JP6699009B2 - Damping structure of tower structure - Google Patents

Damping structure of tower structure Download PDF

Info

Publication number
JP6699009B2
JP6699009B2 JP2018156229A JP2018156229A JP6699009B2 JP 6699009 B2 JP6699009 B2 JP 6699009B2 JP 2018156229 A JP2018156229 A JP 2018156229A JP 2018156229 A JP2018156229 A JP 2018156229A JP 6699009 B2 JP6699009 B2 JP 6699009B2
Authority
JP
Japan
Prior art keywords
sluice
tension
tower
floodgate
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018156229A
Other languages
Japanese (ja)
Other versions
JP2020029720A (en
Inventor
隆史 原
隆史 原
智雄 加藤
智雄 加藤
英介 田村
英介 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2018156229A priority Critical patent/JP6699009B2/en
Publication of JP2020029720A publication Critical patent/JP2020029720A/en
Application granted granted Critical
Publication of JP6699009B2 publication Critical patent/JP6699009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Barrages (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は水門構造物等の塔状構造物に適用可能な制震技術に関し、より詳細には既設の低層構造物を活用して塔状構造物の揺れを抑制する、塔状構造物の制震構造に関するものである。   The present invention relates to a seismic control technology applicable to tower-like structures such as floodgate structures, and more specifically, it utilizes existing low-rise structures to suppress the shaking of tower-like structures. It relates to the seismic structure.

例えば、河川等から分岐して取水する場合には、分岐した取水経路に沿って敷設した水路構造物を通じて水を流下させている。
流水の水位制御手段として、水路構造物の適宜の位置に水門構造物を設置することが知られている。
For example, when water is branched from a river or the like, water is made to flow down through a waterway structure laid along the branched intake route.
As a means for controlling the level of running water, it is known to install a sluice structure at an appropriate position in the waterway structure.

一般に水路構造物は矩形断面を呈するコンクリート製の溝渠であり、水門構造物の上下流側に隣接して敷設されている。
水門構造物は縦長矩形を呈するコンクリート製の水門枠と、水門枠に昇降自在に配設されたゲートと、水門枠の天端に載置されたゲートの昇降機構とを具備していて、ゲートの昇降操作により流水の水位制御が可能である。
水門枠の躯体は上下流に位置させた水路構造物に隣接して構築されている。
Generally, the waterway structure is a concrete ditch with a rectangular cross section, and is laid adjacent to the upstream and downstream sides of the floodgate structure.
The sluice structure is provided with a concrete sluice frame having a vertically long rectangular shape, a gate that is vertically movable in the sluice frame, and a lifting mechanism for the gate that is mounted on the top of the sluice frame. The water level of running water can be controlled by moving up and down.
The structure of the sluice frame is constructed adjacent to the canal structure located upstream and downstream.

水門枠は水路構造物より高く形成されていて、しかも水門枠の頂版にゲート昇降用の巻揚機等の重量物を搭載しているために水門構造物の重心が高い位置にある。
そのため、現行の水門構造物の強度では巨大地震に耐えられず、水門枠が大きく横揺れした際に門柱の下部または側壁が破損して水門機能が喪失する危険がある。
The sluice gate frame is formed higher than the canal structure, and moreover, since the top plate of the sluice gate is loaded with a heavy load such as a hoist for raising and lowering the gate, the center of gravity of the sluice gate structure is at a high position.
Therefore, the strength of the existing sluice structure cannot withstand a huge earthquake, and there is a risk that the lower part or side wall of the gate post will be damaged and the sluice function will be lost when the sluice frame sways greatly.

一般的なコンクリート構造物の耐震補強技術では、過大な応力が作用する部位を、例えば躯体の増厚補強、鉄板補強、炭素繊維補強、せん断筋の挿入補強等で補強する方法や、コンクリート構造物とコンクリート構造物の支持体の間に免震支承体を介装する方法が採られている。
特許文献1には、既設のコンクリート構造物(既設建物)の外側面に補強柱を構築し、この補強柱とコンクリート構造物の基礎の周りに新たに構築した補強基礎との間に複数の引張材をコンクリート構造物の外側面と平行に緊結したコンクリート構造物の耐震補強技術が示されている。
In general seismic retrofitting technology for concrete structures, a method to reinforce a part where excessive stress acts, for example, by reinforcing the thickness of the frame, iron plate reinforcement, carbon fiber reinforcement, shear reinforcement insertion reinforcement, or concrete structure Seismic isolation bearings are installed between the concrete structure and the support of the concrete structure.
In Patent Document 1, a reinforcement column is constructed on the outer surface of an existing concrete structure (existing building), and a plurality of tensions are provided between the reinforcement column and a newly constructed reinforcement foundation around the foundation of the concrete structure. Seismic strengthening technology for concrete structures is shown in which timber is tied in parallel with the outer surface of the concrete structure.

特開2005−163432号公報JP, 2005-163432, A

従来の塔状構造物の耐震技術には次のような課題がある。
<1>水門構造物に従来のコンクリート構造物の一般的な耐震補強技術を適用した場合、水中に面した水門枠の下部の躯体を補強するとこになる。
この耐震補強工事を実施するには、工事期間に亘って水路全面を遮水するか、或いは水路の切廻しが必要となり、工事環境の整備に多くの時間を要して工期の長期化とコスト増の要因となる。
特に水門構造物の設置数が増えると耐震補強総費用が莫大となるため、経済的に実現できる水門構造物の対策技術の提案が喫緊の課題となっている。
<2>水門枠の頂版と頂版に搭載した昇降機構との間に免震支承体を介装する従来技術を適用すると、水門枠が揺れたときに免震支承体の塑性変形に伴いゲートの昇降が不能となって、水門機能を喪失する。
<3>水門構造物に特許文献1に記載の補強技術を適用しようとすると、門柱が極めて不経済で非現実的な断面形状となる恐れがあるだけでなく、補強基礎の構築のための用地取得に経済的な追加負担を強いられる。
Conventional seismic technology for tower structures has the following problems.
<1> When the general seismic retrofitting technology for conventional concrete structures is applied to the floodgate structure, the lower frame of the floodgate frame facing the water is reinforced.
In order to carry out this seismic retrofitting work, it is necessary to block the entire canal or turn around the canal for the duration of the work, which requires a lot of time to maintain the construction environment, prolonging the construction period and reducing costs. It will be a factor of increase.
In particular, since the total cost for seismic reinforcement increases as the number of sluice structures installed increases, it is an urgent issue to propose economically feasible countermeasure techniques for sluice structures.
<2> If the conventional technique of interposing a base isolation bearing between the top plate of the sluice frame and the lifting mechanism mounted on the top plate is applied, the seismic isolation bearing will be plastically deformed when the sluice frame is shaken. The gate cannot be moved up and down, and the lock function is lost.
<3> If the reinforcement technology described in Patent Document 1 is applied to a floodgate structure, not only the gate pillar may have an extremely uneconomical and unrealistic sectional shape, but also a site for constructing a reinforcement foundation. There is an additional financial burden on the acquisition.

本発明は以上の点に鑑みてなされたものであり、その目的とするところはつぎの塔状構造物の制震構造を提供することにある。
<1>塔状構造物の躯体に追加の耐震補強工事をせずに、地震時における塔状構造物の変位を効果的に抑制すること。
<2>水路構造物に隣接した水門構造物の制震対策として活用できること。
The present invention has been made in view of the above points, and an object thereof is to provide a vibration control structure for the following tower-like structure.
<1> To effectively suppress the displacement of the tower structure during an earthquake without additional seismic reinforcement work on the structure of the tower structure.
<2> It can be used as a seismic control measure for the floodgate structure adjacent to the waterway structure.

本発明は、引張材を用いて低層構造物に隣接した塔状構造物を制震する塔状構造物の制震構造であって、前記塔状構造物が水門枠と昇降可能なゲートとゲートの昇降機構とを具備した水門構造物であり、前記水門構造物の両側に第1低層構造物と第2低層構造物であるコンクリート製の第1および第2水路構造物が隣接して位置し、前記水門構造物を間に挟んで水門構造物の一部と第1および第2水路構造物との間に単数または複数の引張材が交差して張架され、交差した引張材を介して第1および第2水路構造物に反力を得て、地震時における水門構造物の挙動を抑制するように、前記交差した引張材に予め張力が導入されている
発明の他の形態において、水門構造物と第1および第2水路構造物との間にそれぞれ張架される交差した引張材の両端部が水門構造物を中心とした点対称の位置に連結することが望ましい。
本発明の他の形態において、前記交差した単数または複数の引張材の一端が水門構造物の上部に連結してある。
本発明の他の形態において、交差した複数の引張材の一端を水門構造物に多段的に連結してもよい。
本発明の他の形態において、交差した複数の引張材の他端を第1および第2水路構造物の一部に集約して連結してもよいし、交差した複数の引張材の他端を第1および第2水路構造物の長手方向に沿って複数箇所に連結してもよい。
本発明の他の形態において、水門構造物と第1および第2水路構造物との間に交差した補強用の引張材を追加して水平に張架してもよい。
The present invention is a vibration control structure of a tower structure for damping a tower structure adjacent to a low-rise structure using a tensile member, wherein the tower structure is a sluice frame, and a gate and a gate that can be raised and lowered. And a first and second waterway structure made of concrete , which is a first low-rise structure and a second low-rise structure, are located adjacent to each other on both sides of the floodgate structure. , one or more tension members between the part and the first and second water channel structure water gate structure in between the water gate structure is stretched to cross through the crossed tension member Tension is preliminarily introduced to the intersecting tension members so as to obtain a reaction force to the first and second waterway structures and suppress the behavior of the floodgate structure at the time of an earthquake .
In another embodiment of the present invention, both ends of the intersecting tension members which are respectively stretched between the sluice structure and the first and second waterway structures are connected to point-symmetrical positions around the sluice structure. It is desirable to do.
In another aspect of the present invention, one end of the intersecting tension member or plurality of tension members is connected to an upper portion of the floodgate structure .
In another embodiment of the present invention, one end of the crossed tension members may be connected to the sluice structure in multiple stages.
In another embodiment of the present invention, the other ends of the intersecting tension members may be integrated and connected to a part of the first and second water channel structures, or the other ends of the intersecting tension members may be combined. You may connect to a some location along the longitudinal direction of a 1st and 2nd waterway structure .
In another embodiment of the present invention, a tensile member for reinforcement intersecting between the sluice structure and the first and second water channel structures may be added and horizontally stretched.

本発明は以上の構成よりつぎのうちの少なくとも一つの効果を奏する。
<1>水門構造物と第1および第2水路構造物との間に引張材を交差して張架すると共に、交差した引張材に予め均等な張力を導入しておくだけで、第1および第2水路構造物から反力を得て、地震時における水門構造物の変位を効果的に抑制できる。
したがって、地震時において水門構造物の躯体に過大な曲げやせん断応力等が作用しないので、水門構造物の躯体を対象とした増厚補強、鉄板補強、炭素繊維補強、せん断筋の挿入補強等の耐震補強を施す必要がない。
<2>水門構造物の両側にそれぞれ引張材を交差して配置したことで、水門構造物の全方向へ向けた変位を規制することができる。
<3>既設の第1および第2水路構造物を反力部材として活用するので、独立した反力部材を新たに設置したり、新たな用地を確保したりする必要がない。
<4>複数の引張材を交差して張架した場合は、各引張材の張力負担を軽減できると共に、一部の引張材に損傷や張力低減が生じたときに水門構造物に対するリダンダンシー(冗長性・余裕性)効果を期待することができる。
<5>水路構造物に隣接した水門構造物の制震対策として有効であり、水門構造物の躯体に耐震補強をせずに、地震時における水門構造物の変位を効果的に抑制することができる。
The present invention has at least one of the following effects due to the above configuration.
<1> A tension member is crossed and stretched between the sluice structure and the first and second waterway structures, and uniform tension is introduced into the crossed tension members in advance, thereby The reaction force can be obtained from the second waterway structure to effectively suppress the displacement of the sluice structure during an earthquake.
Therefore, since the precursor excessive bending or shearing stress in such floodgates structure does not act during an earthquake, thickened reinforcement intended for the precursor of the water gate structure, an iron plate reinforcing carbon fiber reinforced, insertion reinforcing such shear muscle There is no need to add seismic reinforcement.
<2> By disposing the tension members on both sides of the floodgate structure so as to cross each other, the displacement of the floodgate structure in all directions can be regulated.
<3> Since the existing first and second waterway structures are used as reaction members, it is not necessary to newly install an independent reaction member or secure a new site.
<4> When a plurality of tension members are crossed and stretched, the tension load on each tension member can be reduced, and when some tension members are damaged or the tension is reduced, there is redundancy (redundancy ) for the floodgate structure. It is possible to expect an effect.
<5> Effective as a seismic control measure for the sluice structure adjacent to the sluice structure, and effectively suppressing displacement of the sluice structure during an earthquake without seismic reinforcement of the structure of the sluice structure. it can.

本発明の実施例の説明図で、水路構造物に隣接した水門構造物の全体斜視図It is an explanatory view of the example of the present invention, and is a whole perspective view of a floodgate structure adjacent to a waterway structure. 水路構造物に隣接した水門構造物の側面図Side view of a sluice structure adjacent to a canal structure 図2におけるIII−IIIの断面図Sectional view of III-III in FIG. 引張材の他の設置例1の説明図で、水路構造物に隣接した水門構造物の側面図It is explanatory drawing of the other installation example 1 of a tension material, and is a side view of the sluice structure adjacent to the waterway structure. 引張材の他の設置例2の説明図で、水路構造物に隣接して一部を省略した水門構造物の平面図It is explanatory drawing of the other installation example 2 of a tension material, and is a top view of the sluice structure which abbreviate|omitted a part adjacent to the waterway structure. 引張材の他の設置例3の説明図で、水路構造物に隣接して一部を省略した水門構造物の平面図It is explanatory drawing of the other installation example 3 of a tension material, and is a top view of the sluice structure which abbreviate|omitted one part adjacent to the waterway structure. 引張材の他の設置例4の説明図で、水路構造物に隣接して一部を省略した水門構造物の側面図It is explanatory drawing of the other example 4 of installation of a tension material, and is a side view of the sluice structure which abbreviate|omitted one part adjacent to the waterway structure. 引張材の他の設置例5の説明図で、水路構造物に隣接して一部を省略した水門構造物の側面図It is explanatory drawing of the other installation example 5 of a tension material, and is a side view of the sluice structure which abbreviate|omitted one part adjacent to the waterway structure. 引張材の他の設置例6の説明図で、水路構造物に隣接して一部を省略した水門構造物の側面図It is explanatory drawing of the other installation example 6 of a tension material, and is a side view of the sluice structure which abbreviate|omitted one part adjacent to the waterway structure. 引張材の他の設置例7の説明図で、水路構造物に隣接した水門構造物の平面図It is explanatory drawing of the other installation example 7 of a tension material, and is a top view of the sluice structure adjacent to the waterway structure.

以下に図面を参照しながら本発明について説明するが、本例では塔状構造物が水門構造物10であり、第1、第2低層構造物が水路構造物20(第1、第2水路構造物)である場合について説明する。 The present invention will be described below with reference to the drawings. In this example, the tower-like structure is the sluice structure 10, and the first and second low-rise structures are the waterway structures 20 (first and second waterway structures). Item) will be described.

<1>水門施設
図1〜3を参照して説明すると、水門構造物10は水路構造物20の横断方向に向けて設置される塔状構造物であり、縦長矩形を呈する水門枠15と、水門枠15に昇降自在に配設されゲート16と、ゲート16を昇降する昇降機構17とを具備する。
<1> Sluice Facility Referring to FIGS. 1 to 3, the sluice structure 10 is a tower-like structure installed in the transverse direction of the waterway structure 20, and a sluice frame 15 having a vertically long rectangle, The sluice gate frame 15 is provided with a gate 16 that is vertically movable, and an elevating mechanism 17 that elevates and lowers the gate 16.

<1.1>水門枠
水門枠15は、水路に面した下部側の側壁11と、側壁11上に形成された門柱12と、相対向する門柱12,12の上部間に形成された頂版13と、相対向する側壁11,11の下部間に形成された底版14とを有し、場所打ちコンクリートにより一体構造物として構築されている。
水門枠15は水路構造物20の横断方向に向けて配設され、水門枠15の側壁11と底版14の側端面が各水路構造物20の開口側端面と接合している。
水門枠15の左右一対の側壁11,11と底版14とにより断面溝型の水路を形成している。
<1.1> Sluice frame The sluice frame 15 is a top plate formed between the lower side wall 11 facing the waterway, the gate post 12 formed on the side wall 11, and the upper parts of the opposite gate posts 12, 12. 13 and a bottom slab 14 formed between the lower portions of the side walls 11 facing each other, and is constructed as an integral structure by cast-in-place concrete.
The floodgate frame 15 is arranged in the transverse direction of the waterway structure 20, and the side wall 11 of the floodgate frame 15 and the side end faces of the bottom plate 14 are joined to the open end faces of the waterway structures 20.
A pair of left and right side walls 11, 11 of the floodgate frame 15 and the bottom slab 14 form a water channel having a groove-shaped cross section.

<1.2>ゲート
水門枠15は一対の門柱12,12の間にゲート16を具備している。
鋼製またはコンクリート製のゲート16は、棒材、ロープ材、チェーン等の垂下材18に垂下されていて、昇降機構17による垂下材18の上下動操作に伴い、門柱12,12に沿ったゲート16の昇降が可能である。
<1.2> Gate The sluice gate frame 15 has a gate 16 between a pair of gate posts 12 and 12.
The gate 16 made of steel or concrete is hung on a hanging member 18 such as a bar material, a rope material, or a chain, and the gates along the gate posts 12 and 12 are accompanied by the vertical movement operation of the hanging member 18 by the elevating mechanism 17. It is possible to raise and lower by 16.

<1.3>昇降機構
水門枠15はその頂版13にゲート16を昇降するための公知の昇降機構17を搭載している。
昇降機構17は垂下材18の種類により異なるが、垂下材18を上下動するための例えば昇降機、昇降機駆動用モータ、減速機等の必要な機器を含んでいる。
ゲート16の昇降は動力を用いた操作だけでなく、手動による昇降操作も可能な構成になっている。
<1.3> Lifting Mechanism The sluice gate frame 15 has a top plate 13 equipped with a known lifting mechanism 17 for lifting the gate 16.
The elevating mechanism 17 differs depending on the type of the hanging member 18, but includes necessary devices such as an elevator, a motor for driving the elevator, and a speed reducer for moving the hanging member 18 up and down.
The gate 16 can be moved up and down not only by using power, but also by manually moving up and down.

<2>水路構造物
水路構造物20は矩形断面を呈するコンクリート製の溝渠であり、底版21と一対の側壁22,22とを有している。
水路構造物20は水路の全長に亘って敷設してもよいが、水門構造物10の上流側と下流側の限定区間に亘って敷設してもよい。
<2> Water channel structure The water channel structure 20 is a concrete ditch having a rectangular cross section, and has a bottom plate 21 and a pair of side walls 22 and 22.
The water channel structure 20 may be laid over the entire length of the water channel, or may be laid over a limited section on the upstream side and the downstream side of the floodgate structure 10.

<3>水門構造物の制震手段
本発明では水門構造物10の制震手段として、水門構造物10と各水路構造物20,20との間に単数または複数の引張材30を平面視X状に交差して張架すると共に、交差した各引張材30に予め張力を導入しておく手法を採用した。
本発明では両構造物10,20の間に引張材30を上記のように張架しておくことで、水門構造物10に対して直接的な追加の耐震補強を行わずに、水路構造物20に反力を得て地震時における水門構造物10の揺動等の運動エネルギーを減衰しつつ、水門構造物10の変位を効果的に抑制することができる。
<3> Seismic control means for sluice structure In the present invention, as a seismic control means for the sluice structure 10, one or a plurality of tension members 30 are provided between the sluice structure 10 and each of the water channel structures 20, 20 in a plan view X. A method is adopted in which the tension members 30 are stretched in a crossed manner and tension is introduced in advance in each of the crossed tension members 30.
In the present invention, the tension member 30 is stretched between the two structures 10 and 20 as described above, so that the sluice structure 10 is not directly subjected to additional seismic reinforcement, and the waterway structure is provided. The displacement of the floodgate structure 10 can be effectively suppressed while the reaction force of 20 is obtained to attenuate the kinetic energy such as the rocking of the floodgate structure 10 at the time of an earthquake.

<3.1>引張材
引張材30は高張力に耐え得るロープ材または棒材である。
引張材30の素材としては、例えば伸び率の小さな鋼製、繊維製のロープ材や、鋼棒、PC鋼棒等の棒材、または形鋼等の鋼材を使用でき、実用上はワイヤーロープが好適である。
交差する各引張材30の全長は均一であるが望ましいが、機能的に悪影響がでない範囲で各引張材30の全長に多少の差があってもよい。
<3.1> Tensile material The tensile material 30 is a rope material or a rod material that can withstand high tension.
As the material of the tensile member 30, for example, a steel or fiber rope material having a small elongation, a rod material such as a steel rod or a PC steel rod, or a steel material such as a shaped steel can be used, and a wire rope is practically used. It is suitable.
Although it is desirable that the lengths of the respective tensile members 30 that intersect intersect with each other, it is desirable that the lengths of the respective tensile members 30 may be slightly different within a range in which there is no functional adverse effect.

<3.2>引張材の配置形態
水門構造物10を間に挟んで、水門構造物10の上流側と下流側の水路構造物20,20との間には引張材30が交差して配設されている。
本例では、水門構造物10と上流側の水路構造物20の間と、水門構造物10と下流側の水路構造物20との間にそれぞれ2本の引張材30,30を交差して配設し、合計4本の引張材30を使用する形態について説明する。
水門構造物10と上下流側にそれぞれ引張材30を交差して配置したのは、水門構造物10の全方向へ向けた変位を規制するためである。
<3.2> Arrangement Form of Tensile Material With the sluice structure 10 sandwiched between the sluice structures 10, the tension members 30 are arranged between the upstream and downstream waterway structures 20, 20 of the sluice structure 10. It is set up.
In the present example, two tension members 30 and 30 are arranged so as to intersect between the sluice structure 10 and the upstream canal structure 20, and between the sluice structure 10 and the downstream canal structure 20, respectively. A mode in which a total of four tension members 30 are used will be described.
The sluice structure 10 and the tension members 30 are arranged on the upstream and downstream sides so as to intersect with each other in order to restrict the displacement of the sluice structure 10 in all directions.

本例では水門構造物10と各水路構造物20との間に引張材30の両端部が水門構造物10を中心とした点対称の位置に連結した形態について説明するが、各構造物10,20に対する引張材30の両端部の連結位置は、現場の状況等に合せて適宜選択してもよい。   In this example, a configuration will be described in which both ends of the tension member 30 are connected between the sluice structure 10 and each of the water channel structures 20 at point symmetrical positions with the sluice structure 10 as the center. The connecting positions of both ends of the tension member 30 with respect to 20 may be appropriately selected according to the situation of the site and the like.

<3.3>引張材の反力部材
各引張材30はその一端を水門枠15の上部に接続し、各引張材30の他端を水路構造物20の一部に接続している。
各引張材30を水路構造物20に接続することで水路構造物20を反力部材として活用するので、水門構造物10の周囲に独立した反力部材を新たに設置したり、そのために水門構造物10の周囲に新たな用地を確保したりする必要がない。
<3.3> Reactive member of tensile member Each tensile member 30 has one end connected to the upper part of the water gate frame 15, and the other end of each tensile member 30 connected to a part of the water channel structure 20.
Since the water channel structure 20 is utilized as a reaction member by connecting each tension member 30 to the water channel structure 20, an independent reaction force member is newly installed around the water gate structure 10, and for that purpose, the water gate structure is provided. There is no need to secure a new site around the object 10.

<3.4>引張材の接続部位
本例では各引張材30の一端を水門枠15の門柱12の上部に連結した形態について説明するが、各引張材30の一端を頂版13に連結してもよい。
また本例では各引張材30の他端を水路構造物20の側壁22の上部に連結する形態について説明するが、各引張材30の他端は側壁22の一部に連結してあればよい。
<3.4> Connection Site of Tensile Material In this example, a configuration in which one end of each tension material 30 is connected to the upper portion of the gate post 12 of the sluice frame 15 will be described. One end of each tension material 30 is connected to the top plate 13. May be.
In addition, in this example, the other end of each tension member 30 is described as being connected to the upper portion of the side wall 22 of the water channel structure 20, but the other end of each tension member 30 may be connected to a part of the side wall 22. ..

引張材30の各端部の連結手段としては、例えば取付ブラケット32を介して水門枠15や水路構造物20に連結してもよいし、引張材30の端部を水門枠15や水路構造物20の躯体に埋設して連結してもよい。   As a connecting means of each end of the tension member 30, for example, it may be connected to the sluice frame 15 or the water channel structure 20 via a mounting bracket 32, or the end of the tension member 30 may be connected to the sluice frame 15 or the water channel structure. It may be embedded and connected in the body of 20.

<3.5>引張材の導入張力
交差した全ての引張材30には張架時に均等な張力(プレロード)を導入する。
すなわち、水門構造物10の上流側に交差して張架した引張材30,30に均等な張力を導入すると共に、同様に門構造物10と下流側に交差して張架した引張材30,30にも均等な張力を導入する。
すべての引張材30に均等な張力を導入することで、水門構造物10を構成する水門枠15に対して捩じれや曲げ等が生じることを効果的に防止できる。
引張材30の導入張力は水門構造物10の全高等を考慮して適宜選択する。
本発明における「均等な張力」とは、同一の張力を意味するだけでなく、ほぼ同一の張力も含むものである。
引張材30の導入張力は均等な関係に限定されるものではなく、機能的に悪影響がでない範囲で各引張材30に多少の張力差があってもよい。
<3.5> Tensile Material Introducing Tension An equal tension (preload) is applied to all the intersecting tensile members 30 during stretching.
That is, a uniform tension is introduced into the tension members 30, 30 stretched across the upstream of the sluice structure 10, and the tension members 30, stretched across the gate structure 10 downstream in the same manner. Introduce even tension into 30.
By introducing uniform tension to all the tension members 30, it is possible to effectively prevent the sluice frame 15 forming the sluice structure 10 from being twisted or bent.
The introduction tension of the tension member 30 is appropriately selected in consideration of the total height of the sluice structure 10.
The "uniform tension" in the present invention means not only the same tension but also the substantially same tension.
The tension applied to the tension members 30 is not limited to a uniform relationship, and each tension member 30 may have a slight tension difference as long as it does not adversely affect the function.

<3.6>張力の付与方法
引張材30に所定の張力を導入するには、本例で図示するように引張材30の一部に介装した締付具31を用いて緊張してもよいし、PC工法で使用する公知の緊張ジャッキを用いて引張材30を緊張して端部を定着してもよい。
引張材30に介装する締付具31としては、例えば油圧式の小型ジャッキやねじ式のターンバックル等を適用できる。
このように流水を流したままの状態で引張材30に所定の張力を導入して張架できるので、引張材30の設置作業を行う際に水路の全面遮水や水路の切廻しが不要となる。
<3.6> Method of Applying Tension In order to introduce a predetermined tension to the tension member 30, even if the tension member 30 is tensioned by using a fastener 31 that is interposed in a part of the tension member 30 as illustrated in this example. Alternatively, the tension member 30 may be tensioned using a known tension jack used in the PC method to fix the end portion.
As the tightening tool 31 that is interposed in the tension member 30, for example, a hydraulic small jack or a screw type turnbuckle can be applied.
Since the tension member 30 can be stretched by applying a predetermined tension to the tension member 30 while the running water is still flowing, it is not necessary to completely shield the water channel or cut the water channel when the tension member 30 is installed. Become.

[水門構造物の挙動]
つぎに通常時と地震時における水門構造物10の挙動について説明する。
[Fluid structure behavior]
Next, the behavior of the floodgate structure 10 during normal times and earthquakes will be described.

<1>通常時
水門構造物10を構成する水門枠15は、その四隅に連結した引張材30を介して外方へ向けた緊張力が作用するだけでなく、水門枠15の全体に対して下向きの牽引力が作用している。
水門構造物10に対してこれらの外力が均等に作用しているので、水門構造物10に対して過大な捩じれ力や特定方向へ向けた曲げ応力等が生じることはない。
さらに各引張材30の張架方向が斜め方向であることから、引張材30の導入張力の鉛直成分が水門構造物10に対して軸力として作用するだけである。
したがって、引張材30に大きな張力が導入されていてもこの張力により水門構造物0を構成する水門枠15が座屈破損する心配はまったくない。
<1> Normal time In the floodgate frame 15 that constitutes the floodgate structure 10, not only the outward tension force acts through the tension members 30 connected to the four corners thereof, but also the floodgate frame 15 as a whole. Downward traction is acting.
Since these external forces act evenly on the floodgate structure 10, an excessive twisting force or bending stress in a specific direction does not occur on the floodgate structure 10.
Further, since the tension direction of each tension member 30 is an oblique direction, the vertical component of the introduction tension of the tension member 30 only acts on the sluice structure 10 as an axial force.
Therefore, even if a large tension is applied to the tension member 30, there is no fear that the tension causes the sluice frame 15 constituting the sluice structure 0 to buckle and break.

<2>地震時
水門構造物10と水路構造物20は高低差があるため、引張材30が存在しなければ地震時に両構造物10,20の挙動は大きく異なり、重いゲート16を懸架した水門構造物10は1失点系の大きな揺れを示し、水路構造物20は周囲の地盤と一緒の挙動を示す。
<2> At the time of an earthquake Since the floodgate structure 10 and the waterway structure 20 have a difference in height, the behavior of both structures 10 and 20 is greatly different at the time of an earthquake unless the tension member 30 is present, and the floodgate with the heavy gate 16 suspended. The structure 10 shows a large swing of a one-run system, and the waterway structure 20 shows a behavior with the surrounding ground.

<2.1>水門構造物の横揺れについて
水門構造物10は交差した引張材30を介して隣接する水路構造物20,20に連結されていて、両構造物10,20の間で力の伝達が可能な構造になっている。
そのため、水門構造物10に対して作用する前後左右方向へ向けた地震力は反力源である水路構造物20,20に支持されて、水門構造物10の自由な横揺れが規制される。
特に、引張材30が交差していることで、前後左右方向を含む全方向に対して水門構造物10の横揺れを抑制できる。
<2.1> Rolling of floodgate structure The floodgate structure 10 is connected to the adjoining waterway structures 20 and 20 via the crossed tension members 30, and the force between the structures 10 and 20 is increased. It has a structure that enables transmission.
Therefore, the seismic force acting on the floodgate structure 10 in the front, rear, left, and right directions is supported by the waterway structures 20, 20 that are reaction sources, and free rolling of the floodgate structure 10 is restricted.
In particular, since the tension members 30 cross each other, it is possible to suppress the rolling of the sluice structure 10 in all directions including front, rear, left, and right directions.

<2.2>水門構造物の縦揺れについて
地震時に水門構造物10に対して鉛直方向へ向けた縦揺れが生じた場合も、交差した引張材30が既設の水路構造物20から反力を得て水門構造物10の自由な縦揺れを規制する。
<2.2> About vertical shaking of sluice structure Even when vertical shaking occurs in the sluice structure 10 at the time of an earthquake, the crossed tension members 30 generate a reaction force from the existing waterway structure 20. As a result, free pitching of the sluice structure 10 is restricted.

<2.3>地震時における水門枠の負荷について
水門構造物10に横揺れまたは縦揺れが生じると、揺れの抵抗方向に位置する引張材30の張力が増し、揺れ方向に位置する引張材30の張力が減少する。
各引張材30が斜めに張架されていることと、予め引張材30に張力が導入してあることで、水門構造物10に対する張力の増減変化の影響が少なくて済む。
そのため、水門構造物10に対して生じる曲げや捩じれ等の応力は極僅かであり、さらに水門構造物10に生じる軸力変化も少ないので、水門枠15の一部が曲げ、せん断、捩じれ等により破損したり、座屈したりする心配がない。
<2.3> About load on sluice frame at the time of earthquake When the sluice structure 10 rolls or pitches, the tension of the tension member 30 located in the swaying resistance direction increases, and the tension member 30 located in the swaying direction increases. Tension is reduced.
Since each tension member 30 is stretched obliquely and tension is introduced into the tension member 30 in advance, the influence of increase or decrease in tension on the sluice structure 10 can be small.
Therefore, stresses such as bending and twisting generated on the sluice structure 10 are extremely small, and the axial force change generated on the sluice structure 10 is small, so that a part of the sluice frame 15 may be bent, sheared, or twisted. There is no need to worry about damage or buckling.

<2.4>水門枠の耐震補強の必要性について
既述したように引張材30が存在しなければ、水門構造物10は水路構造物20から分離独立した挙動を示すことなる。
これに対して、両構造物10,20の間に引張材30を交差して張架することで、水門構造物10が水路構造物20に近い挙動を示すことになって、水門構造物10の挙動そのものを小さく抑えることができる。
したがって、水門構造物10を構成する水門枠15の地震動に対する荷重負担が小さくなるので、水門枠15の躯体そのものを耐震補強する必要はなく、既存のままで水門枠15の破損等を効果的に回避できる。
<2.4> Necessity of Seismic Reinforcement of Sluice Frame As described above, if the tensile member 30 does not exist, the sluice structure 10 will behave independently from the flume structure 20.
On the other hand, by crossing and tensioning the tension member 30 between the two structures 10 and 20, the sluice structure 10 behaves like the flume structure 20. The behavior itself can be kept small.
Therefore, the load bearing against the seismic motion of the sluice frame 15 constituting the sluice structure 10 is reduced, so that it is not necessary to seismically strengthen the frame itself of the sluice frame 15, and the damage to the sluice frame 15 can be effectively maintained as it is. It can be avoided.

なお、引張材30の断面剛性(EA)と導入張力を適切に選定することで、水門構造物10の損傷箇所とその損傷程度をコントロールすることが可能となる。   By properly selecting the cross-sectional rigidity (EA) of the tensile member 30 and the introduced tension, it becomes possible to control the damaged portion of the sluice structure 10 and the degree of the damage.

<2.5>水門枠の露出部を耐震補強する場合
既存の水門構造物10は引張材30の張力導入を想定して構築されていないことから、水門枠15を構成する既存の頂版13や門柱12に強度不足が予想される場合がある。
このような場合には、必要に応じて水門枠15の露出部のみに従来の耐震補強工(躯体の増厚補強、鉄板補強、炭素繊維補強、せん断筋の挿入補強等)を行ってもよい。
<2.5> When the exposed part of the floodgate frame is subjected to seismic reinforcement Since the existing floodgate structure 10 is not constructed assuming the introduction of tension of the tension member 30, the existing top plate 13 that constitutes the floodgate frame 15 is used. Insufficient strength may be expected in the gate posts 12.
In such a case, conventional seismic reinforcement work (thickening reinforcement of the body, iron plate reinforcement, carbon fiber reinforcement, insertion reinforcement of shear muscles, etc.) may be performed only on the exposed portion of the sluice frame 15 in such a case. ..

従来の耐震補強工を行う部位は頂版13や門柱12の露出部のみであるので、耐震補強作業がし易いだけでなく、水中に面した側壁11は耐震補強を行わずに済むので、従来の耐震補強工を行う際に水路の全面遮水や水路の切廻しが不要である。
このように、引張材30による耐震補強工と従来の耐震補強工とを組み合せることで、巨大地震に耐え得るように水門構造物10の耐震性能を格段に高めることができる。
Since the conventional seismic reinforcement work is only the exposed parts of the top plate 13 and the gate posts 12, not only is seismic reinforcement work easy, but the side wall 11 facing the water does not require seismic reinforcement. It is not necessary to block the entire canal or cut the canal when performing seismic retrofitting work.
As described above, by combining the seismic strengthening work using the tensile member 30 and the conventional seismic strengthening work, the seismic performance of the sluice structure 10 can be significantly improved so as to withstand a huge earthquake.

[引張材の他の設置例]
以降に引張材30の他の設置例について説明する。以降の説明にあたり、引張材30を交差することと、各引張材30に予め張力を導入しておくことは既述した形態と同じである。
さらに既述した形態と同一の部位は同一の符号を付してその詳しい説明を省略する。
[Other examples of installation of tension material]
Hereinafter, another installation example of the tension member 30 will be described. In the following description, intersecting the tensile members 30 and introducing tension to each tensile member 30 in advance is the same as the above-described embodiment.
Further, the same parts as those in the above-described embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

<1>上下流で引張材の張架長が異なる形態(他の設置例1)
図4は、水門構造物10を間に挟んで上流側の引張材30aと下流側の引張材30bの長さを異なる組み合わせとした他の形態を示している。
本例では水門構造物10と水路構造物20の現場状況に応じた長さの引張材30a,30bを設置できることができる。
<1> A form in which the tension length of the tension material is different in the upstream and downstream (other installation example 1)
FIG. 4 shows another embodiment in which the upstream tensile member 30a and the downstream tensile member 30b have different lengths with the sluice structure 10 interposed therebetween.
In this example, it is possible to install the tension members 30a and 30b having lengths corresponding to the situation of the site of the floodgate structure 10 and the waterway structure 20.

<2>頂版中央に引張材を追加配置した形態(他の設置例2)
図5は、単数の引張材30を交差させた形態において、水門構造物10の頂版13の中央と水路構造物20の間にV字状に補助引張材30cを追加配置した他の形態を示している。
<2> A mode in which a tensile material is additionally arranged in the center of the top plate (other installation example 2)
FIG. 5 shows another form in which auxiliary tension members 30c are additionally arranged in a V shape between the center of the top plate 13 of the sluice structure 10 and the water channel structure 20 in a form in which a single tension member 30 is crossed. Showing.

本例では、補助引張材30cを追加した分だけ引張材30の張力負担を軽減できると共に、一部の引張材30,30cに損傷や張力低減が生じたときに水門構造物10に対するリダンダンシー(冗長性・余裕性)効果を期待できる。   In this example, the tension load on the tensile member 30 can be reduced by the amount of the auxiliary tensile member 30c added, and the redundancy (redundancy) for the sluice structure 10 when some tensile members 30, 30c are damaged or the tension is reduced. It is possible to expect an effect.

<3>引張材を水平に張設した形態(他の設置例3)
図6は、単数の引張材30を交差させた形態において、水門構造物10の側壁11の頭部と水路構造物20との間に交差させた補強用の引張材30dを水平に向けて追加配置した他の形態を示している。
<3> Form in which tension material is stretched horizontally (other installation example 3)
FIG. 6 shows a configuration in which a single tensile member 30 is crossed, and a reinforcing tensile member 30d that is crossed between the head of the side wall 11 of the sluice structure 10 and the waterway structure 20 is added horizontally. The other form arrange|positioned is shown.

本例では側壁11の頭部と水路構造物20の間に交差させた補強用の引張材30dを追加して水平に張設するだけで、水中に面した側壁11を直接的に耐震補強せずに、側壁11の頭部を効果的に補強することができる。   In this example, the side wall 11 facing the water is directly quake-proof reinforced by simply adding a reinforcing tension member 30d which is crossed between the head of the side wall 11 and the waterway structure 20 and stretching it horizontally. Without, the head portion of the side wall 11 can be effectively reinforced.

<4>複数の引張材の水路構造物側を集約した形態(他の設置例4)
図7は、複数の引張材30を交差して張架した形態であって、複数の引張材30の一端を水門構造物10の水門枠15に多段的に分散して連結すると共に、複数の引張材30の他端を水路構造物20の側壁22の一箇所に集約して連結した他の形態を示している。
<4> A form in which a plurality of tensile members are integrated on the water channel structure side (other installation example 4)
FIG. 7 shows a configuration in which a plurality of tension members 30 are crossed and stretched, and one end of each of the tension members 30 is connected to the sluice frame 15 of the sluice structure 10 in a multi-stage manner, and at the same time, Another form in which the other end of the tension member 30 is integrated and connected to one location of the side wall 22 of the water channel structure 20 is shown.

本例では複数の引張材30の張力負担の軽減効果と、水門構造物10に対するリダンダンシー効果を期待できるだけでなく、複数の引張材30の水路構造物20側の他端を集約して経済的に連結できる。   In this example, not only the effect of reducing the tensile load of the tension members 30 and the redundancy effect on the floodgate structure 10 can be expected, but also the other ends of the tension members 30 on the side of the waterway structure 20 are aggregated to be economically. Can be connected.

<5>複数の引張材の水路構造物側を集約した形態(他の設置例5)
図8は複数の引張材30を交差して張架した形態であって、複数の引張材30の一端を水門枠15の上部一箇所に集約して連結すると共に、複数の引張材30の他端を水路構造物20の複数箇所に分散して連結した他の形態を示している。
<5> A form in which a plurality of tensile members are integrated on the water channel structure side (other installation example 5)
FIG. 8 shows a form in which a plurality of tension members 30 are stretched across each other. One end of each of the tension members 30 is collectively connected to one location on the upper part of the sluice frame 15, and the other tension members 30 are connected together. Another form in which the ends are dispersed and connected to a plurality of places of the waterway structure 20 is shown.

本例では複数の引張材30の張力負担の軽減効果と、水門構造物10に対するリダンダンシー効果を期待できるだけでなく、一箇所に集約した複数の引張材30の一端を水門枠15に経済的に連結できる。   In this example, not only the effect of reducing the tension load of the plurality of tension members 30 and the redundancy effect on the sluice structure 10 can be expected, but also one end of the plurality of tension members 30 integrated in one place is economically connected to the sluice frame 15. it can.

<6>複数の引張材の連結部を分散した形態(他の設置例6)
図9は、複数の引張材30を交差して張架した形態であって、複数の引張材30の一端と他端をそれぞれ水門構造物10と水路構造物20の複数箇所に分散して連結した他の形態を示している。
<6> A form in which the connecting portions of a plurality of tensile members are dispersed (Other installation example 6)
FIG. 9 shows a form in which a plurality of tension members 30 are crossed and stretched, and one end and the other end of the plurality of tension members 30 are dispersed and connected to a plurality of locations of a sluice structure 10 and a water channel structure 20, respectively. The other forms are shown.

本例では複数の引張材30の張力負担の軽減効果と、水門構造物10に対するリダンダンシー効果を期待できる。   In this example, the effect of reducing the tension load of the plurality of tension members 30 and the redundancy effect on the floodgate structure 10 can be expected.

<7>複数の引張材の連結部を分散した形態(他の設置例7)
図10は、水門構造物10を間に挟んで上流側の水路構造物20aと下流側の水路構造物20bとの交錯箇所に単数または複数の引張材30を交差させて張架した他の形態を示す。
本例では交差させた単数または複数の引張材30の一端を下流側の水路構造物20bの一方の側壁22に連結している。
下流側の水路構造物20bは上流側の水路構造物20aと同幅でもよいが、引込水路等のように上流側の水路構造物20aより狭い幅であってもよい。
<7> A form in which the connecting portions of a plurality of tension members are dispersed (Other installation example 7)
FIG. 10 shows another embodiment in which one or a plurality of tension members 30 are crossed and stretched at intersections of the upstream water channel structure 20a and the downstream water channel structure 20b with the sluice structure 10 interposed therebetween. Indicates.
In the present example, one end of one or a plurality of crossed tensile members 30 is connected to one side wall 22 of the downstream water channel structure 20b.
The waterway structure 20b on the downstream side may have the same width as the waterway structure 20a on the upstream side, but may have a width narrower than that of the waterway structure 20a on the upstream side such as a lead-in waterway.

本例ではふたつの水路構造物20a,20bが交錯している現場でも、既設の水路構造物20a,20bから反力を得て水門構造物10の制震補強を図ることができる。   In this example, even at a site where two waterway structures 20a and 20b are intermingled with each other, it is possible to obtain a reaction force from the existing waterway structures 20a and 20b to enhance the seismic control of the sluice structure 10.

<8>他の設置例の組み合せ
既述した他の設置例1〜7を適宜組み合せることも可能である。
本発明では何れの設置例においても、地震時における水門構造物10の損傷を回避し得るように、引張材30の断面寸法、張架本数、全長、張架角度、導入張力、および取付け箇所等を適宜選択する点で共通する。
<8> Combination of other installation examples It is also possible to appropriately combine the other installation examples 1 to 7 described above.
In any of the installation examples of the present invention, in order to avoid damage to the floodgate structure 10 at the time of an earthquake, the cross-sectional dimension of the tension member 30, the number of tensions, the total length, the tension angle, the introduction tension, the mounting location, etc. Is common in that is appropriately selected.

[塔状構造物の他の適用例]
以上は塔状構造物を水門構造物10に適用した形態について説明したが、塔状構造物は水門構造物10に限定されるものではなく、公知の各種コンクリート構造物への適用が可能である。
[Other application examples of tower structure]
Although the form in which the tower structure is applied to the sluice structure 10 has been described above, the tower structure is not limited to the sluice structure 10 and can be applied to various known concrete structures. ..

10・・・水門構造物(塔状構造物)
11・・・側壁
12・・・門柱
13・・・頂版
15・・・水門枠
16・・・ゲート
17・・・ゲートの昇降機構
18・・・ゲートの垂下材
20・・・水路構造物(第1低層構造物と第2低層構造物)
21・・・底版
22・・・側壁
30・・・引張材
31・・・締付具
32・・・取付ブラケット
10... Sluice structure (tower structure)
11... Side wall 12... Gate post 13... Top plate 15... Sluice frame 16... Gate 17... Gate lifting mechanism 18... Gate hanging member 20... Water channel structure (First low-rise structure and second low-rise structure)
21... Bottom plate 22... Side wall 30... Tension material 31... Tightening tool 32... Mounting bracket

Claims (7)

引張材を用いて低層構造物に隣接した塔状構造物を制震する塔状構造物の制震構造であって、
前記塔状構造物が水門枠と昇降可能なゲートとゲートの昇降機構とを具備した水門構造物であり、
前記水門構造物の両側に第1低層構造物と第2低層構造物であるコンクリート製の第1および第2水路構造物が隣接して位置し、
前記水門構造物を間に挟んで水門構造物の一部と第1および第2水路構造物との間に単数または複数の引張材が交差して張架され、
交差した引張材を介して第1および第2水路構造物に反力を得て、地震時における水門構造物の挙動を抑制するように、前記交差した引張材に予め張力が導入されていることを特徴とする、
塔状構造物の制震構造。
A damping structure of a tower structure for damping a tower structure adjacent to a low-rise structure using a tensile member,
The tower structure is a floodgate structure including a floodgate frame, a gate that can be raised and lowered, and a raising and lowering mechanism of the gate,
The first low-rise structure and the first and second concrete waterway structures, which are the second low-rise structure, are located adjacent to each other on both sides of the floodgate structure ,
It said one or more tension members between the part and the first and second water channel structure floodgate construction is stretched to cross in between a water gate structure,
Tension is preliminarily introduced into the crossed tension members so that the first and second waterway structures can be reacted through the crossed tension members to suppress the behavior of the floodgate structure during an earthquake. Characterized by,
Vibration control structure for tower-like structures.
水門構造物と第1および第2水路構造物との間にそれぞれ張架される交差した引張材の両端部が水門構造物を中心とした点対称の位置に連結されていることを特徴とする、請求項1に記載の塔状構造物の制震構造。 It is characterized in that both ends of intersecting tension members which are respectively stretched between the sluice structure and the first and second waterway structures are connected to point-symmetrical positions around the sluice structure. The vibration control structure for a tower-shaped structure according to claim 1. 前記交差した単数または複数の引張材の一端が水門構造物の上部に連結されていることを特徴とする、請求項1または2に記載の塔状構造物の制震構造。 3. The seismic control structure for a tower-like structure according to claim 1, wherein one end of the one or more tensile members intersecting each other is connected to an upper portion of the floodgate structure. 交差した複数の引張材の一端が水門構造物に多段的に連結されていることを特徴とする、請求項1乃至3の何れか一項に記載の塔状構造物の制震構造。 4. The seismic control structure for a tower-like structure according to claim 1, wherein one end of the plurality of intersecting tension members is connected to the sluice structure in multiple stages. 交差した複数の引張材の他端が第1および第2水路構造物の一部に集約して連結されていることを特徴とする、請求項4に記載の塔状構造物の制震構造。 The seismic control structure for a tower-like structure according to claim 4, wherein the other ends of the plurality of intersecting tension members are collectively connected to a part of the first and second water channel structures. 交差した複数の引張材の他端が第1および第2水路構造物の長手方向に沿って複数箇所に連結されていることを特徴とする、請求項4に記載の塔状構造物の制震構造。 The other end of the plurality of intersecting tension members is connected to a plurality of locations along the longitudinal direction of the first and second water channel structures, and the vibration control of the tower structure according to claim 4. Construction. 水門構造物と第1および第2水路構造物との間に交差した補強用の引張材が追加して水平に張架されていることを特徴とする、請求項1乃至3の何れか一項に記載の塔状構造物の制震構造。 4. A tensile member for reinforcement intersecting between the sluice structure and the first and second waterway structures is additionally stretched horizontally, and the tension member is horizontally stretched. The seismic control structure of the tower structure described in.
JP2018156229A 2018-08-23 2018-08-23 Damping structure of tower structure Active JP6699009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156229A JP6699009B2 (en) 2018-08-23 2018-08-23 Damping structure of tower structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156229A JP6699009B2 (en) 2018-08-23 2018-08-23 Damping structure of tower structure

Publications (2)

Publication Number Publication Date
JP2020029720A JP2020029720A (en) 2020-02-27
JP6699009B2 true JP6699009B2 (en) 2020-05-27

Family

ID=69624011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156229A Active JP6699009B2 (en) 2018-08-23 2018-08-23 Damping structure of tower structure

Country Status (1)

Country Link
JP (1) JP6699009B2 (en)

Also Published As

Publication number Publication date
JP2020029720A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
EP3489459B1 (en) Non-uniform support structure for gob-side entry driving under deep unstable overburden rock and construction method
US8695142B2 (en) Partially and fully earth-anchored cable-stayed bridges using main-span prestressing unit and method of constructing the same
KR101027393B1 (en) Longitudinal and/or transverse seismic reinforcing method for masonry walls
KR101548114B1 (en) Steel concrete composite beam having increased composite effect of connecting part at the cross-section change part
CN102979221A (en) Shear wall structure configured with crossed slant internal prestress and construction method of shear wall structure
WO2022258080A1 (en) Steel plate belt suspension bridge and construction method therefor
CN112160326A (en) Truss string concrete combined supporting system
JP2008214973A (en) Seismic-control bridge pier structure
CN108999088A (en) A kind of construction method of cable-stayed bridge
US4065897A (en) Precast skeleton spatial monolithic structure
CN113622707B (en) Pre-tensioned crossed steel pull rod supporting and reinforcing reinforced concrete frame structure
CN112982787B (en) Large-span beam with reinforced concrete and prestressed inhaul cable coupled
JP6699009B2 (en) Damping structure of tower structure
CN108560562A (en) A kind of stay length adjustable deep foundation pit support prestressing force fish belly sill
JP2024070243A (en) Barrier protection structure applied to high energy shock and method for constructing the same
CN110185179B (en) Assembly type suspended floor self-resetting building structure and construction method
KR100592196B1 (en) large number bracket in which supporter was installed is used and it is a bridge, multiplex point installed so that support might be carried out support bracket and its installation method
CN104562944A (en) Large span composite beam cable-stayed bridge side steel box temporary anchorage system
JP2010222816A (en) Guard fence
JP5080373B2 (en) Transmission type dam
KR100931318B1 (en) Temporary bridges with branches of truss structure and construction method
KR20050118111A (en) Temporary bridge
CN109972531B (en) External prestressing device for improving temporary support span of bailey beam
CN209958229U (en) External prestressing device for improving span of temporary support of Bailey beam
CN206752288U (en) A kind of interior suspension cable compound section bridge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6699009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250