JP6698981B1 - A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing. - Google Patents

A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing. Download PDF

Info

Publication number
JP6698981B1
JP6698981B1 JP2019076913A JP2019076913A JP6698981B1 JP 6698981 B1 JP6698981 B1 JP 6698981B1 JP 2019076913 A JP2019076913 A JP 2019076913A JP 2019076913 A JP2019076913 A JP 2019076913A JP 6698981 B1 JP6698981 B1 JP 6698981B1
Authority
JP
Japan
Prior art keywords
moisture
agent
prepolymer
foaming
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019076913A
Other languages
Japanese (ja)
Other versions
JP2020176160A (en
Inventor
洋 岡井
洋 岡井
Original Assignee
洋 岡井
洋 岡井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洋 岡井, 洋 岡井 filed Critical 洋 岡井
Priority to JP2019076913A priority Critical patent/JP6698981B1/en
Application granted granted Critical
Publication of JP6698981B1 publication Critical patent/JP6698981B1/en
Publication of JP2020176160A publication Critical patent/JP2020176160A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

【課題】製造と塗布を一体化した湿気硬化型末端イソシアネートプレポリマー組成物の製造方法の改善である。該組成物の本質的課題である湿気硬化時における発生する硬化物の発泡の低減・抑制並びに安全・環境性等の改善である。【課題を解決するための手段】湿気硬化時における硬化物の発泡抑止は、炭酸ガスを経済的且つ選択的に吸収、反応する特定の炭酸ガス吸収剤を見いだし発泡を解消した。作業時の環境改善は、加熱流動吐出物の直近に発生する原料未反応成分の有害蒸気の除去するため、簡便なフレキシブル局所排気改良設置により,課題を解消した。【選択図】 図1PROBLEM TO BE SOLVED: To improve a method for producing a moisture-curable terminal isocyanate prepolymer composition in which production and coating are integrated. It is to reduce or suppress the foaming of a cured product that occurs during moisture curing, which is an essential subject of the composition, and to improve safety and environmental friendliness. To suppress foaming of a cured product during moisture curing, a specific carbon dioxide absorbent which absorbs and reacts carbon dioxide economically and selectively was found and foaming was eliminated. To improve the environment during work, the problem was solved by a simple flexible local exhaust gas improvement installation in order to remove the harmful vapors of the unreacted raw materials generated in the immediate vicinity of the heated fluidized discharge. [Selection diagram]

Description

本発明は湿気硬化時における硬化物の発泡を抑止する、湿気硬化型末端イソシアネートプレポリマー組成物の製造方法に関する。更に、該組成物の加熱時流動液の吐出時に発生する残存モノマー性の有害蒸気を除去する製造装置に関する。   The present invention relates to a method for producing a moisture-curable terminal isocyanate prepolymer composition, which suppresses foaming of a cured product during moisture curing. Further, the present invention relates to a manufacturing apparatus for removing residual monomeric harmful vapor generated during discharge of a fluid liquid during heating of the composition.

接着剤、シーラント、コーティング等の製品において使用される、現行の湿気硬化型末端イソシアネートプレポリマー硬化性組成物は、とりわけ、湿気硬化型ポリウレタン反応性ホットメルト硬化性組成物(PURHMと略記)の分野で特に著名である。該PURHMは湿気遮断下においては、加熱下では易流動性、常温冷却による瞬時固着・固化を形成し、且つ熱可逆的性質を呈する。しかし一端、該固着・固着物が空気中等の湿気(水分)を吸収すると、湿気架橋(末端NCO基と、該NCO基の湿気との反応による生成NH2基との架橋反応)による熱硬化型(熱不可逆)に転換する。そのため、1液型による易操作性、瞬時固着による高生産性及び熱硬化型による機能・性能面に優れ且つ経済的でもある。その製品群は市場に広く浸透し業界内で一領域を形成している。   Current moisture curable terminal isocyanate prepolymer curable compositions for use in products such as adhesives, sealants, coatings, among others, are in the field of moisture curable polyurethane reactive hot melt curable compositions (abbreviated as PURHM). Is especially famous. The PURHM has free-flowing properties under heating while being protected from moisture, instantaneous adhesion and solidification upon cooling at room temperature, and thermoreversible properties. However, once the fixing/adhering substance absorbs moisture (moisture) in the air or the like, a thermosetting type by moisture cross-linking (cross-linking reaction between the terminal NCO group and the NH2 group generated by the reaction of the NCO group with moisture) ( Heat irreversible). Therefore, the one-component type is excellent in operability, the high productivity is achieved by instant fixing, and the thermosetting type is excellent in function and performance and economical. The product group has penetrated the market widely and forms one area in the industry.

このように現行PURHMは、上記優位性がある反面、PURHMの製造に長時間要しエネルギーを多消費する上、大量製造に伴う反応制御面、安全面においても課題がある。又、製品を使用する際には、専用の塗工機を必要とし、溶融タンクに製品を投入、加熱再溶融して使用するため、配管、吐出部を含めた装置全体を加熱する必要があり、エネルギーを多消費する。更に、湿気硬化時における硬化物の発泡、又、加熱使用における残存モノマー(イソシアネート蒸気)の安全面での課題が残されていた。   Thus, while the current PURHM has the above-mentioned superiority, it requires a long time to manufacture PURHM and consumes a lot of energy, and also has problems in reaction control and safety in the mass production. In addition, when using the product, a dedicated coating machine is required, and the product is put into the melting tank, heated and remelted for use, so it is necessary to heat the entire device including piping and discharge part. , Consumes a lot of energy. Further, there remains a problem in terms of safety of foaming of a cured product at the time of moisture curing and residual monomer (isocyanate vapor) at the time of heat use.

本発明者は現行法の課題解消に向け、省エネ型のPURHMを一貫して研究してきた。その結果、先願発明(先発明と略記)において、ポリウレタンの高速反応性と副生物を伴わない反応に着目し、原料から直接、短時間に湿気硬化型の末端イソシアネートプレポリアーを安定的に合成する方法を見いだし、そのまま製品として使用する事が出来る、いわゆる製造と製品使用を一体化した新製造方法を発明した。その概要は、常温で、主剤と硬化剤を分離して且つ常に一定の比率を保持しながら連続、又は断続的に、加熱された小容量の混合機・反応機に供給し、該反応器内で超短時間に反応させる。加熱は小容量の局所加熱のみで良いため省エネ性を実現させた。既に、先発明において、[製造装置並びにシステム(特許文献1)]、又、[残存モノマーを低減したPURHM粘着剤(特許文献2)]を開示している。   The present inventor has consistently studied energy-saving PURHM to solve the problems of the current law. As a result, in the invention of the prior application (abbreviated as the invention of the prior art), focusing on the rapid reactivity of polyurethane and the reaction without by-products, the moisture-curable terminal isocyanate prepolymer was directly stabilized from the raw material in a short time. We found a synthetic method and invented a new manufacturing method that integrates so-called manufacturing and product use, which can be used as a product as it is. The outline is that the main agent and the curing agent are separated at room temperature and continuously or intermittently supplied to a heated small capacity mixer/reactor while maintaining a constant ratio, and the inside of the reactor is To react in a very short time. Energy saving was realized because only a small amount of local heating is required for heating. The prior invention has already disclosed [Production device and system (Patent Document 1)] and [PURHM adhesive with reduced residual monomer (Patent Document 2)].

本発明は、先発明の更なる改善を目的としている。第1は、湿気硬化時に発生する硬化物の発泡の抑制を図る。第2は、製品使用時における、安全性、作業環境性の改善等を図ることである。又、プレポリマーの短時間合成時に発生する多量の反応熱の有効活用(反応機の加熱源への利用等)についても、省エネ化の効果を確認している。   The present invention aims to further improve the prior invention. Firstly, the foaming of a cured product generated during moisture curing is suppressed. The second is to improve the safety and work environment when using the product. Also, the effective use of a large amount of reaction heat generated during short-time synthesis of the prepolymer (use as a heating source of the reactor, etc.) has been confirmed to be energy saving.

本発明者はこれら課題を解消するため鋭意研究した。
第1の課題である、湿気硬化時の発泡の改善(低減、抑制)は湿気硬化型ポリウレタンの本質的な課題である。該発泡現象は公知であり、ウレタン化学の成書、文献等に、発泡メカニズムを含め多数記述されており、当業者の知るところである。しかしながら、その対策法となると、種々実施されているが、経済性を含めた実用性に富む対策法が取られていなかった。本発明者は、発泡の原因となる炭酸ガス(短時間で多量に発生)を、安価に効果的に除去する技術を見いだすことが出来、課題解消に繋げることが出来た。
The present inventor has diligently studied to solve these problems.
The first problem, improvement (reduction, suppression) of foaming at the time of moisture curing is an essential problem of moisture-curable polyurethane. The foaming phenomenon is known, and many are described in urethane chemistry textbooks, literatures, etc., including the foaming mechanism, and are known to those skilled in the art. However, various countermeasures have been implemented, but no practical countermeasures including economic efficiency have been taken. The present inventor was able to find a technique for effectively removing carbon dioxide gas (which is generated in a large amount in a short time), which causes bubbling, at low cost, and was able to solve the problem.

第2の課題である安全性と作業環境性の改善については、本発明組成物の加熱流動体を使用する際、組成物中に残留する未反応原料(ジイソシアネート等)が加熱により、蒸気圧が上昇し、作業環境を悪化させ、人体への悪影響を及ぶす恐れがある。対策法を検討した結果、加熱流動吐出物の直近に、本組成物中の残存性モノマー等の有害蒸気を効率的に除去できる安価、簡便なフレキシブル局所排気機器を改良設置することにより、作業環境性の著しい改善が可能となった。又、上記の反応熱の有効活用についても可能な感触を得ている。
尚、本発明で使用している用語等については、下記に定義する。
「固化」と「固着」について; 両者については厳密な区別は無い。「固化」とは「固体化」、即ち「固体」を指し、「固着」とは「固着力、固定する力」のようなものを指し、必ずしも固体である必要はない。融点は「固化」の方が高い傾向を示す。
「吐出」と「塗布」について; 厳密な区別は無い。塗布は、吐出を経て被着材上に塗る事を指す。「架橋体」と「硬化体」について; 厳密な区別は無く、本発明の硬化体は熱硬化型の硬化物を指す。
Regarding the improvement of safety and work environment which is the second problem, when the heated fluid of the composition of the present invention is used, the unreacted raw materials (diisocyanate etc.) remaining in the composition are heated to increase the vapor pressure. It may rise, deteriorate the working environment, and adversely affect the human body. As a result of investigating countermeasures, a work environment was improved by installing an inexpensive and simple flexible local exhaust device that can efficiently remove harmful vapors such as residual monomers in this composition in the immediate vicinity of the heated fluidized discharge product. It has become possible to significantly improve sex. In addition, they also have a feeling that they can effectively use the heat of reaction.
The terms and the like used in the present invention are defined below.
Regarding “solidification” and “fixation”; there is no strict distinction between the two. “Solidification” refers to “solidification”, that is, “solid”, and “fixation” refers to things such as “fixing force and fixing force”, which are not necessarily solid. The melting point tends to be higher in “solidification”.
Regarding "ejection" and "application"; there is no strict distinction. Application refers to application on the adherend through discharge. Regarding "crosslinked product" and "cured product": There is no strict distinction, and the cured product of the present invention refers to a thermosetting cured product.

特許5044749号公報Japanese Patent No. 5044749 特許5853295号公報Japanese Patent No. 5853295

高分子化学教程[井本稔、藤代 良一著 昭和42年]Course of Polymer Chemistry [Minori Imoto, Ryoichi Fujishiro, Showa 42]

本発明は、先発明の製造と塗布を一体化した湿気硬化型末端イソシアネートプレポリマー組成物の製造方法の更なる改善である。即ち、該組成物の本質的課題である湿気硬化時における発生する硬化物の発泡の低減・抑制並びに安全・環境性等の改善である。本発明は、これら課題を解消し、新規な湿気硬化時の発泡を抑止する湿気硬化型末端イソシアネートプレポリマー組成物の製造方法を提供することに有る。   The present invention is a further improvement of the method for producing a moisture-curable terminal isocyanate prepolymer composition by integrating the production and coating of the previous invention. That is, it is to reduce or suppress the foaming of a cured product generated during moisture curing, which is an essential subject of the composition, and to improve safety and environmental properties. The present invention solves these problems and provides a novel method for producing a moisture-curable terminal isocyanate prepolymer composition that suppresses foaming during moisture curing.

本発明者は、上記の課題について鋭意検討した。その結果、湿気硬化時における硬化物の発泡抑止については、炭酸ガスを経済的且つ選択的に吸収、反応する特定の炭酸ガス吸収剤を見いだし、発泡を解消することが出来た。作業時の環境改善については、加熱流動吐出物の直近に発生する原料未反応成分の有害蒸気の除去に、簡便なフレキシブル局所排気機器を改良設置することにより,簡便で易操作性に優れ且つ,省スペース、経済的・効率的に除去できることを見いだした。以上、本課題を解消し本発明を完成するに至った
即ち、本発明は、以下の発明から成っている。
(1)プレポリマーの製造と吐出・塗布を同時に行う装置を使用した、湿気硬化型末端イソシアネートプレポリマー組成物の製造方法であって、
(i)(A)主剤は、常温(25℃)で液状のMDI系のポリイソシアネート、(B)硬化剤は、常温で液状のポリオール、(C)発泡抑止剤を、主剤、硬化剤の何れか一方又は双方に含有させ、(ii)該2剤を使用、常時一定比率で、加熱された混合機兼反応機に供給し、NCO/OH基比が1.4/1〜5.0/1、加熱下短時間反応で得られる組成物は、短時間反応性、加熱時流動性及び常温下固化性に優れ、湿気硬化時における硬化物の発泡抑止効果を有することを特徴とする、湿気硬化型末端イソシアネートプレポリマー組成物の製造方法。
(2)上記のポリイソシアネートがジイソシアネートであり、且つジイソシアネートの含有率(対全量ポリイソシアネートに対する)が70質量%以上であり、又ポリオールがジオールであり、且つジオールの含有率(対全量ポリオールに対する)が70質量%以上であることを特徴とする、(1)に記載の湿気硬化型末端イソシアネートプレポリマー
組成物の製造方法。
(3)上記の発泡抑止剤が炭酸ガス吸収、反応、等の除去剤であることを特徴とする(1)又は(2)に記載の湿気硬化型末端イソシアネートプレポリマー組成物の製造方法。
(4)上記の発泡抑止剤が生石灰(CaO)粉体の乾燥粉体であり、該プレポリマー組成物中の該粉体の含有率は5〜60質量%である、ことを特徴とする(3)に記載の湿気硬化型末端イソシアネートプレポリマー組成物の製造方法。
(5)上記(1)に記載の組成物(加熱流動性組成物)を、湿気遮断下で、且つ湿気遮断性の収納容器内に吐出させ密封貯留させて、1液型湿気硬化型末端イソシアネートプレポリマー組成物として利用することを特徴とする(1)〜(4)何れか1項に記載の湿気硬化型末端イソシアネートプレポリマー組成物の製造方法。
(6)上記(1)〜(5)何れか1項記載の組成物の加熱流動性吐出物の直近に、フレキブル局所排気装置を装備して、残存モノマー等の有害性蒸気を除去することを特徴とする湿気硬化型末端イソシアネートプレポリマー組成物の製造装置。
The present inventor diligently studied the above problems. As a result, regarding the suppression of foaming of the cured product at the time of moisture curing, it was possible to find a specific carbon dioxide absorbent that economically and selectively absorbs and reacts with carbon dioxide and eliminate foaming. Regarding the improvement of the environment during work, by removing the harmful vapor of the raw material unreacted components generated in the immediate vicinity of the heated fluidized discharge by installing a simple and flexible local exhaust device, it is easy and easy to operate. We have found that it can save space and can be removed economically and efficiently. As described above, the present invention has been solved and the present invention has been completed, that is, the present invention consists of the following inventions.
(1) A method for producing a moisture-curable terminal isocyanate prepolymer composition, which uses an apparatus for simultaneously producing, discharging and applying a prepolymer,
(i) (A) Main agent is an MDI-based polyisocyanate that is liquid at room temperature (25° C.), (B) Curing agent is a liquid polyol at room temperature, (C) Foam inhibitor is either a main agent or a curing agent. One or both of them, and (ii) the two agents are used and are constantly supplied to the heated mixer/reactor at a constant ratio, and the NCO/OH group ratio is 1.4/1 to 5.0/. 1. A composition obtained by a short-time reaction under heating is excellent in reactivity for a short time, fluidity at the time of heating and solidification at room temperature, and has an effect of suppressing foaming of a cured product at the time of moisture curing. A method for producing a curable terminal isocyanate prepolymer composition.
(2) The polyisocyanate is a diisocyanate, the diisocyanate content (based on the total amount of polyisocyanate) is 70% by mass or more, the polyol is a diol, and the diol content (based on the total amount of polyol). Is 70% by mass or more, and the method for producing a moisture-curable terminal isocyanate prepolymer composition according to (1).
(3) The method for producing a moisture-curable terminal isocyanate prepolymer composition according to (1) or (2), wherein the foaming inhibitor is a remover for absorbing carbon dioxide, reacting, and the like.
(4) The above foaming inhibitor is a dry powder of quicklime (CaO) powder, and the content of the powder in the prepolymer composition is 5 to 60% by mass ( The method for producing the moisture-curable terminal isocyanate prepolymer composition according to 3).
(5) A one-pack type moisture-curable terminal isocyanate by discharging the composition (heat-flowable composition) described in (1) above in a moisture-blocking and moisture-blocking storage container and sealingly storing the composition. The method for producing a moisture-curable terminal isocyanate prepolymer composition according to any one of (1) to (4), which is used as a prepolymer composition.
(6) A flexible local exhaust device is installed in the immediate vicinity of the heated fluid discharge of the composition according to any one of (1) to (5) above to remove harmful vapors such as residual monomers. An apparatus for producing a moisture-curable terminal isocyanate prepolymer composition, which is characterized.

以上、本発明は、従来成しえなかった、製造と塗布を一体化した湿気硬化型末端イソシアネートプレポリマー組成物の製造方法(先発明)を更に改善するための課題、即ち、該組成物の本質的課題である湿気硬化時における発生する硬化物の発泡の低減・抑制並びに安全・環境性等の改善である。本発明は、これら課題を解消し、新規な湿気硬化時の発泡を抑止する湿気硬化型末端イソシアネートプレポリマー組成物の製造方法を提供すること
が出来た。本発明は産業界からのニーズが極めて大きく、産業界への貢献が期待される。
As described above, the present invention has an object to further improve the production method (previous invention) of a moisture-curable terminal isocyanate prepolymer composition in which production and coating are integrated, which has not been conventionally achieved, that is, the composition. It is to reduce or suppress foaming of the cured product that occurs during moisture curing, which is an essential issue, and to improve safety and environmental friendliness. The present invention has solved these problems and was able to provide a novel method for producing a moisture-curable terminal isocyanate prepolymer composition that suppresses foaming during moisture curing. The present invention has a great need from the industrial world and is expected to contribute to the industrial world.

1.最初に本発明組成物の基材であるプレポリマー並びに原料について説明する。
(1)プレポリマー;
(イ)一般的性質; 該プレポリマーは、実質的に無水下(水分量500PPM以下)の条件下で、常温で液状のMDI系ジイソシアネート、常温液状のジオール、を実質的な原料として,湿気を遮断した加熱・混合容器内で反応させて瞬時合成される。該プレポリマーは分子量の低い熱可塑性末端NCO基含有のプレポリマーである。該プレポリマーは、湿気遮断下においては、加熱下では流動性、常温下では固化・固着を呈し、熱可逆性を示す。しかし、該固化物が、一端空気(湿気)に触れると湿気架橋により熱硬化型に転換する。このような性質を示すものは、本発明のプレポリマーとして使用することが可能である。
1. First, the prepolymer and the raw material that are the base material of the composition of the present invention will be described.
(1) prepolymer;
(B) General properties: The prepolymer is substantially free of moisture (moisture content of 500 PPM or less), and is substantially free from moisture by using an MDI diisocyanate that is liquid at room temperature and a diol that is liquid at room temperature. Instantaneous synthesis is achieved by reacting in a blocked heating/mixing container. The prepolymer is a prepolymer having a low molecular weight thermoplastic terminal NCO group. The prepolymer exhibits fluidity under heating, solidification/fixation at room temperature, and thermoreversibility under exclusion of moisture. However, once the solidified product comes into contact with air (humidity), it is converted into a thermosetting type by moisture crosslinking. Those exhibiting such properties can be used as the prepolymer of the present invention.

(ロ)構造及び瞬時合成; プレポリマーは、末端NCO基含有の線状構造(部分的に分岐構造が含まれていても良い)を有する、官能基数が平均2価の低分子量の熱可塑性プレポリマー(モノマーとの混合物、分子量分布の異なるものを含め)組成物である。プレポリマーの瞬時合成は,上記MDI(ジフェニルメタンジイソシアネート)系ジイソシアネートとジオールを主原料として使用して、加熱混合下、超高速反応させて、殆ど瞬間的(好ましくは1〜30秒)に安定的に合成される。 (B) Structure and Instant Synthesis; The prepolymer has a linear structure containing a terminal NCO group (which may partially contain a branched structure), and is a low molecular weight thermoplastic prepolymer having an average number of functional groups of 2 A polymer (including a mixture with a monomer and one having a different molecular weight distribution) composition. In the instant synthesis of the prepolymer, the above-mentioned MDI (diphenylmethane diisocyanate)-based diisocyanate and diol are used as the main raw materials, and the reaction is carried out at an extremely high speed under heating and mixing, and the reaction is stable almost instantaneously (preferably 1 to 30 seconds). Is synthesized.

(ハ)流動性; 流動温度は70℃〜170℃である。170℃以上では過流動性を示し、長時間の滞留はプレポリマーの劣化、ゲル化の恐れがある。その反対に、70℃未満では、流動性が低下し、プレポリマーとして適切でない。適切な流動温度は80℃〜150℃、より好ましくは85℃〜130℃ある。流動性の指標である溶融粘度は、溶融粘度(lnη)〜温度(1/T)曲線は、略直線的に近似できる。 (C) Flowability: The flow temperature is 70°C to 170°C. At 170° C. or higher, it exhibits superfluidity, and long-term retention may cause deterioration of the prepolymer and gelation. On the contrary, when the temperature is lower than 70°C, the fluidity is lowered and it is not suitable as a prepolymer. Suitable flow temperatures are 80°C to 150°C, more preferably 85°C to 130°C. As for the melt viscosity, which is an index of fluidity, the melt viscosity (lnη) to temperature (1/T) curve can be approximated linearly.

(ニ)瞬時固化性; 反応機内の加熱流動液(溶融プレポリマー)を,外界、空気中常温下の基材上に吐出(塗布)すると、常温冷却され固化される。該冷却による固化速度が速いため,瞬時固化(冷却時間のみ)を可能にする。
瞬時固化時間は、周辺温度に影響されるが、通常、常温(25℃)で評価する。又、該プレポリマーの固化温度に大きく影響されるので、本プレポリマーの固化温度は概ね約60℃〜25℃の範囲にある。この範囲に有れば十分な瞬時固化性が確保される。60以上では加熱流動性を低下させる恐れがあり、25℃以下であると、瞬時固着性を低下させる恐れがある。
(D) Instantaneous solidification property: When the heated fluid in the reactor (molten prepolymer) is discharged (applied) to the base material at ambient temperature in the ambient environment, it is cooled at ambient temperature and solidified. Since the solidification rate by the cooling is high, instantaneous solidification (only the cooling time) is possible.
Although the instant solidification time is affected by the ambient temperature, it is usually evaluated at room temperature (25°C). Further, since the solidification temperature of the prepolymer is greatly influenced, the solidification temperature of the present prepolymer is generally in the range of about 60°C to 25°C. Within this range, sufficient instant solidification is secured. If it is 60 or more, the heating fluidity may be lowered, and if it is 25° C. or less, the instantaneous fixing property may be lowered.

(ホ)湿気架橋性; 上記の瞬時固化物は、直ちに、外界、即ち、空気中の湿気、被着材に含有される水分、を吸収して、速やかに湿気硬化(湿気架橋)反応を進行させ、常温下、1日硬化させると、熱硬化型(架橋)が進行、硬化時間の延長により、強靱な熱硬化体に転換(熱不可逆性)される。又、硬化体の耐熱性等も良好で有る。 (E) Moisture crosslinkability; The instant solidified material immediately absorbs moisture in the outside world, that is, moisture contained in the adherend, and quickly advances a moisture curing (moisture crosslinking) reaction. Then, when cured at room temperature for 1 day, thermosetting (crosslinking) progresses, and due to extension of curing time, it is converted into a tough thermosetting body (heat irreversible). The heat resistance of the cured product is also good.

しかしながら、該プレポリマーは上記の優れた特性(ロ〜ホ)を有する反面、湿気硬化時における硬化物が空気中の水分を吸収して発泡する傾向が顕著で、硬化物の発泡は、外観不良、強度低下等を来す課題があった。又、加熱流動吐出物の残存モノマー蒸気の課題もあった。   However, on the other hand, the prepolymer has the above-mentioned excellent characteristics (ro-ho), but on the other hand, the cured product tends to absorb moisture in the air and foam when moisture-cured, and the cured product has a poor appearance. However, there was a problem that the strength was reduced. There is also a problem of residual monomer vapor in the heated fluid discharge.

プレポリマー合成の主原料とNCO基/OH基比、及び発泡抑止剤
(A); 25℃で液状を呈するポリイソシアネート
理想的な原料は、常温液状のMDIで且つ平均官能数が2価のものが望ましい。しかし、合成時の不純物の混入、副反応の生成、又、貯蔵中の変化等により、該原料は得難く、通常は、異性体、官能基数、構造性の相違又は分子量分布を有するものが使用される。そのため、ジイソシアネート成分含有率が全ポリイソシアネート成分中で70質量%以上有れば使用可能である。望ましくは80質量%以上である。換言するとポリイソシアネートとしては平均官能基数が2.5〜1.8、数平均分子量(Mn)250〜1000の範囲に有り、常温で液状のジイソシアネート原料が望ましいが、少量の3官能(トリイソシアネート成分が含まれていても差し支えない。
Main raw materials for prepolymer synthesis and NCO group/OH group ratio, and foaming inhibitor (A); polyisocyanate that is liquid at 25°C. Ideal raw material is MDI that is liquid at room temperature and has an average functionality of divalent. Is desirable. However, it is difficult to obtain the raw material due to contamination of impurities during synthesis, formation of side reaction, change during storage, etc., and normally, isomers, functional groups, structural differences or molecular weight distributions are used. To be done. Therefore, if the diisocyanate component content is 70% by mass or more in all polyisocyanate components, it can be used. It is preferably 80% by mass or more. In other words, the polyisocyanate has an average number of functional groups in the range of 2.5 to 1.8 and a number average molecular weight (Mn) of 250 to 1000, and a diisocyanate raw material that is liquid at room temperature is desirable, but a small amount of trifunctional (triisocyanate component) is used. May be included.

イソシアネート官能基数は好ましい官能基数は2.2〜1.9である。より好ましくは2.1〜1.9である。平均官能基数が2.3を超えるとプレポリマーがゲル化し、加熱時に安定した流動性が得られなくなる恐れがある。一方、1.9以下においても、安定した流動性が得られなくなる恐れがある。ポリイソシアネートとしては、上記の平均官能基数、分子量の範囲に有れば、芳香族系、脂肪族及び脂環式のモノマー、プレポリマー,何れも使用する事が可能で有る。本発明では、芳香族系が適切で、中でも常温で蒸気圧の低い液状のMDI系が特に好ましい。   The number of isocyanate functional groups is preferably 2.2 to 1.9. It is more preferably 2.1 to 1.9. If the average number of functional groups exceeds 2.3, the prepolymer may gel and stable fluidity may not be obtained upon heating. On the other hand, even when it is 1.9 or less, stable fluidity may not be obtained. As the polyisocyanate, any of aromatic, aliphatic and alicyclic monomers and prepolymers can be used as long as they have the above average number of functional groups and molecular weights. In the present invention, an aromatic system is suitable, and a liquid MDI system having a low vapor pressure at room temperature is particularly preferable.

理由は、常温下で液状であるため操作性(原料の貯蔵、供給等)が格段優れる。且つ高反応性で有り、瞬時合成性に優れるため、本発明の省エネ化合成に最適である。又、常温下におけるモノマー蒸気圧が低く安全面で優れる。更に、合成して得られるプレポリマーは高流動性と流動安定性、常温冷却時の瞬時固化性、湿気硬化性(架橋)及び硬化物物性が優れる等による。   The reason is that since it is liquid at room temperature, operability (storage, supply of raw materials, etc.) is remarkably excellent. In addition, it is highly reactive and excellent in instant synthesizing property, and thus is most suitable for energy-saving synthesizing of the present invention. In addition, the monomer vapor pressure at room temperature is low and it is excellent in safety. Furthermore, the prepolymer obtained by the synthesis has high fluidity and flow stability, instantaneous solidification upon cooling at room temperature, moisture curability (crosslinking), and physical properties of the cured product.

液状MDI系の例として;(a) MDI(ジフェニルメタンジイソシアネート; (4,4’MDI、2,4‘MDI、2.2’MDI異性体又は異性体混合物)、(b)カルボジイミド変成イソシアネート、ウレトジイミン変成イソシアネート(c)過剰のMDIとジオールと反応して得られる末端MDI含有プレポリマー、又は(d)該末端MDI含有プレポリマーと4.4‘MDIモノマーのブレンド物等が挙げられる。該(c)の常温液状の末端NCOプレポリマーは、MDI過剰下で短鎖ジオールや低粘度ジオールとの反応で容易できるものが多数存在し、これらも原料として有用である。又、市販品としては多数供給されており、一例として、コロネートMX、コロネートMT、コロネート1050,ミリオネートNM、ミリオネートMR200等(以上、東ソー社)。又、ヒマシ油変成末端NCOプレポリマー(URIC N2023;伊藤製油社)等が挙げられこ
れら市販品は、単独、又混合体として何れも使用できる。本発明の原料はこれらに限定に限定されない。
Examples of the liquid MDI system are: (a) MDI (diphenylmethane diisocyanate; (4,4′MDI, 2,4′MDI, 2.2′MDI isomer or mixture of isomers), (b) carbodiimide modified isocyanate, uretdiimine modified The isocyanate (c) is a terminal MDI-containing prepolymer obtained by reacting excess MDI with a diol, or (d) a blend of the terminal MDI-containing prepolymer and a 4.4'MDI monomer. As for the terminal NCO prepolymer which is liquid at room temperature, there are many that can be easily reacted with a short-chain diol or a low-viscosity diol in the presence of excess MDI, and these are also useful as a raw material. Examples thereof include Coronate MX, Coronate MT, Coronate 1050, Millionate NM, Millionate MR200, etc. (above, Tosoh Corporation), and castor oil modified terminal NCO prepolymer (URIC N2023; Ito Oil Co., Ltd.) and the like. The commercially available products may be used alone or as a mixture, and the raw material of the present invention is not limited to these.

(B); 常温(25℃)で液状を呈するポリオール
平均官能数が2価のジオールが最も望ましいが、上記ジイソシアネートと同様、合成時の不純物、副反応、貯蔵中の吸湿等により純品は得難く、通常は分布を有する。ジオール成分含有率が全ポリオールト成分中で70質量%以上有れば使用可能である。望ましくは80質量%以上である。換言すると、平均官能数(Fn)2.3〜1.8、好ましくは2.1〜1.9である。若干量の3官能性ポリオールが含まれていても、問題ない。平均分子量(Mn)が62〜2000を呈すポリオールが望ましく、、数平均分子量(Mn)を62〜2000の範囲とするのは、前記同様、特に主剤との速い反応性によるプレポリマーの超短時間合成(反応収束性)、プレポリマーの良好な固着温度、及び湿気硬化後の優れた硬化物性(強度、耐熱性等)による。
(B); A polyol that is liquid at room temperature (25° C.) is most preferable, but a diol having an average functionality of divalent is most preferable, but like the diisocyanate, a pure product is obtained due to impurities during synthesis, side reactions, moisture absorption during storage, etc. Difficult and usually has a distribution. It can be used if the content of the diol component is 70% by mass or more in all the polyol components. It is preferably 80% by mass or more. In other words, the average functional number (Fn) is 2.3 to 1.8, preferably 2.1 to 1.9. It does not matter if a small amount of trifunctional polyol is included. A polyol having an average molecular weight (Mn) of 62 to 2000 is desirable, and the number average molecular weight (Mn) is in the range of 62 to 2000, similarly to the above, particularly in a very short time of the prepolymer due to fast reactivity with the main agent. Due to synthesis (convergence of reaction), good fixing temperature of the prepolymer, and excellent cured physical properties (strength, heat resistance, etc.) after moisture curing.

又、分子量62以下では適切なモノマーが得難くい。又、分子量が2,000以上では、固着性、硬化物性能が低下する恐れがあり、又、粘度上昇を来す恐れがある。粘度は、発泡防止剤、沈降防止剤等のジオール側への添加の場合、低粘度であることが望ましい。好ましい分子量範囲は90〜1000、より好ましくは90〜800、更により好ましくは90〜600である。特に、鎖延長剤としての短鎖ジオールの利用は、超短時間合成を可能にし、高生産に繋がり、且つ、低加熱下での高流動性と高い固化温度を得やすくする傾向があるので特に有用である。   Further, if the molecular weight is 62 or less, it is difficult to obtain an appropriate monomer. If the molecular weight is 2,000 or more, the sticking property and the performance of the cured product may be deteriorated, and the viscosity may be increased. The viscosity is preferably low in the case of adding an antifoaming agent, an antisettling agent or the like to the diol side. The preferred molecular weight range is 90 to 1000, more preferably 90 to 800, and even more preferably 90 to 600. In particular, use of a short chain diol as a chain extender enables ultra-short time synthesis, leads to high production, and tends to obtain high fluidity under low heating and high solidification temperature. It is useful.

これらのジオール原料としては、主鎖構造が、ポリテトラメチレンエーテル系、ポリエチレンオキサイドープロピレンポキサイドポリエーテル系、ポリエステル系、ポリカーボネート系、ヒマシ油変性系等を有する、通常ウレタン化学に記載されているジオールから選択される。ポリエーテルジオール系は低粘度、又、ポリカーボネートジオール系は耐加水分解性、強度面で、ポリエステルジオールは耐熱性を高める点で有用である。   As these diol raw materials, the main chain structure has a polytetramethylene ether type, a polyethylene oxide-propylene poxide polyether type, a polyester type, a polycarbonate type, a castor oil modified type, etc., and is usually described in urethane chemistry. Selected from diols. The polyether diol type is useful in that it has a low viscosity, the polycarbonate diol type is in terms of hydrolysis resistance and strength, and the polyester diol is useful in enhancing heat resistance.

更に、鎖延長剤としての短鎖ジオールは、炭層数が3〜10のものが有用である。それらは、トリエチレングリコール、1.4ブタンジオール、1,5ペンタンジオール、1.6ヘキサンジオール、3メチルペンタンジオール、オクタンジオール(2エチル.3ヘキサンジオール),2.4ジエチル1.5ペンタンジオール、若干量の3官能のグリセリン、トリメチロールプロパン等も、プレポリマーの加熱流動性を低下させない範囲で使用できる。これらジオールは単独で、又混合ジオールとして使用される。しかし、本発明のジオールはこれらに限定されない。   Further, as the short chain diol as a chain extender, those having 3 to 10 carbon layers are useful. They are triethylene glycol, 1.4 butane diol, 1,5 pentane diol, 1.6 hexane diol, 3 methyl pentane diol, octane diol (2 ethyl.3 hexane diol), 2.4 diethyl 1.5 pentane diol. However, a small amount of trifunctional glycerin, trimethylolpropane, etc. can also be used as long as the heating fluidity of the prepolymer is not deteriorated. These diols are used alone or as a mixed diol. However, the diol of the present invention is not limited to these.

NCO/OH化学量論比; NCO/OH化学量論比はプレポリマーの分子量制御の根幹をなし、特に主剤(A)、硬化剤(B)とNCO/OH量論比の組み合わせにより、生成プレポリマーの特性を大きく、特に加熱時の流動性、及び常温下の固化性及び湿気架橋性等を大きく変化させることが可能である。高分子理論から、上記(A)、(B)及び、NCO基/OH基比が定まれば原料から合成される該プレポリマーの数平均分子量は、理論的に算出できる。この理論値は実験値と良く一致することが知られている(非特許文1)。本発明に適切なプレポリマーは、NCO/OH基比が2/1近傍、又は若干過剰下で得られ、分子量分布を有する末端NCO基含有の3量体(A−B−A)が主成分として形成される。 NCO/OH stoichiometric ratio; The NCO/OH stoichiometric ratio is the basis for controlling the molecular weight of the prepolymer, and especially the combination of the main agent (A), the curing agent (B) and the NCO/OH stoichiometric ratio produces It is possible to greatly change the properties of the polymer, and particularly to greatly change the fluidity at the time of heating, the solidification property at room temperature, the moisture crosslinking property, and the like. From the polymer theory, the number average molecular weight of the prepolymer synthesized from the raw materials can be theoretically calculated if the above (A), (B) and the NCO group/OH group ratio are determined. It is known that this theoretical value agrees well with the experimental value (Non-Patent Document 1). The prepolymer suitable for the present invention is obtained with an NCO/OH group ratio of about 2/1 or a slight excess, and is mainly composed of a terminal NCO group-containing trimer (ABA) having a molecular weight distribution. Formed as.

本発明では、NCO/OH基比は5.0/1〜1.4/1の範囲である。その理由は、5.0/1以上では、プレポリマー分子量の増加が見込めなくなり、且つ未反応ジイソシアネートモノマー(残存モノマー量)が増加させるのみである。又、湿気硬化時に過剰の炭酸ガス発生、硬化物の発泡を増加させ、硬化物性を低下させる恐れがある。その反面、プレポリマーの瞬時安定合成、反応収束性を向上させる効果がある。一方、1.4/1以下では、プレポリマーの分子量を増大させ、粘度上昇に伴う流動性低下の恐れがあり、且つ、瞬時合成の反応収束性を大幅に低下させる恐れがある。好ましいNCO/OH比は、2.5/1〜1.8/1、より好ましくは2.3/1〜1.9/1である。   In the present invention, the NCO/OH group ratio is in the range of 5.0/1 to 1.4/1. The reason is that at 5.0/1 or more, an increase in the prepolymer molecular weight cannot be expected, and the unreacted diisocyanate monomer (residual monomer amount) only increases. In addition, there is a possibility that excessive carbon dioxide gas is generated during moisture curing, foaming of the cured product is increased, and the physical properties of the cured product are deteriorated. On the other hand, it has the effect of improving the instantaneous stable synthesis of the prepolymer and the reaction convergence. On the other hand, when it is 1.4/1 or less, the molecular weight of the prepolymer is increased, the fluidity may be lowered due to the increase in viscosity, and the reaction convergence of the instantaneous synthesis may be significantly lowered. The preferred NCO/OH ratio is 2.5/1 to 1.8/1, more preferably 2.3/1 to 1.9/1.

又、本発明の応用範囲は広いものがあり、例えば、本発明の範囲内で、主剤(A)、硬化剤(B)、NCO/OH比を、用途に応じ、適切に採択することにより、、一例として、1液型の常温速硬化湿気硬化型ポリウレタン硬化性組成物等の調整も可能である。   In addition, the application range of the present invention is wide, for example, within the scope of the present invention, by appropriately adopting the main agent (A), the curing agent (B), the NCO/OH ratio, depending on the application, As an example, it is also possible to prepare a one-liquid type room temperature quick-curing moisture-curable polyurethane curable composition and the like.

(c)発泡抑止剤;
湿気硬化時の発泡防止剤としては、本発明のプレポリマーの合成を阻害することが無く、又、長期貯蔵に対し安定であり、湿気硬化物の物性を低下させる事が無く、且つ、炭酸ガスを吸収し発泡を抑制することができれば、液体、固体を問わず使用する事ができる。中でも、特定の粉体、例として、生石灰粉(CaO)、又、疎水性ゼオライト粉、無機多孔質粉、セメント粉、水酸化カルシウム、炭酸リチウム、炭酸ガス吸収性乾燥藻類等であるが、とりわけ、除去効果、操作性、経済性等に優れる生石灰粉が好ましい。
(C) foam suppressant;
As an antifoaming agent at the time of moisture curing, it does not inhibit the synthesis of the prepolymer of the present invention, is stable to long-term storage, does not deteriorate the physical properties of the moisture cured product, and carbon dioxide gas. If it can absorb and suppress foaming, it can be used regardless of liquid or solid. Among them, specific powders, for example, quicklime powder (CaO), hydrophobic zeolite powder, inorganic porous powder, cement powder, calcium hydroxide, lithium carbonate, carbon dioxide-absorbing dry algae, etc. , Quicklime powder which is excellent in removal effect, operability, economy and the like is preferable.

尚、発泡抑止剤の機能は、湿気硬化時に発生する炭酸ガスの除去に有る。しかしながら、炭酸ガスが発生したとしても、例えば、硬化物が多孔体(木材等)系、又、無機粉高充填剤添加系等においては炭酸ガスの逃げ道が確保され、又、硬化物層が薄い場合は、該薄層からの拡散、又、炭酸ガス発生量が少ない場合等、硬化物を発泡させない、若しくは発泡が目立たない程少量である場合、又、接着剤のように接着層が薄く強度が十分確保される場合は、敢えて発泡防止剤を添加しなくても良い場合がある。しかしながら、本発明のように急速反応において、炭酸ガス発生量は大きく、又、硬化物層厚さ大の場合は、硬化物の発泡による弊害(強度低下、外観不良等)が大きいので、発泡防止剤の添加は必須である。   The function of the foam suppressor is to remove carbon dioxide gas generated during moisture curing. However, even if carbon dioxide gas is generated, for example, if the cured product is a porous material (wood, etc.) or an inorganic powder high filler addition system, etc., an escape route for carbon dioxide gas is secured, and the cured product layer is thin. In the case, when the amount of carbon dioxide gas diffused from the thin layer is small or the amount of carbon dioxide gas is small, the cured product does not foam or the foaming is so small that the adhesive layer is thin and strong like an adhesive. If sufficient is ensured, it may not be necessary to add the foaming inhibitor. However, in the rapid reaction as in the present invention, the amount of carbon dioxide gas generated is large, and when the thickness of the cured product layer is large, the harmful effects (decrease in strength, poor appearance, etc.) due to the foaming of the cured product are large, so foaming prevention The addition of agents is essential.

該生石灰粉は、ジイソシアネート側、ジオール側何れにも添加可能であるが、ジオール側への添加が操作性に優れるため望ましい。添加量としては、プレポリマー組成物中の生石灰含有率は5〜60質量%が適切である。5%以下では、効率的な炭酸ガス吸収を欠き、発泡防止性能を低下させる恐れがある。逆に、60質量%以上では、発泡防止効果が顕著だが、粘度を上昇させ、流動性の低下、その結果、塗工性を著しく低下させる恐れがある。更には、湿気硬化後の硬化物性を低下、特に硬化物が脆くなる恐れがある。   The quicklime powder can be added to either the diisocyanate side or the diol side, but it is desirable to add it to the diol side because of excellent operability. As the amount of addition, the content of quick lime in the prepolymer composition is appropriately 5 to 60% by mass. If it is 5% or less, efficient absorption of carbon dioxide gas may be lacking, and the foaming prevention performance may be deteriorated. On the other hand, when the content is 60% by mass or more, the foaming-preventing effect is remarkable, but the viscosity may be increased and the fluidity may be lowered, and as a result, the coating property may be significantly lowered. Furthermore, there is a possibility that the physical properties of the cured product after moisture curing may deteriorate, and the cured product may become brittle.

好ましい添加量範囲は20〜50質量%未満である。より望ましくは25〜45%である。粉体の粒度については、塗工を妨げない範囲、大凡10ミクロン以下であればよく、下限値は特に限定されず、良好な分散性、長期間に渡る貯蔵案安定性が得られれば良く、市販品の粉体を用いることが出来る。しかし、優れた炭酸ガス吸収を維持するためには、使用される生石灰粉は十分乾燥したものを使用する。そのため、該粉体中の吸着水分量は無水下がベストであるが、0.1質量%以下であれば使用可能。より好ましくは0.05質量%以下であるのが最も好ましい。   The preferable addition amount range is from 20 to less than 50% by mass. It is more preferably 25 to 45%. The particle size of the powder may be within a range that does not hinder coating, approximately 10 microns or less, and the lower limit is not particularly limited as long as good dispersibility and long-term storage plan stability are obtained. Commercially available powder can be used. However, in order to maintain excellent carbon dioxide absorption, the quicklime powder used should be sufficiently dry. Therefore, the amount of adsorbed water in the powder is best under anhydrous condition, but it can be used if it is 0.1% by mass or less. It is more preferably 0.05 mass% or less.

(D)沈降防止剤(相分離安定剤);
上記の生石灰粉の真比重は約3.5であり、本発明に使用するジオールの比重は約1.0であり、極端な比重差を伴う、この状態で生石灰粉をジオールに添加すれば、直ちに沈降、相分離を発生、ケーキ状の堆積物が生成し、本発明の適切な流動性を有する組成物にはなり得ない。ジオール中における生石灰粉の相分離安定性を良好に保ち且つ流動性を保持するため、相分離剤の使用は不可欠である。各種の相分離安定剤を探索した結果、市販品の微粉状シリカ粉(アエロジル)の添加、が非常に優れることを見出した。しかも比較的小添加量でジオールに構造粘性をもたらし、沈降防止を防ぎ、良好な相分離安定性並びに流動性を保持することを見出した。
(D) anti-settling agent (phase separation stabilizer);
The true specific gravity of the above quicklime powder is about 3.5, the specific gravity of the diol used in the present invention is about 1.0, and if the quicklime powder is added to the diol in this state with an extreme difference in specific gravity, Immediate settling, phase separation, cake-like deposits are formed, and the composition having suitable fluidity of the present invention cannot be obtained. The use of a phase separating agent is indispensable in order to maintain good phase separation stability of the quicklime powder in the diol and maintain fluidity. As a result of searching various phase separation stabilizers, it was found that addition of commercially available fine powder silica powder (Aerosil) was very excellent. Moreover, it has been found that a relatively small amount of addition imparts a structural viscosity to the diol, prevents settling, and maintains good phase separation stability and fluidity.

添加量は,添加液剤の全量に対し、0.5〜5質量%である。0.5質量%以下では、相分離安定性が損なわれる傾向を示し、又、5質量%以上では、流動性の低下を来す恐れがあり添加増効果が乏しい。好ましくは1〜5質量%、より好ましくは、1〜3%である。該微粉状シリカ粉も、上記生石灰粉と同様の乾燥状態を維持する必要がある。   The added amount is 0.5 to 5 mass% with respect to the total amount of the added liquid agent. If it is 0.5% by mass or less, the phase separation stability tends to be impaired, and if it is 5% by mass or more, the fluidity may decrease, and the effect of increasing the addition is poor. It is preferably 1 to 5% by mass, and more preferably 1 to 3%. The finely powdered silica powder also needs to maintain the same dry state as the quicklime powder.

(E)触媒;
本発明のMDI系は加熱下では反応が非常に速いために、無触媒系においても瞬時合成(約1〜30秒以下)が可能であるので触媒の添加は任意である。しかし、本発明の他の目的として、瞬時合成による更なる省エネ化及び高生産性の実現にあるので、速硬化性は必須であり、無触媒系では瞬時合成が得られないものがあり、触媒の添加は有効である。使用される触媒は、通常のポリウレタン化学で使用せられる公知触媒が用いられる。これら触媒としては下記のようなものが挙げられる。錫、鉄、チタンまたはビスマスの有機金属化合物、例えば、ジブチル錫ジラウレート(DBTDL)、ジオクチル錫ジラウレート等、カルボン酸の錫(II)塩等は、本発明に使用する触媒としては適切である。使用される組成物中の触媒の濃度は約0.0001〜0.5質量%、好ましくは0.005〜0.05重量%、より好ましくは0.05〜0.002質量%である。
(E) catalyst;
Since the MDI system of the present invention reacts very quickly under heating, instantaneous synthesis (about 1 to 30 seconds or less) is possible even in a non-catalyst system, and therefore the addition of a catalyst is optional. However, another object of the present invention is to realize further energy saving and high productivity by instantaneous synthesis, so that fast curing property is essential, and there is a catalyst-free system that cannot obtain instantaneous synthesis. Is effective. The catalyst used is a known catalyst used in ordinary polyurethane chemistry. Examples of these catalysts include the following. Organometallic compounds of tin, iron, titanium or bismuth, such as dibutyltin dilaurate (DBTDL), dioctyltin dilaurate, tin(II) salts of carboxylic acids and the like are suitable as catalysts for use in the present invention. The concentration of the catalyst in the composition used is about 0.0001 to 0.5% by weight, preferably 0.005 to 0.05% by weight, more preferably 0.05 to 0.002% by weight.

(F)その他添加剤;
本発明の組成物には、所望により、安定剤、接着性促進剤、充填剤、タッキファイヤー、顔料、酸化防止剤、紫外線吸収剤等を含有させることができる。特に充填剤として実質的水分を除去した無機粉体の添加は、組成物中のプレポリマー濃度を下げ、結果的には、発生炭酸ガス量を減少させ、又、硬化物の炭酸ガス除去の経路を形成する効果があり、間接的な発泡改善効果が期待出来るので有用である。又、プレポリマーの瞬時合成時に多量の反応熱の制御(緩和)に対しても有用である。又、発泡抑止剤(CaO粉)との併用使用は、操作性、安全性の改善に有用である。又、プレポリマー中の該粉体の添加率は、発泡抑止剤を含め最大70質量%以下である。好ましくは50質量%以下である。
(F) Other additives;
If desired, the composition of the present invention may contain a stabilizer, an adhesion promoter, a filler, a tackifier, a pigment, an antioxidant, an ultraviolet absorber and the like. In particular, addition of an inorganic powder from which substantial water has been removed as a filler lowers the prepolymer concentration in the composition, resulting in a decrease in the amount of carbon dioxide gas generated, and a route for carbon dioxide gas removal of the cured product. It is useful because it has the effect of forming foams and an indirect foaming improving effect can be expected. It is also useful for controlling (relaxing) a large amount of reaction heat during instant synthesis of a prepolymer. Also, the combined use with a foaming inhibitor (CaO powder) is useful for improving operability and safety. Further, the addition rate of the powder in the prepolymer is 70% by mass or less at the maximum including the foaming inhibitor. It is preferably 50% by mass or less.

2.本発明の湿気硬化型ポリウレタンプレポリマー組成物の製造方法について説明する。
(1)製造装置; 本発明の装置構成の一例を下記に示す。尚,本装置構成及び操作は,湿気遮断下に有ることが必須である。
(ア)2基(A液;ジイソシアネート、B液;ジオール)貯留容器、(イ)該2基精密吐出装置、(ウ)加熱混合・反応装置・吐出部、(エ)居所排気装置、及び、(オ)配管、切替弁、(カ)制御機器等で構成される。
2. The method for producing the moisture-curable polyurethane prepolymer composition of the present invention will be described.
(1) Manufacturing apparatus: An example of the apparatus configuration of the present invention is shown below. In addition, it is essential that the device configuration and operation be under a moisture barrier.
(A) Two (A liquid; diisocyanate, B liquid; diol) storage container, (A) the two precision discharge device, (C) heating mixing/reaction device/discharge unit, (D) residence exhaust device, and (E) Consists of piping, switching valve, (f) control equipment, etc.

(ア)貯留容器; 貯留槽; 材質は金属、ガラス、プラスチックス等を問わず、湿気遮断性が保持されれば何れも使用できる。貯留槽構造は(a)常時湿気遮断状態下に有り、液剤及び発泡抑止剤等の補給と供給ができることが必要。(b)液剤の残存量を検知できる部材を備えることが望ましい(c)通常、発泡抑止剤はB液側に添加する。該貯留槽は攪拌、脱泡操作をできることが望ましいが、なくても良い。d)主剤及び硬化剤の貯留時及び操作時は,窒素ガス、又は除湿乾燥空気雰囲気を維持する必要がある。しかし、特別な場合を除き、該雰囲気を加圧状態にする必要は無い。(e)貯留槽の出口側に、液剤のゲル化物、過大な粉体粒子、不純物等の、異物を除去するためスクリーン(ステンレスメッシュ網等)部を設ける事は望ましいが、なくても良い。 (A) Reservoir container; Reservoir tank: Any material can be used regardless of whether it is made of metal, glass, plastics or the like as long as the moisture barrier property is maintained. The storage tank structure must be (a) always under a moisture barrier condition and capable of supplying and supplying a liquid agent and a foam suppressing agent. (B) It is desirable to provide a member capable of detecting the remaining amount of the liquid agent. (c) Usually, the foaming inhibitor is added to the B liquid side. It is desirable that the storage tank can be stirred and defoamed, but it is not necessary. d) It is necessary to maintain a nitrogen gas atmosphere or a dehumidified dry air atmosphere during the storage and operation of the main agent and the curing agent. However, it is not necessary to bring the atmosphere into a pressurized state except in special cases. (E) It is desirable, but not necessary, to provide a screen (stainless steel mesh, etc.) on the outlet side of the storage tank to remove foreign matters such as gelled material of liquid agent, excessive powder particles, and impurities.

又、貯留容器の別形態として、A剤(主剤)、B剤(硬化剤;、発泡防止剤の添加又は未添加系)を事前に別工程で製造し、容器(カートリッジ)に充填されたものものを用いても差し支えない。(f)通常、貯留槽は常温(25℃)で使用されるので、特に加温装置を施す必要は無いが、冬場の低温対策(流動性の低下)等に備え加温装置の設置は差し支えない。貯留槽容量については、特に限定されない。   In addition, as another form of the storage container, a container (cartridge) is filled with an agent A (main agent), an agent B (curing agent; a system with or without addition of an antifoaming agent) manufactured in a separate step in advance. You can use one. (F) Normally, the storage tank is used at room temperature (25°C), so it is not necessary to install a heating device in particular, but it is acceptable to install a heating device in preparation for low temperature measures (decrease in fluidity) in winter. Absent. The storage tank capacity is not particularly limited.

該貯留容器の両液を反応器に供給するために、精密定量吐出機を介して、反応器に、直結、又は切替弁等を介して繋がっている。該両液の供給は、通常、特に加圧を必要とせず、精密定量吐出装置が有する吸引力により可能である。しかし、高粘度液剤の供給においては、加圧系,又は加温系の使用は差し支えない。   In order to supply both liquids in the storage container to the reactor, they are connected to the reactor via a precision metering device, directly or via a switching valve or the like. The supply of the both liquids does not usually require pressurization, and can be performed by the suction force of the precision metering device. However, in supplying the high-viscosity liquid agent, it is possible to use a pressure system or a heating system.

(イ)精密定量装置;
a)精密ギヤーポンプ、マイクロギヤーポンプ、モーノポンプ等の精密定量ポンプ等であり、吐出量はポンプの有効吐出容積、ポンプ回転数の制御等により、正確に吐出量を制御することができ,非常に有用である。又、b)ポジロード計量方式、又プランジャー計量方式等の容積計量方式も有効である。吐出量は、シリンダー容積、ピストンストローク長等により精密制御される。該双方ポンプは各種市販品が提供されており何れも使用できる。この他にも、精密加工により精密な定量吐出量が安定的に確保できるものは使用できる。
(A) Precision quantification device;
a) Precision metering pumps, micro gear pumps, precision metering pumps such as mohno pumps, etc., which are very useful because the discharge amount can be accurately controlled by controlling the effective discharge volume of the pump, the pump rotation speed, etc. is there. Further, b) a positive load measuring method or a volume measuring method such as a plunger measuring method is also effective. The discharge amount is precisely controlled by the cylinder volume, piston stroke length, etc. Various commercially available products are provided for both pumps, and any of them can be used. In addition to this, it is possible to use a material that can stably ensure a precise fixed amount by precision processing.

(ウ)加熱混合・反応装置;
該双方の精密定量吐出装置は、直接、又は切替弁を介した導管を介して、加熱された小容量混合機兼反応機に繋がっている。(A)主剤、(B)硬化剤液(発泡抑止剤等含む)を、常温(部分的加温しても良い)で、両液を常に一定の比率(NCO基/OH基比)を保持しながら、該混合機に供給し、高速混合して均一溶液を形成すると同時に極めて短時間(瞬時)で反応収束させて、安定した加熱流動性を呈する熱可塑性組成物を得る。得られた該組成物は、製品として、混合機下端の吐出口から、そのまま、被着材(常温)に吐出・塗布に供する。
(C) Heated mixing/reaction device;
Both of these precision metering devices are connected to a heated small capacity mixer/reactor either directly or via a conduit via a switching valve. (A) Main agent, (B) Hardener liquid (including foaming inhibitor, etc.) at room temperature (may be partially heated), both liquids always maintain a constant ratio (NCO group/OH group ratio) However, it is supplied to the mixer and mixed at a high speed to form a uniform solution, and at the same time, the reaction is converged in an extremely short time (instantaneous) to obtain a thermoplastic composition exhibiting stable heat fluidity. The obtained composition is directly discharged from the discharge port at the lower end of the mixer to the adherend (normal temperature) and applied as a product.

又、別な形態として、上記吐出口に導管を設け、湿気・遮断下で、且つ湿気不透過性容器内に連続的又は断続的吐出し、該吐出液を密封貯留液として貯留し、簡易型の1液型湿気硬化性プレポリマー組成液を調整する、何れの方法をも取ることができる。該1液型は、専用の塗工機を必要とせずに、作業場所も限定されず、簡単に且つ経済的に塗布操作が可能できる利点がある。尚、該組成液の採取法、貯留法、使用方法等については限定されない。   Further, as another form, a conduit is provided at the discharge port to discharge continuously or intermittently in a moisture impermeable container under moisture/interruption, and the discharge liquid is stored as a sealed storage liquid. Any method of preparing the one-pack type moisture-curable prepolymer composition solution can be used. The one-pack type has the advantage that it does not require a dedicated coating machine, the working place is not limited, and the coating operation can be performed easily and economically. The method of collecting, storing, and using the composition liquid is not limited.

本発明では、急激に発生する反応熱対策として反応系を小容量化し、又、実験装置は、簡易型のモデル装置を使用して実施した。反応器容量は、約0.3〜2ml程度としているが、0.5〜1.2mlが望ましい。0.3ml以下では混合機の加工が難しくなる恐れがある。又、2ml以上では反応熱が大きくなり、本発明の簡便な装置系においては、温度制御が困難になる恐れがある。しかし本発明はこれに限定されない。   In the present invention, the reaction system was made small in capacity as a measure against the reaction heat that is rapidly generated, and the experimental device was implemented by using a simple model device. The reactor capacity is about 0.3 to 2 ml, but 0.5 to 1.2 ml is preferable. If it is less than 0.3 ml, it may be difficult to process the mixer. Further, when the amount is 2 ml or more, the heat of reaction becomes large, which may make temperature control difficult in the simple apparatus system of the present invention. However, the present invention is not limited to this.

しかしながら、反応機については中〜大容量化へのニーズは大きく、その発熱対策については、本発明の結果より、安全設備、装置構造(断熱等)、計測設備の設備設計等を綿密に行い、資源を投ずれは、中〜大容量化することは支障無いと想定される。   However, for reactors, there is a great need for medium to large capacity, and as a countermeasure against heat generation, safety equipment, device structure (insulation, etc.), equipment design of measurement equipment, etc. are carefully performed from the results of the present invention, It is assumed that there is no hindrance to medium to large capacity allocation of resources.

又、混合機・反応機の加熱部材等には、特注品、各種市販品が使用できる又、混合機構造については、動的な機械的攪拌混合法と、静的な未攪拌混合(スタティックミキサー(SM))法、何れも使用できる。後者は機械的動力源を得る必要が無いため、構造的にはシンプルになる。しかし、その反面、本発明の熱可塑性組成物の熱流動性が、構造粘性(チクソトロピック)を呈する場合は、液剤の熱伝導性が不均一になる傾向が強いため、流動性に分布が生じ、均一な流動安定性を得にくくなる恐れがある。そのため、本発明の発泡防止剤の添加系においては動的な機械的攪拌混合法が、優位である。   Custom-made products and various commercially available products can be used for the heating members of the mixer/reactor. For the mixer structure, dynamic mechanical stirring/mixing method and static unstirred mixing (static mixer) can be used. (SM)) method can be used. The latter is structurally simple, as it does not require a mechanical power source. However, on the other hand, when the thermoplastic composition of the present invention has a thermal fluidity and exhibits a structural viscosity (thixotropic), the thermal conductivity of the liquid agent tends to be non-uniform, so that the fluidity has a distribution. However, it may be difficult to obtain uniform flow stability. Therefore, the dynamic mechanical stirring and mixing method is superior in the addition system of the antifoaming agent of the present invention.

その反面、チクソ性を示さない、本発明の充填剤を添加しないプレポリマー組成物には、該プレポリマーを含めた液剤は分子量が低いため、加熱下では比較的均一溶液として調節し易い。これらに対しては、装置構造がより簡単になるスタティックミキサー方式が有効である。現在、市販SM(金属製)は最も小容量のもので内容積が約1ml程度であり、且つ、SMの混合エレメントとそれを収納する外筒が分離構造になっており、エレメントと外筒間の隙間(取り扱い性、熱伝導率の低下等)で制約がある。   On the other hand, in the prepolymer composition of the present invention that does not exhibit thixotropy, the liquid agent containing the prepolymer has a low molecular weight, and therefore it is easy to adjust as a relatively uniform solution under heating. For these, the static mixer method, which makes the device structure simpler, is effective. At present, the commercially available SM (made of metal) has the smallest capacity and the internal volume is about 1 ml, and the SM mixing element and the outer cylinder that houses it have a separated structure. There is a restriction in the gap (handling, decrease in thermal conductivity, etc.).

これらの欠点を改善した、より小容量化、又、大容量化に対しても対応できる、外筒/混合エレメントを一体構造にしたSMが、熱伝導率向上による省エネ化、易操作性に優れる。SM材質として、金属、又は合金が有効であり、該SMの作製には3Dプリンターにより作製が可能である。   The SM with the outer cylinder/mixing element integrated structure, which has improved these drawbacks and can cope with smaller capacity and larger capacity, is excellent in energy saving and easy operability by improving thermal conductivity. .. A metal or alloy is effective as the SM material, and the SM can be manufactured by a 3D printer.

(エ)局所排気装置;
加熱混合機・反応機内で合成された湿気硬化型プレポリマー組成物の加熱流動液が、該機内下端に設けられた吐出口から、常温下の非着材に向け吐出させると、吐出口及び非着材上は高温に晒される恐れがある。液状MDI系(モノマー)は、常温下においては、蒸気圧が低いため、比較的安全である。しかしながら、作業時(吐出口、非着材上)の温度はかなり高くなっているために、該蒸気圧が高くなり無視できなく恐れがある。、環境汚染、蒸気吸引による人体への有害性の心配がある。
(D) Local exhaust system;
When the heated fluid of the moisture-curable prepolymer composition synthesized in the heating mixer/reactor is discharged from the discharge port provided at the lower end of the machine toward the non-bonding material at room temperature, There is a risk that the material will be exposed to high temperatures. Liquid MDI (monomer) is relatively safe at room temperature because of its low vapor pressure. However, since the temperature at the time of work (on the discharge port and on the non-adhesive) is considerably high, the vapor pressure becomes high, which may not be negligible. , There is a concern about environmental pollution and harmfulness to human body due to vapor inhalation.

この対策には、上記加熱流動吐出物の直近に、フレキブル局所排気装置[図1]を装備(例えばポリエチレン管等装着)することにより、簡単に残存モノマー性有害蒸気を除去し、環境改善に非常に効果を発揮する。該局排装置は、製造装置(加熱混合機)に直接装着しても良く、又、しなくてもよい。   As a countermeasure for this, a flexible local exhaust system [Fig. 1] is installed in the immediate vicinity of the heated fluidized discharge (for example, a polyethylene pipe is installed) to easily remove residual monomeric toxic vapors, which is extremely useful for environmental improvement. Exert an effect on. The local exhaust device may or may not be directly attached to the manufacturing device (heating mixer).

直接装着の場合はロボット用いた塗布に有効である。又、該局排機の排気口がドラフト装置に繋がっていない場合は特に効果がある。又、作業場所に影響されず使用できるのも都合がよい。尚、該局排装置には、排出時のイソシアネート蒸気等の吸収装置(水、アルカリ水)を設置し脱蒸気化することが必要である。又、該局排の2次的な効果として、局排の吸引力により、被着材状の吐出物の冷却を促進し且つ吐出物の温度を低くし,瞬時固着性を高める効果が期待出来る。   When directly attached, it is effective for application using a robot. Further, it is particularly effective when the exhaust port of the local exhaust machine is not connected to the draft device. It is also convenient that it can be used regardless of the work place. In addition, it is necessary to install an absorber (water, alkaline water) for absorbing isocyanate vapor or the like at the time of discharge in the local exhaust device to devaporize it. Further, as a secondary effect of the local discharge, it is expected that the suction force of the local discharge promotes cooling of the adherend-like discharge material, lowers the temperature of the discharge material, and enhances instantaneous adhesiveness. ..

(3)プレポリマーの製造条件;(ア)NCO基/OH基比; 前述段落[0027〜0028]で述べた。
(イ)反応温度; 60〜170℃範囲が可能である。好ましくは80〜150℃、より好ましくは100〜130℃が好ましいい。170℃を超えると、速度が過大になり生成プレポリマーの劣化を招く恐れがある。60℃以下では生成物の生成速度が遅くなる恐れがあり、又、生成物の固化を招く恐れがある。
(ウ)反応時間; 1〜120秒の範囲が可能である。好ましくは1〜30秒、より好ましくは1〜15秒、最も好ましくは1〜10秒である。時間が120秒を超えると本発明には反応速度が遅すぎ適切でない。1秒以下では、実質的な制御が難しくなる恐れがある。反応時間(瞬時合成)としては短時間であるほど望ましいが、30秒以下であれば十分である。しかし、反応熱の反応機の加熱源への積極的活用を考慮するならば、10〜15秒以下が望ましい。
(3) Prepolymer production conditions; (a) NCO group/OH group ratio; described in the above paragraphs [0027 to 0028].
(A) Reaction temperature: 60 to 170° C. is possible. The temperature is preferably 80 to 150°C, more preferably 100 to 130°C. If it exceeds 170° C., the speed becomes too high and the resulting prepolymer may be deteriorated. If the temperature is 60° C. or lower, the production rate of the product may be slow, and the product may be solidified.
(C) Reaction time: A range of 1 to 120 seconds is possible. It is preferably 1 to 30 seconds, more preferably 1 to 15 seconds, and most preferably 1 to 10 seconds. If the time exceeds 120 seconds, the reaction rate is too slow and not suitable for the present invention. If it is less than 1 second, it may be difficult to control substantially. The reaction time (instantaneous synthesis) is preferably as short as possible, but 30 seconds or less is sufficient. However, in consideration of positive utilization of reaction heat to the heating source of the reactor, 10 to 15 seconds or less is desirable.

(4)本発明の別の形態;
前述[0043]のとおり、本発明の製造方法を用いて、1液型のRHMを簡単に製造することが出来る。該製造時の吐出温度として、70〜100℃未満が適切である。このような低加熱温度を採用する理由は、充填容器、操作性を大幅に改善できるからである。例えば、容器は金属/プラスチック積層箔等をチューブ容器としてして密封貯蔵できる。又、内容物の溶融は電気ポットの沸騰水に浸漬、又、簡易型の低温用加熱器具等を用いることにより簡単にできる。塗布操作は、DISPENSERを使用することなく、手圧押し出しで簡単に塗布でき、且つ作業場所を選ばず非常に経済的で、操作性(瞬時固化)に優れるRHMとして利用出来る。
(4) Another form of the present invention;
As described above [0043], a one-pack type RHM can be easily manufactured by using the manufacturing method of the present invention. A discharge temperature of 70 to less than 100° C. is suitable for the production. The reason for adopting such a low heating temperature is that the filling container and operability can be greatly improved. For example, the container may be a metal/plastic laminated foil or the like as a tube container for hermetically sealed storage. Further, the melting of the contents can be easily carried out by immersing in the boiling water of an electric pot, or by using a simple type low-temperature heating device or the like. The coating operation can be easily performed by hand pressure extrusion without using DISPENSER, and is very economical regardless of the work place, and can be used as an RHM having excellent operability (instantaneous solidification).

以下、実施例により、本発明を説明するが、本発明はこれら実施例に制約されるものではない。なお、実施例に使用した原料、及び試験/評価法等の概略は下記に示した。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The raw materials used in the examples and the outline of the test/evaluation method and the like are shown below.

(1)[原料]
実施例に使用した原料を[表1]に示した。
(2)[試験/評価法]]
(a1)発泡抑止剤、沈降防止剤の乾燥;
所定量の発泡抑止剤と沈降防止剤の所定量を10mlガラスサンプル管(反応機)に採取、混合後、小型乾燥機で約180℃、30分間乾燥除湿し、密栓した。該サンプルをプレポリマー合成用の発泡抑止剤として使用した。又、長期貯蔵安定性(相分離安定性)、及び常温下における流動性評価用試験に使用した。
(a2)プレポリマーの瞬時(短時間)反応時間、及び発熱温度測定;
上記(a1)密栓サンプル管の蓋を取り温度計付きの攪拌棒を内包し、加熱アルミブロックにセット150℃で20分乾燥しサンプル管内を除湿し、標準設定温度(100〜105℃)に降下、直ちに、N2ガスを吹き流しながら、サンプル管にキャップ(液剤投入口、N2ガス同入口を設けた)を被せ密封した。同温度で、液剤投入口より、所定量の原料(PPディスポに予め計量済み)、B剤(硬化剤)、A剤(主剤)の順に添加、シール口を閉じた後、静置約1〜2分保持、この間、2液は分離状態にあり反応せず、内温度(100℃)確認後、直ちに、手動で攪拌、発熱温度、即ち、時間〜温度を計測した。尚、反応時間は温度曲線の発熱温度の最大傾斜時間を持って、反応時間とした。
(1) [raw material]
The raw materials used in the examples are shown in [Table 1].
(2) [Test/Evaluation method]]
(A1) Drying of foam inhibitor and anti-settling agent;
A predetermined amount of the foam inhibitor and the anti-settling agent were collected in a 10 ml glass sample tube (reactor), mixed, dried and dehumidified at about 180° C. for 30 minutes in a small dryer, and sealed. The sample was used as a foam inhibitor for prepolymer synthesis. It was also used for tests for evaluating long-term storage stability (phase separation stability) and fluidity at room temperature.
(A2) Instantaneous (short time) reaction time of the prepolymer and exothermic temperature measurement;
(A1) Remove the cap of the tightly closed sample tube, enclose a stirring rod with a thermometer, set it in a heating aluminum block and dry it at 150°C for 20 minutes to dehumidify the inside of the sample tube and lower it to the standard set temperature (100-105°C). Immediately after, while blowing N2 gas, the sample tube was covered with a cap (provided with the liquid agent inlet and the N2 gas inlet) and sealed. At the same temperature, from the liquid agent inlet, a predetermined amount of raw material (pre-measured in PP disposable), agent B (hardener), agent A (main agent) were added in that order, the sealing port was closed, and then left standing for about 1 Hold for 2 minutes, during which the two liquids were in a separated state and did not react, and immediately after confirming the internal temperature (100° C.), the stirring and exothermic temperature, that is, the time to temperature were measured manually. The reaction time was defined as the reaction time with the maximum slope time of the exothermic temperature of the temperature curve.

(a3)加熱流動性試験: 流動性の評価は、ガードナー粘度測定に準拠する方法で評価した。
各種基準粘度液の調製; 各種市販の25℃粘度が既知(文献値)の液から下記の粘度液を調製した。(各調整液;25℃粘度が,それぞれ、70mPa・s、300mPa・s、500mPa・s、1,000mPa・s、3,000mPa・s、5,000mPa・s、10,000mPa・s、30,000mPa・s80,000mPa・s、。該液、約2.0mlを10mlガラスサンプル管(内径18mmφ、高さ35mmに採取、密栓して調製した。
加熱下で合成された評価用サンプル約2.ml(10mlサンプル管中)を用いて、即ち、該サンプル管を横転して、サンプル液の移動時間等を測定した。同様に、25℃で、基準液について転倒試験を実施、両者の比較から、サンプル液の流動性を推定した。尚、評価の判定は測定のバラツキも有り難しかったが、流動性の指標である溶融粘度は、溶融粘度(lnη)〜温度(1/T)曲線は、略直線的に近似できる傾向を示した。
(A3) Heated fluidity test: The fluidity was evaluated by a method based on Gardner viscosity measurement.
Preparation of various standard viscosity liquids: The following viscosity liquids were prepared from various commercially available liquids with known viscosities at 25°C (reference values). (Each adjustment liquid; viscosity at 25° C. is 70 mPa·s, 300 mPa·s, 500 mPa·s, 1,000 mPa·s, 3,000 mPa·s, 5,000 mPa·s, 10,000 mPa·s, 30, mPa·s, 30, 2,000 mPa·s, 80,000 mPa·s, about 2.0 ml of this liquid was sampled in a 10 ml glass sample tube (inner diameter 18 mmφ, height 35 mm) and sealed.
About 2. An evaluation sample synthesized under heating ml (in a 10 ml sample tube) was used, that is, the sample tube was turned over, and the migration time of the sample solution and the like were measured. Similarly, a fall test was performed on the reference liquid at 25° C., and the fluidity of the sample liquid was estimated by comparing the two. Although it was difficult for the evaluation judgment to have variations in measurement, the melt viscosity, which is an index of fluidity, showed a tendency that the melt viscosity (lnη) to temperature (1/T) curves could be approximated linearly. ..

(a4)常温下固化性評価; 合成されたプレポリマー組成物の加熱流動液を、実施例1の(g)の方法で固化温度を求めた。固化温度は内封したスパチラ(攪拌棒)が流動液の固化により固着される温度持って、固化温度とした(該温度が高いほど常温固化性(瞬時固化性)が優れる。 (A4) Evaluation of solidification property at room temperature: The solidification temperature of the heated fluid of the synthesized prepolymer composition was determined by the method of Example 1 (g). The solidification temperature is the temperature at which the enclosed spatula (stirring bar) is fixed by the solidification of the fluid, and is set as the solidification temperature (the higher the temperature, the better the room-temperature solidification (instantaneous solidification).

(a5)湿気硬化性(架橋性)評価; 実施例1(g)の塗布物を、常温下(空気中)で静置、養生、湿気硬化製の経時測定により、湿気硬化性を判定した。判定は硬化物の強度、耐熱性の評価によった。 (A5) Moisture curability (crosslinking) evaluation; The moisture curability of the coated product of Example 1(g) was determined by standing at room temperature (in air), curing, and by time measurement of moisture curing. The judgment was based on the evaluation of strength and heat resistance of the cured product.

(a6)湿気硬化時の発泡抑制評価;;
実施例1(g)の塗布物を常温下養生し、経時的に硬化物の発泡状況を観察した。判定は(気泡の発生数、及び硬化物の膨張(膨らみ)でもって評価した。
(A6) Evaluation of foam suppression during moisture curing;
The coated product of Example 1(g) was cured at room temperature, and the foaming state of the cured product was observed over time. The evaluation was made based on the number of bubbles generated and the expansion (bulging) of the cured product.

(a7)硬化物物性の評価
(外観);実施例1(g))塗布物を、室温養生させ、外観を経時的観察した。
(強度);上記塗布物をテストピース(約、巾約2x厚さ0.2〜0.5x長さ15mm)を切り出し、室温で養生(7日、30日)させた該片を用いて、折り曲げ屈曲強度を評価した。評価はテストピース両端に繰り返し曲げ荷重を加え試験片が破断する回数で示した。
(耐熱); 実施例1(g))塗布物の細片(約、巾約2mm角x厚さ0.2〜0.5mm)切り出し、ホットプレート上に該細片をセットし、昇温速度(10℃/分)で、200℃まで定速昇温させ、昇温過程における該細片の外観形状(溶融状態)の変化をルーペで観察し、耐熱性評価の判定を行った。評価は溶融する温度で評価した。
(A7) Evaluation of physical properties of cured product (appearance); Example 1(g)) The coated product was aged at room temperature, and the appearance was observed with time.
(Strength); A test piece (about 2 mm wide, 0.2 to 0.5 mm thick and 15 mm long) was cut out from the coating material, and the piece was cured at room temperature (7 days, 30 days). The bending strength was evaluated. The evaluation was shown by the number of times the test piece was broken by repeatedly applying a bending load to both ends of the test piece.
(Heat resistance); Example 1 (g)) A small piece (about 2 mm square and a thickness of 0.2 to 0.5 mm) of the coating material is cut out, the thin piece is set on a hot plate, and the temperature rising rate is set. (10° C./min), the temperature was raised to 200° C. at a constant rate, and changes in the external shape (melted state) of the strip during the temperature rising process were observed with a loupe to determine the heat resistance evaluation. The evaluation was made based on the melting temperature.

a8)主剤、硬化剤の貯蔵安定性評価;; 発泡等を抑止の目的で、無機粉体が原料(主剤、硬化剤)中に配合される。粉体、原料間の比重差に基づく、)相分離安定性を経時的に測定し評価した。 a8) Evaluation of storage stability of main agent and curing agent;; Inorganic powder is mixed in raw materials (main agent and curing agent) for the purpose of suppressing foaming and the like. The phase separation stability (based on the difference in specific gravity between the powder and the raw material) was measured and evaluated over time.

他の試験法の詳細については、該当する実施例中、又は表2及び表3で個別に説明し、実施例等の評価を優先した。   Details of the other test methods are described in the corresponding Examples or individually in Tables 2 and 3, and the evaluation of Examples and the like is given priority.

Figure 0006698981
Figure 0006698981

1.プレポリマーの短時間合成による特性と発泡抑止性の評価
(実施例1)
a)反応装置; 10mlガラスサンプル管(外径21mmφ高さ40mm)内に、温度計付の攪拌棒をセットし、ポリエチレン/セロテープ複合シート製のキャップを作製し、サンプル管にかぶせ、温度計付の攪拌棒を内封した。尚、キャップには、管内のN2ガス置換・吹き流し口、及び液剤(主剤、硬化剤の投入口を設け、サンプル管/キャップ管
の接続部等は湿気の混入を避けるため、セロテープ及び又は粘着テープで塞いだ。
b)発泡抑止剤の計量及び乾燥; 発泡抑止剤(表1;生石灰粉;1.0g)を10mlガラスサンプル管にとり約160〜180℃で30分間乾燥除湿した。
c)上記サンプル管に温度計付き攪拌棒をセットし、加熱アルミブロック(100x20mm角、中央サンプル管設置部(外径23mmx深さ15mm)にキャップを外したガラスサンプル管をセットし、アルミブロックを約150℃約20分間加熱して反応器内を十分に脱湿させた後、降温し、100℃に保持し、直ちにキャップを被せ密封した。N2ガス、及びサンプル投入口を開口、N2ガスを吹き流しながら管内をN2置換した。
1. Evaluation of properties and foam suppression by short-time synthesis of prepolymer (Example 1)
a) Reaction device: A stirring rod with a thermometer is set in a 10 ml glass sample tube (outer diameter 21 mmφ height 40 mm), a cap made of polyethylene/cellophane tape composite sheet is made, and the sample tube is covered with a thermometer. The stirring bar of was sealed. In addition, the cap is provided with a N2 gas replacement/blowing port in the tube and a liquid agent (main agent, curing agent input port), and the sample tube/cap tube connection part, etc., is covered with cellophane tape and/or adhesive tape in order to avoid mixing of moisture. I closed it with.
b) Weighing and drying of foam suppressing agent: The foam suppressing agent (Table 1; quicklime powder; 1.0 g) was placed in a 10 ml glass sample tube and dried and dehumidified at about 160 to 180°C for 30 minutes.
c) Set a stirring rod with a thermometer on the sample tube, set the glass sample tube with the cap removed to the heating aluminum block (100 x 20 mm square, central sample tube installation part (outer diameter 23 mm x depth 15 mm), and place the aluminum block on it. After heating at about 150° C. for about 20 minutes to sufficiently dehumidify the inside of the reactor, the temperature was lowered, the temperature was kept at 100° C., and a cap was immediately put on and sealed. The inside of the tube was replaced with N2 while blowing.

(d)最初に[表1]硬化剤(B1);P400/オクタンジオール(70/30質量%)混合液;0.68ml(予め1mlPPディスポ充填液; 4.27mg当量)を液剤投入口より滴下し、約1分間攪拌し発泡抑止剤を均一に分散させ1分間静置した。次いで、主剤(A1)コロネートMX 1.0ml(8.54mg当量)を同様に添加、直ちに、素早く、液剤投入口、及びN2の吹き流し口を閉じた。約2分間静置した。この間添加された2液は混合されることもなく液温(内温)は100℃を維持し反応による発熱は認められなかった。原料の当量比(NCO/OH比)は2/1であった。 (D) First, [Table 1] Curing agent (B1); P400/octanediol (70/30 mass%) mixed solution; 0.68 ml (1 ml PP disposable filling liquid; 4.27 mg equivalent) was dripped from the liquid agent inlet. Then, the foaming inhibitor was uniformly dispersed by stirring for about 1 minute and allowed to stand for 1 minute. Then, 1.0 ml (8.54 mg equivalent) of the main agent (A1) Coronate MX was added in the same manner, and immediately, the liquid agent charging port and the N2 blowoff port were quickly closed. Let stand for about 2 minutes. The two liquids added during this period were not mixed and the liquid temperature (internal temperature) was maintained at 100° C., and no heat generation due to the reaction was observed. The equivalent ratio (NCO/OH ratio) of the raw materials was 2/1.

(e)次いで両液を激しく手動混合混を開始すると殆ど瞬時に反応が開始され発熱し粘度上昇した、約30秒後には液温が130℃に到達確認後、直ちに反応管を加熱ブロックから取り外し空冷した。該生成液(内A1;130℃)は白色で気泡の無い易流動液であり、空冷時間の延長と共に液温が低下し、液温A2(;100℃)では流動液の粘度は顕著に増大し、約20分後、約80℃まで流動性を示し、約45℃(固化温度)で白色固体を得た。
(f)該反応管を、再度アルミブロックに設置し、再加熱すると、液温の上昇共に流動性は増大し、液温100℃、液温130℃の流動性は、それぞれ最初の流動性(A2、A1)と殆ど同等の流動性を保持した。該プレポリマー組成物流動性の熱可逆性を確認した。
(E) Then, when vigorous manual mixing and mixing of both liquids is started, the reaction is almost instantly started and heat is generated to increase the viscosity. After about 30 seconds, after confirming that the liquid temperature reaches 130°C, immediately remove the reaction tube from the heating block. Air cooled. The product solution (inside A1; 130°C) was a white, free-flowing liquid without bubbles, and the liquid temperature decreased with the extension of the air-cooling time, and the viscosity of the liquid liquid significantly increased at the liquid temperature A2 (;100°C). After about 20 minutes, it showed fluidity up to about 80°C, and a white solid was obtained at about 45°C (solidification temperature).
(F) When the reaction tube is installed again on the aluminum block and reheated, the fluidity increases with the rise of the liquid temperature, and the fluidity at the liquid temperature of 100° C. and the liquid temperature of 130° C. is the initial fluidity ( Almost the same fluidity as A2 and A1) was retained. The thermoreversibility of the fluidity of the prepolymer composition was confirmed.

「(g)発泡抑止性及び硬化物の評価」; 再加熱(130℃)の加熱流動液を回収し、該生成物の評価を行うため、キャップを取り外し内封した攪拌棒で該流動液を取り出し、該流動液を、100mm角PP板上に帯状に全面塗布し(厚さ、0.1〜2mm、、巾3〜10mm)し、常温(室内)で放置(1〜30日間経時測定)し、湿気硬化性(1日後)、発泡抑止性、他硬化物特性(折り曲げ強度、耐熱性、)を測定した。該塗布物は熱硬化型に転換、強度は強靱であり、耐熱は150℃以上(架橋体形成を意味)を示した。又、硬化物に発泡が大幅に減少、発泡抑止剤の効果が顕著であることを確認した。試験条件並びに結果を[表2]に示した。 "(G) Evaluation of foam-inhibiting property and cured product"; In order to recover the heated fluidized liquid after reheating (130°C) and evaluate the product, remove the fluidized liquid with a stirring rod with a cap removed. The liquid is taken out, the entire surface of the 100 mm square PP plate is applied in a strip shape (thickness, 0.1 to 2 mm, width, 3 to 10 mm) and left at room temperature (indoor) (measured with time for 1 to 30 days). Then, the moisture curability (after 1 day), the foam inhibiting property, and other cured product properties (folding strength, heat resistance) were measured. The coated product was converted to a thermosetting type, the strength was tough, and the heat resistance was 150° C. or higher (meaning formation of a crosslinked body). It was also confirmed that foaming was significantly reduced in the cured product, and the effect of the foaming inhibitor was remarkable. The test conditions and the results are shown in [Table 2].

Figure 0006698981
Figure 0006698981

(実施例2)
実施例1で使用した発泡防止剤として、0,5gに減量使用した他は、実施例1に準じて実施した。試験条件及び結果を[表2]に併記した。該表より、プレポリマーの諸特性は実施例1並みを示したが、発砲抑止剤の減量による発泡抑止性の低下傾向が見える。
(実施例3)
実施例1で使用した発泡防止剤として、1,5gに増量した他は、実施例1に準じて実施した。試験条件及び結果
を[表2]に併記した。該表より、プレポリマーの諸特性は実施例1並みを示し、発砲抑止剤の増量による発泡抑止性の向上傾向が見える。
(Example 2)
As the antifoaming agent used in Example 1, it carried out according to Example 1 except that the amount was reduced to 0.5 g. The test conditions and results are also shown in [Table 2]. From the table, although the various properties of the prepolymer were similar to those of Example 1, the tendency of the foaming inhibitory property to decrease due to the decrease in the amount of the foaming inhibitor can be seen.
(Example 3)
As the antifoaming agent used in Example 1, it carried out according to Example 1 except having increased to 1.5 g. The test conditions and results are also shown in [Table 2]. From the table, various properties of the prepolymer are on par with those of Example 1, and it can be seen that the foaming inhibitory property tends to be improved by increasing the amount of the foaming inhibitor.

(実施例4)
プレポリマー合成の反応温度130℃に昇温反応させた他は、実施例1に準じて実施した。結果も略実施例1と同等であった。試験結果等を該表に併記した。
(実施例5)
主剤(A1)コロネートMX;1.5ml(12.8mg当量)を使用、NCO/OH比を3/1に変えた他は、他は[表2]に示すプレポリマー合成条件で、操作等は実施例1に準じて実施した。試験結果等を該表に併記した。
(実施例6)
硬化剤にP400; 0.85ml(4.27mg当量)を使用、他は[表2]に示すプレポリマー合成条件で、操作等は実施例1に準じて実施した。試験結果等を該表に併記した。
(実施例7)
硬化剤にP400; 0.85ml(4.27mg当量)と、触媒0.02%を使用、他は[表2]に示すプレポリマー合成条件で、操作等は実施例1に準じて実施した。試験結果等を該表に併記した。
(実施例8)
主剤にN−2023; 2.3ml(8.54mg当量)、触媒;0.02%使用、他は[表2]に示すプレポリマー合成条件で、操作等は実施例1に準じて実施した。試験結果等を該表に併記した。
(実施例9)
実施例1と同一処方で、但し、発泡抑止剤(CaO)に主剤を添加、混合均一液とした後、硬化剤を添加した。他は、実施例1に準じ実施した。試験結果等を該表に併記した。
(Example 4)
Prepolymer synthesis was carried out in the same manner as in Example 1 except that the reaction temperature was raised to 130°C. The result was substantially the same as in Example 1. The test results and the like are also shown in the table.
(Example 5)
Main agent (A1) Coronate MX; 1.5 ml (12.8 mg equivalent) was used, except that the NCO/OH ratio was changed to 3/1, the other conditions were the prepolymer synthesis conditions shown in [Table 2], and the operation, etc. It carried out according to Example 1. The test results and the like are also shown in the table.
(Example 6)
0.85 ml (4.27 mg equivalent) of P400 was used as a curing agent, the other conditions were the prepolymer synthesis conditions shown in [Table 2], and the operation and the like were carried out according to Example 1. The test results and the like are also shown in the table.
(Example 7)
P400; 0.85 ml (4.27 mg equivalent) and 0.02% of catalyst were used as the curing agent, and the other conditions were the prepolymer synthesis conditions shown in [Table 2]. The test results and the like are also shown in the table.
(Example 8)
The main ingredient was N-2023; 2.3 ml (8.54 mg equivalent), catalyst: 0.02% was used, the other conditions were the prepolymer synthesis conditions shown in [Table 2], and the operation and the like were carried out according to Example 1. The test results and the like are also shown in the table.
(Example 9)
The same formulation as in Example 1 was used, except that the main agent was added to the foaming inhibitor (CaO) to prepare a uniform mixed solution, and then the curing agent was added. Others were carried out according to Example 1. The test results and the like are also shown in the table.

(比較例1)
発泡抑止剤の未使用下で、他は実施例1に準じて実施した。試験条件及び結果は[表2]に併記した。該表よりプレポリマー組成物の諸特性は十分で実施例1を凌ぐ(発熱が大きく最高150度を記録、瞬時合成は短時間)ものもあったが、硬化物の発泡が著しかった。発泡抑止については発泡抑止剤の効果を確認した。
(比較例2)
発泡抑止剤の未使用下で、主剤に(A1)コロネートMX;0.65ml(5.54mg当量)を使用、NCO/OH比1.3/1で、他は[表2]に示すプレポリマー合成条件で、操作等は、比較例1に準じて実施した。試験結果等を該表に併記した。短時間(瞬時)合成の遅れが観察された。
(比較例3)
発泡抑止剤の未使用下で、主剤にミリオネートMR200;0.94ml(8.54mg当量)を使用して、他は[表2]に示すプレポリマー合成条件で、操作等は比較例1に準じて実施した。試験結果等を該表に併記した。反応中にゲル化
したため、以降の試験は中止した。
(比較例4)
発泡抑止剤の未添加系で、硬化剤にポリカーボネートジオールT5650E; 0.5ml(2.20mg当量)、主剤にHDI系のプレポリマーD201;1.0ml(4.42mg当量)触媒;0.02%を使用した。他は[表2]に示すプレポリマー合成条件で、操作等は比較例1に準じて実施した。試験結果等を該表に併記した。
(Comparative Example 1)
The same procedure as in Example 1 was carried out except that no foam inhibitor was used. The test conditions and results are also shown in [Table 2]. According to the table, various properties of the prepolymer composition were sufficient and exceeded those of Example 1 (there was a large amount of heat generation, a maximum of 150°C was recorded, and instantaneous synthesis was short time), but foaming of the cured product was remarkable. Regarding the suppression of foaming, the effect of the foam suppressing agent was confirmed.
(Comparative example 2)
(A1) Coronate MX; 0.65 ml (5.54 mg equivalent) was used as the main component in the absence of a foam inhibitor, the NCO/OH ratio was 1.3/1, and the other prepolymers shown in [Table 2]. Operations and the like were performed according to Comparative Example 1 under the synthesis conditions. The test results and the like are also shown in the table. A short (instantaneous) synthesis delay was observed.
(Comparative example 3)
In the absence of an effervescent suppressor, Millionate MR200; 0.94 ml (8.54 mg equivalent) was used as the main component, the other conditions were the prepolymer synthesis conditions shown in [Table 2], and the operation was performed in accordance with Comparative Example 1. Carried out. The test results and the like are also shown in the table. Subsequent tests were stopped due to gelation during the reaction.
(Comparative example 4)
Polyethylene diol T5650E; hardener, 0.5 ml (2.20 mg equivalent), HDI prepolymer D201; 1.0 ml (4.42 mg equivalent) catalyst; 0.02% It was used. The other conditions were the prepolymer synthesis conditions shown in [Table 2], and the operations and the like were carried out according to Comparative Example 1. The test results and the like are also shown in the table.

1)(実施例1〜9);発泡抑止剤添加系の考察
(a)発泡抑止性能; 発泡抑止剤としての生石灰(CaO)の添加効果は発泡抑止性能顕著である(実施例1〜9)。
これに対し、抑止剤の未添加品系(比較例1〜4)では、発泡を抑止することは出来なかった。
発泡抑止剤添加系では、添加増により発泡抑制効果が増大する傾向、その反面加熱時流動性が低下傾向を示した。又、強度面では、折り曲げ強度が低下する傾向を示した。硬化物の耐熱性(150度以上)、実用性能は十分と考えられる。又、該抑止剤の添加は、未添加系(比較例1)に比べ、発熱温度の低下が見られ、発熱緩和効果が予想される。
1) (Examples 1 to 9); Consideration of foam suppressor addition system
(A) Foam suppression performance: The effect of adding quick lime (CaO) as a foam suppression agent is remarkable for foam suppression performance (Examples 1 to 9).
On the other hand, it was not possible to suppress foaming in the system in which the inhibitor was not added (Comparative Examples 1 to 4).
In the foam suppressor-added system, the foam-suppressing effect tended to increase with increasing addition, while the fluidity upon heating tended to decrease. In terms of strength, the bending strength tended to decrease. It is considered that the cured product has sufficient heat resistance (150 degrees or more) and practical performance. In addition, the addition of the depressant shows a lower exothermic temperature than the non-added system (Comparative Example 1), and is expected to have an exothermic effect.

(b)プレポリマーの短時間合成); 無触媒下で、合成時間として30秒以下の短時間合成を達成(実施例7は触媒添加しているが若干遅い、更に触媒の増量により、30秒以下が可能と理解される。
(c)常温冷却に固化・固着性; 固化温度として、何れも35〜45℃の範囲にあり、実用性能は十分と考えられる。
(d)他の性能面については、表2纏め、この結果からも、発泡を抑止すると共に性能面でも十分と考えられる。
(B) Short-time synthesis of prepolymer); A short-time synthesis of 30 seconds or less was achieved in the absence of a catalyst (in Example 7, a catalyst was added, but it was slightly slower, and 30 seconds due to an increase in the amount of the catalyst). It is understood that the following is possible:
(C) Solidification/fixing property when cooled at room temperature; The solidification temperature is in the range of 35 to 45° C., and practical performance is considered sufficient.
(D) Other performance aspects are summarized in Table 2, and also from this result, it is considered that foaming is suppressed and the performance is sufficient.

2)(比較例1〜4);発泡抑止剤未添加系の考察
a)比較例1は実施例1の発泡抑止剤抜きの対比試験である
b)比較例2は、比較例1のNCO/OH系の影響を見た(NCO/OH;1/3)もので、プレポリマーの分子量が上がり
反応時間が(反応収束性)遅くなったためと考えられる。
C)比較例3は主剤に≒2.5官能のミリオネートMR200使用したためか、反応中にゲル化した。おそらく合成時
ゲル化(架橋反応)が生じたことによると考えられる。
d)比較例4は、非MDI系の例として、HDI/T5650E系の事例である。触媒添加(0.02%)でも、反応時間が長く、速硬化性の点で不利に作用した。
2) (Comparative Examples 1 to 4); Consideration of System without Addition of Foam Inhibitor a) Comparative Example 1 is a comparison test of Example 1 without the foam inhibitor.
b) Comparative Example 2 is the one in which the effect of the NCO/OH system of Comparative Example 1 was observed (NCO/OH; 1/3) because the molecular weight of the prepolymer increased and the reaction time (reaction convergence) was delayed. Conceivable.
C) In Comparative Example 3, gelation occurred during the reaction, probably because Millionate MR200 having a function of 2.5 was used as the main component. Probably because gelation (crosslinking reaction) occurred during synthesis.
d) Comparative Example 4 is an example of HDI/T5650E system as an example of non-MDI system. Even with the addition of a catalyst (0.02%), the reaction time was long, and it was disadvantageous in terms of fast curing.

以上表2に実施例及び比較例を示したが、これは単なる事例を示したものであって、本発明はこれらに制約を受けるものでは無い。 Examples and comparative examples are shown in Table 2 above, but these are merely examples, and the present invention is not limited thereto.

2.発泡抑止剤及び沈降防止剤の液剤(硬化剤、主剤)への配合試験
(実施例10)
配合試験(実験番号10-1〜10-13)
a)発泡抑止剤(実施例1の硬化剤への添加量に相当)及び沈降防止剤の所定量([表3]に示す)を10mlガラスサンプル管にとり約160〜180℃で30分間乾燥除湿した。次いで、c)上記サンプル管に攪拌棒をセットし、加熱アルミブロック(100x20mm角、中央サンプル管設置部(外径23mmx深さ15mm)に移し、キャップを外したガラスサンプル管をセットし、アルミブロックを約150℃約20分間加熱して反応器内を十分に脱湿させた後、降温し、100℃に保持し、硬化剤(ジオール)1ml添加、、同温度で約2分間混合均一流動液を得た。直ちにキャップを被せ密封した。
b)該サンプル管液剤をブロック板から取り外し、常温中(25度)で貯留、試験に供した。配合処方並びに試験結果を[表3]に併記した。
2. Test of compounding foaming inhibitor and anti-settling agent with liquid agent (curing agent, main agent) (Example 10)
Blending test (Experiment No. 10-1 to 10-13)
a) A foaming inhibitor (corresponding to the amount added to the curing agent of Example 1) and a predetermined amount of the anti-settling agent (shown in [Table 3]) are placed in a 10 ml glass sample tube and dried and dehumidified at about 160 to 180°C for 30 minutes. did. Next, c) set a stirring rod on the sample tube, transfer to a heating aluminum block (100 x 20 mm square, central sample tube installation part (outer diameter 23 mm x depth 15 mm), set the glass sample tube with the cap removed, and set the aluminum block After heating at about 150°C for about 20 minutes to sufficiently dehumidify the inside of the reactor, lower the temperature, hold at 100°C, add 1 ml of curing agent (diol), and mix for about 2 minutes at the same temperature. Immediately, a cap was put on and sealed.
b) The sample tube liquid agent was removed from the block plate, stored at room temperature (25 degrees), and subjected to the test. The formulation and test results are also shown in [Table 3].

Figure 0006698981
Figure 0006698981

表3より次のことが言える。
c)相分離安定性は、沈降防止剤の添加により、発泡防止剤(生石灰粉)の沈降をおそえることが出来る。
沈降防止剤の添加適正量は、液剤に対し、1〜5%程度である。5%以上の添加では、安定性は保持されるが、流動性の低下が目立ち、又、製品のコストアップ要因となり、意味が無い。又、沈降防止剤間(疎水性及び親水性)では、特に差は無かった。
The following can be said from Table 3.
c) The stability of phase separation can be controlled by adding an anti-settling agent to prevent the anti-foaming agent (quick lime powder) from settling.
The proper addition amount of the anti-settling agent is about 1 to 5% with respect to the liquid agent. When added in an amount of 5% or more, the stability is maintained, but the fluidity is conspicuously reduced, and the cost of the product is increased, which is meaningless. In addition, there was no particular difference between the anti-settling agents (hydrophobic and hydrophilic).

(比較例5)
配合試験(実験番号5-1〜5-4)
a)発泡抑止剤としてゼオライト粉、又、充填剤としての炭カル粉を使用して、実施例10の要領で、[表3]に示す処方で試験を実施、結果を該表に併記した。
表3より次のことが言える。
ゼオライト粉系は、湿気架橋源の反応剤として必須成分の水をも、吸着する性質があるためか、生石灰粉に比べ、操作性に微妙な調整を要し、相分離安定性及び流動性安定性共、生石灰粉より低下する傾向が認めらた。
又、炭カル粉は相分離安定性及び流動性とも良好であった。
(Comparative example 5)
Compounding test (Experiment No. 5-1 to 5-4)
a) Using zeolite powder as a foaming inhibitor and calcium carbonate powder as a filler, a test was conducted according to the formulation shown in [Table 3] as in Example 10, and the results are also shown in the table.
The following can be said from Table 3.
Zeolite powder system has a property of adsorbing water, which is an essential component as a reaction agent of moisture crosslinking source, probably because it requires fine adjustment in operability compared to quick lime powder, and it has stable phase separation and stable fluidity. It was observed that the sex was lower than that of quicklime powder.
In addition, calcium carbonate powder was good in both phase separation stability and fluidity.

3.発泡抑止剤及び沈降防止剤を事前に配合・調整した硬化剤と主剤を使用した硬化性試験;
上記事前調整した硬化剤の硬化性及び発泡抑止性への影響を見るための試験を行った。
(実施例11)
a)配合試薬; 硬化剤は実施例10(実験番号11)常温7日後の貯蔵液(CaO≒60%含有)の1,70gを試験に使用。硬化処方は、硬化剤(P400/PD9混合液); 0.70g(0.42mg当量)、主剤;コロネートMX;1.22g(0.84mg当量)、発泡抑止剤;CaO; 1.0gである。
b)予備操作及び硬化性試験は、硬化剤は上記実験番号11、と主剤はMXの2成分系にて、実施例1準じて実施した。その結果は、略、実施例1と略同等の結果(発泡抑止性、加熱時流動性良好、合成時間は30秒以下、固着温度は≒40℃)が得られた。その他の硬化物物性も良好であった。この事から事前調整品の影響はないものと考えられ、本発明の妥当性を裏づける。
3. Curability test using a curing agent and a base compound that are pre-blended and adjusted with a foam inhibitor and an anti-settling agent;
A test was conducted to see the effect of the pre-adjusted curing agent on the curability and foam suppression.
(Example 11)
a) Compounding reagent: As a curing agent, 1,70 g of a storage solution (containing CaO≈60%) stored in Example 10 (Experiment No. 11) at room temperature for 7 days was used for the test. The curing formulation is a curing agent (P400/PD9 mixed solution): 0.70 g (0.42 mg equivalent), a main agent: Coronate MX; 1.22 g (0.84 mg equivalent), a foam inhibitor: CaO; 1.0 g. ..
b) Preliminary operations and curability tests were carried out in accordance with Example 1 using a two-component system in which the curing agent was Experiment No. 11 and the main agent was MX. As a result, substantially the same results as in Example 1 were obtained (foaming inhibiting property, good fluidity during heating, synthesis time of 30 seconds or less, and fixing temperature of 40° C.). Other physical properties of the cured product were also good. From this fact, it is considered that there is no influence of the pre-adjusted product, which supports the validity of the present invention.

以上、実施例は、本発明のモデル的(実際の試験機との対応を想定)な試験であるが、現行技術の優れた特性を維持しつつ、課題である、発泡抑止等の改善を示すことが出来、本発明の有用性が理解される。   As described above, the example is a model test of the present invention (assuming correspondence with an actual tester), and shows improvement of problems such as foam inhibition, while maintaining excellent characteristics of the current technology. It is possible to understand the usefulness of the present invention.

簡易型フレキシブル居所排気装置の概念図である。It is a conceptual diagram of a simple type flexible residential exhaust device.

10 加熱蒸気吸入口
11 排気導管(パイプ)
12 トラップ槽(逆流防止槽)
13 吸収槽
14 排出用ポンプ
15 排出口
16 装置台座(ボックス)
(参考)本発明の反応装置(点線内)
A1 主剤貯留槽
A2 硬化剤貯留槽
B1 主剤ポンプ
B2 硬化剤ポンプ
C 混合機モーター
D 攪拌機
E 加熱反応機
F 吐出口
G 溶融塗布体
H 被着材
10 Heated steam inlet 11 Exhaust conduit
12 Trap tank (backflow prevention tank)
13 Absorption Tank 14 Pump for Discharge 15 Discharge Port 16 Device Pedestal (Box)
(Reference) Reaction device of the present invention (inside the dotted line)
A1 Main agent storage tank A2 Hardener storage tank B1 Main agent pump B2 Hardener pump C Mixer motor D Stirrer E Heating reactor F Discharge port G Melt coating material H Adherent

Claims (2)

プレポリマーの製造と吐出・塗布を同時に行う装置を使用した、湿気硬化型末端イソシ アネートプレポリマー組成物の製造方法であって、(i)(A)主剤は、常温(25℃)で 液状のMDI系のポリイソシアネート、(B)硬化剤は、常温で液状のポリオール、(C )炭酸ガス吸収、反応の除去剤としての、生石灰(CaO)の乾燥粉体を、発泡防止剤として、主剤、硬化剤の何れか一方又は双方に含有させ、(ii)該前記主剤及び硬化剤を使用 、常時一定比率で、加熱された混合機兼反応機に供給し、主剤及び硬化剤の反応条件は、NCO/OH基比が1.4/1 〜5.0/1、反応温度が60〜170℃及び反応時間が1〜120秒の範囲に有り加熱下短時間反応で得られる組成物は、a)該組成物中の発泡防止剤含有率が5〜60質量%,b)短時間合成性、c)加熱時流動性及びd)該流動吐出液の常温下における瞬時固化性に優れ、e)該固化後の湿気硬化時における硬化物の発泡抑止性を有することを特徴とする、湿気硬化型末端イソシアネートプレポリマー組成物の製造方法。 A method for producing a moisture-curable terminal isocyanate prepolymer composition, which uses an apparatus for simultaneously producing, discharging and applying a prepolymer, wherein (i) (A) the main component is liquid at room temperature (25°C). of MDI-based polyisocyanate, (B) curing agent, a polyol liquid at room temperature, (C) carbon dioxide absorption, as removing agent for the reaction, a dry powder of quicklime (CaO), as blowing agents, the main agent , it is contained in either or both of the curing agent, (ii) using the said base resin and curing agent, at all times a constant ratio, and supplied to the heated mixer and reactor, reaction conditions main agent and curing agent , NCO / OH group ratio of 1.4 / 1 to 5.0 / 1, the reaction temperature is 60 to 170 ° C. and the reaction time is in the range of 1 to 120 seconds, composition obtained by the heating under short reaction time A ) the content of the antifoaming agent in the composition is 5 to 60% by mass, b ) the short-time synthesizing property, c) the fluidity upon heating, and d) the instantaneous solidification property of the fluid discharge liquid at room temperature. E) A method for producing a moisture-curable terminal isocyanate prepolymer composition, which has a foam-inhibiting property of a cured product at the time of moisture curing after solidification. 上記のポリイソシアネートがジイソシアネートであり、且つジイソシアネートの含有率 (対全量ポリイソシアネートに対する)が70質量%以上であり、又ポリオールがジオー ルであり、且つジオールの含有率(対全量ポリオールに対する)が70質量%以上である ことを特徴とする、請求項1に記載の湿気硬化型末端イソシアネートプレポリマー組成物 の製造方法。 The above polyisocyanate is diisocyanate, the diisocyanate content (based on the total amount of polyisocyanate) is 70% by mass or more, the polyol is diol, and the diol content (based on the total amount of polyol) is 70% by mass. The method for producing the moisture-curable terminal isocyanate prepolymer composition according to claim 1, wherein the content is at least mass %.
JP2019076913A 2019-04-15 2019-04-15 A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing. Active JP6698981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076913A JP6698981B1 (en) 2019-04-15 2019-04-15 A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076913A JP6698981B1 (en) 2019-04-15 2019-04-15 A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing.

Publications (2)

Publication Number Publication Date
JP6698981B1 true JP6698981B1 (en) 2020-05-27
JP2020176160A JP2020176160A (en) 2020-10-29

Family

ID=70776079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076913A Active JP6698981B1 (en) 2019-04-15 2019-04-15 A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing.

Country Status (1)

Country Link
JP (1) JP6698981B1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188455A (en) * 1984-03-08 1985-09-25 Mitui Toatsu Chem Inc Moisture-curing, one-component polyurethane composition
JPH0749517B2 (en) * 1985-12-23 1995-05-31 出光石油化学株式会社 Paste-shaped hygroscopic material composition for polyurethane or polyurethane prepolymer
CA2261222A1 (en) * 1996-08-27 1998-03-05 Teruko Uchimi Miyazaki Polyurethane-isocyanurate casting systems with high heat deflection temperatures
JP3946672B2 (en) * 2003-07-11 2007-07-18 株式会社アレン Way bed stabilization method
JP4225488B2 (en) * 2004-01-14 2009-02-18 オート化学工業株式会社 Environment-friendly curable composition and method for producing the same
JP2006036881A (en) * 2004-07-26 2006-02-09 Auto Kagaku Kogyo Kk Curable composition
JP5303899B2 (en) * 2006-10-27 2013-10-02 旭硝子株式会社 One-part moisture curable adhesive
JP5279184B2 (en) * 2006-12-19 2013-09-04 アイカ工業株式会社 Coating material composition
JP5429680B2 (en) * 2007-11-02 2014-02-26 日本ポリウレタン工業株式会社 Reaction curable polyurethane resin composition and two-component reaction curable polyurethane adhesive using the composition
JP2009114247A (en) * 2007-11-02 2009-05-28 Nippon Polyurethane Ind Co Ltd Reactive curable polyurethane resin composition, and two-component reactive curable polyurethane adhesive using the same
JP2009122048A (en) * 2007-11-16 2009-06-04 Toppan Printing Co Ltd Carbon dioxide gas indicator, and package
CN102101970A (en) * 2010-12-17 2011-06-22 深圳职业技术学院 Moisture curable polyurethane coating foam inhibitor and foam inhibiting process thereof
JP5853295B1 (en) * 2015-07-17 2016-02-09 洋 岡井 Moisture curable polyurethane prepolymer with reduced residual monomer content

Also Published As

Publication number Publication date
JP2020176160A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
CN110172323B (en) Solvent-resistant epoxy modified polyurethane sealant and preparation method thereof
EP3224293B1 (en) Multi-part polyurethane compositions, articles thereof, and method of making
KR101921985B1 (en) Crosslinker accelerator system for polyacrylates
JP4286234B2 (en) Urethane resin adhesive composition
JP6178865B2 (en) Fast curing adhesive useful for bonding to glass
JP5429680B2 (en) Reaction curable polyurethane resin composition and two-component reaction curable polyurethane adhesive using the composition
BR0210059B1 (en) a process for preparing a moisture cured melt glue granulate, single component melt glue composition in particulate or powder form and a process for gluing flat products or molded parts.
JP4239113B2 (en) Moisture-curing urethane composition for waterproof material and urethane waterproof material
WO2011115669A8 (en) Low temperature curing polyuretdione compositions
FR2782723A1 (en) POLYURETHANE FORMULATIONS BASED ON HYDROXYLATED POLYBUTADIENE CATALYZED BY AN IMIDAZOLE DERIVATIVE
JP4159472B2 (en) Adhesion promoter for reactive polyurethane
CN105885766B (en) A kind of environment-friendly high-intensity nail-free glue and preparation method thereof without organotin
JP2009114247A (en) Reactive curable polyurethane resin composition, and two-component reactive curable polyurethane adhesive using the same
JP2017206680A (en) Polyurea formative composition, polyurea coating film, and coating film formation method
EP2610321A1 (en) Moisture-curable hot-melt adhesive agent
JP6792570B2 (en) Adhesive compositions, adhesive layers and adhesive sheets
CN113736425B (en) Self-adhesive liquid silicone rubber and preparation method thereof
CN109251711A (en) The preparation method of silane modified polyether seal glue
CN105392858A (en) Laminate adhesive composition
JP6698981B1 (en) A method for producing a moisture-curable terminal isocyanate prepolymer composition and a device for suppressing foaming during moisture curing.
EP2844714B1 (en) Two-component hot-melt adhesive
JP2009013415A (en) Method for producing reactive hot-melt curable composition and coater
JP5853295B1 (en) Moisture curable polyurethane prepolymer with reduced residual monomer content
WO2017014188A1 (en) Adhesive composition and production method for adhesive composition
CN116162434A (en) Epoxy modified low-VOC (volatile organic compound) double-component polyurethane adhesive and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190415

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6698981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250