JP6699473B2 - All-solid-state battery system and manufacturing method thereof - Google Patents

All-solid-state battery system and manufacturing method thereof Download PDF

Info

Publication number
JP6699473B2
JP6699473B2 JP2016179021A JP2016179021A JP6699473B2 JP 6699473 B2 JP6699473 B2 JP 6699473B2 JP 2016179021 A JP2016179021 A JP 2016179021A JP 2016179021 A JP2016179021 A JP 2016179021A JP 6699473 B2 JP6699473 B2 JP 6699473B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
solid
negative electrode
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016179021A
Other languages
Japanese (ja)
Other versions
JP2017059534A (en
Inventor
光俊 大瀧
光俊 大瀧
敬介 大森
敬介 大森
徳洋 尾瀬
徳洋 尾瀬
元 長谷川
元 長谷川
健吾 芳賀
健吾 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP17196511.4A priority Critical patent/EP3293802B1/en
Priority to EP16188738.5A priority patent/EP3142174B1/en
Priority to US15/265,372 priority patent/US10128675B2/en
Priority to CN201610827031.3A priority patent/CN106532158B/en
Priority to CN201810887814.XA priority patent/CN109004179B/en
Priority to KR1020160119021A priority patent/KR101882089B1/en
Publication of JP2017059534A publication Critical patent/JP2017059534A/en
Priority to US16/036,256 priority patent/US10651667B2/en
Application granted granted Critical
Publication of JP6699473B2 publication Critical patent/JP6699473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は全固体電池システム、及びその製造方法に関する。   The present invention relates to an all solid state battery system and a method for manufacturing the same.

現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウムイオン電池が注目を浴びている。その中でも、電解液を固体電解質に置換した全固体電池が特に注目を浴びている。これは、全固体電池が電解液を用いる二次電池と異なり、電解液を用いないことから、過充電に起因する電解液の分解等を生じることがないこと、並びに高いサイクル特性及びエネルギー密度を有していることを理由とする。リチウムイオン電池に一般的に使用される負極活物質としては、グラファイト、ソフトカーボン、又はハードカーボンのような炭素系負極活物質が挙げられる。近年では、炭素系負極活物質に替えて、より容量の大きい合金系負極活物質が研究されている。一例としてはケイ素、スズ、ゲルマニウム、アルミニウムなどが挙げられる。その中でも、特に容量が大きいことからケイ素粒子が特に注目されている。   At present, among various types of batteries, lithium ion batteries are drawing attention because of their high energy density. Among them, all-solid-state batteries in which the electrolytic solution is replaced with a solid electrolyte have been particularly attracting attention. This is because unlike the secondary battery that uses an electrolytic solution, the all-solid-state battery does not use an electrolytic solution, so that decomposition of the electrolytic solution due to overcharge does not occur, and high cycle characteristics and energy density are achieved. Because it has. Examples of the negative electrode active material generally used in lithium ion batteries include carbon-based negative electrode active materials such as graphite, soft carbon, and hard carbon. In recent years, an alloy-based negative electrode active material having a larger capacity has been studied in place of the carbon-based negative electrode active material. Examples include silicon, tin, germanium, aluminum and the like. Among them, silicon particles have attracted particular attention because of their particularly large capacity.

合金系負極活物質を負極活物質として用いた電池は、炭素系負極活物質等を負極活物質として用いた電池と比較して、サイクル特性が低いことが知られている。この原因としては、充放電に伴い合金系負極活物質粒子が膨張・収縮することで、合金系負極活物質粒子が粉砕され、また、合金系負極活物質粒子と他の負極活物質層材料との間に空隙が生じることによって、全固体電池の内部の抵抗が増大することが挙げられる。   It is known that the battery using the alloy-based negative electrode active material as the negative electrode active material has lower cycle characteristics than the battery using the carbon-based negative electrode active material or the like as the negative electrode active material. The cause is that the alloy-based negative electrode active material particles expand and contract with charging and discharging, so that the alloy-based negative electrode active material particles are crushed, and the alloy-based negative electrode active material particles and other negative electrode active material layer materials It can be mentioned that the internal resistance of the all-solid-state battery increases due to the formation of voids between them.

特許文献1では、合金系負極活物質としてケイ素粒子を用いた全固体電池について、充放電によるケイ素粒子の体積変化量を調節することにより、ケイ素粒子の粉砕及びケイ素粒子と他の負極活物質層材料との間に生じる空隙を減少させ、それによって全固体電池の内部の抵抗の増大を抑えている。   In Patent Document 1, in an all-solid-state battery using silicon particles as an alloy-based negative electrode active material, the volume change of silicon particles due to charge/discharge is adjusted to crush the silicon particles and the silicon particles and other negative electrode active material layers. The voids formed between the material and the material are reduced, thereby suppressing an increase in internal resistance of the all-solid-state battery.

また、特許文献2では、合金系負極活物質としてケイ素粒子を用いた全固体電池について、初期充放電を初期に1回だけ、通常よりも低い電圧で長時間充電を行うことで、ケイ素粒子を活性化させて利用率を向上させ、また、ケイ素粒子とその他の負極活物質層材料との界面を良好に接合させる方法を開示している。   Further, in Patent Document 2, an all-solid-state battery using silicon particles as an alloy-based negative electrode active material is initially charged and discharged only once at an initial time, and is charged for a long time at a voltage lower than usual, thereby forming silicon particles. It discloses a method of activating to improve the utilization rate, and to bond the interface between the silicon particles and the other negative electrode active material layer material well.

特開2014―086218号公報JP, 2014-0886218, A 特開2014−041783号公報Japanese Patent Laid-Open No. 2014-041783

負極活物質として合金系負極活物質粒子を用いた全固体電池は、充放電に伴い合金系負極活物質粒子が膨張・収縮することで合金系負極活物質粒子が粉砕され、また、合金系負極活物質粒子と他の負極活物質層材料との間に空隙が生じるため、サイクル特性が低いという問題がある。   An all-solid-state battery using alloy-based negative electrode active material particles as the negative-electrode active material has alloy-based negative electrode active material particles crushed by the expansion and contraction of the alloy-based negative electrode active material particles during charging/discharging. Since a void is generated between the active material particles and the other negative electrode active material layer material, there is a problem that cycle characteristics are low.

そのため、上記問題を解決することで、負極活物質として合金系負極活物質粒子を用いた全固体電池のサイクル特性を向上させる方法が求められている。具体的な方法としては、特許文献1のように、例えば、合金系負極活物質粒子としてケイ素粒子を用いた場合に、ケイ素粒子の体積変化量を調整することで、抵抗を低減してサイクル特性を向上させることが考えられる。   Therefore, there is a demand for a method of solving the above problems and improving the cycle characteristics of an all-solid-state battery using alloy-based negative electrode active material particles as the negative electrode active material. As a specific method, as in Patent Document 1, for example, when silicon particles are used as the alloy-based negative electrode active material particles, the volume change amount of the silicon particles is adjusted to reduce resistance and cycle characteristics. It is possible to improve.

しかし、特許文献1のように体積変化量を調整した場合でもサイクル特性の低下がみられる。これは、ケイ素粒子の膨張・収縮によるケイ素粒子の粉砕のみでなく、何らかの化学的劣化が進行している可能性も示唆している。   However, even when the volume change amount is adjusted as in Patent Document 1, the cycle characteristics are deteriorated. This suggests not only the crushing of the silicon particles due to the expansion and contraction of the silicon particles, but also the possibility that some kind of chemical deterioration is progressing.

したがって、さらにサイクル特性を向上させる技術が求められている。   Therefore, a technique for further improving cycle characteristics is required.

即ち、本発明は、サイクル特性の向上した全固体電池システム、及びその製造方法を提供することを主目的とする。   That is, the main object of the present invention is to provide an all-solid-state battery system with improved cycle characteristics and a method for manufacturing the same.

1.正極活物質層、固体電解質層、及び負極活物質層を有している全固体電池と、全固体電池の使用時における充放電電圧を制御する制御装置とを有する全固体電池システムであって、負極活物質層中に合金系負極活物質粒子を有しており、合金系負極活物質粒子のアモルファス化率が27.8〜82.8%であり、かつ下記の条件を満たす、全固体電池システム:
0.32≦Z/W≦0.60
Z:全固体電池の制御放電容量(mAh)
W:合金系負極活物質粒子の理論容量(mAh/g)×合金系負極活物質粒子全体の重量(g)×アモルファス化率(%)。
2.合金系負極活物質粒子がケイ素粒子である、前記1に記載の全固体電池システム。
3.正極活物質層が、リチウム含有金属酸化物である保護コーティングによって被覆されている正極活物質を有している、前記1又は2に記載の全固体電池システム。
4.保護コーティングのリチウム含有金属酸化物がニオブ酸リチウムである、前記3に記載の全固体電池システム。
5.制御装置が充放電電圧を2.50V以上4.40V以下の範囲内で制御する、前記1〜4のいずれか1項に記載の全固体電池システム。
6.正極活物質層、固体電解質層、及び負極活物質層を有している全固体電池と、全固体電池の使用時における充放電電圧を制御する制御装置とを有する全固体電池システムの製造方法であって、正極活物質層、固体電解質層、及び合金系負極活物質粒子を有している負極活物質層を積層する積層工程、及び充放電電圧より高い初期充電電圧まで全固体電池を充電する初期充電工程を有する、全固体電池システムの製造方法。
7.合金系負極活物質粒子がケイ素粒子である、前記6に記載の方法。
8.充放電電圧が2.50V以上4.40V以下の範囲内であり、かつ初期充電工程において初期充電電圧が4.45Vより大きく5.00V以下である、前記6又は7に記載の方法。
9.正極活物質層が、リチウム含有金属酸化物である保護コーティングによって被覆されている正極活物質を有している、前記6〜8のうちいずれか1項に記載の方法。
10.保護コーティングのリチウム含有金属酸化物がニオブ酸リチウムである、前記9に記載の方法。
11.下記の条件を満たすように初期充電工程を行う、前記9又は10に記載の方法:(初期充電工程における上限充電電圧における電圧(V)に対する充電量(Q)の変化率(dQ/dV))/(充電電圧が4.00V以上4.40V以下であるときの電圧(V)に対する充電量(Q)の変化率(dQ/dV)の平均値)>1.3
1. An all-solid-state battery system having a positive electrode active material layer, a solid electrolyte layer, and an all-solid-state battery having a negative electrode active material layer, and a control device for controlling charge/discharge voltage during use of the all-solid-state battery, An all-solid-state battery having alloy-type negative electrode active material particles in the negative-electrode active material layer, the amorphization rate of the alloy-type negative electrode active material particles being 27.8 to 82.8%, and satisfying the following conditions. system:
0.32≦Z/W≦0.60
Z: Controlled discharge capacity (mAh) of all solid state battery
W: theoretical capacity (mAh/g) of alloy-based negative electrode active material particles×total weight (g) of alloy-based negative electrode active material particles×amorphization rate (%).
2. The all-solid-state battery system according to 1 above, wherein the alloy-based negative electrode active material particles are silicon particles.
3. 3. The all-solid-state battery system according to 1 or 2 above, wherein the positive electrode active material layer has a positive electrode active material covered with a protective coating which is a lithium-containing metal oxide.
4. 4. The all-solid-state battery system according to 3 above, wherein the lithium-containing metal oxide of the protective coating is lithium niobate.
5. The all-solid-state battery system according to any one of 1 to 4 above, wherein the control device controls the charge/discharge voltage within a range of 2.50 V or more and 4.40 V or less.
6. A method for manufacturing an all-solid-state battery system having an all-solid-state battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer, and a control device that controls a charge/discharge voltage when the all-solid-state battery is used. Then, a stacking step of stacking the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer having the alloy-based negative electrode active material particles, and charging the all-solid-state battery to an initial charging voltage higher than the charge/discharge voltage. A method for manufacturing an all-solid-state battery system having an initial charging step.
7. 7. The method according to 6 above, wherein the alloy-based negative electrode active material particles are silicon particles.
8. 8. The method according to 6 or 7 above, wherein the charge/discharge voltage is in the range of 2.50 V or more and 4.40 V or less, and the initial charging voltage is higher than 4.45 V and 5.00 V or less in the initial charging step.
9. 9. The method according to any one of 6 to 8 above, wherein the positive electrode active material layer has a positive electrode active material coated with a protective coating that is a lithium-containing metal oxide.
10. 10. The method according to 9 above, wherein the lithium-containing metal oxide of the protective coating is lithium niobate.
11. The method according to 9 or 10, wherein the initial charging step is performed so as to satisfy the following conditions: (Change rate (dQ/dV) of charge amount (Q) with respect to voltage (V) at upper limit charging voltage in initial charging step) /(Average value of change rate (dQ/dV) of charge amount (Q) with respect to voltage (V) when charge voltage is 4.00 V or more and 4.40 V or less)>1.3

本発明によれば、サイクル特性の向上した全固体電池システム、及びその製造方法を提供することができる。   According to the present invention, it is possible to provide an all-solid-state battery system with improved cycle characteristics and a method for manufacturing the same.

図1は、本発明の全固体電池システムの一例を図示したものである。FIG. 1 illustrates an example of the all-solid-state battery system of the present invention. 図2は、本発明の全固体電池システムに用いられる全固体電池の一例を図示したものである。FIG. 2 illustrates an example of the all-solid-state battery used in the all-solid-state battery system of the present invention. 図3は、本発明の全固体電池システムに用いられる全固体電池の一例を図示したものである。FIG. 3 illustrates an example of the all-solid-state battery used in the all-solid-state battery system of the present invention. 図4は、本発明の全固体電池システムに用いられる全固体電池の一例を図示したものである。FIG. 4 shows an example of the all-solid-state battery used in the all-solid-state battery system of the present invention. 図5は、本発明の製造方法の作用原理を説明した図である。FIG. 5 is a diagram explaining the operation principle of the manufacturing method of the present invention. 図6は、アモルファス化率と初期充電量の関係を示したグラフである。FIG. 6 is a graph showing the relationship between the amorphization rate and the initial charge amount.

以下、本発明の実施の形態について詳述する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々変形して実施できる。   Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be carried out within the scope of the gist of the present invention.

≪本発明の全固体電池システム≫
本発明の全固体電池システムは、正極活物質層、固体電解質層、及び負極活物質層を有している全固体電池と、全固体電池の使用時における充放電電圧を制御する制御装置とを有する全固体電池システムであって、負極活物質層中に合金系負極活物質粒子を有しており、合金系負極活物質粒子のアモルファス化率が27.8〜82.8%であり、かつ下記の条件を満たす:
0.32≦Z/W≦0.60
Z:全固体電池の制御放電容量(mAh)
W:合金系負極活物質粒子の理論容量(mAh/g)×合金系負極活物質粒子全体の重量(g)×アモルファス化率(%)。
<<All-solid-state battery system of the present invention>>
The all-solid-state battery system of the present invention includes an all-solid-state battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer, and a control device for controlling the charge/discharge voltage when the all-solid-state battery is used. An all-solid-state battery system having the alloy-based negative electrode active material particles in the negative electrode active material layer, wherein the alloy-based negative electrode active material particles have an amorphization rate of 27.8 to 82.8%, and Meet the following conditions:
0.32≦Z/W≦0.60
Z: Controlled discharge capacity (mAh) of all solid state battery
W: theoretical capacity (mAh/g) of alloy-based negative electrode active material particles×total weight (g) of alloy-based negative electrode active material particles×amorphization rate (%).

この式において、全固体電池の制御放電容量Zとは、製品として完成した時点の全固体電池システムにおける、実際に制御装置によって制御される電圧範囲における放電容量である。   In this equation, the control discharge capacity Z of the all-solid-state battery is the discharge capacity in the voltage range actually controlled by the control device in the all-solid-state battery system at the time of completion as a product.

言い換えると、この式において、全固体電池の制御放電容量Zは、実質的に、制御装置によって制御される電圧範囲での放電により、完成した全固体電池が最初の充放電、すなわち最初の通常使用時の充放電において放出可能なリチウムの量を表している。   In other words, in this formula, the controlled discharge capacity Z of the all-solid-state battery is substantially the same as that of the completed all-solid-state battery when the first all-charge, that is, the first normal use, due to the discharge in the voltage range controlled by the controller. It represents the amount of lithium that can be released during charge and discharge.

この式において、合金系負極活物質粒子の理論容量(mAh/g)とは、合金系負極活物質粒子がリチウムを最大量吸蔵した際の電子量n(mol)、ファラデー定数F(C/mol)、及び分子量M(g/mol)から、nF/Mの式を用いて算出される値である。   In this formula, the theoretical capacity (mAh/g) of the alloy-based negative electrode active material particles means the electron amount n (mol) and the Faraday constant F (C/mol) when the alloy-based negative electrode active material particles store the maximum amount of lithium. ) And the molecular weight M (g/mol), it is a value calculated using the formula of nF/M.

言い換えると、合金系負極活物質粒子の理論容量Wは、実質的に、合金系負極活物質粒子のアモルファス化された部分が理論上受け入れることのできるリチウムの総量を表している。   In other words, the theoretical capacity W of the alloy-based negative electrode active material particles substantially represents the total amount of lithium that can be theoretically accepted by the amorphized portion of the alloy-based negative electrode active material particles.

したがって、この式は、実質的に、電池充電後に負極活物質層中に蓄えられている、放電により放出可能なリチウムの量が、合金系負極活物質粒子中のアモルファス化された部分が理論上受け入れることのできるリチウムの総量よりも少なく、かつ一定の範囲内にあることを示している。   Therefore, this formula is substantially the same as the theoretical amount of lithium that is stored in the negative electrode active material layer after charging the battery and that can be released by discharge as amorphized in the alloy-based negative electrode active material particles. It is shown to be less than the total amount of lithium that can be accepted and within a certain range.

Z/Wの値が0.32未満である場合には、エネルギー密度が低下してしまい、電池としての性能が低くなる。一方、Z/Wの値が0.60超である場合、全固体電池を充放電した際に合金系負極活物質粒子のアモルファス化された部分の膨張・収縮の合金系負極活物質粒子の結晶質部分に対する割合が大きくなり、応力によって合金系負極活物質粒子が壊れやすくなると考えられる。   When the value of Z/W is less than 0.32, the energy density is reduced and the performance as a battery is reduced. On the other hand, when the Z/W value is more than 0.60, the alloy-type negative electrode active material particles are crystallized by expansion/contraction of the amorphized portion of the alloy-type negative electrode active material particles when the all-solid battery is charged/discharged. It is considered that the alloy-based negative electrode active material particles are easily broken by the stress because the ratio of the alloy-based negative electrode active material particles becomes large.

なお、Z/Wは、下限が、0.33以上、0.35以上、0.37以上、0.40以上、0.42以上、又は0.45以上であってよく、上限が、0.58以下、0.55以下、0.53以下、0.50以下、又は0.48以下であってよい。   The lower limit of Z/W may be 0.33 or more, 0.35 or more, 0.37 or more, 0.40 or more, 0.42 or more, or 0.45 or more, and the upper limit is 0. It may be 58 or less, 0.55 or less, 0.53 or less, 0.50 or less, or 0.48 or less.

本発明の全固体電池は、このような条件を満たすことにより、高いサイクル特性を実現することができる。図1は、本発明の全固体電池システムの一例を図示したものである。本発明の全固体電池システムは、全固体電池(6)及び、全固体電池の使用時における充放電電圧を制御する制御装置(100)を有している。   The all-solid-state battery of the present invention can realize high cycle characteristics by satisfying such conditions. FIG. 1 illustrates an example of the all-solid-state battery system of the present invention. The all-solid-state battery system of the present invention includes an all-solid-state battery (6) and a control device (100) that controls a charge/discharge voltage when the all-solid-state battery is used.

理論によって限定されるものではないが、本発明の全固体電池システムのサイクル特性の改良は、以下のようにして起こっていると考えられる。   Although not limited by theory, it is considered that the improvement of the cycle characteristics of the all-solid-state battery system of the present invention occurs as follows.

負極活物質として合金系負極活物質粒子を用いたリチウムイオン二次電池に対して初期充電を行うと、正極活物質から放出されるリチウムイオンと合金系負極活物質粒子が反応し、合金系負極活物質とリチウムの合金が生成する。この反応では、合金系負極活物質粒子中の結晶質の構造が崩れ、リチウムと反応した合金系負極活物質はアモルファス化する。更にこの状態から放電を行うと、この合金系負極活物質とリチウムの合金は、リチウムがリチウムイオンとなって放出されることにより、合金系負極活物質に戻るが、しかしこの合金系負極活物質のアモルファス化した部分は、初期充電前の結晶質の構造に戻らずに、アモルファス化構造をそのまま維持する。そして、その後の充電においては、主に、このアモルファスとなった部分がリチウムイオンと反応して合金系負極活物質とリチウムの合金となる。   When the lithium ion secondary battery using the alloy-based negative electrode active material particles as the negative electrode active material is initially charged, the lithium ions released from the positive electrode active material react with the alloy-based negative electrode active material particles, and the alloy-based negative electrode An alloy of the active material and lithium is produced. In this reaction, the crystalline structure of the alloy-based negative electrode active material particles is destroyed, and the alloy-based negative electrode active material that has reacted with lithium becomes amorphous. When discharging is further performed from this state, the alloy of the alloy-based negative electrode active material and lithium returns to the alloy-based negative electrode active material by releasing lithium as lithium ions, but this alloy-based negative electrode active material The amorphized part does not return to the crystalline structure before the initial charging, but maintains the amorphized structure as it is. Then, in the subsequent charging, this amorphous portion mainly reacts with lithium ions to form an alloy of the alloy-based negative electrode active material and lithium.

負極活物質として合金系負極活物質粒子を用いた全固体電池を初期充電した場合、このアモルファス化反応は合金系負極活物質粒子全体ではなく、合金系負極活物質粒子の一部分のみに起こり、他の部分はリチウムと反応せずに結晶質のままである。   When an all-solid battery using alloy-based negative electrode active material particles as the negative electrode active material is initially charged, this amorphization reaction occurs not in the entire alloy-based negative electrode active material particles but in only a part of the alloy-based negative electrode active material particles, and The portion of does not react with lithium and remains crystalline.

従来の全固体電池は、合金系負極活物質粒子のアモルファス化された部分が少ないため、充放電時にアモルファス部分とリチウムが優先的に反応することで、アモルファス化された一部分で局所的に膨張収縮が生じる。それ故、アモルファス化された部分の体積膨張収縮率が大きくなる。そのため、充放電を繰り返すことによって合金系負極活物質粒子の一部分が膨張・収縮を繰り返し、合金系負極活物質粒子中のリチウムイオンと反応して合金になる部分と、リチウムイオンと反応せず合金にならない部分との間で生じる応力等により合金系負極活物質粒子が粉砕される。   In conventional all-solid-state batteries, since the alloy-based negative electrode active material particles have few amorphized parts, the amorphous part and lithium react preferentially during charging and discharging, resulting in local expansion and contraction in the amorphized part. Occurs. Therefore, the volume expansion/contraction ratio of the amorphized portion becomes large. Therefore, by repeating charging and discharging, a part of the alloy-based negative electrode active material particles repeatedly expands and contracts, and reacts with lithium ions in the alloy-based negative electrode active material particles to become an alloy, and does not react with the lithium ions. The alloy-based negative electrode active material particles are crushed due to stress or the like generated between the alloy-based negative electrode active material particles and the non-reactive portion.

一方で、本件では、アモルファス化された部分を多くすることによって、局所的にリチウムが反応することを防ぎ、アモルファス化された部分の各々の箇所におけるリチウムとの反応量を減少させることで、アモルファス化された部分の体積膨張率を小さくすることが出来る。これにより、合金系負極活物質粒子にかかる応力が小さくなり、合金系負極活物質粒子の粉砕を抑制して、全固体電池のサイクル特性を向上させることができる。また、アモルファス化された部分の体積膨張率の変化により、化学的劣化の進行を抑制している可能性も推測される。   On the other hand, in this case, by increasing the number of amorphized portions, it is possible to prevent local reaction of lithium and reduce the amount of reaction with lithium at each portion of the amorphized portions. The volume expansion coefficient of the converted portion can be reduced. This reduces the stress applied to the alloy-based negative electrode active material particles, suppresses crushing of the alloy-based negative electrode active material particles, and improves the cycle characteristics of the all-solid battery. It is also presumed that the progress of chemical deterioration may be suppressed by the change in the volume expansion coefficient of the amorphized portion.

また、合金系負極活物質粒子のアモルファス化率は、27.8〜82.8%である。   The amorphization rate of the alloy-based negative electrode active material particles is 27.8 to 82.8%.

合金系負極活物質粒子全体をアモルファス化するよりも、合金系負極活物質粒子中の一部が結晶質であるほうが、全固体電池のサイクル特性が高くなると考えられる。これは、合金系負極活物質粒子中の結晶質の部分が芯となって、粒子全体の構造を安定化させることによると考えられる。   It is considered that the cycle characteristics of the all-solid-state battery are improved when a part of the alloy-based negative electrode active material particles is crystalline rather than when the entire alloy-based negative electrode active material particles are made amorphous. It is considered that this is because the crystalline portion in the alloy-based negative electrode active material particles serves as a core to stabilize the structure of the entire particle.

<正極活物質層>
本発明における正極活物質層は、正極活物質、並びに随意にバインダー、導電助剤、及び固体電解質を有している。
<Cathode active material layer>
The positive electrode active material layer in the present invention has a positive electrode active material, and optionally a binder, a conductive additive, and a solid electrolyte.

正極活物質としては、リチウム二次電池の正極活物質材料として用いられる材料であれば特に限定されない。例えば、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、マンガン酸リチウム、異種元素置換Li−Mnスピネル、チタン酸リチウム、若しくはLiMPO(MがFe、Mn、Co、Niから選ばれる一種類以上)で表される組成のリン酸金属リチウム等、又はこれらの組み合わせを挙げることができる。 The positive electrode active material is not particularly limited as long as it is a material used as a positive electrode active material material of a lithium secondary battery. For example, lithium cobalt oxide, lithium nickel oxide, nickel cobalt lithium manganate, lithium manganate, different element substitution Li-Mn spinel, lithium titanate, or LiMPO 4 (M is one selected from Fe, Mn, Co, and Ni) Examples of the lithium metal phosphate having the composition represented by the above) or a combination thereof.

正極活物質は、成分としてリチウムを有するリチウム含有金属酸化物である保護コーティングによって被覆されていてもよい。これにより、正極活物質が固体電解質と反応して酸化物被膜を形成することを防止して、正極活物質の劣化を防止することができる。   The positive electrode active material may be covered with a protective coating which is a lithium-containing metal oxide having lithium as a component. This can prevent the positive electrode active material from reacting with the solid electrolyte to form an oxide film, and prevent deterioration of the positive electrode active material.

リチウム含有金属酸化物としては、リチウムイオン伝導性を有し、かつ正極活物質又は固体電解質と接触しても流動しない被覆層の形態を維持できる物質であれば特に限定されない。例えば、ニオブ酸リチウム(LiNbO)、チタン酸リチウム(LiTi12)、又はリン酸リチウム(LiPO)等を用いることができる。 The lithium-containing metal oxide is not particularly limited as long as it has lithium ion conductivity and can maintain the form of the coating layer that does not flow even when contacted with the positive electrode active material or the solid electrolyte. For example, lithium niobate (LiNbO 3), lithium titanate (Li 4 Ti 5 O 12) , or lithium phosphate (Li 3 PO 4) or the like can be used.

固体電解質としては、全固体電池の固体電解質として用いられる硫化物固体電解質を用いることができる。例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiS−Pなどが挙げられる。 As the solid electrolyte, a sulfide solid electrolyte used as a solid electrolyte of an all-solid battery can be used. For example, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 , etc. Is mentioned.

バインダーとしては、特に限定されないが、ポリマー樹脂、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)、スチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)、若しくはカルボキシメチルセルロース(CMC)等、又はこれらの組み合わせを挙げることができる。   The binder is not particularly limited, but a polymer resin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyimide (PI), polyamide (PA), polyamideimide (PAI), butadiene rubber (BR). , Styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), styrene-ethylene-butylene-styrene block copolymer (SEBS), carboxymethyl cellulose (CMC), and the like, or a combination thereof.

導電助剤としては、VGCF、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ(CNT)、又はカーボンナノファイバー(CNF)等の炭素材料の他、ニッケル、アルミニウム、SUS等の金属、又はこれらの組み合わせを挙げることができる。   Examples of the conductive additive include carbon materials such as VGCF, acetylene black, Ketjen black, carbon nanotube (CNT), and carbon nanofiber (CNF), and metals such as nickel, aluminum, and SUS, or a combination thereof. be able to.

<固体電解質層>
固体電解質層は上記正極活物質層において記載した電解質を利用することができる。固体電解質層の厚さは、例えば、0.1μm以上300μm以下であり、特に、0.1μm以上100μm以下であってよい。
<Solid electrolyte layer>
For the solid electrolyte layer, the electrolyte described in the positive electrode active material layer can be used. The thickness of the solid electrolyte layer may be, for example, 0.1 μm or more and 300 μm or less, and particularly 0.1 μm or more and 100 μm or less.

<負極活物質層>
負極活物質層は、負極活物質、並びに随意に導電助剤、バインダー、及び固体電解質を有している。
<Negative electrode active material layer>
The negative electrode active material layer has a negative electrode active material, and optionally a conductive additive, a binder, and a solid electrolyte.

負極活物質としては合金系負極活物質粒子が用いられる。ここで、本発明において、合金系負極活物質とは、電池反応においてリチウムと反応してアモルファス合金を形成する、金属系負極活物質である。合金系負極活物質粒子は特に限定されないが、例えばケイ素粒子、スズ粒子、ゲルマニウム粒子、アルミニウム粒子及びこれらの組み合わせが挙げられる。合金系負極活物質粒子の一次粒子径(メディアン径)は、10μm以下、7μm以下、5μm以下、又は3μm以下が好ましい。ここで、合金系負極活物質粒子の一次粒子径(メディアン径)は、レーザー回折・散乱式粒子径分布測定装置LA−920(堀場製作所製)を用いて測定した。   Alloy negative electrode active material particles are used as the negative electrode active material. Here, in the present invention, the alloy-based negative electrode active material is a metal-based negative electrode active material that reacts with lithium in a battery reaction to form an amorphous alloy. The alloy-based negative electrode active material particles are not particularly limited, and examples thereof include silicon particles, tin particles, germanium particles, aluminum particles, and combinations thereof. The primary particle diameter (median diameter) of the alloy-based negative electrode active material particles is preferably 10 μm or less, 7 μm or less, 5 μm or less, or 3 μm or less. Here, the primary particle diameter (median diameter) of the alloy-based negative electrode active material particles was measured using a laser diffraction/scattering particle size distribution measuring device LA-920 (manufactured by Horiba Ltd.).

本発明の全固体電池システムに用いられる全固体電池が有する合金系負極活物質粒子は、粒子の一部分がアモルファス化されている。この合金系負極活物質粒子のアモルファス化は、例えば、全固体電池を組み立てた後に行われる初期充放電によって行うことができる。   Part of the particles of the alloy-based negative electrode active material particles included in the all-solid-state battery used in the all-solid-state battery system of the present invention is made amorphous. Amorphization of the alloy-based negative electrode active material particles can be performed, for example, by initial charge/discharge performed after assembling the all-solid-state battery.

合金系負極活物質粒子のアモルファス化率は27.8〜82.8%である。このアモルファス化率は、30%以上、35%以上、40%以上、又は50%以上であってよく、80%以下、75%以下、70%以下、65%以下、60%以下、又は55%以下であってよい。ここで、アモルファス化率とは、合金系負極活物質粒子全体に対するアモルファス化されている部分の割合をいう。   The amorphization rate of the alloy-based negative electrode active material particles is 27.8 to 82.8%. The amorphization ratio may be 30% or more, 35% or more, 40% or more, or 50% or more, and 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, or 55%. May be: Here, the amorphization ratio refers to a ratio of an amorphized portion to the entire alloy-based negative electrode active material particles.

このアモルファス化率は、例えば、全固体電池に規定の電圧を加えて充電を行い、2.5Vまで放電した後、負極活物質層のうち、固体電解質層から5μm〜15μm離れた位置のTEM測定によって測定された10μm×10μmの視野に存在する、少なくとも4粒子以上の合金系負極活物質粒子について(合金系負極活物質粒子は一部が含まれていればよく、全体像が必ずしも見える必要はない。)、BF像から確認される合金系負極活物質粒子の面積に対する、合金系負極活物質粒子のうちアモルファス化された部分の面積の割合として計算することができる。   This amorphization rate is, for example, TEM measurement at a position apart from the solid electrolyte layer by 5 μm to 15 μm in the negative electrode active material layer after charging the all-solid-state battery by applying a specified voltage and discharging to 2.5 V. At least 4 particles or more of the alloy-based negative electrode active material particles present in the visual field of 10 μm×10 μm measured by (the alloy-based negative electrode active material particles need only be partially contained, and the entire image does not necessarily have to be visible). It can be calculated as the ratio of the area of the amorphized portion of the alloy-based negative electrode active material particles to the area of the alloy-based negative electrode active material particles confirmed from the BF image.

導電助剤、バインダー、及び固体電解質としては、上記正極活物質層において記載したものを用いることができる。   As the conductive additive, the binder, and the solid electrolyte, those described for the positive electrode active material layer can be used.

<制御装置>
本発明の全固体電池システムに用いられる制御装置は、全固体電池の使用時における充放電電圧を制御する。制御装置は、充放電電圧を制御することができる装置であれば、特に限定されない。制御装置は、例えば、全固体電池の放電時において、全固体電池の電圧が一定の電圧まで到達したかを判定し、一定の電圧まで到達した場合に放電を終了させる機能、及び全固体電池の充電時において、全固体電池の電圧が一定の電圧まで到達したかを判定し、一定の電圧まで到達した場合に充電を終了させる機能を有していてよい。
<Control device>
The control device used in the all-solid-state battery system of the present invention controls the charge/discharge voltage when the all-solid-state battery is used. The control device is not particularly limited as long as it is a device capable of controlling the charge/discharge voltage. The control device, for example, at the time of discharging the all-solid-state battery, determines whether the voltage of the all-solid-state battery has reached a certain voltage, a function to terminate the discharge when it reaches a certain voltage, and the all-solid-state battery During charging, it may have a function of determining whether the voltage of the all-solid-state battery has reached a certain voltage and ending the charging when the voltage of the all-solid-state battery has reached a certain voltage.

制御装置は、全固体電池の使用時における電圧を2.50V以上4.40V以下の範囲内で制御することが好ましい。2.50Vより小さい電圧まで放電した場合、又は4.40Vより大きい電圧まで充電した場合には、正極活物質又は負極活物質が劣化し、電池の性能が低下することがあるためである。また、制御される放電電圧の範囲は、2.60V以上、2.70V以上、2.90V以上、3.00V以上、3.10V以上、又は3.20V以上であってよく、4.30V以下、4.20V以下、4.10V以下、4.00V以下、3.90V以下、3.80V以下、3.70V以下、3.60V以下、3.50V以下、3.40V以下、又は3.30V以下であってよい。   It is preferable that the control device controls the voltage when the all-solid-state battery is used within the range of 2.50 V or more and 4.40 V or less. This is because when discharged to a voltage lower than 2.50 V or charged to a voltage higher than 4.40 V, the positive electrode active material or the negative electrode active material may deteriorate and the battery performance may decrease. The controlled discharge voltage range may be 2.60 V or higher, 2.70 V or higher, 2.90 V or higher, 3.00 V or higher, 3.10 V or higher, or 3.20 V or higher, and 4.30 V or lower. 4.20V or less, 4.10V or less, 4.00V or less, 3.90V or less, 3.80V or less, 3.70V or less, 3.60V or less, 3.50V or less, 3.40V or less, or 3.30V May be:

<本発明の全固体電池システムに用いられる全固体電池の構成例>
本発明の全固体電池システムに用いられる全固体電池(6)の具体的な構成例としては、正極集電体(1)、正極活物質層(2)、固体電解質層(3)、負極活物質層(4)、及び負極集電体(5)を、この順番で有する構成が挙げられる(図2参照)。
<Configuration example of all-solid-state battery used in the all-solid-state battery system of the present invention>
Specific examples of the structure of the all-solid battery (6) used in the all-solid battery system of the present invention include a positive electrode current collector (1), a positive electrode active material layer (2), a solid electrolyte layer (3), and a negative electrode active material. A configuration having the material layer (4) and the negative electrode current collector (5) in this order can be mentioned (see FIG. 2 ).

また、図3のように、本発明の全固体電池システムに用いられる全固体電池(7)は、負極集電体(5)を中心に、その両側に負極活物質層(4)、固体電解質層(3)、正極活物質層(2)、及び正極集電体(1)を有する構成であってよい。   Further, as shown in FIG. 3, the all-solid-state battery (7) used in the all-solid-state battery system of the present invention has a negative electrode current collector (5) as a center and a negative electrode active material layer (4) and a solid electrolyte on both sides thereof. The structure may include the layer (3), the positive electrode active material layer (2), and the positive electrode current collector (1).

また、図4のように、本発明の全固体電池システムに用いられる全固体電池(8)は、正極集電体(1)を中心に、その両側に正極活物質層(2)、固体電解質層(3)、負極活物質層(4)、及び負極集電体(5)を有する構成であってよい。   In addition, as shown in FIG. 4, the all-solid-state battery (8) used in the all-solid-state battery system of the present invention has a positive electrode current collector (1) as a center, and a positive electrode active material layer (2) and a solid electrolyte on both sides thereof. The structure may include the layer (3), the negative electrode active material layer (4), and the negative electrode current collector (5).

尚、図2〜4は、本発明の全固体電池システムに用いられる全固体電池の構成を限定する趣旨ではない。   2 to 4 are not intended to limit the configuration of the all-solid-state battery used in the all-solid-state battery system of the present invention.

<<本発明の全固体電池システムの製造方法>>
本発明の全固体電池システムの製造方法は、正極活物質層、固体電解質層、及び合金系負極活物質粒子を負極活物質として有している負極活物質層を積層する積層工程、及び積層工程後に電池使用時における充放電電圧より高い充電電圧まで充電する初期充電工程を有する方法である。
<<Method for Manufacturing All-Solid-State Battery System of the Present Invention>>
The method for manufacturing the all-solid-state battery system of the present invention includes a stacking step of stacking a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer having alloy-based negative electrode active material particles as a negative electrode active material, and a stacking step. It is a method that has an initial charging step of later charging to a charging voltage higher than the charging/discharging voltage when using the battery.

原理によって限定されるものではないが、本発明の作用原理は以下のとおりであると考える。   Although not limited by the principle, the operating principle of the present invention is considered as follows.

合金系負極活物質粒子は、充電によって一部がリチウムと反応して合金となる。そして、合金となった部分は、放電によってリチウムイオンが放出された後にもアモルファス化されたままとなる。   Part of the alloy-based negative electrode active material particles reacts with lithium by charging to become an alloy. Then, the alloyed portion remains amorphized even after lithium ions are released by the discharge.

電池の製品としての使用域よりも高い電圧で初期充電を行うことで、製品として使用する場合よりも多くのリチウムイオンが負極側に移動し、合金系負極活物質粒子と反応することができる。これにより、通常の使用における正極活物質のリチウムイオン放出容量よりも、合金系負極活物質粒子のうちアモルファス化された部分を増やすことができ、負極のリチウムイオン受入れ容量を高くすることができる。   By performing the initial charging at a voltage higher than the usage range of the battery as a product, more lithium ions move to the negative electrode side than in the case of being used as a product and can react with the alloy-based negative electrode active material particles. This makes it possible to increase the amorphous portion of the alloy-based negative electrode active material particles over the lithium ion releasing capacity of the positive electrode active material in normal use, and to increase the lithium ion receiving capacity of the negative electrode.

さらに、本発明者は初期充電時においてより多くのリチウムイオンを合金系負極活物質粒子と反応させるため、正極活物質が、ニオブ酸リチウム等のリチウム含有金属酸化物である保護コーティングにより被覆されたものを用いることができることを見出した。   Further, since the present inventor causes more lithium ions to react with the alloy-based negative electrode active material particles during initial charging, the positive electrode active material is covered with a protective coating which is a lithium-containing metal oxide such as lithium niobate. It was found that one can be used.

このような保護コーティングに用いられるリチウム含有金属酸化物は、通常の電池の使用域よりも高い電圧においてリチウムイオンを放出する。そのため、通常の電池の使用域よりも高い電圧において充電を行うことで、正極活物質が放出することができる量よりも多くのリチウムイオンを負極側に放出することができる。これにより、より多くの合金系負極活物質粒子をリチウムイオンと反応させ、合金系負極活物質粒子のアモルファス化率をより高めることができる。   The lithium-containing metal oxide used for such a protective coating emits lithium ions at a voltage higher than the normal operating range of batteries. Therefore, by charging the battery at a voltage higher than the normal operating range of the battery, more lithium ions than the positive electrode active material can release can be released to the negative electrode side. As a result, a larger amount of the alloy-based negative electrode active material particles can be reacted with lithium ions to further increase the amorphization rate of the alloy-based negative electrode active material particles.

なお、このように通常の電池の使用域よりも高い電圧で充放電を行った場合、正極活物質が劣化し、正極活物質のリチウムイオンを吸蔵・放出する能力が低下する。しかしながら、合金系負極活物質粒子のアモルファス化率をより高めることができるため、電池全体としてのサイクル特性は向上する。   When the battery is charged and discharged at a voltage higher than the normal operating range of the battery, the positive electrode active material deteriorates, and the ability of the positive electrode active material to store and release lithium ions decreases. However, since the amorphization rate of the alloy-based negative electrode active material particles can be further increased, the cycle characteristics of the battery as a whole are improved.

<積層工程>
積層工程は、正極活物質層、固体電解質層、及び合金系負極活物質粒子を負極活物質として有している負極活物質層を、積層する工程である。積層工程において用いられる正極活物質層、固体電解質層、負極活物質層、及び合金系負極活物質粒子は、本発明の全固体電池に用いられる正極活物質層、固体電解質層、負極活物質層、及び合金系負極活物質粒子と同様の物を使用することができる。また、正極活物質層に含まれる正極活物質の全部又は一部は、リチウムを成分として含有しているリチウム含有金属酸化物の保護コーティングによって被覆されていることができる。リチウム含有金属酸化物としては、特に限定はされないが、例えばニオブ酸リチウムを挙げることができる。
<Lamination process>
The laminating step is a step of laminating the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer having the alloy-based negative electrode active material particles as the negative electrode active material. The positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the alloy-based negative electrode active material particles used in the laminating step are the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer used in the all-solid-state battery of the present invention. , And the same as the alloy-based negative electrode active material particles can be used. Further, all or part of the positive electrode active material contained in the positive electrode active material layer can be covered with a protective coating of a lithium-containing metal oxide containing lithium as a component. The lithium-containing metal oxide is not particularly limited, but examples thereof include lithium niobate.

<初期充電工程>
初期充電工程では、正極活物質から放出させるリチウムイオンを合金系負極活物質粒子と反応させることにより、合金系負極活物質のアモルファス化を進行させる。
<Initial charging process>
In the initial charging step, the lithium ions released from the positive electrode active material are reacted with the particles of the alloy-based negative electrode active material to promote amorphization of the alloy-based negative electrode active material.

初期充電工程における初期充電電圧は、製造される全固体電池システムにおいて制御される充放電電圧よりも高い電圧である。例えば、充放電電圧が2.50V以上4.40V以下の範囲内で制御されることを予定する全固体電池システムを製造する場合に、初期充電電圧は4.45Vより大きく5.00V以下の値を選択することができる。   The initial charging voltage in the initial charging step is higher than the charging/discharging voltage controlled in the manufactured all-solid-state battery system. For example, when manufacturing an all-solid-state battery system in which the charge/discharge voltage is planned to be controlled within the range of 2.50 V or more and 4.40 V or less, the initial charge voltage is a value greater than 4.45 V and less than 5.00 V. Can be selected.

また、下記の条件を満たすように充電することが好ましい。   Further, it is preferable to charge the battery so as to satisfy the following conditions.

(充電電圧における電圧(V)に対する充電量(Q)の変化率(dQ/dV))/(充電電圧が4.00V以上4.40V以下である時の電圧(V)に対する充電量(Q)の変化率(dQ/dV)の平均値)>1.3。   (Change rate (dQ/dV) of charge amount (Q) with respect to voltage (V) at charge voltage)/(charge amount (Q) with respect to voltage (V) when charge voltage is 4.00 V or more and 4.40 V or less) Change rate (average value of dQ/dV))>1.3.

なお、(充電電圧における電圧(V)に対する充電量(Q)の変化率(dQ/dV))/(充電電圧が4.00V以上4.40V以下である時の電圧(V)に対する充電量(Q)の変化率(dQ/dV)の平均値)は、1.4以上、1.5以上、1.6以上、1.7以上、1.8以上、1.9以上、2.0以上、又は2.1以上であってよい。   Note that (rate of change of charge amount (Q) with respect to voltage (V) at charge voltage (dQ/dV))/(charge amount with respect to voltage (V) when the charge voltage is 4.00 V or more and 4.40 V or less ( The average rate of change (dQ/dV) of Q) is 1.4 or more, 1.5 or more, 1.6 or more, 1.7 or more, 1.8 or more, 1.9 or more, 2.0 or more. , Or 2.1 or higher.

図5を用いて、上記式を説明する。全固体電池を、制御装置によって制御される充放電電圧の範囲で充電した場合、主に正極活物質からのリチウムイオンの放出が起こり、充電量(Q)が電圧(V)の上昇に伴い増加する(図5の範囲(10))。全固体電池の充電電圧を更に上昇させていくと、一定の電圧において、リチウム含有金属酸化物の保護コーティングからのリチウムイオンの放出が起こるため、正極側から負極側に移動するリチウムイオンの総量が増加して、電圧(V)に対する充電量(Q)の変化率(dQ/dV)が増加する(図5の(範囲20))。   The above equation will be described with reference to FIG. When the all-solid-state battery is charged within the range of charge/discharge voltage controlled by the control device, lithium ions are mainly released from the positive electrode active material, and the charge amount (Q) increases as the voltage (V) increases. (Range (10) in FIG. 5). When the charging voltage of the all-solid-state battery is further increased, lithium ions are released from the protective coating of the lithium-containing metal oxide at a constant voltage, so that the total amount of lithium ions moving from the positive electrode side to the negative electrode side is increased. The rate of change (dQ/dV) of the charge amount (Q) with respect to the voltage (V) increases ((range 20) in FIG. 5).

なお、全固体電池のサイクル特性をより大きくするため、初期充電工程後に正極活物質層を交換する方法をとることができる。この方法は、例えば、初期充電工程後に、正極活物質層、固体電解質層、及び合金系負極活物質粒子を負極活物質として有している負極活物質層を有する積層体から、正極活物質層又は正極活物質層及び固体電解質層と除去し、新たに作製した正極活物質層又は正極活物質層及び固体電解質層を、合金系負極活物質粒子を負極活物質として有している負極活物質層に積層することによって行うことができる。   In order to further improve the cycle characteristics of the all-solid-state battery, a method of exchanging the positive electrode active material layer after the initial charging step can be used. This method includes, for example, a positive electrode active material layer, a solid electrolyte layer, and a laminate having a negative electrode active material layer having alloy negative electrode active material particles as a negative electrode active material after the initial charging step. Alternatively, the positive electrode active material layer and the solid electrolyte layer are removed, and the newly prepared positive electrode active material layer or the positive electrode active material layer and the solid electrolyte layer are used as a negative electrode active material having alloy negative electrode active material particles as a negative electrode active material. This can be done by stacking layers.

この工程を追加することで、初期充電工程を行ったことで劣化した正極活物質層を新しい正極活物質層と交換して、より電池の性能を高めることができる。また、正極活物質層を交換することを前提とするため、初期充電工程において正極活物質層の劣化を考慮せずに高電圧での充放電を行うことができる。   By adding this step, the positive electrode active material layer deteriorated due to the initial charging step can be replaced with a new positive electrode active material layer to further improve the battery performance. Further, since it is premised that the positive electrode active material layer is replaced, it is possible to charge and discharge at a high voltage without considering deterioration of the positive electrode active material layer in the initial charging step.

また、初期充電工程後に正極活物質層を交換する方法を行う場合、交換する前の正極活物質層の放出可能なリチウム含有量が、交換後の正極活物質層の放出可能なリチウム含有量よりも大きいほうが好ましい。   In addition, when performing the method of replacing the positive electrode active material layer after the initial charging step, the releasable lithium content of the positive electrode active material layer before replacement is higher than the releasable lithium content of the positive electrode active material layer after replacement. The larger is also preferable.

なお、交換する前の正極活物質層が放出可能なリチウムイオン含有量が、交換後の正極活物質層が放出可能なリチウム含有量より多い場合には、初期充電工程における電圧を、制御装置によって制御される充放電電圧の範囲よりも大きくしなくてもよい。これは、充電電圧が等しい場合には、正極活物質層が放出可能なリチウム含有量が多いほど、正極活物質層が放出するリチウムイオンの量が多くなるためである。   When the lithium ion content that can be released by the positive electrode active material layer before replacement is higher than the lithium content that can be released by the positive electrode active material layer after replacement, the voltage in the initial charging step is controlled by the control device. It does not have to be higher than the range of controlled charge/discharge voltage. This is because when the charging voltage is the same, the amount of lithium ions released by the positive electrode active material layer increases as the lithium content that can be released by the positive electrode active material layer increases.

このような構成をとることにより、初期充電工程において、交換後の正極活物質層が放出することができるリチウムイオンよりも多くのリチウムイオンを負極活物質層に供給できるため、合金系負極活物質粒子のアモルファス化率をより大きくすることができる。   With such a configuration, in the initial charging step, more lithium ions than the lithium ions that can be released by the positive electrode active material layer after replacement can be supplied to the negative electrode active material layer. The amorphization ratio of the particles can be increased.

<<実施例1〜3、及び比較例1〜5>>
下記のとおり、実施例1〜3、及び比較例1〜5の全固体電池を作製し、その電池性能を評価した。
<<Examples 1 to 3 and Comparative Examples 1 to 5>>
As described below, all-solid-state batteries of Examples 1 to 3 and Comparative Examples 1 to 5 were produced and the battery performance was evaluated.

<実施例1>
下記のとおりにして、実施例1の全固体電池を作製してその電池性能を評価した。
<Example 1>
The all-solid-state battery of Example 1 was prepared and the battery performance was evaluated as follows.

1.全固体電池の作製
(1)正極活物質層の作製
分散媒としての酪酸ブチル、バインダーとしてのポリフッ化ビニリデンを溶解した5wt%酪酸ブチル溶液、保護コーティングとしてのニオブ酸リチウムでコーティングされた、正極活物質としてのLiNi1/3Co1/3Mn1/3、固体電解質としてのLiS−P系ガラスセラミック、及び導電助剤としてのVGCF(気相法炭素繊維)を、ポリプロピレン製容器に加えて、超音波分散装置(エスエムテー製、製品名UH−50)で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器(柴田科学株式会社製、製品名TTM−1)で3分間振とうし、さらに超音波分散装置で30秒間撹拌して、正極活物質層用ペーストを作製した。
1. Preparation of all-solid-state battery (1) Preparation of positive electrode active material layer Positive electrode active material coated with butyl butyrate as a dispersion medium, 5 wt% butyl butyrate solution containing polyvinylidene fluoride as a binder, and lithium niobate as a protective coating. LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a substance, Li 2 S-P 2 S 5 based glass ceramic as a solid electrolyte, and VGCF (vapor grown carbon fiber) as a conduction aid, In addition to the polypropylene container, the mixture was stirred for 30 seconds with an ultrasonic dispersion device (SMT, product name UH-50). Then, the polypropylene container was shaken with a shaker (Shibata Scientific Co., Ltd., product name TTM-1) for 3 minutes and further stirred with an ultrasonic dispersion device for 30 seconds to prepare a paste for a positive electrode active material layer. ..

正極活物質層用ペーストを、アプリケーターを使用して、ドクターブレード法にて正極集電体としてのアルミニウム箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥することにより、正極活物質層を作製した。   The positive electrode active material layer paste is applied to an aluminum foil as a positive electrode current collector by a doctor blade method using an applicator, and then dried on a hot plate heated to 100° C. for 30 minutes, A positive electrode active material layer was produced.

(2)負極活物質層の作製
分散媒としての酪酸ブチル、バインダーとしてのポリフッ化ビニリデンを溶解した5wt%酪酸ブチル溶液、負極活物質としてのケイ素粒子(高純度化学製)、固体電解質としてのLiS−P系ガラスセラミック、及び導電助剤としてのVGCF(気相法炭素繊維)を、ポリプロピレン製容器に加えて、超音波分散装置で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器で30分間振とうして、負極活物質層用ペーストを作製した。
(2) Preparation of Negative Electrode Active Material Layer Butyl butyrate as a dispersion medium, a 5 wt% butyl butyrate solution in which polyvinylidene fluoride is dissolved as a binder, silicon particles (manufactured by High Purity Chemical Co.) as a negative electrode active material, and Li as a solid electrolyte. 2 S-P 2 S 5 based glass ceramics, and VGCF (vapor grown carbon fiber) as a conductive additive, in addition to the polypropylene container, and stirred for 30 seconds with an ultrasonic dispersing device. Then, the polypropylene container was shaken with a shaker for 30 minutes to prepare a negative electrode active material layer paste.

負極活物質層用ペーストを、アプリケーターを使用して、ドクターブレード法にて負極集電体としての銅箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥することにより、負極活物質層を作製した。   The negative electrode active material layer paste is applied to a copper foil as a negative electrode current collector by a doctor blade method using an applicator, and then dried on a hot plate heated to 100° C. for 30 minutes, A negative electrode active material layer was produced.

(3)固体電解質層の作製
分散媒としてのヘプタン、バインダーとしてのブタジエンゴムを溶解した5wt%ヘプタン溶液、及び固体電解質としてのヨウ化リチウムを含有するLiS−P系ガラスセラミックを、ポリプロピレン製容器に加えて、超音波分散装置で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器で30分間振とうして、固体電解質層用ペーストを作製した。
(3) heptane as making the dispersion medium of the solid electrolyte layer, 5 wt% heptane solution of butadiene rubber as a binder, and Li 2 S-P 2 S 5 based glass ceramics containing lithium iodide as a solid electrolyte , A container made of polypropylene, and stirred for 30 seconds with an ultrasonic dispersion device. Then, the polypropylene container was shaken with a shaker for 30 minutes to prepare a solid electrolyte layer paste.

固体電解質層用ペーストを、アプリケーターを使用して、ブレード法にて基盤としてのアルミニウム箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥することにより、固体電解質層を作製した。   The solid electrolyte layer paste is applied to an aluminum foil as a base by a blade method using an applicator, and then dried on a hot plate heated to 100° C. for 30 minutes to prepare a solid electrolyte layer. did.

(4)積層・プレス工程
固体電解質層が正極活物質層と接するように、固体電解質層を正極活物質層に積層して、1ton/cmでプレスし、固体電解質層の基盤としてのアルミニウム箔を剥がして、固体電解質層と正極活物質層の積層体を作製した。
(4) Laminating/Pressing Step A solid electrolyte layer is laminated on the positive electrode active material layer so that the solid electrolyte layer is in contact with the positive electrode active material layer, and pressed at 1 ton/cm 2 , and an aluminum foil as a base of the solid electrolyte layer. Was peeled off to prepare a laminate of the solid electrolyte layer and the positive electrode active material layer.

その後、この積層体の固体電解質層側に負極活物質層を重ね6ton/cmで、プレスし、電池を完成させた。作製したセルは拘束治具を用いて2N・mの拘束圧にて拘束し、デシケーターに入れて評価を行った。 Then, a negative electrode active material layer was overlaid on the solid electrolyte layer side of this laminate and pressed at 6 ton/cm 2 to complete a battery. The prepared cell was restrained with a restraining pressure of 2 N·m using a restraining jig and put in a desiccator for evaluation.

2.電池性能評価
作製した実施例1の全固体電池に対して、初期充電として10時間率(1/10C)で4.55Vまで定電流―定電圧充電(終止電流1/100C)して、初期放電として定電流―定電圧放電で2.50Vまで放電した。その後、4.40Vまで定電流―定電圧充電(終止電流1/100C)して、定電流―定電圧放電で2.50Vまで放電して、実施例1の全固体電池の耐久試験前の放電容量を測定した。
2. Battery Performance Evaluation The prepared all-solid-state battery of Example 1 was subjected to constant current-constant voltage charging (termination current 1/100C) up to 4.55V at a 10-hour rate (1/10C) as initial charging, and then initial discharge. As constant current-constant voltage discharge up to 2.50 V. Then, constant current-constant voltage charging (stop current 1/100C) to 4.40 V, constant current-constant voltage discharging to 2.50 V, discharge of all-solid-state battery of Example 1 before endurance test. The capacity was measured.

その後、耐久試験として、0.5時間率(2C)で4.17Vまで充電した後に3.17Vまで放電を行うサイクルを300回繰り返して行った。耐久試験後に、4.40Vまで定電流―定電圧充電(終止電流1/100C)して、定電流―定電圧放電で2.50Vまで放電して、実施例1の全固体電池の耐久試験後の放電容量を測定した。   Then, as a durability test, a cycle of charging to 4.17V at 0.5 hour rate (2C) and then discharging to 3.17V was repeated 300 times. After the endurance test, constant current-constant voltage charge (stop current 1/100C) to 4.40 V, and constant current-constant voltage discharge to 2.50 V, after the endurance test of the all-solid-state battery of Example 1. Discharge capacity was measured.

耐久試験後の放電容量/耐久試験前の放電容量を計算して、実施例1の全固体電池の容量維持率を算出した。   The discharge capacity after the durability test/the discharge capacity before the durability test was calculated to calculate the capacity retention rate of the all-solid-state battery of Example 1.

<実施例2、3及び比較例1〜3>
実施例1と同様の方法により実施例2、3及び比較例1〜3の全固体電池を作製した。その後、初期充電電圧を、実施例2につき4.70V、実施例3につき5.00V、比較例1につき4.45V、比較例2につき4.40V、及び比較例3につき3.60V、としたことを除いて、実施例1と同様の方法により実施例2、3及び比較例1〜3の全固体電池の電池性能を評価した。
<Examples 2 and 3 and Comparative Examples 1 to 3>
By the same method as in Example 1, all-solid-state batteries of Examples 2 and 3 and Comparative Examples 1 to 3 were produced. After that, the initial charging voltage was 4.70V for Example 2, 5.00V for Example 3, 4.45V for Comparative Example 1, 4.40V for Comparative Example 2, and 3.60V for Comparative Example 3. Except for this, the battery performance of the all-solid-state batteries of Examples 2 and 3 and Comparative Examples 1 to 3 was evaluated by the same method as in Example 1.

<比較例4及び5>
負極活物質層の作製において、ドクターブレード法によって、作製される負極活物質層の厚さが、実施例1における負極活物質層の厚さに対して、比較例4につき約2倍、比較例5につき約0.5倍になるようにしたことを除いて、実施例1と同様の方法により比較例4及び5の全固体電池を作製した。その後、比較例4及び5について、初期充電電圧を4.45Vとしたことを除いて、実施例1と同様の方法により比較例4及び5の全固体電池の電池性能を評価した。
<Comparative Examples 4 and 5>
In the production of the negative electrode active material layer, the thickness of the negative electrode active material layer produced by the doctor blade method was about twice the thickness of the negative electrode active material layer in Example 1 in Comparative Example 4 and Comparative Example. The all-solid-state batteries of Comparative Examples 4 and 5 were produced by the same method as in Example 1 except that the ratio was set to about 0.5 times per 5. After that, in Comparative Examples 4 and 5, the battery performance of the all-solid-state batteries of Comparative Examples 4 and 5 was evaluated by the same method as in Example 1 except that the initial charging voltage was set to 4.45V.

<測定結果>
実施例1〜3、及び比較例1〜5の全固体電池の作製条件、電池構成、及び測定結果を、下記の表1に表した。
<Measurement result>
The manufacturing conditions, battery configurations, and measurement results of the all-solid-state batteries of Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Table 1 below.

Figure 0006699473
Figure 0006699473

1.表1の説明
表1において、「Si重量」は、全固体電池に含まれる、負極活物質としてのケイ素粒子の重量である。
1. Description of Table 1 In Table 1, "Si weight" is the weight of silicon particles as a negative electrode active material contained in the all-solid-state battery.

また、「アモルファス化率」は、ケイ素粒子全体に対する、アモルファス化された部分の割合である。「アモルファス化率」は、簡便のため、0.031×「初期充電量」により計算した(下記の<<初期充電容量とアモルファス化率の関係>>参照)。   Further, the "amorphization rate" is a ratio of an amorphized portion to the entire silicon particles. The “amorphization rate” is calculated by 0.031דinitial charge amount” for simplicity (see <<Relationship between initial charge capacity and amorphization rate>> below).

また、「アモルファス容量(W)」は、ケイ素粒子のうちアモルファス化された部分の容量を表している。「アモルファス容量(W)」は、「アモルファス容量(W)」=(「Si重量」(mg)×1000)×「アモルファス化率」(%)×4200(mAh/g)(ケイ素粒子の理論容量)により計算した。   In addition, "amorphous capacity (W)" represents the capacity of an amorphized portion of silicon particles. "Amorphous capacity (W)" is "amorphous capacity (W)" = ("Si weight" (mg) x 1000) x "amorphization rate" (%) x 4200 (mAh/g) (theoretical capacity of silicon particles ) Was calculated.

また、「制御放電容量(Z)」は、耐久試験前の放電容量の値を、製品として完成した時点の全固体電池システムにおける、実際に制御装置によって制御される電圧範囲における放電容量として求めた。   The "controlled discharge capacity (Z)" was obtained by calculating the value of the discharge capacity before the durability test as the discharge capacity in the voltage range actually controlled by the control device in the all-solid-state battery system at the time of completion as a product. ..

また、「Z/W」は、「制御放電容量(Z)」を、「アモルファス容量(W)」で除した値である。   Further, "Z/W" is a value obtained by dividing "control discharge capacity (Z)" by "amorphous capacity (W)".

また、「容量維持率」は、比較例1の全固体電池の耐久試験の結果を100%として計算した値である。   The “capacity maintenance ratio” is a value calculated by setting the result of the durability test of the all-solid-state battery of Comparative Example 1 as 100%.

2.考察
実施例1〜3の全固体電池は、「アモルファス化率」が、それぞれ、27.8%、34.1%、及び36.2%であり、かつ、「Z/W」が、それぞれ、0.53、0.54、及び0.52であった。したがって、実施例1〜3の全固体電池は、いずれも、アモルファス化率が27.8〜82.8%であること、及び0.32≦Z/W≦0.60であることを満たしている。
2. Consideration In the all-solid-state batteries of Examples 1 to 3, the "amorphization rate" was 27.8%, 34.1%, and 36.2%, respectively, and "Z/W" was It was 0.53, 0.54, and 0.52. Therefore, all of the solid-state batteries of Examples 1 to 3 satisfy the amorphization rate of 27.8 to 82.8% and 0.32≦Z/W≦0.60. There is.

実施例1〜3の全固体電池では、「容量維持率」が、それぞれ、108%、104%、及び109%であった。   In the all-solid-state batteries of Examples 1 to 3, the “capacity retention ratio” was 108%, 104%, and 109%, respectively.

比較例1〜4の全固体電池は、「アモルファス化率」が、それぞれ、26.6%、23.9%、5.8%、及び13.3%であり、かつ、「Z/W」が、それぞれ、0.66、0.68、2.85、及び0.64であった。したがって、比較例1〜4の全固体電池は、いずれも、アモルファス化率が27.8〜82.8%であること、及び0.32≦Z/W≦0.60であることの、いずれも満たしていなかった。   In the all-solid-state batteries of Comparative Examples 1 to 4, the "amorphization rate" was 26.6%, 23.9%, 5.8%, and 13.3%, respectively, and "Z/W". Were 0.66, 0.68, 2.85, and 0.64, respectively. Therefore, in all the all-solid-state batteries of Comparative Examples 1 to 4, the amorphization rate is 27.8 to 82.8%, and 0.32≦Z/W≦0.60. Also did not meet.

比較例1〜4の全固体電池では、「容量維持率」が、それぞれ、100%,99%、96%、及び97%であり、比較例2〜4の全固体電池では、実施例1〜3の全固体電池よりも、「容量維持率」が小さかった。   In the all-solid-state batteries of Comparative Examples 1 to 4, the “capacity retention rate” is 100%, 99%, 96%, and 97%, respectively, and in the all-solid-state batteries of Comparative Examples 2 to 4, Example 1 to The “capacity maintenance ratio” was smaller than that of the all-solid-state battery of No. 3.

また、比較例5の全固体電池は、「アモルファス化率」が43.9%あり、かつ、「Z/W」が0.67であった。したがって、比較例5の全固体電池は、アモルファス化率が27.8〜82.8%であることを満たしていたが、0.32≦Z/W≦0.60を満たしていなかった。   The all-solid-state battery of Comparative Example 5 had an “amorphization rate” of 43.9% and a “Z/W” of 0.67. Therefore, the all-solid-state battery of Comparative Example 5 satisfied the amorphization rate of 27.8 to 82.8%, but did not satisfy 0.32≦Z/W≦0.60.

比較例5の全固体電池は、「容量維持率」が97%であり、実施例1〜3の全固体電池よりも「容量維持率」が小さかった。   The all-solid-state battery of Comparative Example 5 had a “capacity maintenance ratio” of 97%, and the “capacity maintenance ratio” was smaller than that of the all-solid-state batteries of Examples 1 to 3.

以上から、電池の構成が、アモルファス化率が27.8〜82.8%、かつ0.32≦Z/W≦0.60を満たしている全固体電池は、アモルファス化率が27.8〜82.8%、かつ0.32≦Z/W≦0.60を満たしていない全固体電池よりも、「容量維持率」が大きいといえる。   From the above, the all-solid-state battery having an amorphization rate of 27.8 to 82.8% and 0.32≦Z/W≦0.60 has an amorphization rate of 27.8 to. It can be said that the “capacity maintenance ratio” is larger than that of the all-solid-state battery that does not satisfy 82.8% and 0.32≦Z/W≦0.60.

これは、実施例1〜3の全固体電池は、比較例1よりも「Z/W」が小さいため、ケイ素粒子全体に対するアモルファス化された部分の膨張・収縮率が比較例1よりも小さく、充放電の繰り返しによるケイ素粒子の粉砕が起こりにくくなっていることを示している。   This is because the all-solid-state batteries of Examples 1 to 3 have smaller “Z/W” than Comparative Example 1, so that the expansion/contraction ratio of the amorphized portion with respect to the entire silicon particles is smaller than that of Comparative Example 1. It shows that crushing of silicon particles due to repeated charging and discharging is less likely to occur.

一方、比較例1〜5の全固体電池は、ケイ素粒子のうちアモルファス化された部分が十分に多くないために、リチウムイオンと反応して膨張収縮する割合が大きくなり、300サイクルの充放電を行ううちに、ケイ素粒子に生じた応力によってケイ素粒子が粉砕されて、「容量維持率」が低くなっていることを示している。特に、比較例3では「Z/W」が実施例1〜3及び比較例1〜5の中で一番大きく、逆に、「容量維持率」は96%と一番低くなっていた。これは、比較例3では充放電に伴う、ケイ素粒子全体に対するアモルファス化された部分の膨張・収縮率が大きく、他の実施例及び比較例よりも、よりケイ素粒子が粉砕されていることを示している。   On the other hand, in the all-solid-state batteries of Comparative Examples 1 to 5, since the amorphized portion of the silicon particles is not sufficiently large, the proportion of expansion and contraction due to reaction with lithium ions becomes large, and the charge and discharge of 300 cycles are performed. It shows that the "capacity retention rate" was lowered because the silicon particles were crushed by the stress generated in the silicon particles during the operation. In particular, in Comparative Example 3, “Z/W” was the largest in Examples 1 to 3 and Comparative Examples 1 to 5, and conversely, the “capacity maintenance ratio” was the lowest at 96%. This indicates that in Comparative Example 3, the expansion/contraction ratio of the amorphized portion with respect to the entire silicon particles was large due to charging/discharging, and the silicon particles were crushed more than other Examples and Comparative Examples. ing.

このことから、より高い初期充電電圧まで充電することによって、全固体電池のサイクル特性をより向上させることができるといえる。   From this, it can be said that the cycle characteristics of the all-solid-state battery can be further improved by charging to a higher initial charging voltage.

<<実施例4〜7、及び比較例6、7>>
下記のとおり、実施例4〜7、及び比較例6、7の全固体電池を作製し、その電池性能を評価した。
<<Examples 4 to 7 and Comparative Examples 6 and 7>>
As described below, the all-solid-state batteries of Examples 4 to 7 and Comparative Examples 6 and 7 were produced and the battery performance was evaluated.

<全固体電池の作製および電池性能の評価方法>
実施例1と同様の方法により実施例4〜7及び比較例6、7の全固体電池を作製した。その後、実施例4について、実施例1の方法と同様にして全固体電池の電池性能を評価した。また実施例5〜7及び比較例6、7の全固体電池の初期充電電圧を、実施例5につき4.60V、実施例6につき4.65V、実施例7につき4.70V、比較例6につき4.40、比較例7につき4.45Vにしたことを除いて、実施例1と同様の方法により実施例5〜7及び比較例6、7の全固体電池の電池性能を評価した。
<Method for manufacturing all-solid-state battery and evaluating battery performance>
By the same method as in Example 1, all-solid-state batteries of Examples 4 to 7 and Comparative Examples 6 and 7 were produced. Then, with respect to Example 4, the battery performance of the all-solid-state battery was evaluated in the same manner as in the method of Example 1. The initial charging voltages of the all-solid-state batteries of Examples 5 to 7 and Comparative Examples 6 and 7 were 4.60 V for Example 5, 4.65 V for Example 6, 4.70 V for Example 7, and Comparative Example 6. The battery performance of the all-solid-state batteries of Examples 5 to 7 and Comparative Examples 6 and 7 was evaluated by the same method as in Example 1 except that the voltage was set to 4.40 and 4.45 V for Comparative Example 7.

<測定結果>
実施例4〜7及び比較例6、7の全固体電池の作製条件、電池構成、及び測定結果を下記の表2に表した。
<Measurement result>
Table 2 below shows the manufacturing conditions, battery configurations, and measurement results of the all-solid-state batteries of Examples 4 to 7 and Comparative Examples 6 and 7.

Figure 0006699473
Figure 0006699473

1.表2の説明
表2において、「β」は、初期充電工程における、上限充電電圧における電圧(V)に対する容量(Q)の変化率(dQ/dV)であり、「α」は、充電電圧が4.0V以上4.4V以下であるときの電圧(V)に対する容量(Q)の変化率(dQ/dV)の平均値である。
1. Description of Table 2 In Table 2, “β” is the rate of change (dQ/dV) of the capacity (Q) with respect to the voltage (V) at the upper limit charging voltage in the initial charging step, and “α” is the charging voltage. It is the average value of the rate of change (dQ/dV) of the capacity (Q) with respect to the voltage (V) when the voltage is 4.0 V or more and 4.4 V or less.

なお、表2における「アモルファス化率」は、表1の「アモルファス化率」と同様の方法によって計算した。   The "amorphization rate" in Table 2 was calculated by the same method as the "amorphization rate" in Table 1.

したがって、「β/α」は、(初期充電工程における上限充電電圧における電圧(V)に対する容量(Q)の変化率(dQ/dV))/(充電電圧が4.0V以上4.4V以下であるときの電圧(V)に対する容量(Q)の変化率(dQ/dV)の平均値)である。   Therefore, “β/α” is (rate of change in capacity (Q) with respect to voltage (V) at the upper limit charging voltage in the initial charging step (dQ/dV))/(charging voltage is 4.0 V or more and 4.4 V or less) It is the average value of the rate of change (dQ/dV) of the capacity (Q) with respect to the voltage (V) at a given time.

表2において、「アモルファス容量」は、ケイ素粒子のうちアモルファス化された部分の容量を表している。   In Table 2, "amorphous capacity" represents the capacity of the amorphous portion of the silicon particles.

表2において、「容量維持率」は、比較例7の全固体電池の耐久試験の結果を100%として計算した値である。また、「抵抗」は、全固体電池の内部抵抗であるが、比較例7の全固体電池の内部抵抗を100%として計算した値である。   In Table 2, the "capacity maintenance rate" is a value calculated by setting the result of the durability test of the all-solid-state battery of Comparative Example 7 as 100%. Further, “resistance” is the internal resistance of the all-solid-state battery, but is a value calculated with the internal resistance of the all-solid-state battery of Comparative Example 7 as 100%.

2.考察
実施例4〜6の方法では、β/αが、ぞれぞれ、1.91、2.18、及び1.65になるようにして、全固体電池の作製を行った。したがって、実施例4〜6の方法は、β/α>1.3を満たしている。
2. Discussion In the methods of Examples 4 to 6, all-solid-state batteries were manufactured such that β/α was set to be 1.91, 2.18, and 1.65, respectively. Therefore, the methods of Examples 4 to 6 satisfy β/α>1.3.

実施例4〜6の方法により作製された全固体電池は、「アモルファス容量」が、それぞれ、3.40mAh、3.37mAh、及び3.62mAhであり、比較例6及び7の方法によって作製された全固体電池よりも、アモルファス容量が大きかった。また、実施例4〜6の方法により作製された全固体電池は、「容量維持率」が、それぞれ、108%,108%,及び106%であり、いずれも比較例6、7の「容量維持率」よりも大きかった。また、「抵抗」は、それぞれ、94%,93%,及び96%であり、いずれも比較例6、7の「抵抗」よりも小さかった。   The all-solid-state batteries manufactured by the methods of Examples 4 to 6 had “amorphous capacities” of 3.40 mAh, 3.37 mAh, and 3.62 mAh, respectively, and were manufactured by the methods of Comparative Examples 6 and 7. The amorphous capacity was larger than that of the all-solid-state battery. In addition, the all-solid-state batteries manufactured by the methods of Examples 4 to 6 have “capacity maintenance ratios” of 108%, 108%, and 106%, respectively, and all of them are “capacity maintenance of Comparative Examples 6 and 7. Was greater than the "rate". The "resistance" was 94%, 93%, and 96%, respectively, which were smaller than the "resistance" of Comparative Examples 6 and 7.

このことは、β/αが1.3より大きくなるように初期充電を行うことで、アモルファス容量が大きい全固体電池を作製することができ、かつ作製された全固体電池の「容量維持率」、及び「抵抗」が向上することを示している。   This means that by performing initial charging so that β/α is greater than 1.3, an all-solid-state battery with a large amorphous capacity can be produced, and the “capacity maintenance ratio” of the produced all-solid-state battery. , And “resistance” are improved.

これに対して、比較例6及び7の方法では、β/αが、それぞれ、1.10、及び1.27になるようにして、全固体電池の作製を行った。したがって、比較例6及び7の方法は、β/α>1.3を満たしていない。   On the other hand, in the methods of Comparative Examples 6 and 7, all-solid-state batteries were manufactured such that β/α was 1.10 and 1.27, respectively. Therefore, the methods of Comparative Examples 6 and 7 do not satisfy β/α>1.3.

比較例6及び7の方法により作製された全固体電池は、「容量維持率」が、それぞれ、96%,及び100%であった。また、「抵抗」は、それぞれ、101%,及び100%であった。   The all-solid-state batteries manufactured by the methods of Comparative Examples 6 and 7 had the “capacity maintenance ratios” of 96% and 100%, respectively. Moreover, "resistance" was 101% and 100%, respectively.

また、実施例7の方法では、β/αが0.69になるようにして、全固体電池の作製を行った。   Further, in the method of Example 7, an all-solid-state battery was manufactured such that β/α was 0.69.

実施例7の方法により作製された全固体電池は、「容量維持率」が106%であった。また、「抵抗」は、99%であった。   The all-solid-state battery manufactured by the method of Example 7 had a “capacity maintenance ratio” of 106%. The “resistance” was 99%.

実施例7の方法では、初期充電を4.70Vまで行っており、実施例4〜6の方法よりも、高い初期充電電圧であったにもかかわらず、β/αは1.3よりも小さい値となっている。これは、充電電圧が高くなるにつれてニオブ酸リチウムからリチウムイオンが放出されていたが、充電電圧が4.70Vに到達する前に、ニオブ酸リチウムが放出可能なリチウムイオンをほとんど放出してしまい、正極側から負極側に移動するリチウムイオンが減少したためと考えられる。   In the method of Example 7, the initial charging was performed up to 4.70 V, and β/α was smaller than 1.3, although the initial charging voltage was higher than those of the methods of Examples 4 to 6. It is a value. This is because lithium ions were released from lithium niobate as the charging voltage increased, but before the charging voltage reached 4.70V, most of the lithium ions that lithium niobate could release were released. It is considered that the lithium ions moving from the positive electrode side to the negative electrode side decreased.

また、実施例7の全固体電池は、比較例6、7と比較して、「容量維持率」は大きく、「抵抗」は小さい。他方、実施例7の全固体電池は、実施例4〜6と比較して、「抵抗」が大きい。これは、ニオブ酸リチウムの保護コーティングの劣化が大きいこと等によると考えられる。そのため、単に初期充電電圧を高くすればよいのではなく、β/αが1.3よりも大きくなるように初期充放電を制御することにより、「容量維持率」を大きくし、かつ「抵抗」を小さくすることができる。   In addition, the all-solid-state battery of Example 7 has a larger “capacity maintenance ratio” and a smaller “resistance” than those of Comparative Examples 6 and 7. On the other hand, the all-solid-state battery of Example 7 has a larger “resistance” than those of Examples 4-6. It is considered that this is because the deterioration of the protective coating of lithium niobate is large. Therefore, it is not necessary to simply increase the initial charge voltage, but the initial charge/discharge is controlled so that β/α becomes larger than 1.3, thereby increasing the “capacity maintenance ratio” and the “resistance”. Can be made smaller.

このことから、β/αが1.3よりも大きくなるように初期充放電を制御することによって、全固体電池のサイクル特性を向上させることができるといえる。   From this, it can be said that the cycle characteristics of the all-solid-state battery can be improved by controlling the initial charge/discharge so that β/α becomes larger than 1.3.

<参考例1〜6>
β/αの値と、リチウム含有金属酸化物による正極活物質の保護コーティングとの関係を示すために、下記のとおり、参考例1〜6の全固体電池を作製し、その電池性能を評価した。
<Reference Examples 1 to 6>
In order to show the relationship between the value of β/α and the protective coating of the positive electrode active material with the lithium-containing metal oxide, the following all-solid-state batteries of Reference Examples 1 to 6 were prepared and the battery performance was evaluated. ..

1.参考例1〜3
負極活物質を天然黒鉛系カーボンに置き換えたことを除いて、実施例4と同様にして参考例1〜3の全固体電池を作製した。
1. Reference Examples 1-3
All solid state batteries of Reference Examples 1 to 3 were produced in the same manner as in Example 4 except that the negative electrode active material was replaced with natural graphite carbon.

作製した参考例1〜3の全固体電池に対して、初期充電電圧を参考例1について4.45V、参考例2について4.55V、参考例3について4.70Vとしたことを除いて実施例4と同様にして参考例1〜3の全固体電池に対して初期充電を行い、β/αを測定した。   Examples except that the initial charging voltage was set to 4.45 V for Reference Example 1, 4.55 V for Reference Example 2, and 4.70 V for Reference Example 3 for the prepared all-solid-state batteries of Reference Examples 1 to 3. In the same manner as in 4, initial charging was performed on the all solid state batteries of Reference Examples 1 to 3 and β/α was measured.

2.参考例4〜6
正極活物質を、ニオブ酸リチウムによって被覆されていないLiNi1/3Co1/3Mn1/3に置き換え、かつ負極活物質を天然黒鉛系カーボンに置き換えたことを除いて実施例4と同様にして参考例4〜6の全固体電池を作製した。
2. Reference Examples 4-6
Example 4 except that the positive electrode active material was replaced with LiNi 1/3 Co 1/3 Mn 1/3 O 2 which was not coated with lithium niobate, and the negative electrode active material was replaced with natural graphite-based carbon. Similarly, the all-solid-state batteries of Reference Examples 4 to 6 were produced.

作製した参考例4〜6の全固体電池に対して、初期充電電圧を参考例4について4.45V、参考例5について4.55V、参考例6について4.70Vとしたことを除いて実施例4と同様にして参考例4〜6の全固体電池に対して初期充電を行い、β/αを測定した。   Examples except that the initial charging voltage was 4.45 V for Reference Example 4, 4.55 V for Reference Example 5, and 4.70 V for Reference Example 6 for the prepared all-solid-state batteries of Reference Examples 4 to 6. In the same manner as in 4, initial charging was performed on the all solid state batteries of Reference Examples 4 to 6 and β/α was measured.

3.測定結果
参考例1〜6の全固体電池の実験条件及び測定結果を下記の表3に表した。
3. Measurement Results Experimental conditions and measurement results of the all-solid-state batteries of Reference Examples 1 to 6 are shown in Table 3 below.

Figure 0006699473
Figure 0006699473

1.表3の説明
表3において、「β/α」は、表2の説明において記載したとおりである。
1. Description of Table 3 In Table 3, “β/α” is as described in the description of Table 2.

2.考察
表3のとおり、参考例1〜3では、β/αが、それぞれ、1.19、1.77、及び1.52であり、1より大きくなったのに対して、参考例4〜6では、β/αが、それぞれ、0.93、0.90、及び0.53であり、1より小さくなった。このことは、ニオブ酸リチウムを正極活物質層中に含有させることによって、β/αの値を大きくすることができることを示している。即ち、ニオブ酸リチウムを正極活物質層中に含有させることで、高い電圧においてより多くのリチウムイオンを負極活物質に供給できる。
2. Discussion As shown in Table 3, in Reference Examples 1 to 3, β/α were 1.19, 1.77, and 1.52, respectively, and were larger than 1, while Reference Examples 4 to 6 were used. , Β/α were 0.93, 0.90, and 0.53, respectively, and were smaller than 1. This indicates that the value of β/α can be increased by including lithium niobate in the positive electrode active material layer. That is, by including lithium niobate in the positive electrode active material layer, more lithium ions can be supplied to the negative electrode active material at high voltage.

<<実施例8〜11>>
下記のとおり、実施例8〜11の全固体電池を作製し、その電池性能を評価した。
<<Examples 8 to 11>>
As described below, the all-solid-state batteries of Examples 8 to 11 were produced and the battery performance was evaluated.

<実施例8>
1.仮の全固体リチウム二次電池の製造方法
(1)リチウム供給用正極活物質層の作製
分散媒としての酪酸ブチル、バインダーとしてのポリフッ化ビニリデンを溶解した5wt%酪酸ブチル溶液、正極活物質としてのLiNi1/3Co1/3Mn1/3、固体電解質としてのヨウ化リチウムを含有するLiS−P系ガラスセラミック、及び導電助剤としてのVGCF(気相法炭素繊維)を、ポリプロピレン製容器に加えて、超音波分散装置(エスエムテー製、製品名UH−50)で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器(柴田科学株式会社製、製品名TTM−1)で3分間振とうし、さらに超音波分散装置で30秒間撹拌して正極活物質層用ペーストを作製した。
<Example 8>
1. Method of manufacturing provisional all-solid-state lithium secondary battery (1) Preparation of positive electrode active material layer for supplying lithium Butyl butyrate as a dispersion medium, a 5 wt% butyl butyrate solution in which polyvinylidene fluoride as a binder is dissolved, and a positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 S—P 2 S 5 glass ceramic containing lithium iodide as a solid electrolyte, and VGCF (gas phase method carbon fiber) as a conduction aid. ) Was added to a polypropylene container, and the mixture was stirred with an ultrasonic dispersion device (manufactured by SMT, product name UH-50) for 30 seconds. Then, the polypropylene container was shaken with a shaker (Shibata Scientific Co., Ltd., product name TTM-1) for 3 minutes, and further stirred with an ultrasonic dispersing device for 30 seconds to prepare a paste for a positive electrode active material layer.

正極活物質層用ペーストを、アプリケーターを使用して、ブレード法にて正極集電体としてのアルミニウム箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥することで正極集電体上にリチウム供給用正極活物質層を作製した。   The positive electrode active material layer paste was applied to an aluminum foil as a positive electrode current collector by a blade method using an applicator, and then dried on a hot plate heated to 100° C. for 30 minutes to collect the positive electrode current. A positive electrode active material layer for supplying lithium was formed on the electric body.

(2)負極活物質層の作製
分散媒としての酪酸ブチル、バインダーとしてのポリフッ化ビニリデンを溶解した5wt%酪酸ブチル溶液、負極活物質としてのケイ素粒子、固体電解質としてのヨウ化リチウムを含有するLiS−P系ガラスセラミック、及び導電助剤としてのVGCF(気相法炭素繊維)を、ポリプロピレン製容器に加えて、超音波分散装置で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器で30分間振とうして負極活物質層用ペーストを作製した。
(2) Preparation of Negative Electrode Active Material Layer Butyl butyrate as a dispersion medium, a 5 wt% butyl butyrate solution in which polyvinylidene fluoride is dissolved as a binder, silicon particles as a negative electrode active material, and Li containing lithium iodide as a solid electrolyte. 2 S-P 2 S 5 based glass ceramics, and VGCF (vapor grown carbon fiber) as a conductive additive, in addition to the polypropylene container, and stirred for 30 seconds with an ultrasonic dispersing device. Then, the polypropylene container was shaken for 30 minutes with a shaker to prepare a negative electrode active material layer paste.

負極活物質層用ペーストを、アプリケーターを使用して、ブレード法にて負極集電体としての銅箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥することで負極集電体上に負極活物質層を作製した。   The negative electrode active material layer paste was applied to a copper foil as a negative electrode current collector by a blade method using an applicator, and then dried on a hot plate heated to 100° C. for 30 minutes to obtain a negative electrode current collector. A negative electrode active material layer was formed on the electric body.

(3)固体電解質層の作製
分散媒としてのヘプタン、バインダーとしてのブタジエンゴムを溶解した5wt%ヘプタン溶液、及び固体電解質としてのヨウ化リチウムを含有するLiS−P系ガラスセラミックを、ポリプロピレン製容器に加えて、超音波分散装置で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器で30分間振とうして固体電解質層用ペーストを作製した。
(3) heptane as making the dispersion medium of the solid electrolyte layer, 5 wt% heptane solution of butadiene rubber as a binder, and Li 2 S-P 2 S 5 based glass ceramics containing lithium iodide as a solid electrolyte , A container made of polypropylene, and stirred for 30 seconds with an ultrasonic dispersion device. Then, the polypropylene container was shaken with a shaker for 30 minutes to prepare a solid electrolyte layer paste.

作製した固体電解質層用ペーストをドクターブレード法にてアルミニウム箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥し、固体電解質層を作製した。リチウム供給用正極活物質層、失活リチウム非含有負極活物質層をそれぞれ固体電解質層と張り合わせた状態で、6ton/cmでプレスを行い、固体電解質層側のAl箔を剥離することで、リチウム供給用正極活物質層と固体電解質層の積層体、及び失活リチウム非含有負極活物質層と固体電解質層の積層体を作製した。 The prepared solid electrolyte layer paste was applied to an aluminum foil by a doctor blade method, and then dried on a hot plate heated to 100° C. for 30 minutes to prepare a solid electrolyte layer. By pressing the positive electrode active material layer for supplying lithium, the deactivated lithium-free negative electrode active material layer and the solid electrolyte layer, respectively, at 6 ton/cm 2 , and peeling the Al foil on the solid electrolyte layer side, A laminate of a positive electrode active material layer for supplying lithium and a solid electrolyte layer, and a laminate of a deactivated lithium-free negative electrode active material layer and a solid electrolyte layer were produced.

(4)仮の全固体リチウム二次電池の作製
リチウム供給用正極活物質層と固体電解質層の積層体を直径12.5mmの打抜き治具で、負極活物質層と固体電解質層の積層体を直径13.0mmの治具でそれぞれ打ち抜いた。双方をそれぞれの固体電解質層が互いに接するように積層し、拘束治具を用いて2N/mの拘束圧で拘束して、仮の全固体リチウム二次電池とした。
(4) Preparation of provisional all-solid-state lithium secondary battery A laminated body of a positive electrode active material layer for supplying lithium and a solid electrolyte layer was formed into a laminated body of a negative electrode active material layer and a solid electrolyte layer with a punching jig having a diameter of 12.5 mm. Punching was performed with a jig having a diameter of 13.0 mm. Both were laminated so that their respective solid electrolyte layers were in contact with each other, and were constrained with a constraining pressure of 2 N/m using a constraining jig to obtain a temporary all-solid-state lithium secondary battery.

2.仮の全固体リチウム二次電池に対する充放電
仮の全固体リチウム二次電池をデシケーターに入れて、0.05Cで4.55Vまで定電流―定電圧充電を行った(終止電流0.01C)。その後、定電流―定電圧で2.50Vまで放電した。これにより、負極活物質層にリチウムを供給した。
2. Charging and Discharging Temporary All-solid-state Lithium Secondary Battery A temporary all-solid-state lithium secondary battery was put in a desiccator and subjected to constant current-constant voltage charging at 4.5 C to 4.55 V (end current 0.01 C). Then, the battery was discharged to 2.50 V with constant current-constant voltage. As a result, lithium was supplied to the negative electrode active material layer.

3.電池の分解・再構成
その後、仮の全固体リチウム二次電池の拘束を外し、リチウム供給用正極活物質層と固体電解質層の積層体と失活リチウム非含有負極活物質層と固体電解質層の積層体に分解した。負極活物質層と固体電解質層の積層体を第1の積層体とした。また、仮の全固体リチウム二次電池に使用したリチウム供給用正極活物質層のリチウム含有量が、新しく作製した積層体の正極活物質層のリチウム含有量の1.5倍となるようにしたことを除いて、上述の正極活物質層と固体電解質層の積層体と同様の製造方法によって新しい積層体を作製した。この新しい積層体を直径12.5mmの打抜き治具で打ち抜いたものを第2の積層体とした。
3. After disassembling and reassembling the battery, the provisional all-solid lithium secondary battery was unconstrained, and the laminate of the positive electrode active material layer for supplying lithium and the solid electrolyte layer, the deactivated lithium-free negative electrode active material layer, and the solid electrolyte layer were It was disassembled into a laminate. The laminated body of the negative electrode active material layer and the solid electrolyte layer was used as the first laminated body. In addition, the lithium content of the positive electrode active material layer for supplying lithium used in the provisional all-solid-state lithium secondary battery was set to be 1.5 times the lithium content of the positive electrode active material layer of the newly manufactured laminate. Except for the above, a new laminated body was produced by the same manufacturing method as that of the laminated body of the positive electrode active material layer and the solid electrolyte layer described above. The new laminated body was punched with a punching jig having a diameter of 12.5 mm to obtain a second laminated body.

下記の方法により作製した接合用固体電解質層を、第1の積層体の固体電解質層と接合用固体電解質層が接触するようにして第1の積層体上に積層し、1.0ton/cmでプレスし、基盤としてのアルミニウム箔を剥がした。その後、第2の積層体の固体電解質層と接合用固体電解質層が接触するようにして第2の積層体を積層し、6ton/cmでプレスして、実施例8の全固体リチウム二次電池を作製した。 The solid electrolyte layer for joining produced by the following method was laminated on the first laminate so that the solid electrolyte layer of the first laminate and the solid electrolyte layer for joining were in contact with each other, and 1.0 ton/cm 2 Then, the aluminum foil as a base was peeled off. Then, the second laminate was laminated so that the solid electrolyte layer of the second laminate and the solid electrolyte layer for bonding were in contact with each other, and pressed at 6 ton/cm 2 , to obtain the all-solid lithium secondary material of Example 8. A battery was produced.

4.接合用固体電解質層の作製
分散媒としてのヘプタン、バインダーとしてのブタジエンゴムを溶解した5wt%ヘプタン溶液、及び固体電解質としてのヨウ化リチウムを含有するLiS−P系ガラスセラミックを、ポリプロピレン製容器に加えて、超音波分散装置で30秒間撹拌した。その後、ポリプロピレン製容器を振とう器で30分間振とうして接合用固体電解質層用ペーストを作製した。
4. Preparation of solid electrolyte layer for bonding A heptane as a dispersion medium, a 5 wt% heptane solution in which butadiene rubber was dissolved as a binder, and Li 2 S-P 2 S 5 based glass ceramic containing lithium iodide as a solid electrolyte were prepared. In addition to the polypropylene container, the mixture was stirred for 30 seconds with an ultrasonic dispersion device. Then, the polypropylene container was shaken with a shaker for 30 minutes to prepare a solid electrolyte layer paste for bonding.

接合用固体電解質用ペーストを、ドクターブレード法にて基盤としてのアルミニウム箔に塗工し、その後、100℃に加熱したホットプレート上で30分間乾燥させることで基盤上に接合用固体電解質層を作製し、直径13.0mmの治具で打ち抜いた。   The solid electrolyte paste for bonding is applied to an aluminum foil as a substrate by a doctor blade method, and then dried on a hot plate heated to 100°C for 30 minutes to form a solid electrolyte layer for bonding on the substrate. Then, it was punched with a jig having a diameter of 13.0 mm.

5.初期充放電
完成させた実施例8の全固体リチウム二次電池をデシケーターに入れて、0.05Cで4.55Vまで定電流―定電圧充電を行った(終止電流0.01C)。その後、定電流―定電圧で2.50Vまで放電して、その放電容量を測定した。
5. Initial charging/discharging The completed all-solid-state lithium secondary battery of Example 8 was put in a desiccator, and constant current-constant voltage charging was performed at 0.05 C to 4.55 V (stop current 0.01 C). Then, the battery was discharged at a constant current-constant voltage to 2.50 V and the discharge capacity was measured.

6.容量維持率の測定初期
充放電終了後、実施例8の全固体リチウム二次電池を定電流―定電圧充電により4.40Vまで充電し、定電流―定電圧放電により2.50Vまで放電して、その放電容量を測定した(第1の放電容量)。その後、0.5時間率(2C)で4.17Vまで充電した後、3.17Vまで放電する工程を300サイクル繰り返した。300サイクル後、実施例8の全固体リチウム二次電池を定電流―定電圧充電により4.40Vまで充電し、定電流―定電圧放電により2.50Vまで放電して、その放電容量を測定した(第2の放電容量)。第2の放電容量/第1の放電容量を計算し、容量維持率を測定した。
6. Initial measurement of capacity retention rate After completion of charging and discharging, the all-solid-state lithium secondary battery of Example 8 was charged to 4.40 V by constant current-constant voltage charging, and discharged to 2.50 V by constant current-constant voltage discharging. , Its discharge capacity was measured (first discharge capacity). Then, the process of charging to 4.17V at a 0.5 hour rate (2C) and then discharging to 3.17V was repeated 300 cycles. After 300 cycles, the all-solid-state lithium secondary battery of Example 8 was charged to 4.40 V by constant current-constant voltage charging and discharged to 2.50 V by constant current-constant voltage discharging, and its discharge capacity was measured. (Second discharge capacity). The second discharge capacity/first discharge capacity was calculated and the capacity retention rate was measured.

<実施例9及び10>
新しく作製した積層体の正極活物質層のリチウム含有量に対する仮の全固体リチウム二次電池に使用した正極活物質層のリチウム含有量が、実施例9では1.50倍、実施例10では1.01倍となるようにしたことを除いて、実施例8と同様にして全固体リチウム二次電池を作製した。
<Examples 9 and 10>
The lithium content of the positive electrode active material layer used in the provisional all-solid-state lithium secondary battery was 1.50 times in Example 9 and 1 in Example 10 with respect to the lithium content of the positive electrode active material layer of the newly manufactured laminate. An all-solid-state lithium secondary battery was produced in the same manner as in Example 8 except that the power was set to 0.01 times.

実施例9及び10の全固体リチウム二次電池に対して、実施例8と同様にして初期充放電を行い、放電容量を測定した。また、実施例9及び10の全固体リチウム二次電池に対して、実施例8と同様にして容量維持率の測定を行った。   Initial charge and discharge were performed on the all-solid-state lithium secondary batteries of Examples 9 and 10 in the same manner as in Example 8 to measure the discharge capacity. Further, the capacity retention ratios of the all-solid-state lithium secondary batteries of Examples 9 and 10 were measured in the same manner as in Example 8.

<実施例11>
正極活物質層と固体電解質層の積層体、及び負極活物質層と固体電解質層の積層体の間に、実施例8の方法と同様にして作製した接合用固体電解質層を挿入して積層したことを除いて、実施例8の全固体リチウム二次電池と同様にして、実施例11の全固体リチウム二次電池を得た。実施例11の全固体リチウム二次電池に対して実施例8と同様にして初期充放電を行い、放電容量を測定した。また、実施例11の全固体リチウム二次電池に対して、実施例8と同様にして容量維持率の測定を行った。
<Example 11>
A solid electrolyte layer for bonding produced in the same manner as in the method of Example 8 was inserted and laminated between the laminate of the positive electrode active material layer and the solid electrolyte layer and the laminate of the negative electrode active material layer and the solid electrolyte layer. An all-solid lithium secondary battery of Example 11 was obtained in the same manner as the all-solid lithium secondary battery of Example 8 except for the above. Initial charge and discharge were performed on the all-solid-state lithium secondary battery of Example 11 in the same manner as in Example 8 to measure the discharge capacity. Further, the capacity retention ratio was measured for the all-solid-state lithium secondary battery of Example 11 in the same manner as in Example 8.

<測定結果>
表4は、実施例8〜11の全固体電池の作製条件、電池構成、及び測定結果を示している。
<Measurement result>
Table 4 shows manufacturing conditions, battery configurations, and measurement results of the all-solid-state batteries of Examples 8 to 11.

Figure 0006699473
Figure 0006699473

1.表4の説明
表4において、「分解再構成の有無」は、全固体電池を分解して正極活物質層を交換する工程(上述3の「電池の分解・再構成」)の有無を示している。
1. Description of Table 4 In Table 4, "presence or absence of disassembly/reconstruction" indicates the presence or absence of the step of disassembling the all-solid-state battery and replacing the positive electrode active material layer (the above-mentioned "disassembly/reconstruction of battery"). There is.

表4において、「A」は、リチウム供給用正極活物質層の容量であり、実質的にはリチウム供給用正極活物質層の放出可能なリチウム含有量を表している。また、「B」は、正極活物質層の容量であり、実質的に正極活物質層の放出可能なリチウム含有量を表している。したがって、「A/B」は、リチウム供給用正極活物質層の容量を、正極活物質層の容量で除した値である。なお、実施例11では上述3の「電池の分解・再構成」を行わなかったため、数値の記載がない。   In Table 4, "A" is the capacity of the positive electrode active material layer for supplying lithium, and substantially represents the releasable lithium content of the positive electrode active material layer for supplying lithium. Further, “B” is the capacity of the positive electrode active material layer, and substantially represents the releasable lithium content of the positive electrode active material layer. Therefore, “A/B” is a value obtained by dividing the capacity of the positive electrode active material layer for supplying lithium by the capacity of the positive electrode active material layer. It should be noted that in Example 11, since the above-described “Battery disassembly/reconstruction” was not performed, no numerical value is described.

また、「アモルファス化率」、及び「Z/W」は表1の説明において記載したとおりである。なお、表4では、簡便のため、「Z」及び「W」の具体的数値は省略している。   The “amorphization ratio” and “Z/W” are as described in the description of Table 1. In Table 4, specific numerical values of "Z" and "W" are omitted for simplicity.

「容量維持率」は、実施例11の全固体電池の耐久試験の結果を100%として計算した値である。また、「抵抗」は、全固体電池の内部抵抗であり、実施例11の全固体電池の内部抵抗を100%として計算した値である。   The “capacity maintenance ratio” is a value calculated by setting the result of the durability test of the all-solid-state battery of Example 11 as 100%. Moreover, "resistance" is an internal resistance of the all-solid-state battery, and is a value calculated with the internal resistance of the all-solid-state battery of Example 11 as 100%.

2.考察
実施例10の全固体リチウム二次電池の「抵抗」は96%であり、実施例11の全固体リチウム二次電池の「抵抗」よりも小さくなっている。一方、実施例10の全固体リチウム二次電池の「容量維持率」は132%であり、実施例11の全固体リチウム二次電池の「容量維持率」よりも大きくなっている。
2. Consideration The "resistance" of the all-solid-state lithium secondary battery of Example 10 is 96%, which is smaller than the "resistance" of the all-solid-state lithium secondary battery of Example 11. On the other hand, the “capacity maintenance ratio” of the all-solid-state lithium secondary battery of Example 10 is 132%, which is larger than the “capacity maintenance ratio” of the all-solid-state lithium secondary battery of Example 11.

実施例10の全固体リチウム二次電池では、リチウム供給用正極活物質層の放出可能なリチウム含有量である「A」と、正極活物質層の放出可能なリチウム含有量である「B」の比率は1.01であり、大きな差がないにもかかわらず、実施例11の場合と比較して抵抗及び容量維持率が大幅に向上している。これは、全固体リチウム二次電池の充電によって劣化した正極活物質層を新しい正極活物質層に交換することで、抵抗を低減し、かつ容量維持率を向上させた全固体リチウム二次電池を作製することができることを示している。また、実施例8〜10を比較すると、「A/B」の値が大きくなるにつれて「抵抗」が低減し、かつ「容量維持率」が向上しているといえる。   In the all-solid-state lithium secondary battery of Example 10, the releasable lithium content of the positive electrode active material layer for supplying lithium was “A” and the releasable lithium content of the positive electrode active material layer was “B”. The ratio is 1.01, and although there is no large difference, the resistance and capacity retention ratios are significantly improved compared to the case of Example 11. This is an all-solid-state lithium secondary battery with reduced resistance and improved capacity retention rate by replacing the positive-electrode active material layer deteriorated by charging the all-solid-state lithium secondary battery with a new positive-electrode active material layer. It shows that it can be manufactured. Further, comparing Examples 8 to 10, it can be said that the “resistance” decreases and the “capacity retention ratio” improves as the value of “A/B” increases.

このことから、初期充電工程を行ったことで劣化した正極活物質層を新しい正極活物質層と交換することによって、全固体電池のサイクル特性をさらに向上させることができるといえる。   From this, it can be said that the cycle characteristics of the all-solid-state battery can be further improved by replacing the positive electrode active material layer deteriorated due to the initial charging step with a new positive electrode active material layer.

<<初期充電量とアモルファス化率の関係>>
アモルファス化率は、全固体電池に規定の電圧を加えて充電を行い、2.50Vまで放電した後、負極活物質層のうち、固体電解質層から5μm〜15μm離れた位置のTEM測定によって測定された10μm×10μmの視野に存在する、少なくとも4粒子以上のケイ素粒子について(ケイ素粒子は一部が含まれていればよく、全体像が必ずしも見える必要はない。)、BF像から確認されるケイ素粒子の面積対する、ケイ素粒子のうちアモルファス化された部分の面積の割合として計算することができる。この計算により得られたアモルファス化率の値と、初期充電量の値の相関を、実施例1、比較例1及び比較例2の全固体電池について調べた。
<<Relationship between initial charge and amorphization rate>>
The amorphization ratio is measured by TEM measurement at a position 5 μm to 15 μm away from the solid electrolyte layer in the negative electrode active material layer after charging the all-solid-state battery by applying a specified voltage and discharging to 2.50 V. For silicon particles of at least 4 particles or more existing in a visual field of 10 μm×10 μm (the silicon particles only have to be partially contained, it is not necessary to see the whole image), the silicon confirmed from the BF image. It can be calculated as the ratio of the area of the amorphized portion of the silicon particles to the area of the particles. The correlation between the value of the amorphization ratio obtained by this calculation and the value of the initial charge amount was examined for the all-solid-state batteries of Example 1, Comparative Example 1 and Comparative Example 2.

実施例1、比較例1、及び比較例2の全固体電池の初期充電量と、アモルファス化率との関係を、表5に示した。   Table 5 shows the relationship between the initial charge amount and the amorphization rate of the all-solid-state batteries of Example 1, Comparative Example 1, and Comparative Example 2.

Figure 0006699473
Figure 0006699473

実施例1、比較例1、及び比較例2の「初期充電量」と「アモルファス化率」の値から、図5に示されるように、「アモルファス化率(%)=0.031×初期充電量(mAh/g)」の関係を満たしていることが確認された。 From the values of “initial charge amount” and “amorphization rate” of Example 1, Comparative Example 1 and Comparative Example 2, as shown in FIG. 5, “amorphization rate (%)=0.031×initial charge” It was confirmed that the relationship of “amount (mAh 2 /g 2 )” was satisfied.

1 正極集電体
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 負極集電体
6〜8 全固体電池
1 Positive Electrode Current Collector 2 Positive Electrode Active Material Layer 3 Solid Electrolyte Layer 4 Negative Electrode Active Material Layer 5 Negative Electrode Current Collector 6-8 All Solid State Battery

Claims (11)

正極活物質層、固体電解質層、及び負極活物質層を有している全固体電池と、前記全固体電池の使用時における充放電電圧を制御する制御装置とを有する全固体電池システムであって、
前記負極活物質層中に合金系負極活物質粒子を有しており、
前記合金系負極活物質粒子のアモルファス化率が27.8〜82.8%であり、かつ下記の条件を満たす、全固体電池システム:
0.32≦Z/W≦0.60
Z:前記全固体電池の制御放電容量(mAh)
W:合金系負極活物質粒子の理論容量(mAh/g)×前記合金系負極活物質粒子全体の重量(g)×前記アモルファス化率(%)。
An all-solid-state battery system having an all-solid-state battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer, and a control device for controlling a charge/discharge voltage during use of the all-solid-state battery. ,
Having the alloy-based negative electrode active material particles in the negative electrode active material layer,
An all-solid-state battery system in which the amorphization rate of the alloy-based negative electrode active material particles is 27.8 to 82.8% and the following conditions are satisfied:
0.32≦Z/W≦0.60
Z: Controlled discharge capacity (mAh) of the all-solid-state battery
W: theoretical capacity (mAh/g) of alloy-based negative electrode active material particles x total weight (g) of the alloy-based negative electrode active material particles x amorphization rate (%).
前記合金系負極活物質粒子がケイ素粒子である、請求項1に記載の全固体電池システム。   The all-solid-state battery system according to claim 1, wherein the alloy-based negative electrode active material particles are silicon particles. 前記正極活物質層が、リチウム含有金属酸化物である保護コーティングによって被覆されている正極活物質を有している、請求項1又は2に記載の全固体電池システム。   The all-solid-state battery system according to claim 1 or 2, wherein the positive electrode active material layer has a positive electrode active material covered with a protective coating which is a lithium-containing metal oxide. 保護コーティングの前記リチウム含有金属酸化物がニオブ酸リチウムである、請求項3に記載の全固体電池システム。   The all-solid-state battery system of claim 3, wherein the lithium-containing metal oxide of the protective coating is lithium niobate. 前記制御装置が充放電電圧を2.50V以上4.40V以下の範囲内で制御する、請求項1〜4のいずれか1項に記載の全固体電池システム。   The all-solid-state battery system according to claim 1, wherein the control device controls the charge/discharge voltage within a range of 2.50 V or more and 4.40 V or less. 正極活物質層、固体電解質層、及び負極活物質層を有している全固体電池と、前記全固体電池の使用時における充放電電圧を制御する制御装置とを有する全固体電池システムの製造方法であって、前記正極活物質層、前記固体電解質層、及び合金系負極活物質粒子を有している前記負極活物質層を積層する積層工程、及び前記充放電電圧より高い初期充電電圧まで前記全固体電池を充電する初期充電工程を有する、全固体電池システムの製造方法。   Method for manufacturing all-solid-state battery system having all-solid-state battery having positive electrode active material layer, solid electrolyte layer, and negative-electrode active material layer, and control device for controlling charge/discharge voltage when using the all-solid-state battery That is, the positive electrode active material layer, the solid electrolyte layer, and a stacking step of stacking the negative electrode active material layer having alloy-based negative electrode active material particles, and the initial charging voltage higher than the charging and discharging voltage. A method for manufacturing an all-solid-state battery system having an initial charging step of charging the all-solid-state battery. 前記合金系負極活物質粒子がケイ素粒子である、請求項6に記載の方法。   The method according to claim 6, wherein the alloy-based negative electrode active material particles are silicon particles. 前記充放電電圧が2.50V以上4.40V以下の範囲内であり、かつ前記初期充電工程において前記初期充電電圧が4.45Vより大きく5.00V以下である、請求項6又は7に記載の方法。   8. The charging/discharging voltage is in the range of 2.50 V or more and 4.40 V or less, and in the initial charging step, the initial charging voltage is higher than 4.45 V and 5.00 V or lower. Method. 前記正極活物質層が、リチウム含有金属酸化物である保護コーティングによって被覆されている正極活物質を有している、請求項6〜8のうちいずれか1項に記載の方法。   9. The method according to any one of claims 6 to 8, wherein the positive electrode active material layer has a positive electrode active material coated with a protective coating that is a lithium-containing metal oxide. 保護コーティングの前記リチウム含有金属酸化物がニオブ酸リチウムである、請求項9に記載の方法。   10. The method of claim 9, wherein the lithium-containing metal oxide of the protective coating is lithium niobate. 下記の条件を満たすように前記初期充電工程を行う、請求項9又は10に記載の方法:
(初期充電工程における上限充電電圧における電圧(V)に対する充電量(Q)の変化率(dQ/dV))/(充電電圧が4.00V以上4.40V以下であるときの電圧(V)に対する充電量(Q)の変化率(dQ/dV)の平均値)>1.3。
The method according to claim 9 or 10, wherein the initial charging step is performed so as to satisfy the following conditions:
(Change rate (dQ/dV) of charge amount (Q) with respect to voltage (V) at upper limit charging voltage in initial charging step)/(with respect to voltage (V) when charging voltage is 4.00 V or more and 4.40 V or less) Change rate (dQ/dV) average value of charge amount (Q))>1.3.
JP2016179021A 2015-09-14 2016-09-13 All-solid-state battery system and manufacturing method thereof Active JP6699473B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16188738.5A EP3142174B1 (en) 2015-09-14 2016-09-14 All-solid-state battery system and method of manufacturing the same
US15/265,372 US10128675B2 (en) 2015-09-14 2016-09-14 All-solid-state battery system and method of manufacturing the same
CN201610827031.3A CN106532158B (en) 2015-09-14 2016-09-14 All-solid-state battery system and its manufacturing method
CN201810887814.XA CN109004179B (en) 2015-09-14 2016-09-14 All-solid-state battery system and method for manufacturing same
EP17196511.4A EP3293802B1 (en) 2015-09-14 2016-09-14 Method of manufacturing an all-solid-state battery system
KR1020160119021A KR101882089B1 (en) 2015-09-14 2016-09-19 All-solid-state battery system and method of manufacturing the same
US16/036,256 US10651667B2 (en) 2015-09-14 2018-07-16 All-solid-state battery system and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015181094 2015-09-14
JP2015181094 2015-09-14

Publications (2)

Publication Number Publication Date
JP2017059534A JP2017059534A (en) 2017-03-23
JP6699473B2 true JP6699473B2 (en) 2020-05-27

Family

ID=58390252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179021A Active JP6699473B2 (en) 2015-09-14 2016-09-13 All-solid-state battery system and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6699473B2 (en)
KR (1) KR101882089B1 (en)
CN (1) CN109004179B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6894243B2 (en) 2017-01-25 2021-06-30 トヨタ自動車株式会社 Negative electrode layer and lithium all-solid-state battery
JP6776994B2 (en) 2017-04-18 2020-10-28 トヨタ自動車株式会社 Manufacturing method of all-solid-state lithium-ion secondary battery
JP6776995B2 (en) * 2017-04-18 2020-10-28 トヨタ自動車株式会社 Manufacturing method of all-solid-state lithium-ion secondary battery
JP6593381B2 (en) * 2017-04-18 2019-10-23 トヨタ自動車株式会社 Negative electrode mixture for all solid lithium ion secondary battery, negative electrode including the negative electrode mixture, and all solid lithium ion secondary battery including the negative electrode
JP6597701B2 (en) * 2017-04-18 2019-10-30 トヨタ自動車株式会社 Negative electrode mixture, negative electrode including the negative electrode mixture, and all-solid-state lithium ion secondary battery including the negative electrode
JP6729479B2 (en) * 2017-04-28 2020-07-22 トヨタ自動車株式会社 Laminated battery
JP6784235B2 (en) * 2017-07-06 2020-11-11 トヨタ自動車株式会社 All-solid-state lithium-ion secondary battery
JP6801596B2 (en) 2017-07-06 2020-12-16 トヨタ自動車株式会社 All-solid-state lithium-ion secondary battery
JP6926972B2 (en) 2017-11-10 2021-08-25 トヨタ自動車株式会社 Manufacturing method of all-solid-state battery
JP6897601B2 (en) * 2018-02-23 2021-06-30 トヨタ自動車株式会社 Manufacturing method of solid rechargeable battery system
JP6881382B2 (en) 2018-04-03 2021-06-02 トヨタ自動車株式会社 All solid state battery
JP6927131B2 (en) 2018-04-16 2021-08-25 トヨタ自動車株式会社 All-solid-state battery manufacturing method, all-solid-state battery and all-solid-state battery system
EP3598536A1 (en) 2018-07-13 2020-01-22 Toyota Jidosha Kabushiki Kaisha Active material and battery
JP7251069B2 (en) 2018-08-02 2023-04-04 トヨタ自動車株式会社 All-solid-state battery and manufacturing method thereof
JP7293595B2 (en) * 2018-09-21 2023-06-20 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
JP7074027B2 (en) 2018-11-12 2022-05-24 トヨタ自動車株式会社 Negative electrode
JP7272788B2 (en) * 2018-12-25 2023-05-12 株式会社Soken Method for manufacturing all-solid-state battery
KR20200130588A (en) 2019-05-10 2020-11-19 현대자동차주식회사 Binder solution for all solid state battery, electrode slurry for all solid state battery comprising the same and method of manufacturing all solid state battery using the same
JP6999619B2 (en) 2019-08-27 2022-02-10 株式会社豊田自動織機 Negative electrode active material containing silicon clathrate II
JP7431082B2 (en) 2020-03-27 2024-02-14 トヨタ自動車株式会社 Active material, negative electrode layer, battery, and manufacturing method thereof
JP7420617B2 (en) 2020-03-27 2024-01-23 トヨタ自動車株式会社 Active material, negative electrode layer, battery, and manufacturing method thereof
KR20220014451A (en) 2020-07-28 2022-02-07 현대자동차주식회사 Composite binder composition for all solid state battery, electrode slurry comprising the same, and producing method of electrode for all solid state battery using the electrode slurry
JP2024504534A (en) * 2021-06-17 2024-02-01 ワッカー ケミー アクチエンゲゼルシャフト Method for prelithiation of silicon-containing anodes in lithium-ion batteries
JP2023167083A (en) 2022-05-11 2023-11-24 トヨタ自動車株式会社 Active material, negative electrode layer, battery, and method of manufacturing them

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601265B2 (en) * 1996-09-13 2004-12-15 松下電器産業株式会社 Collective battery and charging method thereof
JP4144997B2 (en) * 2000-05-26 2008-09-03 三洋電機株式会社 Negative electrode for lithium secondary battery
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4948510B2 (en) * 2008-12-02 2012-06-06 トヨタ自動車株式会社 All solid battery
JP5287739B2 (en) * 2009-05-01 2013-09-11 トヨタ自動車株式会社 Solid electrolyte material
KR20120123380A (en) * 2010-01-11 2012-11-08 암프리우스, 인코포레이티드 Variable capacity cell assembly
EP2612393A4 (en) * 2010-09-03 2014-11-05 Envia Systems Inc Very long cycling of lithium ion batteries with lithium rich cathode materials
JP5601157B2 (en) * 2010-11-01 2014-10-08 トヨタ自動車株式会社 Positive electrode active material, positive electrode active material layer, all-solid battery, and method for producing positive electrode active material
JP2012142154A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, power tool, electric vehicle and power storage system
JP2012212632A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Method for manufacturing lithium ion power storage device
EP2717364B1 (en) * 2011-05-23 2023-05-03 Toyota Jidosha Kabushiki Kaisha Use of a positive electrode material for a sulfide-based solid electrolyte battery and sulfide-based solid electrolyte battery with such positive electrode material
JP2013012336A (en) * 2011-06-28 2013-01-17 Toyota Industries Corp Secondary battery and charging method of the same
US9385368B2 (en) * 2011-08-31 2016-07-05 3M Innovative Properties Company High capacity positive electrodes for use in lithium-ion electrochemical cells and methods of making same
CN102394298B (en) * 2011-12-20 2016-01-20 中国电子科技集团公司第十八研究所 LiNi 0.133 Co 0.133 Mn 0.544 O 2 Method for coating material
WO2013137224A1 (en) * 2012-03-15 2013-09-19 株式会社 村田製作所 All solid state cell and method for producing same
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery
JP5900244B2 (en) * 2012-08-23 2016-04-06 トヨタ自動車株式会社 Solid battery manufacturing method
KR101560863B1 (en) * 2012-09-07 2015-10-15 주식회사 엘지화학 Lithium secondary battery with high energy density
JP2014086218A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp All solid battery system
KR101490559B1 (en) * 2012-12-12 2015-02-06 일진전기 주식회사 Alloy method of complex metal for negative active material

Also Published As

Publication number Publication date
CN109004179A (en) 2018-12-14
CN109004179B (en) 2022-03-15
KR20170032207A (en) 2017-03-22
KR101882089B1 (en) 2018-07-25
JP2017059534A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6699473B2 (en) All-solid-state battery system and manufacturing method thereof
US11600818B2 (en) Prelithiated and methods for prelithiating an energy storage device
US10651667B2 (en) All-solid-state battery system and method of manufacturing the same
JP6233372B2 (en) Manufacturing method of all solid state battery
KR102418499B1 (en) Binder composition for secondary-battery electrode, slurry composition for secondary-battery electrode, secondary-battery electrode, and secondary battery
JP2006339093A (en) Wound type nonaqueous electrolyte secondary battery and its negative electrode
JPWO2006068066A1 (en) Composite electrode active material for non-aqueous electrolyte secondary battery or non-aqueous electrolyte electrochemical capacitor and its production method
JP6878292B2 (en) Anode material for lithium-ion batteries and their manufacturing method and usage method
JP2017111930A (en) All-solid battery and production method thereof
JP7276326B2 (en) Binder composition for electricity storage device, slurry composition for electricity storage device electrode, electrode for electricity storage device, and electricity storage device
JP2017103065A (en) All-solid battery system
JP2017037780A (en) All-solid battery
KR102369485B1 (en) Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery
JP2019121557A (en) Negative electrode layer
WO2016089666A1 (en) Electrode composition comprising carbon naotubes, electrochemical cell and method of making electrochemical cells
KR20200128256A (en) A composite anode for all-solid state battery and process for preparing thereof
JP2002151066A (en) Negative electrode material for lithium secondary battery
JP6536349B2 (en) All solid battery system
JP2021002495A (en) All-solid battery and all-solid battery system
WO2021020290A1 (en) Non-aqueous electrolyte power storage element, manufacturing method thereof, and power storage device
KR20230065411A (en) All solid state battery having interlayer comprising metal and metal nitride and manufacturing method thereof
JP6926972B2 (en) Manufacturing method of all-solid-state battery
CN112825351A (en) All-solid-state battery
JP2017107808A (en) Lithium ion secondary battery
JP2020194706A (en) All-solid battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151