JP6701954B2 - High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same - Google Patents

High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same Download PDF

Info

Publication number
JP6701954B2
JP6701954B2 JP2016101863A JP2016101863A JP6701954B2 JP 6701954 B2 JP6701954 B2 JP 6701954B2 JP 2016101863 A JP2016101863 A JP 2016101863A JP 2016101863 A JP2016101863 A JP 2016101863A JP 6701954 B2 JP6701954 B2 JP 6701954B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
rolled steel
final pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101863A
Other languages
Japanese (ja)
Other versions
JP2017206764A (en
Inventor
杉浦 夏子
夏子 杉浦
武 豊田
武 豊田
哲矢 平島
哲矢 平島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016101863A priority Critical patent/JP6701954B2/en
Publication of JP2017206764A publication Critical patent/JP2017206764A/en
Application granted granted Critical
Publication of JP6701954B2 publication Critical patent/JP6701954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、主として、自動車のシャシー等の構造部品に使用する高強度熱延鋼板、特に、穴拡げ加工性に優れ、かつ、アーク溶接部の疲労特性に優れた高強度熱延鋼板及びその製造方法に関するものである。なお、本発明でいう高強度熱延鋼板は、強度が780MPa以上のものを指す。   The present invention mainly relates to a high-strength hot-rolled steel sheet used for structural parts such as automobile chassis, in particular, a high-strength hot-rolled steel sheet having excellent hole-expansion workability and excellent fatigue properties of an arc welded portion and its production It is about the method. The high-strength hot-rolled steel sheet referred to in the present invention has a strength of 780 MPa or more.

近年、自動車の燃費改善のための軽量化と衝突時の安全性確保の両立のため、自動車用鋼板の高強度化が急速に進んでいる。高強度化は、一般的に、加工性の劣化をもたらすことから、成分組成及び製造方法の最適化により、強度と加工性が両立するミクロ組織を有する鋼の開発が盛んに行われ、例えば、DP鋼やTRIP鋼、析出強化鋼が開発されている。   2. Description of the Related Art In recent years, the strength of automobile steel sheets has rapidly increased in order to reduce the weight of automobiles in order to improve fuel efficiency and ensure safety in the event of a collision. Since strengthening generally causes deterioration of workability, the development of steel having a microstructure in which strength and workability are compatible is actively performed by optimizing the component composition and the manufacturing method. DP steel, TRIP steel, and precipitation strengthened steel have been developed.

穴拡げ性は、特に、足回り部品の加工において重要な特性であり、TiやNbを添加した析出強化鋼やベイナイト単相鋼のような、組織内の強度分布が比較的小さい鋼板が開発されている。   The hole expansibility is an important characteristic especially in the processing of underbody parts, and steel sheets having a relatively small strength distribution in the structure such as precipitation strengthened steel and bainite single phase steel to which Ti or Nb is added have been developed. ing.

一方、疲労特性は、母材の高強度化に伴い一般的には向上する。しかし、特に、溶接部の疲労特性の向上は、母材強度の向上に比べて小さく、場合によっては、低強度材に比べて低下してしまう場合もある。そのため、溶接部疲労特性に優れた高強度鋼板が求められている。   On the other hand, the fatigue characteristics generally improve as the strength of the base material increases. However, in particular, the improvement in the fatigue characteristics of the welded portion is smaller than the improvement in the base material strength, and in some cases, it may be reduced as compared with the low strength material. Therefore, a high-strength steel sheet having excellent weld fatigue characteristics is required.

例えば、特許文献1には、重量%にて、C:0.005〜0.20%、Si:0.005〜1.0%、Mn:0.1〜2.5%、P:0.050〜0.10%、S:0.001〜0.010%、Al:0.005〜0.1%、N:0.0005〜0.0100%、Cu:0.10〜0.50%、Nb:0.01〜0.05%、Mo:0.1〜0.50%、Ni:0.05〜0.50%残部Fe及び不可避的不純物からなり、伸び率にして1.0%以上10.0%未満の歪が加えられている耐食性と溶接部疲労特性に優れた高強度熱延鋼板が開示されている。   For example, in Patent Document 1, C: 0.005 to 0.20%, Si: 0.005 to 1.0%, Mn: 0.1 to 2.5%, and P: 0. 050 to 0.10%, S: 0.001 to 0.010%, Al: 0.005 to 0.1%, N: 0.0005 to 0.0100%, Cu: 0.10 to 0.50% , Nb: 0.01 to 0.05%, Mo: 0.1 to 0.50%, Ni: 0.05 to 0.50%, balance Fe and unavoidable impurities, and an elongation of 1.0%. Disclosed is a high-strength hot-rolled steel sheet which is excellent in corrosion resistance and weld fatigue characteristics to which strain of less than 10.0% is added.

特許文献1開示の高強度熱延鋼板は、MoとNbの複合添加で、溶接部熱影響部の軟化を抑制し疲労特性の向上を図るものであるが、特許文献1には、溶接熱影響部の軟化抑制は示されているが、実際に、疲労特性が向上したか否かは明らかにされていない。また、特許文献1に、MoとNbの複合添加による集合組織の変化は記載されていない。   The high-strength hot-rolled steel sheet disclosed in Patent Document 1 is intended to suppress the softening of the heat-affected zone of the welded portion and improve the fatigue characteristics by the combined addition of Mo and Nb. Although it is shown that the softening of the part is suppressed, it has not been clarified whether or not the fatigue property is actually improved. Further, Patent Document 1 does not describe the change in texture due to the combined addition of Mo and Nb.

疲労特性を改善するためには、疲労亀裂の発生又は亀裂の進展を抑制する必要があるが、疲労亀裂伝播速度が低い厚鋼板として、特許文献2に、重量%で、0.015≦C≦0.20、0.05≦Si≦2.0、0.1≦Mn≦2.0、P≦0.05、S≦0.02を含有し、残部Fe及び不可避的不純物よりなり、X線で測定した板厚方向の(200)回折強度比が2.0〜15.0で、かつ、回復又は再結晶フェライト粒の面積率が15〜40%であることを特徴とする板厚方向の疲労き裂伝播速度が低い厚鋼板が開示されている。   In order to improve the fatigue characteristics, it is necessary to suppress the occurrence of fatigue cracks or the development of cracks, but as a thick steel plate with a low fatigue crack propagation rate, Patent Document 2 discloses that 0.015≦C≦% by weight. 0.20, 0.05 ≤ Si ≤ 2.0, 0.1 ≤ Mn ≤ 2.0, P ≤ 0.05, S ≤ 0.02, balance Fe and inevitable impurities, X-ray The (200) diffraction intensity ratio in the plate thickness direction measured in 1. is 2.0 to 15.0, and the area ratio of recovered or recrystallized ferrite grains is 15 to 40%. A steel plate with a low fatigue crack propagation rate is disclosed.

特許文献2開示の厚鋼板は、板厚方向の(200)回折強度比2.0〜15.0を特徴とするが、板厚表層部の結晶方位を規定したものではない。   The thick steel plate disclosed in Patent Document 2 is characterized by a (200) diffraction intensity ratio of 2.0 to 15.0 in the plate thickness direction, but does not specify the crystal orientation of the plate thickness surface layer portion.

特許文献3には、表層、内層、及び、裏層の合計3層からなる複層厚鋼板において、表層及び裏層が、重量%で、C:0.005〜0.15%、Si:0.01〜1.0%未満、Mn:0.2〜1.5%、P≦0.03%、S≦0.01%、Ceq≦0.24、残部Fe及び不可避的不純物よりなり、内層が、Ceq:0.30〜0.70を満足し、表層及び裏層の厚さがそれぞれ1.5〜10mm、表層及び裏層の合計厚さの鋼板全厚さに対する比が0.05〜0.30であることを特徴とする溶接部の疲労強度に優れた溶接構造用高張力複層厚鋼板が開示されている。   In Patent Document 3, in a multi-layer thick steel sheet composed of a total of three layers of a surface layer, an inner layer, and a back layer, the surface layer and the back layer are, by weight %, C: 0.005 to 0.15%, Si:0. 0.01 to less than 1.0%, Mn: 0.2 to 1.5%, P≦0.03%, S≦0.01%, Ceq≦0.24, balance Fe and inevitable impurities, and inner layer Satisfies Ceq: 0.30 to 0.70, the thickness of the surface layer and the back layer is 1.5 to 10 mm, and the ratio of the total thickness of the surface layer and the back layer to the total thickness of the steel sheet is 0.05 to. Disclosed is a high-strength multi-layer thick steel plate for welded structures, which is excellent in fatigue strength of the welded portion, which is 0.30.

特許文献3開示の溶接構造用高張力服装厚鋼板は、表裏層の成分組成、及び、表裏層の合計厚差が鋼板全厚差に対する比を特徴とし、表層のCeqを小さくし、表層での亀裂発生を抑制することを目的としているものであり、また、集合組織は規定されていない。   The high-strength clothing thick steel plate for welded structure disclosed in Patent Document 3 is characterized by the composition of the front and back layers and the ratio of the total thickness difference of the front and back layers to the total thickness difference of the steel plate. The purpose is to suppress the occurrence of cracks, and no texture is specified.

特開平05−195142号公報JP 05-195142 A 特開平08−199286号公報Japanese Unexamined Patent Publication No. 08-199286 特開平08−225885号公報Japanese Patent Laid-Open No. 08-225885

本発明は、従来鋼板の課題を踏まえ、高強度鋼板において、熱延条件を最適化して、熱延鋼板表層〜1/6厚位置に発達する剪断層の結晶方位を最適化するとともに、成分組成を最適化して、穴拡げ性を確保しつつ溶接部の疲労強度を著しく高めることを課題とし、該課題を解決する高強度鋼板とその製造方法を提供することを目的とする。   In view of the problems of conventional steel sheets, the present invention optimizes hot rolling conditions in a high-strength steel sheet, optimizes the crystal orientation of a shear fault that develops from the surface layer of the hot-rolled steel sheet to the 1/6th thick position, and the component composition. The present invention aims to provide a high-strength steel sheet and a method for manufacturing the same, which aims to significantly improve the fatigue strength of the welded portion while ensuring the hole expandability by solving the above problem.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、Nb及び/又はTiを含む成分系の鋼板において、成分組成と熱延条件を最適化すれば、穴拡げ性を確保しつつ、溶接部の疲労特性に優れたTS780MPa級以上の高強度熱延鋼板を得ることができることを知見した。   The present inventors diligently studied a method for solving the above problems. As a result, in the steel sheet of the composition system containing Nb and/or Ti, if the composition of the composition and the hot rolling conditions are optimized, it is possible to secure the hole expansibility and to obtain the high strength of TS780 MPa class or more excellent in the fatigue property of the welded portion. It was found that a hot-rolled steel sheet can be obtained.

即ち、本発明者らは、Nb及び/又はTiを含む鋼において発達し易い表層集合組織のなかで、溶接部の亀裂伝播を著しく促進する{110}<111>〜{110}<001>方位群をできるだけ抑制し、{211}<111>方位を増加することで、優れた溶接部疲労特性を得ることができることを新たに知見した。   That is, the inventors of the present invention have a {110}<111> to {110}<001> orientation that significantly promotes crack propagation in welds in a surface texture that easily develops in steel containing Nb and/or Ti. It was newly found that excellent weld fatigue characteristics can be obtained by suppressing the groups as much as possible and increasing the {211}<111> orientation.

本発明は、上記知見に基づいてなされたもので、その要旨は次の通りである。   The present invention has been made based on the above findings, and the summary thereof is as follows.

(1)成分組成が、質量%で、C:0.02%以上、0.15%以下、Si:0.01%以上、2.00%以下、Mn:0.50%以上、2.50%以下、P:0.001%以上、0.100%以下、S:0.0005%以上、0.050%以下、Al:0.01%以上、0.50%以下、N:0.0001%以上、0.010%以下、さらに、Ti:0.01%以上、0.14%以下、及び、Nb:0.005%以上、0.09%以下の1種又は2種を、下記式(1)及び(2)を満足する範囲で含み、残部が鉄及び不可避的不純物からなり、
最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比が3.5以下である
ことを特徴とする穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 ・・・(1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 ・・・(2)
[元素]:元素の質量%
(1) The composition of the components is% by mass, C: 0.02% or more, 0.15% or less, Si: 0.01% or more, 2.00% or less, Mn: 0.50% or more, 2.50. % Or less, P: 0.001% or more, 0.100% or less, S: 0.0005% or more, 0.050% or less, Al: 0.01% or more, 0.50% or less, N: 0.0001 % Or more and 0.010% or less, and further, Ti: 0.01% or more and 0.14% or less, and Nb: 0.005% or more and 0.09% or less, one or two types are represented by the following formulas. Including in a range satisfying (1) and (2), the balance consists of iron and inevitable impurities,
Random strength ratio of {110}<111> to {110}<001> orientation groups in the region from the outermost layer to the plate thickness 1/6 is 3.5 or less, and hole expansibility and weld fatigue. High-strength hot-rolled steel sheet with excellent properties.
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 (1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 (2)
[Element]:% by mass of element

(2)前記成分組成が、さらに、質量%で、B:0.0003%以上、0.005%以下、Mo:0.02%以上、0.50%以下、Cr:0.10%以上、2.00%以下、W:0.01%以上、2.00%以下、Cu:0.04%以上、2.00%以下、Ni:0.02%以上、1.00%以下、V:0.001%以上、0.10%以下の1種又は2種以上を含むことを特徴とする前記(1)に記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。   (2) The component composition is, in mass %, B: 0.0003% or more, 0.005% or less, Mo: 0.02% or more, 0.50% or less, Cr: 0.10% or more, 2.00% or less, W: 0.01% or more, 2.00% or less, Cu: 0.04% or more, 2.00% or less, Ni: 0.02% or more, 1.00% or less, V: The high-strength hot-rolled steel sheet having excellent hole expansibility and welded portion fatigue characteristics according to (1) above, containing one or more of 0.001% or more and 0.10% or less.

(3)前記成分組成が、さらに、質量%で、Ca、Mg、Zr、及び、REMの1種又は2種以上を、合計で0.0005%以上、0.050%以下含むことを特徴とする前記(1)又は(2)に記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。   (3) The component composition further contains, in mass%, one or more of Ca, Mg, Zr, and REM in a total amount of 0.0005% or more and 0.050% or less. A high-strength hot-rolled steel sheet having excellent hole expansibility and weld fatigue characteristics according to (1) or (2) above.

(4)前記最表層から板厚1/6までの領域における{211}<111>方位のランダム強度比が2.0以上であることを特徴とする前記(1)〜(3)のいずれかに記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。   (4) Any of (1) to (3) above, wherein the random intensity ratio of {211}<111> orientations in the region from the outermost layer to the plate thickness 1/6 is 2.0 or more. High-strength hot-rolled steel sheet with excellent hole expandability and weld fatigue properties described in.

(5)前記(1)〜(4)のいずれかに記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板を製造する製造方法であって、
(i)前記(1)〜(3)のいずれかに記載の成分組成を有する鋼片を、1150℃以上、1300℃以下に加熱して、熱間圧延に供し、最終パスでの形状比Lfと最終パスの1段前のパスでの形状比Lf-1の和が下記式(3)を満足するように、かつ、900℃以上の温度域で熱間圧延を終了し、
(ii)熱間圧延終了後、熱延鋼板を、(ii-1)10℃/秒以上の冷却速度で、600〜850℃の冷却停止温度まで冷却し、(ii-2)冷却停止温度で1〜10秒保持し、(ii-3)保持後、再度、10℃/秒以上の冷却速度で、700℃〜室温の巻取温度まで冷却して巻き取る
ことを特徴とする穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板の製造方法。
f+Lf-1≧8.0 ・・・(3)
f=√{Rf×(tin(f)−tout(f))}÷(2tout(f)+tin(f))/3
f:最終パスでの形状比
f:最終パスでのロール半径(mm)
in(f):最終パスでの入側板厚(mm)
out(f):最終パスでの出側板厚(mm)
f-1=√{Rf-1×(tin(f-1)−tout(f-1))}÷(2tout(f-1)+tin(f-1))/3
f-1:最終パスの1段前での形状比
f-1:最終パスの1段前でのロール半径(mm)
in(f-1):最終パスの1段前での入側板厚(mm)
out(f-1):最終パスの1段前での出側板厚(mm)
(5) A production method for producing a high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue characteristics according to any one of (1) to (4) above,
(I) A steel slab having the component composition according to any one of (1) to (3) above is heated to 1150° C. or higher and 1300° C. or lower, subjected to hot rolling, and the shape ratio L in the final pass. as the sum of the shape ratio L f-1 in the preceding stage of the path f and final pass satisfies the following formula (3), and terminates the hot rolling in a temperature range of above 900 ° C.,
(Ii) After completion of hot rolling, the hot-rolled steel sheet is cooled (ii-1) at a cooling rate of 10°C/sec or more to a cooling stop temperature of 600 to 850°C, and (ii-2) at a cooling stop temperature. Hold for 1 to 10 seconds, and after holding (ii-3), cool again at a cooling rate of 10° C./second or more to a winding temperature of 700° C. to room temperature, and wind up. A method for producing a high-strength hot-rolled steel sheet having excellent weld fatigue characteristics.
L f +L f-1 ≧8.0 (3)
L f =√{R f ×(t in (f)−t out (f))}÷(2t out (f)+t in (f))/3
L f : Shape ratio in final pass R f : Roll radius in final pass (mm)
t in (f): Inlet plate thickness (mm) at the final pass
t out (f): Output side plate thickness (mm) at the final pass
L f-1 =√{R f-1 ×(t in (f-1)−t out (f-1))}÷(2t out (f-1)+t in (f-1))/3
L f-1 : Shape ratio one step before the final pass R f-1 : Roll radius (mm) one step before the final pass
t in (f-1): Thickness of entrance side (mm) one step before the final pass
t out (f-1): Thickness of exit side one step before final pass (mm)

本発明によれば、穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板を提供することができる。   According to the present invention, it is possible to provide a high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue characteristics.

本発明の結晶方位を表示するφ2=45°断面の結晶方位分布関数(ODF)を示す。The crystal orientation distribution function (ODF) of the cross section of φ2=45° showing the crystal orientation of the present invention is shown. 平面曲げ疲労試験に供する試験片の形状を示す図である。It is a figure which shows the shape of the test piece used for a plane bending fatigue test.

本発明の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板(以下「本発明熱延鋼板」ということがある。)は、
成分組成が、質量%で、C:0.02%以上、0.15%以下、Si:0.01%以上、2.00%以下、Mn:0.50%以上、2.50%以下、P:0.001%以上、0.100%以下、S:0.0005%以上、0.050%以下、Al:0.01%以上、0.50%以下、N:0.0001%以上、0.010%以下、さらに、Ti:0.01%以上、0.14%以下、及び、Nb:0.005%以上、0.09%以下の1種又は2種を、下記式(1)及び(2)を満足する範囲で含み、残部が鉄及び不可避的不純物からなり、
最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比が3.5以下である
ことを特徴とする。
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 ・・・(1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 ・・・(2)
[元素]:元素の質量%
The high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue property of the present invention (hereinafter sometimes referred to as “hot-rolled steel sheet of the present invention”),
The composition is% by mass, C: 0.02% or more, 0.15% or less, Si: 0.01% or more, 2.00% or less, Mn: 0.50% or more, 2.50% or less, P: 0.001% or more, 0.100% or less, S: 0.0005% or more, 0.050% or less, Al: 0.01% or more, 0.50% or less, N: 0.0001% or more, 0.010% or less, further, Ti: 0.01% or more, 0.14% or less, and Nb: 0.005% or more, 0.09% or less, one or two, the following formula (1) And (2) are included in a range satisfying the condition, and the balance is iron and inevitable impurities,
The random intensity ratio of the {110}<111> to {110}<001> orientation groups in the region from the outermost layer to the plate thickness 1/6 is 3.5 or less.
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 (1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 (2)
[Element]:% by mass of element

本発明の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板の製造方法(以下「本発明製造方法」ということがある。)は、本発明熱延鋼板を製造する製造方法であって、
(i)本発明熱延鋼板の成分組成を有する鋼片を、1150℃以上、1300℃以下に加熱して、熱間圧延に供し、最終パスでの形状比Lfと最終パスの1段前のパスでの形状比Lf-1の和が下記式(3)を満足するように、かつ、900℃以上の温度域で熱間圧延を終了し、
(ii)熱間圧延終了後、熱延鋼板を、(ii-1)10℃/秒以上の冷却速度で、600〜850℃の冷却停止温度まで冷却し、(ii-2)冷却停止温度で1〜10秒保持し、(ii-3)保持後、再度、10℃/秒以上の冷却速度で、700℃〜室温の巻取温度まで冷却して巻き取る
ことを特徴とする。
f+Lf-1≧8.0 ・・・(3)
f=√{Rf×(tin(f)−tout(f))}÷(2tout(f)+tin(f))/3
f:最終パスでの形状比
f:最終パスでのロール半径(mm)
in(f):最終パスでの入側板厚(mm)
out(f):最終パスでの出側板厚(mm)
f-1=√{Rf-1×(tin(f-1)−tout(f-1))}÷(2tout(f-1)+tin(f-1))/3
f-1:最終パスの1段前での形状比
f-1:最終パスの1段前でのロール半径(mm)
in(f-1):最終パスの1段前での入側板厚(mm)
out(f-1):最終パスの1段前での出側板厚(mm)
The method for producing a high-strength hot-rolled steel sheet excellent in hole expansibility and weld fatigue property of the present invention (hereinafter sometimes referred to as “the present invention production method”) is a production method for producing the hot-rolled steel sheet of the present invention. hand,
(I) A steel slab having the component composition of the hot rolled steel sheet of the present invention is heated to 1150° C. or higher and 1300° C. or lower and subjected to hot rolling, and the shape ratio L f in the final pass and one step before the final pass. Hot rolling is completed in a temperature range of 900° C. or higher so that the sum of the shape ratios L f-1 in
(Ii) After completion of hot rolling, the hot-rolled steel sheet is cooled (ii-1) at a cooling rate of 10°C/sec or more to a cooling stop temperature of 600 to 850°C, and (ii-2) at a cooling stop temperature. It is characterized in that it is held for 1 to 10 seconds, and after (ii-3) holding, it is again cooled at a cooling rate of 10° C./second or more to a winding temperature of 700° C. to room temperature and wound up.
L f +L f-1 ≧8.0 (3)
L f =√{R f ×(t in (f)−t out (f))}÷(2t out (f)+t in (f))/3
L f : Shape ratio in final pass R f : Roll radius in final pass (mm)
t in (f): Inlet plate thickness (mm) at the final pass
t out (f): Output side plate thickness (mm) at the final pass
L f-1 =√{R f-1 ×(t in (f-1)−t out (f-1))}÷(2t out (f-1)+t in (f-1))/3
L f-1 : Shape ratio one step before the final pass R f-1 : Roll radius (mm) one step before the final pass
t in (f-1): Thickness of entrance side (mm) one step before the final pass
t out (f-1): Thickness of exit side one step before final pass (mm)

以下、本発明熱延鋼板と本発明製造方法について説明する。   The hot rolled steel sheet of the present invention and the manufacturing method of the present invention will be described below.

まず、本発明熱延鋼板の成分組成の限定理由について説明する。以下、成分組成に係る「%」は「質量%」を意味する。   First, the reasons for limiting the component composition of the hot-rolled steel sheet of the present invention will be described. Hereinafter, “%” relating to the component composition means “mass %”.

成分組成
C:0.02%以上、0.15%以下
Cは、強度の向上に有効な元素である。Cが0.02%未満であると、所要の強度を確保できないので、Cは0.02%以上とする。好ましくは0.03%以上、より好ましくは0.05%以上である。
Component composition C: 0.02% or more and 0.15% or less C is an element effective in improving strength. If C is less than 0.02%, the required strength cannot be secured, so C is set to 0.02% or more. It is preferably 0.03% or more, more preferably 0.05% or more.

一方、Cが0.15%を超えると、強度が上昇しすぎて、延性が低下するとともに、溶接性が低下するので、Cは0.15%以下とする。好ましくは0.12%以下、より好ましくは0.09%以下である。   On the other hand, when C exceeds 0.15%, the strength is excessively increased, the ductility is reduced, and the weldability is reduced, so C is set to 0.15% or less. It is preferably 0.12% or less, more preferably 0.09% or less.

Si:0.01%以上、2.00%以下
Siは、強度の向上に寄与する元素である。Siが0.01%未満であると、添加効果が十分に得られないので、Siは0.01%以上とする。好ましくは、溶接性の観点から、0.05%以上であり、より好ましくは0.10%以上である。
Si: 0.01% or more and 2.00% or less Si is an element that contributes to the improvement of strength. If Si is less than 0.01%, the effect of addition is not sufficiently obtained, so Si is set to 0.01% or more. From the viewpoint of weldability, the content is preferably 0.05% or more, more preferably 0.10% or more.

一方、Siが2.00%を超えると、加工性が低下し、また、表面性状が低下するので、Siは2.00%以下とする。好ましくは1.80%以下、より好ましくは1.50%以下である。   On the other hand, if Si exceeds 2.00%, the workability is deteriorated and the surface properties are deteriorated, so Si is 2.00% or less. It is preferably 1.80% or less, more preferably 1.50% or less.

Mn:0.50%以上、2.50%以下
Mnは、焼入れ性を高め、強度の向上に寄与する元素である。Mnが0.50%未満であると、添加効果が十分に得られないので、Mnは0.50%以上とする。好ましくは1.00%以上、より好ましくは1.30%以上である。
Mn: 0.50% or more and 2.50% or less Mn is an element that enhances hardenability and contributes to improvement of strength. If Mn is less than 0.50%, the effect of addition cannot be sufficiently obtained, so Mn is set to 0.50% or more. It is preferably 1.00% or more, more preferably 1.30% or more.

一方、Mnが2.50%を超えると、溶接割れ感受性が上昇するので、Mnは2.50%以下とする。好ましくは2.20%以下、より好ましくは2.00%以下である。   On the other hand, if Mn exceeds 2.50%, weld cracking susceptibility increases, so Mn is set to 2.50% or less. It is preferably 2.20% or less, more preferably 2.00% or less.

P:0.001%以上、0.100%以下
Pは、強度の向上に寄与する元素である。Pが0.001%未満であると、添加効果が十分に得られないので、Pは0.001%以上とする。好ましくは0.005%以上、より好ましくは0.010%以上である。
P: 0.001% or more and 0.100% or less P is an element that contributes to the improvement of strength. If P is less than 0.001%, the effect of addition is not sufficiently obtained, so P is made 0.001% or more. It is preferably 0.005% or more, more preferably 0.010% or more.

一方、Pが0.100%を超えると、粒界へ偏析し、局部延性、溶接性、及び、靱性を阻害するので、Pは0.100%以下とする。好ましくは0.070%以下、より好ましくは0.050%以下である。   On the other hand, if P exceeds 0.100%, it segregates to the grain boundaries and inhibits local ductility, weldability, and toughness, so P is made 0.100% or less. It is preferably 0.070% or less, more preferably 0.050% or less.

S:0.0005%以上、0.050%以下
Sは、MnSを生成し、局部延性、溶接性、及び、靭性を阻害する元素である。Sを0.0005%未満に低減すると、製鋼コストが大幅に上昇するので、Sは0.0005%以上とする。好ましくは0.0010%以上、より好ましくは0.0050%以上である。
S: 0.0005% or more and 0.050% or less S is an element that produces MnS and inhibits local ductility, weldability, and toughness. If S is reduced to less than 0.0005%, the steelmaking cost rises significantly, so S is made 0.0005% or more. It is preferably 0.0010% or more, more preferably 0.0050% or more.

一方、Sが0.050%を超えると、局部延性、溶接性、及び、靭性が著しく低下するので、Sは0.050%以下とする。好ましくは0.030%以下、より好ましくは0.010以下である。   On the other hand, if S exceeds 0.050%, the local ductility, weldability, and toughness deteriorate significantly, so S is set to 0.050% or less. It is preferably 0.030% or less, more preferably 0.010 or less.

Al:0.01%以上、0.50%以下
Alは、脱酸材として機能する元素である。Alが0.01%未満であると、添加効果が十分に得られないので、Alは0.01%以上とする。好ましくは0.05%以上、より好ましくは0.08%以上である。
Al: 0.01% or more and 0.50% or less Al is an element that functions as a deoxidizer. If Al is less than 0.01%, the effect of addition is not sufficiently obtained, so Al is made 0.01% or more. It is preferably at least 0.05%, more preferably at least 0.08%.

一方、Alが0.50%を超えると、鋼が脆化するとともに、表層の{110}<111>〜{110}<001>方位群の発達を促進して、溶接部の疲労強度を阻害するので、Alは0.50%以下とする。好ましくは0.30%以下、より好ましくは0.20%以下である。   On the other hand, when Al exceeds 0.50%, the steel becomes brittle and promotes the development of the {110}<111> to {110}<001> orientation groups of the surface layer to hinder the fatigue strength of the welded portion. Therefore, Al is 0.50% or less. It is preferably 0.30% or less, more preferably 0.20% or less.

N:0.0001%以上、0.010%以下
Nは、窒化物を形成し、延性や穴拡げ性を阻害する元素であり、また、溶接時、ブローホール発生の原因になり、溶接部疲労特性を阻害する元素である。
N: 0.0001% or more and 0.010% or less N is an element that forms a nitride and inhibits ductility and hole expansibility, and also causes blowholes during welding, resulting in weld fatigue. It is an element that impedes the properties.

Nを0.0001%未満に低減すると、製鋼コストが大幅に上昇するので、Nは0.0001%以上とする。好ましくは0.0015%以上、より好ましくは0.0035%以上である。   If N is reduced to less than 0.0001%, the steelmaking cost will increase significantly, so N is made 0.0001% or more. It is preferably 0.0015% or more, more preferably 0.0035% or more.

一方、Nが0.010%を超えると、延性、穴拡げ性、及び、溶接部疲労特性が著しく低下するので、Nは0.010%以下とする。好ましくは0.008%以下、より好ましくは0.006%以下である。   On the other hand, if N exceeds 0.010%, ductility, hole expandability, and weld fatigue characteristics are significantly reduced, so N is made 0.010% or less. It is preferably 0.008% or less, more preferably 0.006% or less.

Ti:0.01%以上、0.14%以下
Tiは、TiCとして、冷却中又は巻取り中、フェライト又はベイナイトに析出し、強度の向上に寄与する元素である。Tiが0.01%未満であると、オーステナイト中にTiNとして消費され、析出強化効果が十分に得られないので、Tiは0.01%以上とする。好ましくは0.03%以上、より好ましくは0.05%以上である。
Ti: 0.01% or more and 0.14% or less Ti is an element that, as TiC, precipitates in ferrite or bainite during cooling or winding and contributes to the improvement of strength. If Ti is less than 0.01%, TiN is consumed in austenite, and a sufficient precipitation strengthening effect cannot be obtained. Therefore, Ti is set to 0.01% or more. It is preferably 0.03% or more, more preferably 0.05% or more.

一方、Tiが0.14%を超えると、靭性や溶接性が低下するので、Tiは0.14%以下とする。好ましくは0.12%以下、より好ましくは0.10%以下である。   On the other hand, if the Ti content exceeds 0.14%, the toughness and weldability deteriorate, so the Ti content is set to 0.14% or less. It is preferably 0.12% or less, more preferably 0.10% or less.

Nb:0.005%以上、0.09%以下
Nbは、Tiと同様に、NbCとして析出し、強度の向上に寄与するとともに、結晶粒を微細化し、延性と穴拡げ性の向上に寄与する元素である。Nbが0.005%未満であると、添加効果が十分に得られないので、Nbは0.005%以上とする。好ましくは0.008%以上、より好ましくは0.010%以上である。
Nb: 0.005% or more and 0.09% or less Nb, like Ti, precipitates as NbC and contributes to the improvement of strength, and also contributes to the improvement of ductility and hole expandability by refining crystal grains. It is an element. If Nb is less than 0.005%, the effect of addition is not sufficiently obtained, so Nb is set to 0.005% or more. It is preferably 0.008% or more, more preferably 0.010% or more.

一方、Nbが0.09%を超えると、靭性や延性が低下するので、Nbは0.09%以下とする。好ましくは0.07%以下、より好ましくは0.05%以下である。   On the other hand, if Nb exceeds 0.09%, the toughness and ductility decrease, so Nb is set to 0.09% or less. It is preferably 0.07% or less, more preferably 0.05% or less.

本発明熱延鋼板の成分組成は、鋼板特性の改善のため、(a)B、Mo、Cr、W、Cu、Ni、Vの1種又は2種以上、及び/又は、(b) Ca、Mg、Zr、REM(希土類元素)の1種又は2種以上を含んでもよい。   The composition of the hot-rolled steel sheet of the present invention is (a) one or more of B, Mo, Cr, W, Cu, Ni and V, and/or (b) Ca for improving steel sheet properties. You may contain 1 type(s) or 2 or more types of Mg, Zr, and REM (rare earth element).

(a)群元素
B:0.0003%以上、0.005%以下
Bは、焼入れ性を高め、強度の向上に寄与する元素である。Bが0.0003%未満であると、添加効果が十分に得られないので、Bは0.0003%以上が好ましい。より好ましくは0.0005%以上である。
(a) Group element B: 0.0003% or more and 0.005% or less B is an element that enhances hardenability and contributes to improvement of strength. If B is less than 0.0003%, the effect of addition cannot be sufficiently obtained, so B is preferably 0.0003% or more. More preferably, it is 0.0005% or more.

一方、Bが0.005%を超えると、添加効果が飽和する一方、靭性が劣化するので、Bは0.005%以下が好ましい。より好ましくは0.003%以下である。   On the other hand, if B exceeds 0.005%, the effect of addition is saturated while the toughness deteriorates, so B is preferably 0.005% or less. It is more preferably 0.003% or less.

Mo:0.02%以上、0.50%以下
Cr:0.10%以上、2.00%以下
W :0.01%以上、2.00%以下
Mo、Cr、Wは、いずれも、焼入れ性を高めるとともに、炭化物を形成して、強度の向上に寄与する元素である。Moが0.02%未満、Crが0.10%未満、又は、Wが0.01%未満であると、添加効果が十分に得られないので、Moは0.02%以上、Crは0.10%以上、Wは0.01%以上が好ましい。より好ましくは、Moは0.05%以上、Crは0.13%以上、Wは0.05%以上である。
Mo: 0.02% or more, 0.50% or less Cr: 0.10% or more, 2.00% or less W: 0.01% or more, 2.00% or less Mo, Cr, W are all quenched. It is an element that enhances the property and forms carbide to contribute to the improvement of strength. If Mo is less than 0.02%, Cr is less than 0.10%, or W is less than 0.01%, the effect of addition is not sufficiently obtained, so Mo is 0.02% or more and Cr is 0%. 10% or more and W is preferably 0.01% or more. More preferably, Mo is 0.05% or more, Cr is 0.13% or more, and W is 0.05% or more.

一方、Moが0.50%を超え、Crが2.00%を超え、又は、Wが2.00%を超えると、延性や溶接性が低下するので、Moは0.50%以下、Crは2.00%以下、Wは2.00%以下が好ましい。より好ましくは、Moは0.30%以下、Crは1.50%以下、Wは1.50%以下である。   On the other hand, when Mo exceeds 0.50% and Cr exceeds 2.00% or W exceeds 2.00%, ductility and weldability deteriorate, so Mo is 0.50% or less and Cr Is preferably 2.00% or less and W is preferably 2.00% or less. More preferably, Mo is 0.30% or less, Cr is 1.50% or less, and W is 1.50% or less.

Cu:0.04%以上、2.00%以下
Cuは、強度の向上に寄与するとともに、耐食性やスケールの剥離性を高める元素である。Cuが0.04%未満では、添加効果が十分に得られないので、Cuは0.04%以上が好ましい。より好ましくは0.10%以上である。一方、Cuが2.00%を超えると、表面疵が発生するので、Cuは2.00%以下が好ましい。より好ましくは1.50%以下である。
Cu: 0.04% or more and 2.00% or less Cu is an element that contributes to the improvement of strength and enhances corrosion resistance and scale releasability. If Cu is less than 0.04%, the effect of addition is not sufficiently obtained, so Cu is preferably 0.04% or more. It is more preferably 0.10% or more. On the other hand, when Cu exceeds 2.00%, surface defects occur, so Cu is preferably 2.00% or less. It is more preferably 1.50% or less.

Ni:0.02%以上、1.00%以下
Niは、強度の向上と、靭性の向上に寄与する元素である。Niが0.02%未満であると、添加効果が十分に得られないので、Niは0.02%以上が好ましい。より好ましくは0.10%以上である。一方、Niが1.00%を超えると、延性が低下するので、Niは1.00%以下が好ましい。より好ましくは0.60%以下である。
Ni: 0.02% or more and 1.00% or less Ni is an element that contributes to improvement of strength and toughness. If Ni is less than 0.02%, the effect of addition is not sufficiently obtained, so Ni is preferably 0.02% or more. It is more preferably 0.10% or more. On the other hand, if Ni exceeds 1.00%, the ductility decreases, so Ni is preferably 1.00% or less. It is more preferably 0.60% or less.

V:0.001%以上、0.10%以下
Vは、強度の向上に寄与する元素である。Vが0.001%未満では、添加効果が十分に得られないので、Vは0.001%以上が好ましい。より好ましくは0.010%以上である。一方、Vが0.10%を超えると、靱性が低下するので、Vは0.10%以下が好ましい。より好ましくは0.07%以下である。
V: 0.001% or more and 0.10% or less V is an element that contributes to the improvement of strength. If V is less than 0.001%, the effect of addition is not sufficiently obtained, so V is preferably 0.001% or more. It is more preferably 0.010% or more. On the other hand, if V exceeds 0.10%, toughness decreases, so V is preferably 0.10% or less. It is more preferably 0.07% or less.

(b)群元素
Ca、Mg、Zr、及び、REMの1種又は2種以上:合計で0.0005%以上、0.050%以下
Ca、Mg、Zr、及び、REMは、硫化物や酸化物の形状を制御して、靭性の向上に寄与する元素である。
(b) Group element Ca, Mg, Zr, and one or more of REM: 0.0005% or more and 0.050% or less in total Ca, Mg, Zr, and REM are sulfides or oxides. It is an element that controls the shape of the material and contributes to the improvement of toughness.

Ca、Mg、Zr、及び、REMの1種又は2種以上の合計が0.0005%未満であると、添加効果が十分に得られないので、Ca、Mg、Zr、及び、REMの1種又は2種以上の合計は0.0005%以上が好ましい。より好ましくは0.0010%以上である。   If the total content of one or more of Ca, Mg, Zr, and REM is less than 0.0005%, the effect of addition is not sufficiently obtained, so one of Ca, Mg, Zr, and REM is used. Alternatively, the total of two or more is preferably 0.0005% or more. More preferably, it is 0.0010% or more.

一方、Ca、Mg、Zr、及び、REMの1種又は2種以上の合計が0.050%を超えると、加工性が低下するので、Ca、Mg、Zr、及び、REMの1種又は2種以上の合計は0.050%以下が好ましい。より好ましくは0.030%以下である。   On the other hand, if the sum of one or more of Ca, Mg, Zr, and REM exceeds 0.050%, the workability decreases, so one or two of Ca, Mg, Zr, and REM are used. The total of seeds or more is preferably 0.050% or less. It is more preferably 0.030% or less.

本発明熱延鋼板の成分組成において、以上の元素を除く残部は、鉄及び不可避的不純物である。不可避的不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入し、本発明熱延鋼板の特性を阻害しない範囲で残存する元素(例えば、Sn、As等)である。   In the composition of the hot rolled steel sheet of the present invention, the balance excluding the above elements is iron and inevitable impurities. The unavoidable impurities are elements (for example, Sn, As, etc.) that are inevitably mixed from the steel raw material and/or in the steelmaking process and remain within the range that does not impair the characteristics of the hot-rolled steel sheet of the present invention.

次に、本発明熱延鋼板の成分組成が満足する必要がある下記式(1)及び(2)について説明する。   Next, formulas (1) and (2) below, which are required to satisfy the composition of the hot-rolled steel sheet of the present invention, will be described.

65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 ・・・(1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 ・・・(2)
[元素]:元素の質量%
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 (1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 (2)
[Element]:% by mass of element

上記式(1)
上記式(1)の「315×[C]+40×[Mn]+11×[Si]−30×[Al]+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]+5×[Mo])」(以下「指標X」ということがある。)は、強度の向上に寄与する各元素の、強度向上に寄与する程度(寄与度)を総合的に評価して、本発明熱延鋼板において、母材強度とアーク溶接部の疲労強度を両立させるために必要な成分範囲を示す指標である。
Formula (1) above
“315×[C]+40×[Mn]+11×[Si]−30×[Al]+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu] in the above formula (1). “+5×[Mo])” (hereinafter sometimes referred to as “index X”) is a value obtained by comprehensively evaluating the degree (contribution degree) of each element contributing to the strength improvement, and contributing to the strength improvement. In the hot rolled steel sheet of the invention, it is an index showing the range of components necessary for making the base material strength and the fatigue strength of the arc welded portion compatible with each other.

指標Xが65未満であると、Ti及びNbによる析出強化を活用しても、780MPa以上の強度を確保することが困難となるので、指標Xは65以上とする。好ましくは75以上、より好ましくは85以上である。   When the index X is less than 65, it is difficult to secure a strength of 780 MPa or more even if the precipitation strengthening by Ti and Nb is utilized, so the index X is set to 65 or more. It is preferably 75 or more, more preferably 85 or more.

一方、指標Xが120を超えると、アーク溶接後の溶接熱影響部の組織が劣化し、表層部の集合組織が最適化されていても、溶接部の疲労強度が低下するので、指標Xは150以下とする。好ましくは130以下、より好ましくは110以下である。   On the other hand, when the index X exceeds 120, the structure of the heat-affected zone after arc welding deteriorates, and even if the texture of the surface layer part is optimized, the fatigue strength of the weld part decreases, so the index X is It should be 150 or less. It is preferably 130 or less, more preferably 110 or less.

上記式(2)
上記式(2)の「0.1×[Mn]+9×[Mo]+2×[Al]」(以下「指標Y」ということがある。)は、板厚表層部の{110}<111>〜{110}<001>方位群の発達を促進し、溶接部疲労特性を阻害する元素の、阻害程度を総合的に評価して、本発明熱延鋼板において、所要の溶接部疲労特性を確保する指標である。
Formula (2) above
“0.1×[Mn]+9×[Mo]+2×[Al]” (hereinafter sometimes referred to as “index Y”) in the above formula (2) is {110}<111> of the plate thickness surface layer portion. ~ {110}<001> Orientation group is promoted and the degree of inhibition of elements that inhibit weld fatigue characteristics is comprehensively evaluated to secure required weld fatigue characteristics in the hot-rolled steel sheet of the present invention. It is an index to do.

指標Yが1.1を超えると、板厚表層部の{110}<111>〜{110}<001>方位群が強く発達し、{112}<111>方位が弱くなり、溶接部疲労強度が低下するので、指標Yは1.1以下とする。好ましくは1.0以下、より好ましくは0.9以下である。指標Yの下限は、Mn、Al、及び、Moの下限から定まるので、特に限定しない。   When the index Y exceeds 1.1, the {110}<111> to {110}<001> orientation groups of the plate thickness surface layer portion are strongly developed, the {112}<111> orientation is weakened, and the weld portion fatigue strength is increased. Therefore, the index Y is set to 1.1 or less. It is preferably 1.0 or less, more preferably 0.9 or less. The lower limit of the index Y is determined from the lower limits of Mn, Al, and Mo, and is not particularly limited.

Mn、Al、及び/又は、Moが、表層の集合組織の形成に影響を及ぼすメカニズムは明確になっていないが、これらの元素が、圧延中の剪断変形に伴う結晶回転に影響を及ぼし、その影響で、二つの方位群のバランスが変化すると考えられる。この観点から、指標Yは、前述のように、好ましくは1.0以下、より好ましくは0.9以下である。   Although the mechanism by which Mn, Al, and/or Mo influences the formation of the texture of the surface layer is not clear, these elements influence the crystal rotation accompanying shear deformation during rolling, It is considered that the balance of the two bearing groups changes due to the influence. From this viewpoint, the index Y is preferably 1.0 or less, and more preferably 0.9 or less, as described above.

次に、最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比について説明する。   Next, the random intensity ratio of the {110}<111> to {110}<001> orientation groups in the region from the outermost layer to the plate thickness 1/6 will be described.

最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比:3.5以下
溶接部の疲労強度は、溶接前の母材の結晶方位によっても変化する。Nb、Ti、B等を含有する鋼板においては、最表層から板厚1/6の領域において、未再結晶剪断・変態集合組織が発達し、{110}<111>〜{110}<001>方位群が強くなる。
Random strength ratio of {110}<111> to {110}<001> orientation groups in the region from the outermost layer to the plate thickness 1/6: 3.5 or less The fatigue strength of the weld is the crystal of the base metal before welding. It also changes depending on the bearing. In a steel sheet containing Nb, Ti, B, etc., a non-recrystallized shearing/transformation texture develops in the region from the outermost layer to the sheet thickness 1/6, and {110}<111> to {110}<001>. The direction group becomes stronger.

この方位群は、壁開面である{100}面が板厚方向に垂直に向いていて、この{100}面が板厚方向に垂直に向く結晶粒が増えると、脆性的な破壊が起きた際、板厚方向の亀裂が一気に進行する。   In this azimuth group, the {100} plane, which is an open wall, is oriented perpendicularly to the thickness direction, and when the number of crystal grains whose {100} plane is oriented perpendicularly to the thickness direction increases, brittle fracture occurs. At this time, cracks in the plate thickness direction progress at once.

最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比が3.5を超えると、{100}面が板厚方向に垂直に向く結晶粒が増え、脆性破壊の危険性が高まるので、最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比は3.5以下とする。好ましくは3.3以下、より好ましくは3.1以下である。   When the random intensity ratio of {110}<111> to {110}<001> orientation groups in the region from the outermost layer to the plate thickness 1/6 exceeds 3.5, the {100} plane becomes perpendicular to the plate thickness direction. Since the number of facing crystal grains increases and the risk of brittle fracture increases, the random strength ratio of the {110}<111> to {110}<001> orientation groups in the region from the outermost layer to the plate thickness 1/6 is 3.5. Below. It is preferably 3.3 or less, more preferably 3.1 or less.

上記{110}<111>〜{110}<001>方位群のランダム強度比は、成分組成、熱延条件、熱延後の冷却条件に依るので、下限は特に定めないが、定義上は0を含む。   The random strength ratio of the {110}<111> to {110}<001> orientation groups depends on the component composition, hot rolling conditions, and cooling conditions after hot rolling. Therefore, the lower limit is not specified, but it is 0 by definition. including.

また、上記{110}<111>〜{110}<001>方位群と同様に、未再結晶剪断・変態集合組織の主方位である{211}<111>方位は、疲労強度の向上に寄与する方位である。それ故、最表層から板厚1/6までの領域における{211}<111>方位のランダム強度比は2.0以上が好ましい。より好ましくは2.5以上である。   Further, similar to the {110}<111> to {110}<001> orientation group, the {211}<111> orientation, which is the main orientation of the unrecrystallized shear/transformation texture, contributes to the improvement of fatigue strength. It is the direction to do. Therefore, the random intensity ratio of {211}<111> orientation in the region from the outermost layer to the plate thickness 1/6 is preferably 2.0 or more. It is more preferably 2.5 or more.

上記{211}<111>方位のランダム強度比は、成分組成、熱延条件、熱延後の冷却条件に依るので、上限は特に定めないが、4.0以上で特段の効果が得られないので、4.0が実質的な上限である。   The random strength ratio of the {211}<111> orientation depends on the component composition, hot rolling conditions, and cooling conditions after hot rolling, so the upper limit is not specified, but no particular effect is obtained at 4.0 or higher. Therefore, 4.0 is a practical upper limit.

{100}〜{111}<011>方位群のランダム強度比、及び、{211}<111>方位のランダム強度比は、EBSD(Electron Back Scattering Diffraction)法で測定した方位データを、球面調和関数を用いて計算して算出した、3次元集合組織を表示する結晶方位分布関数(Orientation Distribution Function[ODF])から求めることができる。   The random intensity ratios of the {100} to {111}<011> orientation groups and the random intensity ratios of the {211}<111> orientations are obtained by using azimuth data measured by an EBSD (Electron Back Scattering Diffraction) method as a spherical harmonic function. It can be obtained from a crystal orientation distribution function (Orientation Distribution Function [ODF]) displaying a three-dimensional texture.

図1に、本発明の結晶方位を表示するφ2=45°断面の結晶方位分布関数(ODF)を示す。{110}<111>〜{110}<001>方位群は、図1のΦ=90°の軸上の黒点で示すように、厳密には、Φ=90°、φ1=35.26〜90°の範囲を指す。   FIG. 1 shows a crystal orientation distribution function (ODF) of a φ2=45° cross section showing the crystal orientation of the present invention. Strictly speaking, the {110}<111> to {110}<001> azimuth groups are Φ=90° and Φ1=35.26 to 90, as indicated by the black dots on the axis of Φ=90° in FIG. Refers to the range of °.

しかし、試験片加工や試料のセッティングに起因する測定誤差があるため、{110}<111>〜{110}<001>方位群のランダム強度比の最大値は、図1中のハッチング部で示す、Φ=85〜90°,φ1=35〜90°の範囲内での最大のランダム強度比とする。   However, since there is a measurement error due to the processing of the test piece and the setting of the sample, the maximum value of the random intensity ratio of the {110}<111> to {110}<001> orientation groups is shown by the hatched portion in FIG. , Φ=85 to 90°, φ1=35 to 90°, the maximum random intensity ratio.

また、3次元集合組織のφ2=45°の断面において、{112}<111>方位は、図1に示す黒点を中心とする、Φ=30〜40°、φ1=85〜90°の範囲のランダム強度比の最大値を、上記方位のランダム強度比とする。   In the φ2=45° cross section of the three-dimensional texture, the {112}<111> orientation is in the range of Φ=30 to 40° and φ1=85 to 90° with the black dot shown in FIG. 1 as the center. The maximum value of the random intensity ratio is defined as the random intensity ratio of the above orientation.

結晶方位は、通常、板面に垂直な方位を[hkl]又は{hkl}で表示し、圧延方向に平行な方位を(uvw)又は<uvw>で表示する。{hkl}、<uvw>は、等価な面の総称であり、[hkl]、(uvw)は、個々の結晶面を指す。即ち、本発明熱延鋼板では、bcc構造を対象としているので、例えば、(111)、(−111)、(1−11)、(11−1)、(−1−11)、(−11−1)、(1−1−1)、(−1−1−1)は等価な面であり、区別がつかない。このような場合、これらの方位を総称して{111}と称する。   Regarding the crystal orientation, the orientation perpendicular to the plate surface is usually represented by [hkl] or {hkl}, and the orientation parallel to the rolling direction is represented by (uvw) or <uvw>. {Hkl} and <uvw> are generic terms for equivalent planes, and [hkl] and (uvw) refer to individual crystal planes. That is, since the hot rolled steel sheet of the present invention is targeted for the bcc structure, for example, (111), (-111), (1-11), (11-1), (-1-11), (-11) -1), (1-1-1), and (-1-1-1) are equivalent surfaces and are indistinguishable. In such a case, these orientations are collectively referred to as {111}.

ODFは、対称性の低い結晶構造の方位表示にも用いられるので、通常、φ1=0〜360°、Φ=0〜180°、φ2=0〜360°で表示され、個々の方位が、[hkl](uvw)で表示される。しかし、本発明熱延鋼板では、対称性の高いbcc結晶構造を対象としているので、Φとφ2は、0〜90°の範囲で表示する。   Since the ODF is also used to display the orientation of a crystal structure having low symmetry, it is usually displayed with φ1=0 to 360°, φ=0 to 180°, φ2=0 to 360°, and each orientation is [ hkl](uvw). However, since the hot-rolled steel sheet of the present invention is targeted for the bcc crystal structure having high symmetry, Φ and φ2 are displayed in the range of 0 to 90°.

φ1は、計算を行う際、変形による対称性の変化を考慮するか否かで、その範囲が変化するが、本発明熱延鋼では、対称性(orthotropic)を考慮して計算を行い、φ1=0〜90°で表示する。即ち、φ1=0〜360°での同一方位の平均値を、0〜90°のODF上に表示する。この場合、[hkl](uvw)と{hkl}<uvw>は同義である。例えば、図1に示すφ2=45°断面におけるODFの、(110)[1−11]のランダム強度比は、{110}<111>方位のランダム強度比である。   The range of φ1 changes depending on whether or not the change in symmetry due to deformation is taken into consideration when performing the calculation. In the hot rolled steel of the present invention, the calculation is performed in consideration of the symmetry (orthotropic), and φ1 =0 to 90° is displayed. That is, the average value of the same azimuth at φ1=0 to 360° is displayed on the ODF of 0 to 90°. In this case, [hkl](uvw) and {hkl}<uvw> are synonymous. For example, the (110)[1-11] random intensity ratio of the ODF in the φ2=45° cross section shown in FIG. 1 is the {110}<111> orientation random intensity ratio.

試験片は、板厚断面が研磨面となるように準備する。研磨方法は、特定の研磨方法に限定されない。例えば、コロイダルシリカ等によって平滑な金属面となるように研磨するか、又は、機械研削後、さらに電解研磨を行う。イオンミリングによる研削など、表面にできるだけ歪みが残らない研磨方法が好ましい。   The test piece is prepared so that the plate thickness cross section becomes the polished surface. The polishing method is not limited to a specific polishing method. For example, it is polished with colloidal silica or the like so as to have a smooth metal surface, or after mechanical grinding, electrolytic polishing is further performed. It is preferable to use a polishing method such as grinding by ion milling that causes as little distortion as possible on the surface.

測定範囲は、板厚最表面から、板厚1/6厚の位置までとし、両面測定したデータを合わせて評価する。板幅方向においては、500μm以上の広い領域を測定する。測定ピッチは、特に設定しないが、データ数が4000以上になるように、測定ピッチを設定するのが好ましい。   The measurement range is from the outermost surface of the plate thickness to the position where the plate thickness is ⅙, and the data measured on both sides are evaluated together. In the plate width direction, a wide area of 500 μm or more is measured. The measurement pitch is not particularly set, but it is preferable to set the measurement pitch so that the number of data is 4000 or more.

次に、本発明製造方法について説明する。   Next, the manufacturing method of the present invention will be described.

本発明製造方法は、
(i)本発明熱延鋼板の成分組成を有する鋼片を、1150℃以上、1300℃以下に加熱して、熱間圧延に供し、最終パスでの形状比Lfと最終パスの1段前のパスでの形状比Lf-1の和が下記式(3)を満足するように、かつ、900℃以上の温度域で熱間圧延を終了し、
(ii)熱間圧延終了後、熱延鋼板を、(ii-1)10℃/秒以上の冷却速度で、600〜850℃の冷却停止温度まで冷却し、(ii-2)冷却停止温度で1〜10秒保持し、(ii-3)保持後、再度、10℃/秒以上の冷却速度で、700℃〜室温の巻取温度まで冷却して巻き取る
ことを特徴とする。
f+Lf-1≧8.0 ・・・(3)
f=√{Rf×(tin(f)−tout(f))}÷(2tout(f)+tin(f))/3
f:最終パスでの形状比
f:最終パスでのロール半径(mm)
in(f):最終パスでの入側板厚(mm)
out(f):最終パスでの出側板厚(mm)
f-1=√{Rf-1×(tin(f-1)−tout(f-1))}÷(2tout(f-1)+tin(f-1))/3
f-1:最終パスの1段前での形状比
f-1:最終パスの1段前でのロール半径(mm)
in(f-1):最終パスの1段前での入側板厚(mm)
out(f-1):最終パスの1段前での出側板厚(mm)
The manufacturing method of the present invention is
(I) A steel slab having the component composition of the hot rolled steel sheet of the present invention is heated to 1150° C. or higher and 1300° C. or lower and subjected to hot rolling, and the shape ratio L f in the final pass and one step before the final pass. Hot rolling is completed in a temperature range of 900° C. or higher so that the sum of the shape ratios L f-1 in the pass of (4) satisfies the following formula (3), and
(Ii) After completion of hot rolling, the hot-rolled steel sheet is cooled to (ii-1) a cooling stop temperature of 600 to 850° C. at a cooling rate of 10° C./sec or more, and (ii-2) at a cooling stop temperature. It is characterized in that it is held for 1 to 10 seconds, and after (ii-3) holding, it is again cooled at a cooling rate of 10° C./second or more to a winding temperature of 700° C. to room temperature and wound up.
L f +L f-1 ≧8.0 (3)
L f =√{R f ×(t in (f)−t out (f))}÷(2t out (f)+t in (f))/3
L f : Shape ratio in final pass R f : Roll radius in final pass (mm)
t in (f): Inlet plate thickness (mm) at the final pass
t out (f): Output side plate thickness (mm) at the final pass
L f-1 =√{R f-1 ×(t in (f-1)−t out (f-1))}÷(2t out (f-1)+t in (f-1))/3
L f-1 : Shape ratio one step before the final pass R f-1 : Roll radius (mm) one step before the final pass
t in (f-1): Thickness of entrance side (mm) one step before the final pass
t out (f-1): Thickness of exit side one step before final pass (mm)

以下、工程条件について説明する。   The process conditions will be described below.

鋼片
本発明熱延鋼板の成分組成を有する溶鋼を、常法により鋳造し、熱間圧延に供する鋼片を製造する。熱間圧延に供する鋼片は、鋼塊を鍛造又は圧延したものでもよいが、生産性の点から、連続鋳造で製造した鋼片が好ましい。薄スラブキャスターで製造した鋼片でもよく、また、連続鋳造鋳片を、直ちに、連続鋳造−直接圧延(CC−DR)へ供して製造した鋼片でもよい。
Steel piece A molten steel having the composition of the hot-rolled steel sheet of the present invention is cast by an ordinary method to produce a steel piece to be subjected to hot rolling. The steel slab to be subjected to hot rolling may be one obtained by forging or rolling a steel ingot, but a steel slab manufactured by continuous casting is preferable from the viewpoint of productivity. A steel slab produced by a thin slab caster may be used, or a steel slab produced by immediately subjecting a continuously cast slab to continuous casting-direct rolling (CC-DR) may be used.

熱間圧延
鋼片の加熱温度:1150℃以上、1300℃以下
鋳造後冷却した鋼片を、再度加熱して熱間圧延に供する場合、鋼片を、1150℃以上、1300℃以下に加熱する。加熱温度が1150℃未満であると、TiやNbが、オーステナイト中に、十分に固溶せず、再結晶抑制効果が十分に得られないので、加熱温度は1150℃以上とする。好ましくは1180℃以上である。
Hot rolling Steel billet heating temperature: 1150° C. or higher, 1300° C. or lower When the cooled and cast steel billet is heated again for hot rolling, the steel billet is heated to 1150° C. or higher and 1300° C. or lower. If the heating temperature is lower than 1150° C., Ti and Nb do not form a solid solution in austenite sufficiently, and the effect of suppressing recrystallization cannot be sufficiently obtained. Therefore, the heating temperature is set to 1150° C. or higher. It is preferably 1180° C. or higher.

一方、加熱温度が1300℃を超えると、鋼板の結晶粒が粗大化し、加工性が低下するので、加熱温度は1300℃以下とする。好ましくは1270℃以下である。   On the other hand, if the heating temperature exceeds 1300°C, the crystal grains of the steel sheet become coarse and the workability deteriorates, so the heating temperature is set to 1300°C or less. It is preferably 1270° C. or lower.

仕上げ圧延温度:900℃以上
熱間圧延の仕上げ圧延温度は900℃以上とする。仕上げ圧延温度が900℃未満であると、未再結晶域での圧延パス数が増え、表層の{110}<111>〜{110}<001>方位群が発達しすぎるので、仕上げ圧延温度は900℃以上とする。好ましくは930℃以上である。
Finish rolling temperature: 900° C. or higher The finish rolling temperature in hot rolling is 900° C. or higher. If the finish rolling temperature is lower than 900° C., the number of rolling passes in the non-recrystallized region increases, and the {110}<111> to {110}<001> orientation groups of the surface layer develop too much. The temperature is 900°C or higher. It is preferably 930° C. or higher.

仕上げ圧延温度の上限は、特に規定しないが、1000℃を超える温度で仕上げ圧延を終了すると、強度が低下するとともに、表層のスケール厚みが増し、仕上げ圧延材の表面性状が低下するので、仕上げ圧延温度は1000℃以下が好ましい。   The upper limit of the finish rolling temperature is not particularly specified, but when finish rolling is finished at a temperature of more than 1000° C., the strength decreases, the scale thickness of the surface layer increases, and the surface texture of the finish rolled material deteriorates. The temperature is preferably 1000° C. or lower.

f+Lf-1:8.0以上
最終パスでの形状比Lfと、最終パスの1段前のパスでの形状比Lf-1の和が8.0以上となるように、熱間圧延を終了する。Lf+Lf-1が8.0未満であると、最表層から板厚1/6までの領域において、疲労強度の向上に寄与する{211}<111>方位のランダム強度比を、所要のレベルで、好ましくは2.0以上確保することが難しくなるので、Lf+Lf-1は8.0以上とする。好ましくは8.5以上である。
L f +L f-1 : 8.0 or more The heat is adjusted so that the sum of the shape ratio L f in the final pass and the shape ratio L f-1 in the pass one step before the final pass is 8.0 or more. Finish the hot rolling. When L f +L f-1 is less than 8.0, the required random strength ratio of {211}<111> orientations, which contributes to the improvement of fatigue strength, in the region from the outermost layer to the plate thickness 1/6 is required. Since it is difficult to secure a level of preferably 2.0 or more, L f +L f-1 is set to 8.0 or more. It is preferably 8.5 or more.

f+Lf-1の上限は、特に設定しないが、12.0を超えると、{110}<111>〜{110}<001>方位群が発達し溶接部疲労強度が劣化するので、Lf+Lf-1は12.0以下が好ましい。より好ましくは10.0以下である。 The upper limit of Lf + Lf-1 is not particularly set, but if it exceeds 12.0, {110}<111> to {110}<001> orientation groups develop and the weld fatigue strength deteriorates. f +L f-1 is preferably 12.0 or less. It is more preferably 10.0 or less.

熱延終了後の冷却・巻取
(ii-1)の冷却
冷却速度:10℃/秒以上
冷却停止温度:600〜850℃
Cooling/winding after hot rolling (ii-1) Cooling rate: 10°C/sec or more Cooling stop temperature: 600 to 850°C

熱間圧延終了後、熱延鋼板を、600〜850℃の冷却停止温度まで10℃/秒以上の冷却速度で冷却する。冷却速度が10℃/秒未満であると、冷却中、フェライト変態が進行して強度が低下するので、冷却速度は10℃/秒以上とする。冷却速度の上限は特に定めないが、100℃/秒以上の冷却速度を確保するためには、過剰な設備投資が必要となり、また、特段の冷却効果が得られないので、冷却速度は100℃/秒以下が現実的である。   After the hot rolling is finished, the hot rolled steel sheet is cooled to a cooling stop temperature of 600 to 850°C at a cooling rate of 10°C/sec or more. If the cooling rate is less than 10° C./second, ferrite transformation proceeds during cooling and the strength decreases, so the cooling rate is set to 10° C./second or more. Although the upper limit of the cooling rate is not particularly defined, in order to secure the cooling rate of 100° C./sec or more, excessive equipment investment is required, and a particular cooling effect cannot be obtained. Therefore, the cooling rate is 100° C. /Sec or less is realistic.

冷却停止温度が850℃を超えると、冷却停止温度に保持中、粗大なTiC又はNbCが生成し、強度が低下するとともに、穴拡げ性も低下するので、冷却停止温度は850℃以下とする。好ましくは800℃以下である。   If the cooling stop temperature exceeds 850° C., coarse TiC or NbC is generated during the holding at the cooling stop temperature to reduce the strength and the hole expandability. Therefore, the cooling stop temperature is set to 850° C. or lower. It is preferably 800° C. or lower.

一方、冷却停止温度が600℃未満であると、冷却停止温度に保持中、TiC又はNbCが析出せず、強度が低下し、穴拡げ性も低下するので、冷却停止温度は600℃以上とする。好ましくは650℃以上である。   On the other hand, if the cooling stop temperature is lower than 600° C., TiC or NbC does not precipitate while maintaining the cooling stop temperature, the strength is lowered, and the hole expandability is also lowered. Therefore, the cooling stop temperature is 600° C. or higher. . It is preferably 650° C. or higher.

(ii-2)の保持
冷却停止温度での保持時間:1〜10秒
冷却停止温度での保持時間は1〜10秒とする。保持時間が1秒未満であると、TiC又はNbCが析出せず、強度が低下し、穴拡げ性も低下するので、保持時間は1秒以上とする。好ましくは3秒以上である。
Hold of (ii-2) Hold time at cooling stop temperature: 1 to 10 seconds Hold time at cooling stop temperature is 1 to 10 seconds. If the holding time is less than 1 second, TiC or NbC will not precipitate, the strength will decrease, and the hole expandability will also decrease, so the holding time is set to 1 second or more. It is preferably 3 seconds or more.

一方、保持時間が10秒を超えると、粗大なTiC又はNbCが生成し、強度が低下するとともに、穴拡げ性も低下するので、保持時間は10秒以下とする。好ましくは7秒以下である。なお、冷却停止温度での保持は、空冷状態での保持が好ましい。   On the other hand, if the holding time exceeds 10 seconds, coarse TiC or NbC is generated, the strength decreases, and the hole expandability also decreases, so the holding time is set to 10 seconds or less. It is preferably 7 seconds or less. The holding at the cooling stop temperature is preferably held in the air-cooled state.

(ii-3)の冷却・巻取
冷却速度:10℃/秒以上
巻取温度:700℃〜室温
Cooling/winding of (ii-3) Cooling rate: 10°C/sec or more Winding temperature: 700°C to room temperature

巻取温度までの冷却速度が、10℃/秒未満であると、冷却中、フェライト変態が進行して強度が低下する懸念があるので、冷却速度は10℃/秒以上とする。冷却速度の上限は特に定めないが、前述したように、100℃/秒以上の冷却速度を確保するためには、過剰な設備投資が必要となり、また、特段の冷却効果が得られないので、冷却速度は100℃/秒以下が現実的である。   If the cooling rate up to the coiling temperature is less than 10° C./second, ferrite transformation may progress during cooling and the strength may decrease, so the cooling rate is set to 10° C./second or more. Although the upper limit of the cooling rate is not particularly defined, as described above, in order to secure the cooling rate of 100° C./second or more, excessive equipment investment is required, and a particular cooling effect cannot be obtained, A cooling rate of 100° C./sec or less is realistic.

巻取温度は700℃〜室温とする。巻取温度が700℃を超えると、強度が低下するので、巻取温度は700℃以下とする。好ましくは650℃以下である。巻取温度の下限は室温とする。室温以下に冷却することは過剰な設備を必要とし、かつ、特段の効果も得られないので、巻取温度は室温以上とする。   The winding temperature is 700° C. to room temperature. When the coiling temperature exceeds 700°C, the strength decreases, so the coiling temperature is 700°C or less. It is preferably 650°C or lower. The lower limit of the coiling temperature is room temperature. Since cooling to room temperature or lower requires excessive equipment and no particular effect can be obtained, the coiling temperature is set to room temperature or higher.

以上説明したように、本発明製造方法によれば、表層の集合組織を適確に制御することにより、優れた穴拡げ性を確保し、溶接部疲労特性に優れた高強度熱延鋼板を製造することができる。   As described above, according to the manufacturing method of the present invention, by accurately controlling the texture of the surface layer, excellent hole expandability is secured, and a high-strength hot-rolled steel sheet with excellent weld fatigue properties is manufactured. can do.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, an example of the present invention will be described. The condition in the example is one condition example adopted for confirming the practicability and effect of the present invention, and the present invention is based on this one condition example. It is not limited. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に示す成分組成を有する鋼を溶製し、表2に示す条件で熱間圧延を施し、得られた熱延鋼板の特性を測定し評価した。
(Example 1)
Steel having the chemical composition shown in Table 1 was melted, hot-rolled under the conditions shown in Table 2, and the characteristics of the obtained hot-rolled steel sheet were measured and evaluated.

引張試験、及び、穴拡げ試験は、それぞれ、JIS Z 2241、及び、鉄連規格JFS T1001に準拠して行った。   The tensile test and the hole expansion test were carried out in accordance with JIS Z 2241 and the iron ream standard JFS T1001, respectively.

溶接部の疲労特性(疲労強度)は以下の方法で評価した。重ね隅肉アーク溶接を溶接部形状が大きく変化しない条件で行い、図2に示すように、溶接ビード部の止端部が試験片の中央となるように試験片を採取し、採取した試験片を、応力比−1の両振り曲げにて、曲げ変位を一定とする平面曲げ疲労試験に供した。応力を200万回繰り返し負荷しても、試験片が破断しない応力振幅を評価した。   The fatigue property (fatigue strength) of the welded part was evaluated by the following method. Overlap fillet arc welding was performed under conditions where the shape of the welded part did not change significantly, and as shown in FIG. 2, the test piece was collected so that the toe of the weld bead was in the center of the test piece, and the collected test piece Was subjected to a plane bending fatigue test in which the bending displacement was constant in both-side bending with a stress ratio of -1. The stress amplitude at which the test piece did not break even when the stress was repeatedly applied 2 million times was evaluated.

熱延鋼板の最表層から板厚1/6までの領域における{110}<111>〜{110}<001>方位群のランダム強度比、及び、同{112}<111>方位のランダム強度比は、コロイダルシリカで研磨をした試験片の板厚断面をEBSDで測定することによって求めた。   Random intensity ratio of {110}<111> to {110}<001> orientation groups in the region from the outermost layer of the hot rolled steel sheet to the sheet thickness 1/6 and the random intensity ratio of the same {112}<111> orientation. Was determined by measuring the plate thickness cross section of the test piece polished with colloidal silica by EBSD.

表3に、測定・評価結果を示す。   Table 3 shows the measurement/evaluation results.

発明例においては、引張強度TSと穴拡げ性指標λの積TS・λ(MPa・%)が、いずれも50000を超え、また、溶接部疲労強度が、いずれも、比強度で0.40以上を超え、優れた特性を示してい。   In the invention examples, the product TS·λ (MPa·%) of the tensile strength TS and the hole expansibility index λ exceeds 50000, and the weld fatigue strength is 0.40 or more in specific strength. And shows excellent characteristics.

製造No.27〜34は、成分組成が本発明の範囲外の鋼No.a〜hを用いた比較例である。製造No.27及び34の比較例では、Mn量やC量が高すぎるため、式(1)を満足せず、焼入れ性が高すぎて、表層の集合組織を制御しても、疲労亀裂の伝播を抑制できない。   Manufacturing No. Nos. 27 to 34 are steel Nos. whose composition is outside the range of the present invention. It is a comparative example using ah. Manufacturing No. In Comparative Examples 27 and 34, since the Mn amount and the C amount are too high, the formula (1) is not satisfied, the hardenability is too high, and even if the texture of the surface layer is controlled, the propagation of fatigue cracks is suppressed. Can not.

製造No.28、29、及び、32の比較例では、Mo量やAl量が高すぎるか、又は、Mn、Mo、Alの合計量が高すぎて、式(2)を満足せず、{110}<111>〜{110}<001>方位群が発達し、{211}<111>方位が弱くなって、疲労強度比が低下している。   Manufacturing No. In Comparative Examples 28, 29, and 32, the amount of Mo or the amount of Al was too high, or the total amount of Mn, Mo, and Al was too high, and the formula (2) was not satisfied, and {110}< The 111> to {110}<001> orientation groups have developed, the {211}<111> orientation has become weak, and the fatigue strength ratio has decreased.

製造No.30及び33の比較例では、C量又はMn量が低すぎて、十分な強度が得られていない。製造No.31の比較例では、Si量が高すぎて、加工性が著しく低下し、引張試験の途中で破断している。   Manufacturing No. In Comparative Examples 30 and 33, the amount of C or the amount of Mn was too low, and sufficient strength was not obtained. Manufacturing No. In the comparative example of No. 31, the amount of Si was too high, the workability was remarkably reduced, and fracture occurred during the tensile test.

製造No.4、7、12、14、16、18、20、22、及び、24の比較例は、製造条件が本発明の範囲外となる比較例である。製造No.4の比較例では、保持時間が長すぎて、保持中に、粗大なTiCが析出して、強度が低下するとともに、穴拡げ性も低下している。   Manufacturing No. The comparative examples of 4, 7, 12, 14, 16, 18, 20, 22, and 24 are comparative examples whose manufacturing conditions are outside the scope of the present invention. Manufacturing No. In Comparative Example No. 4, the holding time was too long, and during the holding, coarse TiC was precipitated, the strength was lowered, and the hole expandability was also lowered.

製造No.7の比較例では、加熱温度が低すぎて、加熱中、Ti及び/又はNbが十分に再固溶できず、析出強化効果が得られず、強度が低下し、λも低下している。製造No.12の比較例では、仕上げ熱延温度が低すぎて、表層の{110}<111>〜{110}<001>方位群が発達し、疲労亀裂伝播が容易となり、疲労強度が劣化している。   Manufacturing No. In Comparative Example No. 7, the heating temperature was too low, Ti and/or Nb could not be sufficiently re-dissolved during heating, the precipitation strengthening effect could not be obtained, the strength was lowered, and λ was also lowered. Manufacturing No. In Comparative Example No. 12, the finishing hot rolling temperature is too low, the {110}<111> to {110}<001> orientation groups of the surface layer develop, fatigue crack propagation becomes easy, and fatigue strength deteriorates. ..

製造No.14の比較例では、保持温度が低すぎて、TiCが十分に析出できず、強度が低下するとともに、穴拡げ性も低下している。製造No.16の比較例では、熱間圧延の後段2段での形状比が高すぎて、表層の集合組織が強くなりすぎ、疲労亀裂伝播が容易になり、疲労強度が低下している。製造No.18の比較例では、冷却速度が遅すぎて、強度が著しく低下するとともに、穴拡げ性も低下している。   Manufacturing No. In Comparative Example No. 14, the holding temperature was too low, TiC could not be sufficiently precipitated, the strength was lowered, and the hole expandability was also lowered. In the comparative example of Production No. 16, the shape ratio in the second and second stages of hot rolling was too high, the texture of the surface layer was too strong, fatigue crack propagation was facilitated, and fatigue strength was reduced. Manufacturing No. In Comparative Example No. 18, the cooling rate was too slow, the strength was remarkably lowered, and the hole expandability was also lowered.

製造No.20の比較例では、冷却停止温度が高すぎて、粗大なTiCが析出し、強度と穴拡げ性が低下している。製造No.22の比較例では、保持時間が短すぎて、穴拡げ性が低下している。製造No.24の比較例では、巻取温度が高すぎて、強度と穴拡げ性が低下している。   Manufacturing No. In Comparative Example No. 20, the cooling stop temperature was too high, coarse TiC was deposited, and the strength and hole expansibility were reduced. Manufacturing No. In Comparative Example No. 22, the holding time is too short and the hole expandability is deteriorated. Manufacturing No. In Comparative Example No. 24, the winding temperature is too high, and the strength and the hole expandability are deteriorated.

以上説明したように、本発明製造方法によれば、穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板を提供することできる。   As described above, according to the manufacturing method of the present invention, it is possible to provide a high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue characteristics.

前述したように、本発明によれば、穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板を提供することができる。本発明の高強度熱延鋼板を、例えば、自動車の足回り部品に適用すると、安全性を確保しつつ、車体を著しく軽量化できて燃費が向上するので、本発明は、社会に大きく貢献するものであり、鋼板製造産業や自動車産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue characteristics. When the high-strength hot-rolled steel sheet of the present invention is applied to, for example, an underbody part of an automobile, the vehicle body can be remarkably reduced in weight and fuel consumption is improved while ensuring safety. Therefore, the present invention greatly contributes to society. Therefore, it is highly applicable to the steel sheet manufacturing industry and the automobile industry.

Claims (5)

成分組成が、質量%で、C:0.02%以上、0.15%以下、Si:0.01%以上、2.00%以下、Mn:0.50%以上、2.50%以下、P:0.001%以上、0.100%以下、S:0.0005%以上、0.050%以下、Al:0.01%以上、0.50%以下、N:0.0001%以上、0.010%以下、さらに、Ti:0.01%以上、0.14%以下、及び、Nb:0.005%以上、0.09%以下の1種又は2種を、下記式(1)及び(2)を満足する範囲で含み、残部が鉄及び不可避的不純物からなり、
最表層から板厚1/6厚までの領域における板厚断面の{110}<111>〜{110}<001>方位群のランダム強度比が3.5以下である
ことを特徴とする穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 ・・・(1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 ・・・(2)
[元素]:元素の質量%
The composition is% by mass, C: 0.02% or more, 0.15% or less, Si: 0.01% or more, 2.00% or less, Mn: 0.50% or more, 2.50% or less, P: 0.001% or more, 0.100% or less, S: 0.0005% or more, 0.050% or less, Al: 0.01% or more, 0.50% or less, N: 0.0001% or more, 0.010% or less, further, Ti: 0.01% or more, 0.14% or less, and Nb: 0.005% or more, 0.09% or less, one or two, the following formula (1) And (2) are included in a range satisfying the condition, and the balance is iron and inevitable impurities,
A hole expansion characterized by a random strength ratio of the {110}<111> to {110}<001> orientation groups in the plate thickness cross section in the region from the outermost layer to the plate thickness 1/6 thickness is 3.5 or less. High-strength hot-rolled steel sheet with excellent weldability and weld fatigue characteristics.
65≦315×[C]+40×[Mn]+11×[Si]−30×[Al]
+(35×[V]+20×[Cr]+17×[Ni]+10×[Cu]
+5×[Mo])≦150 (1)
0.1×[Mn]+9×[Mo]+2×[Al]≦1.1 (2)
[Element]:% by mass of element
前記成分組成が、さらに、質量%で、B:0.0003%以上、0.005%以下、Mo:0.02%以上、0.50%以下、Cr:0.10%以上、2.00%以下、W:0.01%以上、2.00%以下、Cu:0.04%以上、2.00%以下、Ni:0.02%以上、1.00%以下、V:0.001%以上、0.10%以下の1種又は2種以上を含むことを特徴とする請求項1に記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。   The composition of the components is, in mass %, B: 0.0003% or more, 0.005% or less, Mo: 0.02% or more, 0.50% or less, Cr: 0.10% or more, 2.00. % Or less, W: 0.01% or more, 2.00% or less, Cu: 0.04% or more, 2.00% or less, Ni: 0.02% or more, 1.00% or less, V: 0.001 % Or more and 0.10% or less of one type or two or more types, and the high-strength hot-rolled steel sheet having excellent hole expansibility and welded portion fatigue characteristics according to claim 1. 前記成分組成が、さらに、質量%で、Ca、Mg、Zr、及び、REMの1種又は2種以上を、合計で0.0005%以上、0.050%以下含むことを特徴とする請求項1又は2に記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。   The component composition further contains, in mass%, one or more of Ca, Mg, Zr, and REM in a total amount of 0.0005% or more and 0.050% or less. A high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue characteristics as described in 1 or 2. 前記最表層から板厚1/6位置までの領域における板厚断面の{211}<111>方位のランダム強度比が2.0以上であることを特徴とする請求項1〜3のいずれか1項に記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板。 4. The random intensity ratio of {211}<111> orientations of the plate thickness cross section in the region from the outermost layer to the plate thickness 1/6 position is 2.0 or more. A high-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property as described in the item. 請求項1〜4のいずれか1項に記載の穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板を製造する製造方法であって、
(i)請求項1〜3のいずれか1項に記載の成分組成を有する鋼片を、1150℃以上、1300℃以下に加熱して、熱間圧延に供し、最終パスでの形状比Lfと最終パスの1段前のパスでの形状比Lf-1の和が下記式(3)を満足するように、かつ、900℃以上の温度域で熱間圧延を終了し、
(ii)熱間圧延終了後、熱延鋼板を、(ii-1)10℃/秒以上の冷却速度で、600〜850℃の冷却停止温度まで冷却し、(ii-2)冷却停止温度で1〜10秒保持し、(ii-3)保持後、再度、10℃/秒以上の冷却速度で、700℃〜室温の巻取温度まで冷却して巻き取る
ことを特徴とする穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板の製造方法。
f+Lf-1≧8.0 ・・・(3)
f=√{Rf×(tin(f)−tout(f))}÷(2tout(f)+tin(f))/3
f:最終パスでの形状比
f:最終パスでのロール半径(mm)
in(f):最終パスでの入側板厚(mm)
out(f):最終パスでの出側板厚(mm)
f-1=√{Rf-1×(tin(f-1)−tout(f-1))}÷(2tout(f-1)+tin(f-1))/3
f-1:最終パスの1段前での形状比
f-1:最終パスの1段前でのロール半径(mm)
in(f-1):最終パスの1段前での入側板厚(mm)
out(f-1):最終パスの1段前での出側板厚(mm)
A manufacturing method for manufacturing a high-strength hot-rolled steel sheet having excellent hole expandability and weld fatigue characteristics according to any one of claims 1 to 4,
(I) A steel slab having the chemical composition according to any one of claims 1 to 3 is heated to 1150°C or higher and 1300°C or lower, subjected to hot rolling, and the shape ratio L f in the final pass. And so that the sum of the shape ratios L f-1 in the pass one step before the final pass satisfies the following formula (3) and the hot rolling is completed in the temperature range of 900° C. or higher,
(Ii) After completion of hot rolling, the hot-rolled steel sheet is cooled to (ii-1) a cooling stop temperature of 600 to 850° C. at a cooling rate of 10° C./sec or more, and (ii-2) at a cooling stop temperature. Hold for 1 to 10 seconds, and after (ii-3) holding, cooling at a cooling rate of 10° C./second or more to 700° C. to room temperature and then winding and winding. A method for producing a high-strength hot-rolled steel sheet having excellent weld fatigue characteristics.
L f +L f-1 ≧8.0 (3)
L f =√{R f ×(t in (f)−t out (f))}÷(2t out (f)+t in (f))/3
L f : Shape ratio in final pass R f : Roll radius in final pass (mm)
t in (f): Inlet plate thickness (mm) at the final pass
t out (f): Output side plate thickness (mm) at the final pass
L f-1 =√{R f-1 ×(t in (f-1)−t out (f-1))}÷(2t out (f-1)+t in (f-1))/3
L f-1 : Shape ratio one step before final pass R f-1 : Roll radius (mm) one step before final pass
t in (f-1): Thickness of the entry side (mm) one step before the final pass
t out (f-1): Output side plate thickness one step before the final pass (mm)
JP2016101863A 2016-05-20 2016-05-20 High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same Active JP6701954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101863A JP6701954B2 (en) 2016-05-20 2016-05-20 High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101863A JP6701954B2 (en) 2016-05-20 2016-05-20 High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017206764A JP2017206764A (en) 2017-11-24
JP6701954B2 true JP6701954B2 (en) 2020-05-27

Family

ID=60414849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101863A Active JP6701954B2 (en) 2016-05-20 2016-05-20 High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same

Country Status (1)

Country Link
JP (1) JP6701954B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594012A (en) * 2018-11-05 2019-04-09 包头钢铁(集团)有限责任公司 A kind of corrosion-resistant automobile-used steel band of 700MPa grades of rare earth and preparation method thereof
CN113166866B (en) * 2018-11-28 2022-08-05 日本制铁株式会社 Hot rolled steel plate
CN113166867B (en) * 2018-11-28 2022-08-30 日本制铁株式会社 Hot rolled steel plate
CN114829649B (en) * 2019-12-23 2023-09-29 日本制铁株式会社 Hot rolled steel sheet
CN115244202B (en) * 2020-05-08 2023-06-13 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
US20230295760A1 (en) * 2020-09-30 2023-09-21 Nippon Steel Corporation High-strength steel sheet
KR20230151000A (en) * 2021-03-02 2023-10-31 닛폰세이테츠 가부시키가이샤 steel plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539548B2 (en) * 1999-09-20 2004-07-07 Jfeスチール株式会社 Manufacturing method of high tensile hot rolled steel sheet for processing
JP2003003240A (en) * 2001-06-20 2003-01-08 Nippon Steel Corp High strength hot rolled steel sheet having excellent hole expandability and haz fatigue property and production method therefor
JP5228447B2 (en) * 2006-11-07 2013-07-03 新日鐵住金株式会社 High Young's modulus steel plate and method for producing the same
JP5037415B2 (en) * 2007-06-12 2012-09-26 新日本製鐵株式会社 High Young's modulus steel plate excellent in hole expansibility and method for producing the same
PL3162908T3 (en) * 2014-07-14 2019-10-31 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet
CN106661690B (en) * 2014-07-14 2018-09-07 新日铁住金株式会社 Hot rolled steel plate

Also Published As

Publication number Publication date
JP2017206764A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6701954B2 (en) High-strength hot-rolled steel sheet excellent in hole expandability and weld fatigue property and method for producing the same
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
JP5941533B2 (en) Steel plate with high mechanical strength, ductility and formability, characteristics of such plate material, production method and use
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP4917186B2 (en) Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
CN114686777B (en) Flat steel product with good ageing resistance and manufacturing method thereof
WO2020090303A1 (en) High-strength steel sheet and manufacturing method therefor
US20140178712A1 (en) High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP6354268B2 (en) High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
WO2010137317A1 (en) High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
JP6191268B2 (en) High yield ratio high strength hot-rolled steel sheet with less variation in strength in the coil width direction and excellent toughness, and method for producing the same
JP6868092B2 (en) Extra-thick steel material with excellent brittle crack propagation resistance and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
JP5978838B2 (en) Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP6136478B2 (en) High-strength hot-rolled steel sheet excellent in toughness and rigidity in the rolling direction and method for producing the same
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
EP3901305B1 (en) High-strength structural steel having excellent cold bendability, and manufacturing method therefor
JP2021066941A (en) Wear-resistant steel sheet and method for producing the same
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
TWI575084B (en) Steel sheet with strain induced transformation type composite structure and the manufacturing method thereof
JP2004052103A (en) Steel sheet superior in deep drawability, steel pipe superior in workability, and manufacturing method therefor
JP7311808B2 (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6701954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151