縮機制御ユニット6に,前述した電磁弁制御手段43や,非常停止手段52を実現するためのプログラムを追加して書き込むことで得ることができる。 Therefore, the compressor control unit 6 in the variable displacement compressor according to the present invention is the same as the compressor control unit 6 of the known variable displacement compressor 1 that originally includes the electropneumatic proportional valve control means 24 and the speed control means 31. It can be obtained by additionally writing a program for realizing the solenoid valve control means 43 and the emergency stop means 52 described above.

図4に示すように,この圧縮機制御ユニット6には,ユーザが定格圧力の設定操作を行うための操作パネルやスイッチ類によって構成される入力部80,エンジン3(エンジン3のECU32や回転速度検知手段),レシーバタンク4内の圧力を検知する圧力センサ7,吸気制御弁21の閉弁受圧室21aに供給される圧縮気体の圧力を検知する第2の圧力センサ51,電空比例弁23や電磁弁42,42’と接続されて電子制御系を構成し,圧縮機制御ユニット6が,入力部80やECU32,回転速度検知手段,及び圧力センサ(7,51)より受信した各部の状態に応じて,電空比例弁23,電磁開閉弁42,42’,及びECU32に対し制御信号を出力して,各部を制御することができるように構成されている。 As shown in FIG. 4, the compressor control unit 6 includes an input unit 80 including an operation panel and switches for the user to perform a rated pressure setting operation, an engine 3 (the ECU 32 of the engine 3 and a rotation speed). Detection means), a pressure sensor 7 for detecting the pressure in the receiver tank 4, a second pressure sensor 51 for detecting the pressure of the compressed gas supplied to the closed valve pressure receiving chamber 21a of the intake control valve 21, an electropneumatic proportional valve 23. And the electromagnetic valves 42, 42' are connected to form an electronic control system, and the state of each unit received by the compressor control unit 6 from the input unit 80, the ECU 32, the rotation speed detecting means, and the pressure sensor (7, 51). In response, the control signal is output to the electro-pneumatic proportional valve 23, the electromagnetic on-off valves 42 and 42', and the ECU 32 to control each part.

なお,本実施形態において圧縮機制御ユニット6は,前述したようにエンジン駆動型の可変容量型圧縮機の動作を統括的に制御するものとして設けたものであることから,圧縮機制御ユニット6には,前述した電空比例弁制御手段24,速度制御手段31,電磁弁制御手段43,非常停止手段52の他に,エンジンの始動,停止,各種の設定や警告等の表示,その他の必要な制御を行うための手段が実現されているが,以下の説明では,本発明と関連する手段についてのみ説明し,その他の手段についての説明は省略する。 In the present embodiment, the compressor control unit 6 is provided as a unit that integrally controls the operation of the engine-driven variable displacement compressor as described above. In addition to the electro-pneumatic proportional valve control means 24, the speed control means 31, the solenoid valve control means 43, and the emergency stop means 52 described above, the engine start/stop, various settings, warnings, and other indications, and other necessary Although means for controlling is realized, in the following description, only means related to the present invention will be described, and description of other means will be omitted.

(2)入力部
定格圧力の設定を変更可能とするために,本発明の可変容量型圧縮機1には,ユーザが定格圧力の設定のための入力を行う入力部80が設けられている。
(2) Input Unit In order to make the setting of the rated pressure changeable, the variable displacement compressor 1 of the present invention is provided with an input unit 80 for the user to input for setting the rated pressure.

この入力部80は,本実施形態では,図7に示すように操作パネルに設けた定格圧力設定用のスイッチ類(82〜86)と,操作パネルとは離れた位置に設けた,設定禁止スイッチ81により構成されている。 In the present embodiment, the input unit 80 is a set prohibition switch provided at a position apart from the rated pressure setting switches (82 to 86) provided on the operation panel as shown in FIG. 7 and the operation panel. It is composed of 81.

このうちの設定禁止スイッチ81は,「許可」位置と「禁止」位置を切替可能に構成されており,設定禁止スイッチ81を「禁止」の位置とした状態では,操作パネルに設けた定格圧力設定用のスイッチ類(82〜86)を操作しても,設定圧力の変更を行うことができないように構成し,誤操作等によって意図せず定格圧力の設定が変更されることがないようにしている。 Of these, the setting prohibition switch 81 is configured to be able to switch between a “permit” position and a “prohibit” position. With the setting prohibition switch 81 set to the “prohibit” position, the rated pressure setting provided on the operation panel is set. Even if the switches (82-86) for the operation are operated, the set pressure cannot be changed, so that the setting of the rated pressure will not be changed unintentionally by an erroneous operation. ..

操作パネルには,定格圧力設定用のスイッチ類として,本実施形態では「低圧(0.5〜0.75MPa)」「中圧(0.76〜1.08MPa)」「高圧(1.09〜1.45MPa)」の中から定格圧力の設定範囲を選択する,設定範囲選択スイッチ(82,83,84)と,設定範囲選択スイッチ(82,83,84)で選択した圧力範囲内の圧力値を選択するための「UP」及び「DOWN」スイッチ(84,85;図示の例において,UPスイッチは,高圧選択スイッチ84と共用),設定完了後,設定内容を確認すると共に完了させる「設定/確定」スイッチ86を設けている。 In the present embodiment, on the operation panel, as switches for setting a rated pressure, “low pressure (0.5 to 0.75 MPa)”, “intermediate pressure (0.76 to 1.08 MPa)”, and “high pressure (1.09 to 1.45MPa)” to select the rated pressure setting range, the pressure value within the pressure range selected by the setting range selection switch (82, 83, 84) and the setting range selection switch (82, 83, 84) "UP" and "DOWN" switches (84, 85; in the example shown, the UP switch is also used as the high-voltage selection switch 84) for selecting, and after the setting is completed, the setting contents are confirmed and completed. A “fix” switch 86 is provided.

このような入力部80を介して,ユーザは,定格圧力の設定を変更する際,先ず,設定禁止スイッチ81を「許可」の位置に切り換え,その後,設定範囲選択スイッチから設定したい圧力範囲のスイッチ(例えば,低圧スイッチ82)を長押しして,このスイッチに設けたランプ82aを点滅させ,表示部87に表示された吐出圧力の設定値を,UPスイッチ84又はDOWNスイッチ85の操作によって設定したい数値とした後,設定/確定スイッチ86を押すと,後述する圧縮機制御ユニット6の記憶部に記憶された定格圧力の設定が書き換えられる。 When changing the setting of the rated pressure, the user first switches the setting prohibition switch 81 to the "permit" position through the input unit 80, and then uses the setting range selection switch to switch the pressure range to be set. (For example, the low pressure switch 82) is pressed and held, the lamp 82a provided on this switch is made to blink, and the set value of the discharge pressure displayed on the display section 87 is set by operating the UP switch 84 or the DOWN switch 85. When the setting/decision switch 86 is pressed after setting the numerical value, the setting of the rated pressure stored in the storage unit of the compressor control unit 6 described later is rewritten.

その後,ユーザは,設定禁止スイッチ81を「禁止」の位置に戻し,定格圧力の設定作業が終了する。 After that, the user returns the setting prohibition switch 81 to the “prohibition” position, and the setting work of the rated pressure is completed.

(3)圧縮機制御ユニット
(3-1) 圧縮機制御ユニットの全体構成
圧縮機制御ユニット6は,前述した方法でユーザが設定した定格圧力や各種プログラムを記憶した記憶部6aと,エンジン3(エンジンのECU32や回転速度検知手段)や圧力センサ7,51から受信したデータを,前記記憶部6aに記憶したプログラムに従い演算処理すると共に,この演算処理に基づいて得た制御信号をエンジン3のECU32,電空比例弁23,及び電磁弁42,42’に対し出力する演算処理部6bを有する。
(3) Compressor control unit
(3-1) Overall Configuration of Compressor Control Unit The compressor control unit 6 includes a storage unit 6a that stores the rated pressure and various programs set by the user by the method described above, and the engine 3 (ECU 32 of the engine and rotation speed detection). Means) and the data received from the pressure sensors 7 and 51 according to a program stored in the storage unit 6a, and a control signal obtained based on the calculation processing is applied to the ECU 32 of the engine 3 and the electropneumatic proportional valve 23, And an arithmetic processing unit 6b for outputting to the solenoid valves 42, 42'.

(3-2) 演算処理部
前述した速度制御手段31,電空比例弁制御手段24,電磁弁制御手段43,及び非常停止手段52は,前述した演算処理部6bが,記憶部6aに記憶された所定のプログラムを実行することにより実現される。
(3-2) Arithmetic processing section In the speed control means 31, the electropneumatic proportional valve control means 24, the solenoid valve control means 43, and the emergency stop means 52, the arithmetic processing section 6b described above is stored in the storage section 6a. It is realized by executing a predetermined program.

このうちの速度制御手段31は,予め設定した対応関係に従い,定格圧力の設定値と圧力センサ7が検知したレシーバタンク4内の圧力に基づいてエンジン3の回転速度を算出し,エンジン3の回転速度を,算出した回転速度と成すよう,エンジン3のECU32に対し速度制御信号を出力する。 Among them, the speed control means 31 calculates the rotation speed of the engine 3 based on the preset value of the rated pressure and the pressure in the receiver tank 4 detected by the pressure sensor 7 in accordance with the preset correspondence relationship, and the rotation of the engine 3 A speed control signal is output to the ECU 32 of the engine 3 so that the speed matches the calculated rotation speed.

また,電空比例弁制御手段24は,予め設定した対応関係に従い,制御流路22に設けた電空比例弁23が,ユーザによって設定された定格圧力の設定値と圧力センサ7が検知したレシーバタンク4内の圧力により特定される所定の開度となるよう,電空比例弁23に対し制御信号を出力する。 Further, the electro-pneumatic proportional valve control means 24 is a receiver that the electro-pneumatic proportional valve 23 provided in the control flow path 22 detects the set value of the rated pressure set by the user and the pressure sensor 7 according to the preset correspondence relationship. A control signal is output to the electropneumatic proportional valve 23 so that the opening degree becomes a predetermined opening specified by the pressure in the tank 4.

更に,前述の電磁弁制御手段43は,予め設定した対応関係に従い,ユーザが設定した定格圧力の設定値に基づいて上限圧力を算出し,圧力センサ7が検知したレシーバタンク4内の圧力の測定値を前記上限圧力と比較して,前記測定値が前記上限圧力以上になると,レシーバタンクの圧力異常を判定して,前記バイパス流路41を開く制御信号を前記電磁弁42,42’に対し出力する。 Further, the solenoid valve control means 43 described above calculates the upper limit pressure based on the set value of the rated pressure set by the user according to the preset correspondence relationship, and measures the pressure in the receiver tank 4 detected by the pressure sensor 7. The value is compared with the upper limit pressure, and when the measured value is equal to or higher than the upper limit pressure, a pressure abnormality of the receiver tank is determined, and a control signal for opening the bypass flow passage 41 is sent to the solenoid valves 42, 42'. Output.

更に,演算処理部6bに設けた非常停止手段52は,図2及び図3に示したように吸気制御弁21の閉弁受圧室21aに供給される圧縮気体の圧力を検知する第2の圧力センサ51を設けた構成を採用した際に設ける手段であり,電磁弁制御手段43がレシーバタンク4内の圧力異常を判定してバイパス流路41を開く制御信号を電磁弁42,42’に出力した状態にあるとき,第2の圧力センサ51が検知した吸気制御弁21の閉弁受圧室21aに供給される圧縮気体の圧力を,予め求めておいた算出値または実測値等に基づいて吸気制御弁を全閉とするために必要な圧力として記憶部に記憶させておいた設定値と比較し,第2の圧力センサ51が検知した閉弁受圧室21aに供給される圧縮気体の圧力が,この設定値未満である場合,エンジン3のECU32に,エンジン3を非常停止させる非常停止信号を出力する。 Further, as shown in FIGS. 2 and 3, the emergency stop means 52 provided in the arithmetic processing unit 6b has a second pressure for detecting the pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a of the intake control valve 21. This is a means provided when the configuration in which the sensor 51 is provided is adopted, and the solenoid valve control means 43 outputs a control signal for opening the bypass flow passage 41 to the solenoid valves 42, 42' by determining the pressure abnormality in the receiver tank 4. In this state, the pressure of the compressed gas supplied to the closed valve pressure receiving chamber 21a of the intake control valve 21 detected by the second pressure sensor 51 is intaken based on a previously calculated value or an actually measured value. The pressure of the compressed gas supplied to the valve closing pressure receiving chamber 21a detected by the second pressure sensor 51 is compared with the set value stored in the storage unit as the pressure required to fully close the control valve. If it is less than this set value, the ECU 32 of the engine 3 outputs an emergency stop signal for stopping the engine 3 in an emergency.

なお,図示は省略するが,前述の演算処理部6bに,エンジン3の回転速度を検知する回転速度検知手段からの検知信号,エンジン3に設けたオルタネータなどの発電装置の発電電圧や電流の検出値,エンジン3の油圧の検出値,及びタイマによるカウント時間等に基づいて,エンジンの運転状態(停止,始動,始動後安定運転への移行)を判定する運転状態判定手段を設けるものとしても良い。 Although not shown, the above-mentioned arithmetic processing unit 6b detects a detection signal from a rotation speed detection unit that detects the rotation speed of the engine 3 and a generated voltage or current of a power generator such as an alternator provided in the engine 3. An operating state determination means for determining the operating state of the engine (stop, start, transition to stable operation after start) based on the value, the detected value of the oil pressure of the engine 3, the count time by the timer, and the like may be provided. ..

この場合,運転状態判定手段の判定結果に基づいてエンジン3の始動時,あるいは,始動から安定運転に移行する迄の間,圧力センサ7が検知したレシーバタンク4内の圧力に関わりなく,図1及び図2に示した装置構成では電磁弁制御手段43に,バイパス流路41を開く制御信号を電磁弁42に対し出力させるように構成しても良く,図3に示した装置構成では電磁弁制御手段43に,制御流路22を開くと共にバイパス流路41を閉じる制御信号を電磁弁(三方電磁弁)42’に出力させ,且つ,電空比例弁制御手段24に,電空比例弁23を全開とする制御信号を出力させるように構成しても良い。 In this case, irrespective of the pressure in the receiver tank 4 detected by the pressure sensor 7 at the time of starting the engine 3 or during the time from the start to the transition to stable operation based on the judgment result of the operation state judging means, FIG. In the apparatus configuration shown in FIG. 2, the solenoid valve control means 43 may be configured to output a control signal for opening the bypass flow passage 41 to the solenoid valve 42. In the apparatus configuration shown in FIG. The control means 43 is caused to output a control signal for opening the control flow path 22 and closing the bypass flow path 41 to the solenoid valve (three-way solenoid valve) 42', and the electro-pneumatic proportional valve control means 24 for the electro-pneumatic proportional valve 23. May be configured to output a control signal for fully opening.

このように構成することで,エンジン3の始動時,吸気制御弁21の閉弁受圧室21aがレシーバタンク4と連通しており,圧縮機本体2の回転によってレシーバタンク4内に導入された圧縮気体は,直ちに吸気制御弁21の閉弁受圧室21aに導入されて圧縮機本体2の吸入口2aを閉じて無負荷運転となることから,前述したバイパス流路41や制御流路22,電磁弁42,42’や電空比例弁23に,始動直後の不安定な運転状態にあるエンジンの負荷を軽減させる,始動負荷軽減装置としての機能を持たせることもできる。 With this configuration, when the engine 3 is started, the closed valve pressure receiving chamber 21a of the intake control valve 21 communicates with the receiver tank 4, and the compression introduced into the receiver tank 4 by the rotation of the compressor body 2 is performed. Since the gas is immediately introduced into the closed valve pressure receiving chamber 21a of the intake control valve 21 to close the suction port 2a of the compressor body 2 for no-load operation, the bypass flow passage 41, the control flow passage 22, the electromagnetic flow passage 22 The valves 42, 42' and the electropneumatic proportional valve 23 can also be provided with a function as a starting load reducing device that reduces the load on the engine in an unstable operating state immediately after starting.

(3-3) 記憶部
前述の記憶部には,入力部80を介してユーザが入力すると共に設定した定格圧力が記憶されていると共に,この定格圧力に対応して,レシーバタンク4内の圧力変化に応じたエンジンの速度制御,圧縮機本体の吸気制御,及び,バイパス流路41の開閉やエンジン3の非常停止の制御を行うことができるよう,前述した速度制御手段31,電空比例弁制御手段24,電磁弁制御手段43,及び非常停止手段52を実現するためのプログラムが記憶されている。
(3-3) Storage Unit In the storage unit described above, the rated pressure input and set by the user via the input unit 80 is stored, and the pressure in the receiver tank 4 is corresponding to the rated pressure. The speed control means 31 and the electropneumatic proportional valve described above are provided so that the speed control of the engine according to the change, the intake control of the compressor body, the opening/closing of the bypass passage 41 and the emergency stop of the engine 3 can be performed. A program for realizing the control means 24, the solenoid valve control means 43, and the emergency stop means 52 is stored.

定格圧力の設定変更に対応して,エンジン3の回転速度制御や圧縮機本体2の吸気制御の動作パターンを変更可能とするために,予め,設定可能な数値範囲における定格圧力の変化に対し,レシーバタンク4内の圧力とエンジン3の回転速度,及び電空比例弁23の開度との関係が如何に変化するかの対応関係を求めておき,この対応関係に基づいて,エンジン3のECU32に出力する速度制御信号,及び電空比例弁23に出力する制御信号を発生させるプログラムを記憶部6aに記憶させておくことで,ユーザが定格圧力の設定を変更すると,設定された定格圧力に対応した速度制御や吸気制御を速度制御手段31や電空比例弁制御手段24が実行できるように構成している。 In order to change the operation pattern of the rotational speed control of the engine 3 and the intake control of the compressor main body 2 in response to the change of the setting of the rated pressure, for the change of the rated pressure in the presettable numerical range, The correspondence relationship of how the relationship between the pressure in the receiver tank 4, the rotation speed of the engine 3, and the opening degree of the electropneumatic proportional valve 23 changes is obtained, and the ECU 32 of the engine 3 is based on this correspondence relationship. When a user changes the setting of the rated pressure by storing the program for generating the speed control signal output to the control valve and the control signal output to the electropneumatic proportional valve 23 in the storage unit 6a, the set rated pressure is set to the set rated pressure. The speed control means 31 and the electropneumatic proportional valve control means 24 are configured to execute corresponding speed control and intake control.

また,保護装置40に設けた電磁弁42,42’の開閉制御を可能とするために,圧縮機制御ユニット6の記憶部6aには,定格圧力と上限圧力の対応関係が記憶されており,電磁弁制御手段43に,この対応関係に基づいてユーザが設定した定格圧力に基づいて上限圧力を算出させ,圧力センサが検知したレシーバタンク内の圧力と算出した上限圧力を比較させて,レシーバタンク内の圧力が上限圧力以上になるとバイパス流路41を開く制御信号を出力するプログラムを記憶させておく。 Further, in order to enable the opening/closing control of the solenoid valves 42 and 42′ provided in the protection device 40, the storage unit 6a of the compressor control unit 6 stores the correspondence relationship between the rated pressure and the upper limit pressure, The solenoid valve control means 43 is caused to calculate the upper limit pressure based on the rated pressure set by the user based on this correspondence, and the pressure in the receiver tank detected by the pressure sensor is compared with the calculated upper limit pressure to make the receiver tank. A program for outputting a control signal for opening the bypass passage 41 when the internal pressure becomes equal to or higher than the upper limit pressure is stored.

ここで吸気制御弁21は,レシーバタンク4内の圧力がユーザが設定した定格圧力に近付くように吸気制御を行っているものの,吸気制御弁21はレシーバタンク4内の圧力が定格圧力を超えたときに圧縮機本体2の吸入口2aを絞り始め,その後,レシーバタンク4内の圧力が更に上昇した状態で吸入口2aを全閉として無負荷運転に移行するため,無負荷運転移行時におけるレシーバタンク4内の圧力は定格圧力を越え,前述した無負荷最高圧力まで上昇している。 Here, the intake control valve 21 performs intake control so that the pressure in the receiver tank 4 approaches the rated pressure set by the user, but the intake control valve 21 causes the pressure in the receiver tank 4 to exceed the rated pressure. At this time, the suction port 2a of the compressor body 2 starts to be squeezed, and then the suction port 2a is fully closed to shift to the no-load operation when the pressure in the receiver tank 4 further increases. The pressure in the tank 4 exceeds the rated pressure and rises to the above-mentioned maximum no-load pressure.

そこで,本実施形態では,実測値等に基づき,設定可能な定格圧力毎に,正常に吸気制御がされている圧縮機本体の吐出側圧力(レシーバタンク4内の圧力)が取り得る前述の無負荷最高圧力を求めておき,この無負荷最高圧力よりも所定値β以上高い圧力であって,且つ,設定された定格圧力に対応する常用圧力の空圧機器における許容圧力以下となるよう,上限圧力を設定し,この上限圧力に基づいた制御プログラムを記憶部6aに記憶させている。 Therefore, in the present embodiment, the discharge side pressure (the pressure in the receiver tank 4) of the compressor body for which the intake control is normally performed can be taken for each settable rated pressure based on the actual measurement value or the like. The maximum load pressure is calculated in advance, and the upper limit is set so that the pressure is higher than the no-load maximum pressure by a predetermined value β or more, and is less than the allowable pressure in the pneumatic equipment at the normal pressure corresponding to the set rated pressure. The pressure is set, and the control program based on this upper limit pressure is stored in the storage unit 6a.

ここで,可変容量型圧縮機1の消費側に接続され,圧縮気体により作業を行う空圧機器は、使用する圧縮気体の常用圧力および使用に耐え得る許容圧力が予め定められており,このような空圧機器の常用圧力は,一例として0.7MPa(低圧),1.03MPa(中圧),1.4MPa(高圧)というように用途によって予め区分されており,許容圧力も圧力区分毎に予め設定されている(図5,図6参照)。 Here, in the pneumatic device connected to the consuming side of the variable displacement compressor 1 and working with compressed gas, the normal pressure of the compressed gas to be used and the allowable pressure that can withstand the use are predetermined. a pneumatic devices atmospheric pressure of, 0.7 MPa (low-pressure) as an example, 1.03 MPa (medium pressure), 1.4 MPa are divided in advance by the application and so on (high), the allowable pressure greater pressure segment each Is set in advance (see FIGS. 5 and 6).

従って,各定格圧力毎の前記無負荷最高圧力は、例えば低圧,中圧,及び高圧のそれぞれにおける任意の定格圧力に対して前記無負荷最高圧力を実測し,実測データから図5中に破線で示す右上がりの直線を作図し,かつ,この直線の関係式を図から読み取り,又は計算する等して予め求め,可変設定される定格圧力毎の前記上限圧力を,前記無負荷最高圧力に許容値βを加えて,前記上限圧力が前述の低圧,中圧,高圧の各圧力における空圧機器の許容圧力以下となるよう設定する。 Therefore, the no-load maximum pressure for each rated pressure is, for example, the no-load maximum pressure is actually measured for any rated pressure at low pressure, medium pressure, and high pressure. Draw the straight line that rises to the right, and obtain it in advance by reading or calculating the relational expression of this straight line, and allow the upper limit pressure for each variably set rated pressure to the unloaded maximum pressure. The value β is added so that the upper limit pressure is set to be equal to or lower than the allowable pressure of the pneumatic equipment at each of the low pressure, the medium pressure, and the high pressure.

この許容値βは,これを定数として設定し,上限圧力を図5中に点線で表したように,無段階に右上がりに変化する直線として設定するものとしても良い。 The permissible value β may be set as a constant and the upper limit pressure may be set as a straight line that gradually increases to the right as shown by the dotted line in FIG.

また,この上限圧力は,図6に示すように,例えば低圧,中圧,高圧の各圧力範囲における設定可能な任意の圧力(例えば0.70MPa,1.05MPa,1.40MPa)における無負荷最高圧力の上限値に対し許容値βを加えた値,従って,各圧力範囲に対し1つの上限圧力(計3つの上限圧力)を設定し,この上限圧力が,空圧機器の許容圧力よりも低圧となるように設定してもよい。 In addition, as shown in FIG. 6, this upper limit pressure is, for example, the maximum no-load at any settable pressure (for example, 0.70 MPa, 1.05 MPa, 1.40 MPa) in each pressure range of low pressure, medium pressure, and high pressure. A value obtained by adding the allowable value β to the upper limit value of pressure, therefore, one upper limit pressure (a total of three upper limit pressures) is set for each pressure range, and this upper limit pressure is lower than the allowable pressure of the pneumatic equipment. You may set so that it becomes.

このようにして求めた各設定圧力と上限圧力との関係に基づき,電磁弁制御手段43は記憶部6aに記憶した定格圧力の設定値に基づき,この定格圧力に対応する上限圧力を算出し,圧力センサ7が検知したレシーバタンク4内の圧力と算出した上限圧力とを比較して,レシーバタンク4内の圧力が前記上限圧力以上となると,バイパス流路41を開く。 Based on the relationship between each set pressure and the upper limit pressure thus obtained, the solenoid valve control means 43 calculates the upper limit pressure corresponding to this rated pressure based on the set value of the rated pressure stored in the storage unit 6a, The pressure in the receiver tank 4 detected by the pressure sensor 7 is compared with the calculated upper limit pressure, and when the pressure in the receiver tank 4 becomes equal to or higher than the upper limit pressure, the bypass passage 41 is opened.

なお,図5及び図6において,最上部に記載された二点鎖線のグラフは安全弁の吹出し圧力を示し,可変設定可能な定格圧力の最大値における無負荷最高圧力に対し,前記許容値βよりも大きい所定の許容値αを加えて設定されている。 In addition, in FIG. 5 and FIG. 6, the two-dot chain line graph shown at the top shows the blowout pressure of the safety valve, and from the allowable value β with respect to the maximum no-load pressure at the maximum value of variably settable rated pressure, Is also set by adding a predetermined allowable value α.

図示の例では,この安全弁吹出圧力を高圧機器許容圧力よりも高い圧力に設定しているが,安全弁吹出圧力を高圧機器許容圧力と同圧に設定するものとしても良い。 In the illustrated example, the safety valve outlet pressure is set to a pressure higher than the high pressure equipment allowable pressure, but the safety valve outlet pressure may be set to the same pressure as the high pressure equipment allowable pressure.

〔動作等〕
以上のように構成された本発明の可変容量型圧縮機1において,ユーザが入力部80に設けたスイッチ類を操作して定格圧力の入力及び設定を完了した後,エンジン3を始動して圧縮機本体2を回転させて,圧縮気体の生成を開始すると,圧縮機本体2の回転により生成された圧縮気体は,レシーバタンク4内に導入される。
[Operation, etc.]
In the variable displacement compressor 1 of the present invention configured as described above, after the user operates the switches provided in the input section 80 to complete the input and setting of the rated pressure, the engine 3 is started to perform compression. When the machine body 2 is rotated to start the generation of compressed gas, the compressed gas generated by the rotation of the compressor body 2 is introduced into the receiver tank 4.

消費側に接続された接続機器において圧縮気体が消費されている状態では,レシーバタンク4内の圧力は,設定された定格圧力以下の圧力にあり,圧力センサ7の検知信号を受信した速度制御手段31は,エンジン3を全負荷運転速度とする速度制御信号を出力すると共に,電空比例弁制御手段24は,電空比例弁23を全閉とする制御信号を出力して吸気制御弁21を全開とした全負荷運転を行う。 When the compressed gas is consumed in the connected device connected to the consumer side, the pressure in the receiver tank 4 is equal to or lower than the set rated pressure, and the speed control means receives the detection signal of the pressure sensor 7. Reference numeral 31 outputs a speed control signal for setting the engine 3 at a full load operating speed, and electro-pneumatic proportional valve control means 24 outputs a control signal for fully closing the electro-pneumatic proportional valve 23 to turn on the intake control valve 21. Perform full load operation with full opening.

空圧機器の使用停止により,圧縮気体の消費が減少あるいは停止して,レシーバタンク4内の圧力が定格圧力を超えると,圧力センサ7の検知信号を受信した速度制御手段31は,エンジン3の速度を減速させる速度制御信号をエンジン3のECU32に出力すると共に,電空比例弁制御手段24は,電空比例弁23を絞る制御信号を電空比例弁23に出力し,圧力センサ7が検知したレシーバタンク4内の圧力が更に上昇すると速度制御手段31はエンジンを無負荷運転に減速する速度制御信号を出力すると共に,電空比例弁制御手段24は電空比例弁23を全開とする制御信号を出力して吸気制御弁を閉じ,圧縮機は無負荷運転に移行する処理が行われ,制御流路22や電空比例弁23が正常に機能している状態では,上記のような速度制御と吸気制御が繰り返される。 When the pressure in the receiver tank 4 exceeds the rated pressure because the consumption of compressed gas is reduced or stopped due to the suspension of the use of pneumatic equipment, the speed control means 31 that has received the detection signal of the pressure sensor 7 causes the speed control means 31 of the engine 3 to receive the detection signal. The speed control signal for decelerating the speed is output to the ECU 32 of the engine 3, and the electropneumatic proportional valve control means 24 outputs a control signal for narrowing the electropneumatic proportional valve 23 to the electropneumatic proportional valve 23, which the pressure sensor 7 detects. When the pressure in the receiver tank 4 further rises, the speed control means 31 outputs a speed control signal for decelerating the engine to a no-load operation, and the electropneumatic proportional valve control means 24 controls the electropneumatic proportional valve 23 to be fully opened. When a signal is output to close the intake control valve, the compressor is transferred to no-load operation, and the control flow path 22 and the electropneumatic proportional valve 23 are functioning normally, the above-mentioned speed is set. Control and intake control are repeated.

一方,制御流路22や電空比例弁23に異常が生じ,圧力センサ7が検知したレシーバタンク4内の圧力が,ユーザが設定した定格圧力を超えており,電空比例弁制御手段24が電空比例弁23に対し開弁信号を出力しているにもかかわらず,圧縮機本体2の吸気が絞られず,また,圧縮機本体2が無負荷運転に移行せずにレシーバタンク4内の圧力が上昇して,設定された定格圧力に対応する上限圧力に達すると,電磁弁制御手段43は,レシーバタンク4内の圧力異常を判定して,バイパス流路41に設けた電磁弁42,42’に対しバイパス流路41を開く制御信号を出力し,電空比例弁23をバイパスさせて,レシーバタンク4と吸気制御弁21の閉弁受圧室21a間を連通させる。 On the other hand, an abnormality occurs in the control flow path 22 or the electropneumatic proportional valve 23, the pressure in the receiver tank 4 detected by the pressure sensor 7 exceeds the rated pressure set by the user, and the electropneumatic proportional valve control means 24 Even though the valve opening signal is output to the electro-pneumatic proportional valve 23, the intake air of the compressor body 2 is not throttled, and the compressor body 2 does not shift to the no-load operation. When the pressure rises and reaches the upper limit pressure corresponding to the set rated pressure, the solenoid valve control means 43 determines a pressure abnormality in the receiver tank 4, and the solenoid valve 42 provided in the bypass flow passage 41, A control signal for opening the bypass flow passage 41 is output to 42 ′, the electropneumatic proportional valve 23 is bypassed, and the receiver tank 4 and the valve closing pressure receiving chamber 21 a of the intake control valve 21 are connected.

これにより,レシーバタンク4内の圧縮気体が吸気制御弁21の閉弁受圧室21aに導入されて,吸気制御弁21が圧縮機本体2の吸入口2aを閉じて無負荷運転に移行し,圧縮機本体2による圧縮気体の生成が停止し,レシーバタンク4の圧力上昇が停止することで,消費側に接続された空圧機器に対し,許容圧力を超える圧縮気体が導入されることが防止される。 As a result, the compressed gas in the receiver tank 4 is introduced into the closed valve pressure receiving chamber 21a of the intake control valve 21, and the intake control valve 21 closes the intake port 2a of the compressor body 2 to shift to no-load operation and compress. The generation of the compressed gas by the machine body 2 is stopped, and the pressure increase in the receiver tank 4 is stopped, so that the compressed gas exceeding the allowable pressure is prevented from being introduced into the pneumatic device connected to the consumer side. It

また,この上限圧力は安全弁吹き出し圧力に対し低い圧力に設定されているために,レシーバタンク内の圧力が安全弁吹出し圧力を超えて上昇することがなく、安全弁の噴気を防止できる。 Further, since the upper limit pressure is set to a pressure lower than the safety valve blowout pressure, the pressure in the receiver tank does not rise above the safety valve blowout pressure, and it is possible to prevent the safety valve from blowing.

なお,電磁弁制御手段43は,レシーバタンク4内の圧力異常を判定してバイパス流路41を開くと,例えばリセットスイッチの操作等の所定の操作が行われるまで,レシーバタンク4内の圧力変化に拘わらず,バイパス流路41を開いた状態に維持するように構成し,その後,消費側における圧縮気体の消費が行われる等してレシーバタンク4内の圧力が低下した場合であっても,圧縮機本体2の吸入口2aを閉じた状態に維持できるようにすることが好ましい。 When the solenoid valve control means 43 determines the pressure abnormality in the receiver tank 4 and opens the bypass passage 41, the pressure change in the receiver tank 4 is changed until a predetermined operation such as operation of a reset switch is performed. Regardless of the above, the bypass channel 41 is configured to be maintained in an open state, and thereafter, even when the pressure in the receiver tank 4 is reduced due to consumption of compressed gas on the consumption side, It is preferable that the suction port 2a of the compressor body 2 can be maintained in a closed state.

また,図1及び図2に示す構成では,電磁弁制御手段43がレシーバタンク4内の圧力異常を判定してバイパス流路41を開いた後は,速度制御手段31も,その後のレシーバタンク4内の圧力変化に拘わらず,エンジン3の回転速度を無負荷回転速度に固定する制御信号をエンジン3に対し出力するように構成することが好ましい。 Further, in the configuration shown in FIGS. 1 and 2, after the solenoid valve control means 43 determines the pressure abnormality in the receiver tank 4 and opens the bypass flow passage 41, the speed control means 31 also receives the receiver tank 4 after that. It is preferable that the control signal for fixing the rotation speed of the engine 3 to the no-load rotation speed is output to the engine 3 regardless of the change in the internal pressure.

このように構成することで,制御流路22や電空比例弁23を使用した吸気制御に異常が生じた状態では,吸気制御弁21を全閉に維持するだけでなく,エンジン回転速度も無負荷回転速度に低下させた状態に維持することで、圧縮機本体2の回転速度を低下して吐出圧力の上昇を抑えることができ、さらに無負荷運転移行後における騒音低減,燃料消費量を低減できる。 With such a configuration, when abnormality occurs in the intake control using the control flow path 22 and the electropneumatic proportional valve 23, not only the intake control valve 21 is kept fully closed, but also the engine rotation speed is reduced. By maintaining the state where the load rotation speed is reduced, the rotation speed of the compressor body 2 can be reduced to suppress an increase in the discharge pressure, and further, noise reduction and fuel consumption after a no-load operation transition can be reduced. it can.

なお,図3に示した構成では,制御流路22とバイパス流路41のいずれか一方が選択的にレシーバタンク4と連通するように構成されていると共に,バイパス流路41に,可変設定可能な定格圧力の最低値に対応した作動圧力に調整した圧力調整弁44が設けられている。 In the configuration shown in FIG. 3, one of the control channel 22 and the bypass channel 41 is configured to selectively communicate with the receiver tank 4, and the bypass channel 41 can be variably set. There is provided a pressure adjusting valve 44 adjusted to an operating pressure corresponding to the minimum rated pressure.

そのため,この構成では,圧力センサ7によって検知されたレシーバタンク4内の圧力が,上限圧力以上になり,電磁弁制御手段43がレシーバタンク4の圧力異常を判定して制御流路22を閉じると共にバイパス流路41を開き,以後,電磁弁制御手段43がレシーバタンク4内の圧力変化に拘わらず三方電磁弁42’がバイパス流路41を開いた切換位置を保持するように構成することで,圧力調整弁44による吸気制御を行うことが可能であり,これにより,可変容量型圧縮機1を継続して使用して,空圧機器に対する圧縮気体の供給を継続することが可能となる。 Therefore, in this configuration, the pressure in the receiver tank 4 detected by the pressure sensor 7 becomes equal to or higher than the upper limit pressure, and the solenoid valve control means 43 determines the pressure abnormality of the receiver tank 4 and closes the control flow path 22. By opening the bypass passage 41, and thereafter, the solenoid valve control means 43 is configured so that the three-way solenoid valve 42 ′ holds the switching position where the bypass passage 41 is opened regardless of the pressure change in the receiver tank 4. It is possible to perform the intake control by the pressure adjusting valve 44, whereby the variable displacement compressor 1 can be continuously used and the compressed gas can be continuously supplied to the pneumatic equipment.

そのため,図1及び図2を参照した説明では,レシーバタンク4内の圧力が上限圧力を超えて電磁弁制御手段43がレシーバタンク4の圧力異常を判定すると,速度制御手段31も,エンジン3の回転速度を無負荷回転速度に固定するように構成することが好ましい旨説明したが,図3に記載の構成では,電磁弁制御手段43が圧力異常を判定した後は,速度制御手段31が圧力センサ7が検知したレシーバタンク4内の圧力に応じて可変設定可能な定格圧力の最低値に対応した速度制御を行うようにしても良い。 Therefore, in the description with reference to FIGS. 1 and 2, when the pressure in the receiver tank 4 exceeds the upper limit pressure and the solenoid valve control means 43 determines a pressure abnormality in the receiver tank 4, the speed control means 31 and the engine 3 Although it has been described that it is preferable to fix the rotation speed to the no-load rotation speed, in the structure shown in FIG. 3, the speed control means 31 determines the pressure after the solenoid valve control means 43 determines the pressure abnormality. The speed control corresponding to the minimum value of the rated pressure that can be variably set according to the pressure in the receiver tank 4 detected by the sensor 7 may be performed.

1 可変容量型圧縮機
1’ 圧縮機(固定容量型)
2 圧縮機本体
2a 吸入口
3 駆動源(エンジン)
4 レシーバタンク
4a 逆止弁
5 オイル配管
5a オイルクーラ
6 圧縮機制御ユニット
6a 記憶部
6b 演算処理部
7 圧力センサ
20 吸気制御装置
21 吸気制御弁
21a 閉弁受圧室
21b 逃がし流路
22 制御流路
23 電空比例弁
23’ 圧力調整弁
24 電空比例弁制御手段
30 速度制御装置
31 速度制御手段
32 エンジンコントロールユニット(ECU)
33 回転速度検出手段(回転速度センサ)
40 保護装置
41 バイパス流路
42 電磁弁(電磁開閉弁)
42’ 電磁弁(三方電磁弁)
43 電磁弁制御手段
44 圧力調整弁
50 非常停止装置
51 第2の圧力センサ
52 非常停止手段
80 入力部
81 設定禁止スイッチ
82 設定範囲選択スイッチ(低圧スイッチ)
83 設定範囲選択スイッチ(中圧スイッチ)
84 設定範囲選択スイッチ(高圧スイッチ)兼,UPスイッチ
82a,83a,84a ランプ
85 DOWNスイッチ
86 設定/確定スイッチ
87 表示部
1 Variable capacity compressor 1'Compressor (fixed capacity type)
2 Compressor body 2a Suction port 3 Drive source (engine)
4 receiver tank 4a check valve 5 oil pipe 5a oil cooler 6 compressor control unit 6a storage unit 6b arithmetic processing unit 7 pressure sensor 20 intake control device 21 intake control valve 21a closed valve pressure receiving chamber 21b escape flow channel 22 control flow channel 23 Electro-pneumatic proportional valve 23' Pressure adjusting valve 24 Electro-pneumatic proportional valve control means 30 Speed control device 31 Speed control means 32 Engine control unit (ECU)
33 Rotation speed detection means (rotation speed sensor)
40 Protective device 41 Bypass flow path 42 Solenoid valve (solenoid on-off valve)
42' solenoid valve (three-way solenoid valve)
43 Solenoid valve control means 44 Pressure adjusting valve 50 Emergency stop device 51 Second pressure sensor 52 Emergency stop means 80 Input section 81 Setting prohibition switch 82 Setting range selection switch (low pressure switch)
83 Setting range selection switch (medium pressure switch)
84 Setting range selection switch (high pressure switch) and UP switch 82a, 83a, 84a Lamp 85 DOWN switch 86 Setting/confirmation switch 87 Display

Claims (5)

圧縮機本体の吸入口に設けた吸気制御弁と,前記吸気制御弁の閉弁受圧室を前記圧縮機本体の吐出側に連通する制御流路と,前記制御流路を開閉する電空比例弁と,設定された定格圧力と前記圧縮機本体の吐出側圧力の検出値に基づいて前記電空比例弁の動作を制御する電空比例弁制御手段を備え,前記電空比例弁による前記制御流路の開閉及び開度の増減によって前記吸気制御弁を操作することで,前記圧縮機本体の吐出側圧力が前記定格圧力に近付くように前記圧縮機本体の吸気を制御する吸気制御装置を備え,前記定格圧力の設定値を,所定の圧力範囲内で任意に設定可能とすることで,消費側の接続機器に供給する圧縮気体の圧力の設定を可変とした可変容量型圧縮機において,
前記電空比例弁をバイパスして前記圧縮機本体の吐出側と前記吸気制御弁の閉弁受圧室間を連通するバイパス流路と,前記バイパス流路を開閉する電磁弁,及び,前記圧縮機本体の吐出側圧力における圧力異常を監視すると共に判定し,該圧力異常の判定時,前記電磁弁を操作して前記バイパス流路を開く電磁弁制御手段を備えた保護装置を含み,
前記電磁弁制御手段が,
予め設定された対応関係に従い,前記定格圧力の前記設定値に基づいて,該設定値に対し所定の高い圧力で,かつ,該設定値に対応する常用圧力の接続機器が有する許容圧力未満の圧力である上限圧力を算出し,
算出した前記上限圧力と前記圧縮機本体の吐出側圧力の検出値を比較して,前記検出値が前記上限圧力以上になると,前記圧力異常を判定することを特徴とする可変容量型圧縮機。
An intake control valve provided at the intake port of the compressor body, a control flow passage that connects the valve closing chamber of the intake control valve to the discharge side of the compressor body, and an electropneumatic proportional valve that opens and closes the control flow passage. And an electropneumatic proportional valve control means for controlling the operation of the electropneumatic proportional valve on the basis of the set rated pressure and the detected value of the discharge side pressure of the compressor body. By operating the intake control valve by opening/closing the passage and increasing/decreasing the opening, an intake control device is provided for controlling the intake of the compressor main body so that the discharge side pressure of the compressor main body approaches the rated pressure. In the variable capacity compressor in which the setting value of the rated pressure can be arbitrarily set within a predetermined pressure range, and the setting of the pressure of the compressed gas supplied to the connection device on the consumption side is variable,
A bypass flow passage that bypasses the electro-pneumatic proportional valve to communicate between the discharge side of the compressor body and the closed pressure receiving chamber of the intake control valve, a solenoid valve that opens and closes the bypass flow passage, and the compressor. A protection device including a solenoid valve control means for monitoring and determining a pressure abnormality in the discharge side pressure of the main body, and operating the solenoid valve to open the bypass passage when the pressure abnormality is determined;
The solenoid valve control means is
According to a preset correspondence, based on the set value of the rated pressure, a pressure that is a predetermined high pressure with respect to the set value , and a pressure that is lower than the allowable pressure of the connected device at the normal pressure corresponding to the set value. Calculate the upper limit pressure which is
A variable displacement compressor characterized by comparing the calculated upper limit pressure with a detection value of the discharge side pressure of the compressor body, and determining the pressure abnormality when the detected value is equal to or higher than the upper limit pressure.
前記電磁弁制御手段は,前記圧力異常の判定以降,前記圧縮機本体の吐出側圧力の検出値の変化に拘わらず,前記バイパス流路を開いた状態に前記電磁弁を保持することを特徴とする請求項1記載の可変容量型圧縮機。 After the pressure abnormality is determined, the solenoid valve control means holds the solenoid valve in the state in which the bypass passage is opened regardless of a change in the detected value of the discharge side pressure of the compressor body. The variable capacity compressor according to claim 1. 記定格圧力の前記設定値において正常動作時における前記圧縮機本体の吐出側圧力が取り得る最大値である無負荷最高圧力に対し所定値以上高い圧力となるよう,前記上限圧力を設定したことを特徴とする請求項1又は2記載の可変容量型圧縮機。 To be a predetermined value or more high pressure to the no-load maximum pressure is the maximum value of discharge pressure can be taken of the compressor body in a normal operation in the set value before Symbol rated pressure was set to the upper limit pressure The variable capacity compressor according to claim 1 or 2, wherein. 前記電磁弁制御手段による圧力異常の判定時,前記吸気制御弁を全閉とするに必要な前記閉弁受圧室に供給される圧縮気体の圧力の設定値と,前記閉弁受圧室に供給される圧縮気体の圧力の測定値とを比較し,前記測定値が前記設定値未満であるとき,前記圧縮機本体の駆動源を非常停止させる非常停止手段を設けたことを特徴とする請求項1〜3いずれか1項記載の可変容量型圧縮機。 When a pressure abnormality is determined by the solenoid valve control means, the set value of the pressure of the compressed gas supplied to the closed valve pressure receiving chamber necessary to fully close the intake control valve and the pressure of the compressed gas supplied to the closed valve pressure receiving chamber are supplied. The emergency stop means for stopping the drive source of the compressor main body in an emergency is provided when the measured value of the compressed gas is compared with the measured value and the measured value is less than the set value. [3] The variable capacity compressor according to any one of [3] to [3]. 前記圧縮機本体を油冷式とし,前記圧縮機本体が潤滑油と共に吐出した圧縮気体を貯留する,油分離装置を備えたレシーバタンクを設け,
前記制御流路およびバイパス流路を,前記油分離装置の一次側で前記レシーバタンクに接続して前記圧縮機本体の吐出側に連通させたことを特徴とする請求項1〜4いずれか1項記載の可変容量型圧縮機。
An oil cooling type compressor body is provided, and a receiver tank provided with an oil separation device for storing compressed gas discharged from the compressor body together with lubricating oil is provided.
The control flow path and the bypass flow path are connected to the receiver tank on the primary side of the oil separation device so as to communicate with the discharge side of the compressor body. Variable capacity compressor described.
JP2016057526A 2016-03-22 2016-03-22 Variable capacity compressor Active JP6703871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057526A JP6703871B2 (en) 2016-03-22 2016-03-22 Variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057526A JP6703871B2 (en) 2016-03-22 2016-03-22 Variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2017172409A JP2017172409A (en) 2017-09-28
JP6703871B2 true JP6703871B2 (en) 2020-06-03

Family

ID=59971226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057526A Active JP6703871B2 (en) 2016-03-22 2016-03-22 Variable capacity compressor

Country Status (1)

Country Link
JP (1) JP6703871B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075305B2 (en) * 2018-07-25 2022-05-25 北越工業株式会社 Compressor operation control method and compressor
JP2020133416A (en) * 2019-02-13 2020-08-31 株式会社日立産機システム Oil-lubricated fluid machine
KR102583098B1 (en) * 2021-11-29 2023-09-26 주식회사 현대에버다임 Internal lubrication device of compressor for rock drill

Also Published As

Publication number Publication date
JP2017172409A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6703871B2 (en) Variable capacity compressor
KR100350839B1 (en) Refrigeration screw compressor having gas actuated slide valve
WO2020096850A1 (en) Adjustable deadband control system
US4132237A (en) Excess flow shutoff valve for hazardous fluids
WO2015122247A1 (en) Gas supply device, hydrogen station, and gas supply method
US20200240415A1 (en) Oil Feed Type Air Compressor
JPH10153136A (en) Fuel supply control device
US10704550B2 (en) Liquid injected screw compressor, controller for the transition from an unloaded state to a loaded state of such a screw compressor and method applied therewith
US10801917B2 (en) Fuel vapor processing device
US10641530B2 (en) Heat pump
US20220074414A1 (en) A method for controlling a compressor towards an unloaded state
KR20170118126A (en) Method and apparatus for controlling the oil temperature of an oil-injected compressor plant or vacuum pump
US10316842B2 (en) Air compressor
JP6375415B2 (en) High pressure washing device and high pressure washing car
US20100064702A1 (en) Combined operation and control of suction modulation and pulse width modulation valves
KR101728404B1 (en) Multi-stage compression system and control method of the same
US11933183B2 (en) Steam turbine valve abnormality monitoring system, steam turbine valve drive device, steam turbine valve device, and steam turbine plant
US20040187585A1 (en) Electronic digital pressure switch
JP5325701B2 (en) Control method of air compressor and air compressor
WO2018179190A1 (en) Liquid-feed type gas compressor
CN104245375A (en) Method for preventing and recognising coolant discharges from complex hydraulic systems
JP2005083214A (en) Compressor unit
JP7351017B2 (en) refueled air compressor
US20230272809A1 (en) Apparatus for electronically-controlled variable flow inlets and electronically-controlled pneumatic inlet modulation of compressor systems
JP6157871B2 (en) High pressure washing device and high pressure washing car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6703871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250