JP6702419B2 - Interferometric spectrophotometer - Google Patents

Interferometric spectrophotometer Download PDF

Info

Publication number
JP6702419B2
JP6702419B2 JP2018529408A JP2018529408A JP6702419B2 JP 6702419 B2 JP6702419 B2 JP 6702419B2 JP 2018529408 A JP2018529408 A JP 2018529408A JP 2018529408 A JP2018529408 A JP 2018529408A JP 6702419 B2 JP6702419 B2 JP 6702419B2
Authority
JP
Japan
Prior art keywords
mirror
power supply
fixed
slit
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529408A
Other languages
Japanese (ja)
Other versions
JPWO2018020847A1 (en
Inventor
丸野 浩昌
浩昌 丸野
森谷 直司
直司 森谷
豊之 橋本
豊之 橋本
村松 尚
尚 村松
秀昭 勝
秀昭 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2018020847A1 publication Critical patent/JPWO2018020847A1/en
Application granted granted Critical
Publication of JP6702419B2 publication Critical patent/JP6702419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • G01J2003/062Scanning arrangements arrangements for order-selection motor-driven
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • G01J2003/064Use of other elements for scan, e.g. mirror, fixed grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、ボイスコイルモータ(以下、「VCM」と略す)を用いたフーリエ変換赤外分光光度計(以下、「FTIR」と略す)等の干渉分光光度計に関する。 The present invention relates to an interference spectrophotometer such as a Fourier transform infrared spectrophotometer (hereinafter abbreviated as “FTIR”) using a voice coil motor (hereinafter abbreviated as “VCM”).

FTIRに利用されるマイケルソン二光束干渉計では、赤外光源から発した赤外光をビームスプリッタで固定鏡と移動鏡との2方向に分割し、固定鏡で反射して戻ってきた光と移動鏡で反射して戻ってきた光とをビームスプリッタで合成して1つの光路へ送るという構成を有している。このとき、移動鏡を入射光軸方向(前後方向)で前後に移動させると、分割された二光束の光路長の差が変化するから、合成された光は移動鏡の位置に応じて光の強度が変化する干渉光(インターフェログラム)となる。 In the Michelson two-beam interferometer used for FTIR, the infrared light emitted from an infrared light source is split by a beam splitter into two directions, a fixed mirror and a moving mirror, and the reflected light is reflected by the fixed mirror and returned. It has a configuration in which the light reflected by the movable mirror and returned is combined by a beam splitter and sent to one optical path. At this time, if the movable mirror is moved back and forth in the incident optical axis direction (front-back direction), the difference in the optical path lengths of the two split light fluxes changes, so that the combined light is converted into a light beam according to the position of the movable mirror. It becomes an interference light (interferogram) whose intensity changes.

図6は、従来のFTIRの要部の構成を示す図であり、図7は、図6に示す移動鏡ユニットの水平断面図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
FTIR101は、主干渉計主要部140と、赤外光を出射する光源部10と、インターフェログラムを検出する光検出部20と、コンピュータ(制御部)130とを備える。
FIG. 6 is a diagram showing a configuration of a main part of a conventional FTIR, and FIG. 7 is a horizontal sectional view of the movable mirror unit shown in FIG. Note that one direction horizontal to the ground is the X direction, a direction horizontal to the ground and perpendicular to the X direction is the Y direction, and a direction perpendicular to the X and Y directions is the Z direction.
The FTIR 101 includes a main interferometer main section 140, a light source section 10 that emits infrared light, a photodetection section 20 that detects an interferogram, and a computer (control section) 130.

光源部10は、赤外光を出射する赤外光源と、集光鏡と、コリメータ鏡とを備える。これにより、赤外光源から出射された赤外光は、集光鏡、コリメータ鏡を介して主干渉計主要部140のビームスプリッタ42に照射されるようになっている。
光検出部20は、楕円面鏡と、インターフェログラムを検出する光検出器とを備える。これにより、試料Sに照射された光は、試料Sを透過(又は反射)して、楕円面鏡により光検出器へ集光されるようになっている。
The light source unit 10 includes an infrared light source that emits infrared light, a condenser mirror, and a collimator mirror. As a result, the infrared light emitted from the infrared light source is applied to the beam splitter 42 of the main interferometer main section 140 via the condenser mirror and the collimator mirror.
The photodetection unit 20 includes an ellipsoidal mirror and a photodetector that detects an interferogram. As a result, the light applied to the sample S is transmitted (or reflected) through the sample S and is focused on the photodetector by the ellipsoidal mirror.

主干渉計主要部140は、筐体41と、ビームスプリッタ42と、移動鏡53を備えた移動鏡ユニット150と、固定鏡61とアライメント機構62とを備えた固定鏡ユニット60とを備える。
移動鏡ユニット150は、前後方向(X方向)に中心軸を有する円筒形状の中空パイプ51と、中空パイプ51内で前後方向に往復移動が可能となるように配置された円柱形状のピストン52と、ピストン52の前部に固定された移動鏡53と、VCM170とを備える(例えば特許文献1参照)。
The main interferometer main section 140 includes a housing 41, a beam splitter 42, a moving mirror unit 150 including a moving mirror 53, and a fixed mirror unit 60 including a fixed mirror 61 and an alignment mechanism 62.
The movable mirror unit 150 includes a cylindrical hollow pipe 51 having a center axis in the front-rear direction (X direction), and a cylindrical piston 52 arranged so as to reciprocate in the front-rear direction within the hollow pipe 51. A moving mirror 53 fixed to the front part of the piston 52 and a VCM 170 are provided (see, for example, Patent Document 1).

VCM170は、固定部171と移動部172とを備える。
固定部171は、前後方向に中心軸を有する円筒形状の筒状部173aと円板形状の後側壁73bとを有する鉄製(磁性材料製)のヨーク173と、前後方向に中心軸を有する円柱形状の2個のマグネット74(74a、74b)と、前後方向に中心軸を有する円柱形状のポールピース75とを備える。第一マグネット74aとポールピース75と第二マグネット74bとは、この順でヨーク173の後側壁73bの前面中心部に固定されることで、ヨーク173の筒状部173a内に設置されている。そして、筒状部173aの前部は、筐体41(中空パイプ51)の後部に取り付けられている。また、ヨーク173の筒状部173aの右側壁には、前後方向に伸びた長孔形状のスリット173cが形成されている。
The VCM 170 includes a fixed unit 171 and a moving unit 172.
The fixed portion 171 is made of iron (made of magnetic material) and has a cylindrical tubular portion 173a having a center axis in the front-rear direction and a disc-shaped rear side wall 73b, and a columnar shape having a center axis in the front-rear direction. 2 magnets 74 (74a, 74b) and a columnar pole piece 75 having a central axis in the front-rear direction. The first magnet 74a, the pole piece 75, and the second magnet 74b are installed in the cylindrical portion 173a of the yoke 173 by being fixed to the front center portion of the rear side wall 73b of the yoke 173 in this order. The front portion of the tubular portion 173a is attached to the rear portion of the housing 41 (hollow pipe 51). Further, on the right side wall of the cylindrical portion 173a of the yoke 173, an elongated hole-shaped slit 173c extending in the front-rear direction is formed.

移動部172は、前後方向に中心軸を有する円筒形状のボビン72aと、ボビン72a後部の外周面に巻かれた円環形状のコイル72bとを備える。そして、ボビン72a前部はピストン52後部に取り付けられている。また、コイル72bは、ヨーク173の筒状部173aとポールピース75との間に配置されて、スリット173c内を上下方向(Y方向)に貫通するように配置された電力供給端子(電力供給線)72cを介して電源(図示略)と電気的に接続されている。 The moving portion 172 includes a cylindrical bobbin 72a having a center axis in the front-rear direction, and an annular coil 72b wound around the outer peripheral surface of the rear portion of the bobbin 72a. The front portion of the bobbin 72a is attached to the rear portion of the piston 52. The coil 72b is arranged between the cylindrical portion 173a of the yoke 173 and the pole piece 75, and is arranged so as to pass through the slit 173c in the vertical direction (Y direction) (power supply line). ) 72c, and is electrically connected to a power source (not shown).

したがって、コイル72bに電力供給端子72cを介して電流を流すと、コイル72bがヨーク173とポールピース75との間に形成される磁界により電磁力(ローレンツ力)を受けて前後方向に移動することによって、ピストン52に固定された移動鏡53も前後方向に移動するようになっている。 Therefore, when an electric current is applied to the coil 72b through the power supply terminal 72c, the coil 72b receives electromagnetic force (Lorentz force) due to the magnetic field formed between the yoke 173 and the pole piece 75 and moves in the front-back direction. Accordingly, the movable mirror 53 fixed to the piston 52 also moves in the front-rear direction.

このようなFTIR101では、スループットを充分に確保してS/Nが高い試料Sの測定を行うためには、移動鏡53と固定鏡61との角度ずれを1秒以下に抑える必要がある。そのため、コンピュータ130は、移動鏡53の角度ずれに対してアライメント機構62を用いて固定鏡61の角度をリアルタイムで制御している。 In such an FTIR 101, in order to ensure sufficient throughput and measure the sample S having a high S/N, it is necessary to suppress the angular deviation between the movable mirror 53 and the fixed mirror 61 to 1 second or less. Therefore, the computer 130 controls the angle of the fixed mirror 61 in real time using the alignment mechanism 62 with respect to the angular displacement of the movable mirror 53.

特表平6−505804号公報Japanese Patent Publication No. 6-505804

ところで、FTIR等の干渉分光光度計においては、測定モード(試料Sの測定の種類)により移動鏡53の短ストローク高速駆動や長ストローク低速駆動が要求されてきている。
しかしながら、上述したようなFTIR101では、短ストローク高速駆動時には折り返し時に大きな加速度がかかるため、コンピュータ130による固定鏡61の角度制御が追従しないという課題があった(図5(b)参照)。
By the way, in an interference spectrophotometer such as FTIR, a short stroke high speed drive and a long stroke low speed drive of the movable mirror 53 are required depending on the measurement mode (type of measurement of the sample S).
However, in the FTIR 101 as described above, there is a problem that the angle control of the fixed mirror 61 by the computer 130 does not follow because a large acceleration is applied at the time of turning back during short stroke high speed driving (see FIG. 5B).

本発明者らは、上記課題を解決するために、高速駆動時にも移動鏡53と固定鏡61との角度ずれを1秒以下に抑える方法について検討を行った。ここで、図4は、ヨーク173の筒状部173aの右側壁(スリット173cあり)と、筒状部173aの左側壁(スリット173cなし)とでの磁束密度の違いをシミュレーションした結果を示す表であって、「スリットあり」側では磁束が弱くなっていることがわかる。磁束密度は推力(ローレンツ力)に比例するので、磁束密度の差と同様の推力差が生じていることになる。 In order to solve the above problems, the present inventors have studied a method of suppressing the angular displacement between the movable mirror 53 and the fixed mirror 61 to 1 second or less even at high speed driving. Here, FIG. 4 is a table showing the results of simulating the difference in magnetic flux density between the right side wall (with the slit 173c) of the tubular portion 173a of the yoke 173 and the left side wall (without the slit 173c) of the tubular portion 173a. Therefore, it can be seen that the magnetic flux is weakened on the "with slit" side. Since the magnetic flux density is proportional to the thrust (Lorentz force), a thrust difference similar to the difference in magnetic flux density is generated.

そして、ボビン72aに巻かれたコイル72bに電流が流れることにより、ボビン72aに固定されたピストン52は、前方向(−X方向)の力や後方向(X方向)の力を受けてスライドする。このとき、スリット173cのある側は推力の発生が弱いため、ピストン52が中空パイプ51に保持された状態でも、移動鏡53の面はあおられる方向に向くことがわかった。具体的には、コイル72bが前方向に動くときにはZ方向を回転軸として右への回転を伴うようなモーメントが、後方向に動くときには左への回転を伴うようなモーメントが可動部(ピストン52等)に加わっている。 Then, when a current flows through the coil 72b wound around the bobbin 72a, the piston 52 fixed to the bobbin 72a slides by receiving a force in the front direction (-X direction) or a force in the rear direction (X direction). .. At this time, since the thrust is weakly generated on the side with the slit 173c, it was found that even when the piston 52 is held by the hollow pipe 51, the surface of the movable mirror 53 faces in the upward direction. Specifically, when the coil 72b moves in the forward direction, a moment that rotates to the right around the Z direction as a rotation axis, and when it moves in the backward direction, a moment that rotates to the left occurs in the movable portion (piston 52). Etc.).

そこで、ヨークの筒状部の軸対称側にもスリットを設けることにより、推力差を解消することを見出した。ここで、図5(b)は、ヨークの筒状部の片側のみにスリットを設けた場合での角度ずれの評価結果(3.4秒pp)であり、図5(a)は、ヨークの筒状部の両側にスリットを設けた場合での角度ずれの評価結果(0.6秒pp)である。片側のみにスリットを設けた場合に対し、両側にスリットを設けた場合は角度ずれを約1/5(0.6秒pp)に低減することができた。 Therefore, it has been found that the thrust difference can be eliminated by providing a slit on the axially symmetrical side of the cylindrical portion of the yoke. Here, FIG. 5B is an evaluation result (3.4 seconds pp) of the angular deviation in the case where the slit is provided only on one side of the cylindrical portion of the yoke, and FIG. It is an evaluation result (0.6 second pp) of the angular deviation when slits are provided on both sides of the tubular portion. When the slits were provided on only one side, when the slits were provided on both sides, the angular deviation could be reduced to about 1/5 (0.6 second pp).

すなわち、本発明の干渉分光光度計は、光を出射する光源部と、固定鏡と、移動鏡および当該移動鏡を往復移動させるボイスコイルモータを備えた移動鏡ユニットと、前記光源部からの光を受けて、前記固定鏡と前記移動鏡とに向けて2分割するとともに、前記固定鏡で反射して戻ってきた光と前記移動鏡で反射して戻ってきた光とを受けて、干渉光に合成するビームスプリッタと、試料が配置され、当該試料を透過又は反射した干渉光を検出する光検出部と、を備えた干渉分光光度計であって、前記ボイスコイルモータは、筒状部を有するヨークと、当該筒状部内に設置されたマグネットとが固定された固定部と、前記ヨークの筒状部と前記マグネットとの間に配置される筒形状のコイルと、前記移動鏡とが固定された移動部と、前記コイルと電源とを接続する電力供給線とを備え、前記ヨークの筒状部には、前記電力供給線が通される第一のスリットが形成されており、前記ヨークの第一スリットとは筒状部の中心軸で対称となる位置に第二のスリットが形成され、前記コイルが前記電力供給線を介して給電されて前記マグネットにより形成される電磁力を受けることにより、前記移動部に固定された前記移動鏡が前記固定部に対して往復移動するように形成されている。 That is, the interferometric spectrophotometer of the present invention includes a light source unit that emits light, a fixed mirror, a moving mirror unit that includes a moving mirror and a voice coil motor that reciprocates the moving mirror, and light from the light source unit. In response, the light is split into two parts toward the fixed mirror and the movable mirror, and the light reflected by the fixed mirror and returned and the light reflected by the movable mirror and returned are received, and the interference light is received. An interference spectrophotometer comprising: a beam splitter for synthesizing a sample, and a photodetector for arranging a sample and detecting interference light transmitted or reflected by the sample, wherein the voice coil motor has a cylindrical part. A fixed portion to which the yoke and a magnet installed in the tubular portion are fixed , a tubular coil disposed between the tubular portion of the yoke and the magnet, and the movable mirror are fixed And a power supply line that connects the coil and a power source, and a first slit through which the power supply line is passed is formed in the tubular portion of the yoke. The second slit is formed at a position symmetrical to the first slit of the cylindrical portion with respect to the central axis of the cylindrical portion, and the coil is supplied with power through the power supply line and receives the electromagnetic force formed by the magnet. Thus, the movable mirror fixed to the moving portion is formed to reciprocate with respect to the fixed portion.

以上のように、本発明の干渉分光光度計によれば、ボイスコイルモータのスリットをヨークの中心軸の対称側にも設けることにより、推力の差が解消され、移動部での回転運動を起こすモーメントの発生をなくすことができる。これにより、高速駆動時の移動鏡と固定鏡との角度ずれを小さくすることができる。 As described above , according to the interferometric spectrophotometer of the present invention, by providing the slit of the voice coil motor also on the symmetrical side of the central axis of the yoke, the difference in thrust is eliminated and the rotary motion in the moving part is caused. Generation of moment can be eliminated. As a result, it is possible to reduce the angular deviation between the movable mirror and the fixed mirror during high speed driving.

上記発明において、前記電力供給線を介しての給電を制御することにより前記移動鏡の移動速度又は移動距離を制御する制御部を備えてもよい。In the above invention, a control unit may be provided that controls a moving speed or a moving distance of the movable mirror by controlling power supply via the power supply line.

上記発明において、前記第一のスリットには前記電力供給線に接続される電力供給端子が配置され、前記第二のスリットにはダミー電力供給端子が配置されていてもよい。In the above invention, a power supply terminal connected to the power supply line may be arranged in the first slit, and a dummy power supply terminal may be arranged in the second slit.

上記発明において、前記第一のスリットだけに前記電力供給線が通してあるようにしてもよい。In the above invention, the power supply line may pass through only the first slit.

本発明に係るFTIRを示す要部構成図。The principal part block diagram which shows FTIR which concerns on this invention. 図1に示す移動鏡ユニットの水平断面図。FIG. 2 is a horizontal sectional view of the movable mirror unit shown in FIG. 1. 図2に示すVCMの断面図。FIG. 3 is a sectional view of the VCM shown in FIG. 2. スリットの有無による磁束密度の違いのシミュレーション結果を示す表。The table which shows the simulation result of the difference in magnetic flux density by the presence or absence of a slit. 角度ずれの評価結果を示す表。The table which shows the evaluation result of angle shift. 従来のFTIRを示す要部構成図。The principal part block diagram which shows the conventional FTIR. 図6に示す移動鏡ユニットの水平断面図。FIG. 7 is a horizontal sectional view of the movable mirror unit shown in FIG. 6.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described below, and various modes are included without departing from the gist of the present invention.

本発明に係る干渉分光光度計の構成例として、FTIRを例にして図1にその要部の構成を示す。そして、図2は、図1に示す移動鏡ユニット50の水平断面図である。また、図3は、図2に示すVCM70の断面図であって、図3(a)は縦断面図であり、図3(b)は水平断面図である。なお、上述したFTIR101と同様のものについては、同じ符号を付すことにより説明を省略する。
FTIR1は、主干渉計主要部40と、赤外光を出射する光源部10と、インターフェログラムを検出する光検出部20と、コンピュータ(制御部)30とを備える。
As an example of the structure of the interference spectrophotometer according to the present invention, FTIR is taken as an example and FIG. 1 shows the structure of the main part thereof. 2 is a horizontal sectional view of the movable mirror unit 50 shown in FIG. 3 is a sectional view of the VCM 70 shown in FIG. 2, FIG. 3(a) is a vertical sectional view, and FIG. 3(b) is a horizontal sectional view. The same parts as those of the FTIR 101 described above are designated by the same reference numerals and the description thereof will be omitted.
The FTIR 1 includes a main interferometer main section 40, a light source section 10 that emits infrared light, a photodetection section 20 that detects an interferogram, and a computer (control section) 30.

主干渉計主要部40は、筐体41と、ビームスプリッタ42と、移動鏡53を備えた移動鏡ユニット50と、固定鏡61とアライメント機構62とを備えた固定鏡ユニット60とを備える。
移動鏡ユニット50は、前後方向(X方向)に中心軸を有する円筒形状の中空パイプ51と、中空パイプ51内で前後方向に往復移動が可能となるように配置された円柱形状のピストン52と、ピストン52の前部に固定された移動鏡53と、VCM70とを備える。
The main interferometer main section 40 includes a housing 41, a beam splitter 42, a moving mirror unit 50 including a moving mirror 53, and a fixed mirror unit 60 including a fixed mirror 61 and an alignment mechanism 62.
The movable mirror unit 50 includes a cylindrical hollow pipe 51 having a center axis in the front-rear direction (X direction), and a cylindrical piston 52 arranged so as to be capable of reciprocating in the front-rear direction within the hollow pipe 51. The moving mirror 53 fixed to the front part of the piston 52 and the VCM 70 are provided.

VCM70は、固定部71と移動部72とを備える。
固定部71は、前後方向に中心軸を有する円筒形状の筒状部73aと円板形状の後側壁73bとを有する鉄製(磁性材料製)のヨーク73と、前後方向に中心軸を有する円柱形状の2個のマグネット74(74a、74b)と、前後方向に中心軸を有する円柱形状のポールピース75とを備える。第一マグネット74aとポールピース75と第二マグネット74bとは、この順でヨーク73の後側壁73bの前面中心部に固定されることで、ヨーク73の筒状部73a内に設置されている。そして、筒状部73aの前部は、筐体41(中空パイプ51)の後部に取り付けられている。
The VCM 70 includes a fixed part 71 and a moving part 72.
The fixed portion 71 includes an iron (magnetic material) yoke 73 having a cylindrical tubular portion 73a having a center axis in the front-rear direction and a disc-shaped rear side wall 73b, and a columnar shape having a center axis in the front-rear direction. 2 magnets 74 (74a, 74b) and a columnar pole piece 75 having a central axis in the front-rear direction. The first magnet 74a, the pole piece 75, and the second magnet 74b are installed in the cylindrical portion 73a of the yoke 73 by being fixed to the front center portion of the rear side wall 73b of the yoke 73 in this order. The front portion of the tubular portion 73a is attached to the rear portion of the housing 41 (hollow pipe 51).

ヨーク73の筒状部73aの右側壁には、前後方向に伸びた長孔形状の第一スリット73cが形成されるとともに、ヨーク73の筒状部73aの左側壁には、前後方向に伸びた長孔形状の第二スリット73dが形成されている。すなわち、第一スリット73cと第二スリット73dとは、ヨーク73の筒状部73aの中心軸(X方向)で点対称となる位置に形成されている。 A long hole-shaped first slit 73c extending in the front-rear direction is formed on the right side wall of the cylindrical portion 73a of the yoke 73, and a left-side wall of the cylindrical portion 73a of the yoke 73 extends in the front-rear direction. A long slit-shaped second slit 73d is formed. That is, the first slit 73c and the second slit 73d are formed at positions that are point-symmetric with respect to the central axis (X direction) of the cylindrical portion 73a of the yoke 73.

移動部72は、前後方向に中心軸を有する円筒形状のボビン72aと、ボビン72a後部の外周面に巻かれた円環形状のコイル72bとを備える。そして、ボビン72a前部はピストン52後部に取り付けられている。また、コイル72bは、ヨーク73の筒状部73aとポールピース75との間に配置されて、第一スリット73c内を上下方向(Y方向)に貫通するように配置された電力供給端子(電力供給線)72cを介して電源(図示略)と電気的に接続されている。さらに、移動部72には、第二スリット73d内をY方向に貫通するように配置され、電力供給端子72cと同形状のダミー電力供給端子72dが形成されている。すなわち、電力供給端子72cとダミー電力供給端子72dとは、ヨーク73の筒状部73aの中心軸(X方向)で点対称となる位置に形成されている。 The moving part 72 includes a cylindrical bobbin 72a having a center axis in the front-rear direction, and an annular coil 72b wound around the outer peripheral surface of the rear part of the bobbin 72a. The front portion of the bobbin 72a is attached to the rear portion of the piston 52. Further, the coil 72b is arranged between the cylindrical portion 73a of the yoke 73 and the pole piece 75, and is arranged so as to pass through the first slit 73c in the up-down direction (Y direction) (power supply terminal). It is electrically connected to a power source (not shown) via a supply line) 72c. Further, the moving portion 72 is provided with a dummy power supply terminal 72d which is arranged so as to penetrate through the second slit 73d in the Y direction and has the same shape as the power supply terminal 72c. That is, the power supply terminal 72c and the dummy power supply terminal 72d are formed at positions that are point-symmetric with respect to the central axis (X direction) of the cylindrical portion 73a of the yoke 73.

これにより、コイル72bに電力供給端子72cを介して電流を流すと、コイル72bはヨーク73とポールピース75との間に形成される磁界によって電磁力(ローレンツ力)を受けて前後方向に移動することで、ピストン52に固定された移動鏡53も前後方向に移動するようになっている。このとき、ヨーク73の筒状部73aの左右側壁のどちらにも、図4に示す「スリットあり」側の磁束密度が発生している。 As a result, when a current is applied to the coil 72b through the power supply terminal 72c, the coil 72b receives electromagnetic force (Lorentz force) by the magnetic field formed between the yoke 73 and the pole piece 75 and moves in the front-rear direction. As a result, the movable mirror 53 fixed to the piston 52 also moves in the front-rear direction. At this time, the magnetic flux density on the “with slit” side shown in FIG. 4 is generated on both the left and right side walls of the tubular portion 73a of the yoke 73.

コンピュータ30は、CPU31や入力装置32を備える。また、CPU31が処理する機能をブロック化して説明すると、光検出部20からインターフェログラムを取得する光強度情報取得部31aと、試料Sの吸光度スペクトル等を算出する試料測定部31bと、入力装置32で入力された入力情報に基づいて移動鏡ユニット50における移動鏡速度や移動距離を制御する移動鏡制御部31cと、固定鏡ユニット60におけるアライメント機構62を制御する固定鏡制御部31dとを有する。 The computer 30 includes a CPU 31 and an input device 32. In addition, when the function of the CPU 31 is described as a block, a light intensity information acquisition unit 31a that acquires an interferogram from the light detection unit 20, a sample measurement unit 31b that calculates the absorbance spectrum of the sample S, and an input device. It has a moving mirror control unit 31c that controls the moving mirror speed and moving distance in the moving mirror unit 50 based on the input information input at 32, and a fixed mirror control unit 31d that controls the alignment mechanism 62 in the fixed mirror unit 60. ..

以上のように、本発明のFTIR1によれば、第一スリット73cと第二スリット73dとがヨーク73の中心軸で対称となる位置に設けられているので、推力差が解消されて回転運動を起こすモーメントの発生がなくなり、高速駆動時の移動鏡53と固定鏡61との角度ずれを1秒以下に抑えることができる(図5(a)参照)。 As described above, according to the FTIR 1 of the present invention, since the first slit 73c and the second slit 73d are provided at positions symmetrical with respect to the central axis of the yoke 73, the thrust difference is eliminated and the rotational movement is prevented. The generation of the moment to be generated is eliminated, and the angular deviation between the movable mirror 53 and the fixed mirror 61 during high speed driving can be suppressed to 1 second or less (see FIG. 5A).

<他の実施形態>
(1)上述したFTIR1では、ダミー電力供給端子72dを設けた構成を示したが、コイルが電力供給端子を介して電源と電気的に接続されるとともにダミー電力供給端子を介して電源と電気的に接続されるような構成としてもよい。
<Other Embodiments>
(1) In the FTIR 1 described above, the configuration in which the dummy power supply terminal 72d is provided is shown. However, the coil is electrically connected to the power supply via the power supply terminal and electrically connected to the power supply via the dummy power supply terminal. It may be configured to be connected to.

(2)上述したFTIR1では、ダミー電力供給端子72dを設けた構成を示したが、ダミー電力供給端子を設けない構成としてもよい。 (2) Although the FTIR 1 described above has the configuration in which the dummy power supply terminal 72d is provided, the configuration may be such that the dummy power supply terminal is not provided.

本発明は、フーリエ変換赤外分光光度計等の干渉分光光度計に好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for an interference spectrophotometer such as a Fourier transform infrared spectrophotometer.

1 FTIR(干渉分光光度計)
70 VCM(ボイスコイルモータ)
71 固定部
72 移動部
72b コイル
72c 電力供給端子(電力供給線)
73 ヨーク
73a 筒状部
73c、73d スリット
74 マグネット
1 FTIR (Interference spectrophotometer)
70 VCM (voice coil motor)
71 fixed part 72 moving part 72b coil 72c power supply terminal (power supply line)
73 yoke 73a tubular portions 73c, 73d slit 74 magnet

Claims (4)

光を出射する光源部と、
固定鏡と、
移動鏡および当該移動鏡を往復移動させるボイスコイルモータを備えた移動鏡ユニットと、
前記光源部からの光を受けて、前記固定鏡と前記移動鏡とに向けて2分割するとともに、前記固定鏡で反射して戻ってきた光と前記移動鏡で反射して戻ってきた光とを受けて、干渉光に合成するビームスプリッタと、
試料が配置され、当該試料を透過又は反射した干渉光を検出する光検出部と、を備えた干渉分光光度計であって、
前記ボイスコイルモータは、
筒状部を有するヨークと、当該筒状部内に設置されたマグネットとが固定された固定部と、
前記ヨークの筒状部と前記マグネットとの間に配置される筒形状のコイルと、前記移動鏡とが固定された移動部と、
前記コイルと電源とを接続する電力供給線とを備え、
前記ヨークの筒状部には、前記電力供給線が通される第一のスリットが形成されており、
前記ヨークの第一スリットとは筒状部の中心軸で対称となる位置に第二のスリットが形成され、
前記コイルが前記電力供給線を介して給電されて前記マグネットにより形成される電磁力を受けることにより、前記移動部に固定された前記移動鏡が前記固定部に対して往復移動するように形成されることを特徴とする干渉分光光度計。
A light source unit that emits light,
A fixed mirror,
A moving mirror unit including a moving mirror and a voice coil motor that reciprocates the moving mirror;
Upon receiving light from the light source unit, the light is divided into two parts toward the fixed mirror and the movable mirror, and light reflected by the fixed mirror and returned and light reflected by the movable mirror and returned. A beam splitter that receives the light and synthesizes it into interference light,
An interference spectrophotometer comprising a photodetector, in which a sample is arranged, and which detects an interference light transmitted or reflected through the sample,
The voice coil motor is
A yoke having a tubular portion, and a fixed portion to which a magnet installed in the tubular portion is fixed,
A tubular coil arranged between the tubular portion of the yoke and the magnet, and a moving portion to which the moving mirror is fixed,
A power supply line connecting the coil and a power source,
The cylindrical portion of the yoke is formed with a first slit through which the power supply line passes ,
A second slit is formed at a position symmetrical with the central axis of the tubular portion with the first slit of the yoke,
When the coil is fed through the power supply line and receives an electromagnetic force formed by the magnet, the movable mirror fixed to the moving portion is formed to reciprocate with respect to the fixed portion. An interferometric spectrophotometer characterized in that
前記電力供給線を介しての給電を制御することにより前記移動鏡の移動速度又は移動距離を制御する制御部を備えた請求項1に記載の干渉分光光度計。The interferometric spectrophotometer according to claim 1, further comprising a control unit that controls a moving speed or a moving distance of the movable mirror by controlling power feeding through the power supply line. 前記第一のスリットには前記電力供給線に接続される電力供給端子が配置され、前記第二のスリットにはダミー電力供給端子が配置されている請求項1に記載の干渉分光光度計。The interference spectrophotometer according to claim 1, wherein a power supply terminal connected to the power supply line is arranged in the first slit, and a dummy power supply terminal is arranged in the second slit. 前記第一のスリットだけに前記電力供給線が通してある請求項1に記載の干渉分光光度計。The interferometric spectrophotometer according to claim 1, wherein the power supply line passes through only the first slit.
JP2018529408A 2016-07-25 2017-06-07 Interferometric spectrophotometer Active JP6702419B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016145487 2016-07-25
JP2016145487 2016-07-25
PCT/JP2017/021051 WO2018020847A1 (en) 2016-07-25 2017-06-07 Voice coil motor, and movable mirror unit and interference spectrophotometer equipped with same

Publications (2)

Publication Number Publication Date
JPWO2018020847A1 JPWO2018020847A1 (en) 2019-05-16
JP6702419B2 true JP6702419B2 (en) 2020-06-03

Family

ID=61016537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529408A Active JP6702419B2 (en) 2016-07-25 2017-06-07 Interferometric spectrophotometer

Country Status (5)

Country Link
US (1) US20190186993A1 (en)
EP (1) EP3490124A4 (en)
JP (1) JP6702419B2 (en)
CN (1) CN109643944A (en)
WO (1) WO2018020847A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464190B2 (en) 2021-03-18 2024-04-09 株式会社島津製作所 Analysis equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546277A (en) * 1984-07-02 1985-10-08 Carbonneau Industries, Inc. Linear motor
JPS61203858A (en) * 1985-03-05 1986-09-09 Secoh Giken Inc Voice coil type actuator
US5276545A (en) * 1989-03-24 1994-01-04 Nicolet Instrument Corporation Mirror alignment and damping device
JPH0554523A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Method for damping vibration of disk device
US5896197A (en) * 1992-01-08 1999-04-20 Nicolet Instrument Corporation Interferometer having glass graphite bearing
JP3907912B2 (en) * 2000-03-30 2007-04-18 株式会社ソディック Primary member for linear DC motor and linear DC motor
US6865282B2 (en) * 2003-05-01 2005-03-08 Richard L. Weisman Loudspeaker suspension for achieving very long excursion
JP2006220776A (en) * 2005-02-09 2006-08-24 Shicoh Eng Co Ltd Drive unit and lens drive unit
JP2008268404A (en) * 2007-04-18 2008-11-06 Tricore Corp Voice coil type lens drive device
JP2010183677A (en) * 2009-02-03 2010-08-19 Yamatake Corp Voice coil motor
JP5556449B2 (en) * 2010-07-02 2014-07-23 株式会社島津製作所 Spectrometer
JP5880816B2 (en) * 2011-09-28 2016-03-09 ミツミ電機株式会社 Lens drive device
JP5274733B1 (en) * 2011-10-13 2013-08-28 オリンパスメディカルシステムズ株式会社 Imaging unit and endoscope
CN104769500B (en) * 2012-08-21 2018-07-31 Asml荷兰有限公司 Lithographic equipment and device making method
JP5761433B2 (en) * 2014-06-27 2015-08-12 株式会社島津製作所 Interference spectrophotometer

Also Published As

Publication number Publication date
WO2018020847A1 (en) 2018-02-01
JPWO2018020847A1 (en) 2019-05-16
EP3490124A1 (en) 2019-05-29
CN109643944A (en) 2019-04-16
US20190186993A1 (en) 2019-06-20
EP3490124A4 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US9488829B2 (en) Optical scanning device and projector
JP6702419B2 (en) Interferometric spectrophotometer
EP3363085B1 (en) Linear motor for fast tuning of a laser cavity
JP2003279309A (en) Laser apparatus and method for measuring length
JP6372819B2 (en) Optical distance measuring device
JP5374392B2 (en) Optical fiber vibrometer
JP2021099487A (en) Actuator, light scanning apparatus, and object detecting apparatus
JP2007163479A (en) Interferometer
JP2019531471A (en) LIDAR system with movable fiber
JP6685569B1 (en) Optical scanning device, object detection device, optical scanning method, object detection method, and program
JP2603429B2 (en) Tracking laser interferometer
JP6579400B2 (en) Laser welding apparatus and laser welding method
TWI634309B (en) Optical inspection apparatus
KR102323317B1 (en) Lidar sensors and methods for lidar sensors
JP2021015112A (en) Optical scanner, object detector, optical detector, optical scanning method, object detection method, and program
JP5834523B2 (en) Actuator, lens barrel and imaging device
JP2008128654A (en) Michelson interferometer
CN107356928B (en) Distance measuring device and distance measuring method thereof
WO2018159286A1 (en) Display device, method for controlling display device, program, recording medium, and moving body equipped with display device
JP2016127746A (en) Linear actuator and fourier transform spectrometer using the same
JP2020020703A (en) Scanner, method for controlling scanner, program, recording medium, and distance measuring device
JP5761433B2 (en) Interference spectrophotometer
JP6151622B2 (en) Image stabilization device
JP2019015941A (en) Depolarization device
JP5947193B2 (en) Interferometer, spectroscopic analyzer, and interferometer control program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6702419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151