JP6697118B2 - Film forming apparatus, film forming method, and solar cell manufacturing method - Google Patents

Film forming apparatus, film forming method, and solar cell manufacturing method Download PDF

Info

Publication number
JP6697118B2
JP6697118B2 JP2019146379A JP2019146379A JP6697118B2 JP 6697118 B2 JP6697118 B2 JP 6697118B2 JP 2019146379 A JP2019146379 A JP 2019146379A JP 2019146379 A JP2019146379 A JP 2019146379A JP 6697118 B2 JP6697118 B2 JP 6697118B2
Authority
JP
Japan
Prior art keywords
substrate
film
substrate holder
transport
vacuum annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019146379A
Other languages
Japanese (ja)
Other versions
JP2020033641A (en
Inventor
淳介 松崎
淳介 松崎
高橋 明久
明久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of JP2020033641A publication Critical patent/JP2020033641A/en
Application granted granted Critical
Publication of JP6697118B2 publication Critical patent/JP6697118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、真空中で基板の両面上にスパッタリングによって成膜を行う成膜装置の技術に関し、特にヘテロ接合型太陽電池の基板の両面上に透明導電酸化物膜を形成する技術に関する。   The present invention relates to a technique of a film forming apparatus that forms a film on both surfaces of a substrate in a vacuum, and particularly to a technique of forming a transparent conductive oxide film on both surfaces of a substrate of a heterojunction solar cell.

近年、クリーンで安全なエネルギー源として太陽電池が実用化されているが、その中でも、ヘテロ接合型の太陽電池に注目が集まっている。   In recent years, solar cells have been put to practical use as clean and safe energy sources, and among them, attention has been paid to heterojunction solar cells.

図19は、一般的なヘテロ接合型太陽電池セルの概略構成を示す断面図である。
図19に示すように、このヘテロ接合型太陽電池セル100は、n型結晶シリコン基板101の一方側(太陽光側)の面上に、i型アモルファスシリコン層102、p型アモルファスシリコン層103、第1の透明導電酸化物膜104、電極層105が順次形成され、さらに、n型結晶シリコン基板101の他方側の面上に、i型アモルファスシリコン層106、n型アモルファスシリコン層107、第2の透明導電酸化物膜108、電極層109が順次形成されて構成されている。
FIG. 19 is a sectional view showing a schematic configuration of a general heterojunction solar cell.
As shown in FIG. 19, this heterojunction solar cell 100 has an i-type amorphous silicon layer 102, a p-type amorphous silicon layer 103, and a p-type amorphous silicon layer 103 on one surface (sunlight side) of an n-type crystalline silicon substrate 101. A first transparent conductive oxide film 104 and an electrode layer 105 are sequentially formed, and an i-type amorphous silicon layer 106, an n-type amorphous silicon layer 107, and a second layer are formed on the other surface of the n-type crystalline silicon substrate 101. The transparent conductive oxide film 108 and the electrode layer 109 are sequentially formed.

ヘテロ接合型太陽電池は、シリコンウエハをアモルファスシリコン層パッシベーションすることによって、界面の発電損失を大幅に低減できることから、従来の結晶太陽電池と比較して変換効率が高く、シリコンの使用量を減らすことができる等の利点がある。   Heterojunction solar cells have a higher conversion efficiency and a lower silicon consumption than conventional crystalline solar cells because the power generation loss at the interface can be significantly reduced by passivating the silicon wafer to the amorphous silicon layer. There are advantages such as

また、ヘテロ接合型太陽電池は、n型結晶シリコン基板を挟んで両面側で発電が可能であるため、高い発電効率を達成することができるという利点もある。   In addition, the heterojunction solar cell has an advantage that it can achieve high power generation efficiency because it can generate power on both sides with the n-type crystalline silicon substrate sandwiched therebetween.

しかし、ヘテロ接合型太陽電池は、n型結晶シリコン基板の両面側に例えば酸化インジウムからなる透明導電酸化物膜が存在することに起因する問題がある。   However, the heterojunction solar cell has a problem due to the presence of transparent conductive oxide films made of, for example, indium oxide on both sides of the n-type crystalline silicon substrate.

すなわち、受光面側の透明導電酸化物膜は、特に低い抵抗値と高い光透過率が求められ、この高い光透過率は、可視光領域のみならず近赤外領域においても求められ、これを達成するためには、キャリアの高い移動度が必要である。   That is, the transparent conductive oxide film on the light-receiving surface side is required to have a particularly low resistance value and a high light transmittance, and this high light transmittance is required not only in the visible light region but also in the near infrared region. High carrier mobilities are required to achieve.

従来、キャリアの高い移動度を得る方法として、スパッタリング法によって透明導電酸化物膜を成膜する際に水素を含むスパッタガスを用いることが知られている。   Conventionally, as a method for obtaining a high carrier mobility, it is known to use a sputtering gas containing hydrogen when forming a transparent conductive oxide film by a sputtering method.

これは、より大きな結晶粒を形成させキャリアのトラップの原因となる結晶粒界を減少させることがキャリアの移動度を高めることに寄与している。   This contributes to increase the mobility of carriers by forming larger crystal grains and reducing the crystal grain boundaries that cause carrier trapping.

キャリアの高い移動度を得るプロセスでは、スパッタリングによる成膜直後のアモルファスの膜に対し、アニール処理を行うことによって透明導電酸化物が結晶化しつつ粒が肥大化することでキャリアの高い移動度がもたらされる。   In the process of obtaining high carrier mobility, annealing is performed on an amorphous film immediately after film formation by sputtering, and the transparent conductive oxide is crystallized while the grains are enlarged, resulting in high carrier mobility. Be done.

このような従来技術においては、結晶シリコン太陽電池の電極を焼成によって形成する際の熱履歴を用いてアモルファス膜のアニール処理を行っているが、電極の焼成温度と焼成時間が電極材料の種類や成分によって異なるため、高品質で均一な透明導電酸化物膜を形成することは困難であった。   In such a conventional technique, the amorphous film is annealed by using the heat history when the electrode of the crystalline silicon solar cell is formed by firing. However, the firing temperature and firing time of the electrode are It is difficult to form a high-quality and uniform transparent conductive oxide film because it depends on the component.

また、アニール処理の温度が低い場合やアニール処理の時間が不十分である場合には透明導電酸化物膜本来の能力が十分に発揮されず、その結果として結晶シリコン太陽電池の発電効率が低下してしまうという問題があった。   Also, when the annealing temperature is low or the annealing time is insufficient, the original ability of the transparent conductive oxide film is not fully exerted, and as a result, the power generation efficiency of the crystalline silicon solar cell decreases. There was a problem that it would end up.

特開2011−146528号公報JP, 2011-146528, A

本発明は、このような従来の技術の課題を考慮してなされたもので、その目的とするところは、複数の基板保持器を用いる通過型の成膜装置において、例えばヘテロ接合型太陽電池に用いる基板の両面に高品質で均一な透明導電酸化物膜を形成する技術を提供することにある。   The present invention has been made in view of the above problems of the conventional technique, and an object thereof is to provide a pass-type film forming apparatus using a plurality of substrate holders, for example, in a heterojunction solar cell. It is an object of the present invention to provide a technique for forming a high-quality and uniform transparent conductive oxide film on both surfaces of a substrate to be used.

上記目的を達成するためになされた本発明は、搬送経路に沿って基板を搬送可能な真空槽と、前記真空槽内に設けられ、前記基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、前記第1の成膜領域の搬送方向下流側に設けられ、当該第1の成膜領域において前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構と、前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、前記第2の成膜領域の搬送方向下流側に設けられ、当該第2の成膜領域において前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構とを有し、前記第1の真空アニール処理機構と、前記第2の成膜領域との間に、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている成膜装置である。
本発明は、単一の真空雰囲気が形成される真空槽と、前記真空槽内に設けられ、基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、鉛直面に対する投影形状が一連の環状となるように形成され、前記第1及び第2の成膜領域を通過するように設けられた搬送経路と、前記基板の第1及び第2面が露出する開口部を有し且つ当該基板を水平状態に保持する基板保持器を、前記搬送経路に沿って搬送する基板保持器搬送機構とを備え、前記基板保持器搬送機構は、前記基板保持器を前記第1の成膜領域を通過するように第1の搬送方向に搬送する第1の搬送部と、前記基板保持器を前記第2の成膜領域を通過するように前記第1の搬送方向と反対の第2の搬送方向に搬送する第2の搬送部と、前記基板保持器を上下関係を維持した状態で前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する搬送折り返し部とを有し、前記第1の搬送部の前記第1の成膜領域の搬送方向下流側に、前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構が設けられるとともに、前記第2の搬送部の前記第2の成膜領域の搬送方向下流側に、前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構が設けられ、さらに、前記第2の搬送部の前記第2の成膜領域に対して前記第1の搬送方向側に、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている成膜装置である。
本発明は、真空中で基板を移動させながら当該基板の両面上にスパッタリングによって成膜を行う成膜方法であって、前記基板の第1面上にアモルファス状態の第1のスパッタ膜を形成する第1の成膜工程と、前記基板の第1面上の前記第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程と、前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程と、前記基板の第2面上の前記第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理工程とを有し、前記基板の第1面上の前記アモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程の後で且つ前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程の前において、前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進工程を有する成膜方法である。
本発明は、真空中で基板を移動させながら当該基板の両面上にスパッタリングによって成膜を行う成膜方法であって、前記基板の第1面上にアモルファス状態の第1のスパッタ膜を形成する第1の成膜工程と、前記基板の第1面上の前記第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程と、前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程と、前記基板の第2面上の前記第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理工程と、前記基板の第1面上の前記アモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程の後で且つ前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程の前において、前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進工程とを有し、前記基板が、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板であり、前記第1のスパッタ膜が第1の透明導電酸化物膜で、かつ、前記第2のスパッタ膜が第2の透明導電酸化物膜である成膜方法である。
本発明は、上記記載の成膜装置を用いた成膜方法であって、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによって第1のスパッタ膜を形成する第1の成膜工程と、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記第1のスパッタ膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1のスパッタ膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによって第2のスパッタ膜を形成する第2の成膜工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2のスパッタ膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法である
発明は、上記記載の成膜装置を用いた太陽電池の製造方法であって、前記基板として、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板を用意し、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによってアモルファス状態の第1の透明導電酸化物膜を形成する工程と、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記アモルファス状態の第1の透明導電酸化物膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1のスパッタ膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによってアモルファス状態の第2の透明導電酸化物膜を形成する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記アモルファス状態の第2の透明導電酸化物膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する太陽電池の製造方法である
The present invention, which has been made to achieve the above object, includes a vacuum chamber capable of transporting a substrate along a transport path, and a first chamber provided in the vacuum chamber for forming a film on a first surface of the substrate. A first film forming region having a sputtering source, and an amorphous state formed on the first surface of the substrate in the first film forming region on the downstream side in the transport direction. A first vacuum annealing treatment mechanism for performing a vacuum annealing treatment on the first sputtered film, and a second sputtering source provided in the vacuum chamber for forming a film on the second surface of the substrate. Second film formation region and a second sputter film in an amorphous state, which is provided on the downstream side in the transport direction of the second film formation region and is formed on the second surface of the substrate in the second film formation region. It has a second vacuum annealing processing mechanism for performing a vacuum annealing process on the a first vacuum annealing mechanism, between the second film formation region, the first vacuum annealing mechanism The film forming apparatus is provided with an annealing accelerating vacuum annealing mechanism that further performs a vacuum annealing process on the first sputtered film on the first surface of the substrate that has been vacuum annealed by .
The present invention relates to a vacuum chamber in which a single vacuum atmosphere is formed, and a first film forming region provided in the vacuum chamber and having a first sputtering source for forming a film on a first surface of a substrate. A second film formation region provided in the vacuum chamber and having a second sputtering source for forming a film on the second surface of the substrate, and a projection shape on the vertical plane formed in a series of annular shapes And has a transport path provided so as to pass through the first and second film forming regions and an opening through which the first and second surfaces of the substrate are exposed, and holds the substrate in a horizontal state. A substrate holder transport mechanism for transporting the substrate holder along the transport path, wherein the substrate holder transport mechanism is configured to pass the substrate holder through the first film formation region. A first transport unit that transports in the transport direction, and a second transport that transports the substrate holder in the second transport direction opposite to the first transport direction so as to pass through the second film formation region. And a transport fold back unit that folds and transports the substrate holder from the first transport unit toward the second transport unit while maintaining the vertical relationship of the substrate holder. A first vacuum annealing treatment mechanism is provided on the downstream side of the first film formation region in the transport direction for performing a vacuum annealing treatment on the amorphous first sputtered film formed on the first surface of the substrate. At the same time, a vacuum annealing process is performed on the second sputtered film in the amorphous state formed on the second surface of the substrate on the downstream side of the second film formation region of the second transfer section in the transfer direction. A second vacuum annealing treatment mechanism is provided , and further, a vacuum is applied by the first vacuum annealing treatment mechanism to the second conveyance direction side of the second conveyance section with respect to the first conveyance direction. The film forming apparatus is provided with an annealing accelerating vacuum annealing processing mechanism that further performs a vacuum annealing process on the first sputtered film on the first surface of the annealed substrate.
The present invention is a film forming method for forming a film by sputtering on both surfaces of a substrate while moving the substrate in a vacuum, and forming a first sputtered film in an amorphous state on the first surface of the substrate. A first film forming step, a first vacuum annealing step of performing a vacuum annealing process on the first sputtered film on the first surface of the substrate, and an amorphous state on the second surface of the substrate. a second film forming step of forming a second sputter film, and a second vacuum annealing step of performing vacuum annealing process on the second sputter film on the second surface of the substrate possess, After the first vacuum annealing process of performing the vacuum annealing process on the first sputtered film in the amorphous state on the first surface of the substrate, the second sputtered film in the amorphous state is formed on the second surface of the substrate. The film forming method includes an annealing promoting step of further performing a vacuum annealing process on the first sputtered film on the first surface of the substrate before the second film forming step of forming the sputtered film .
The present invention is a film forming method for forming a film by sputtering on both surfaces of a substrate while moving the substrate in a vacuum, and forming a first sputtered film in an amorphous state on the first surface of the substrate. A first film forming step, a first vacuum annealing step of performing a vacuum annealing process on the first sputtered film on the first surface of the substrate, and an amorphous state on the second surface of the substrate. A second film forming step of forming a second sputtered film; a second vacuum annealing step of performing a vacuum annealing process on the second sputtered film on the second surface of the substrate; A second sputtered film in an amorphous state is formed on the second surface of the substrate after the first vacuum annealing process of performing a vacuum annealing process on the first sputtered film in the amorphous state on the first surface. Before the second film forming step of forming, an annealing promoting step of further performing a vacuum annealing process on the first sputtered film on the first surface of the substrate , wherein the substrate is n-type crystalline silicon. An i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially provided on the first surface of the substrate, and an i-type amorphous silicon layer and an n-type amorphous silicon layer are provided on the second surface of the n-type crystalline silicon substrate. In the film forming method, the substrates are sequentially provided, the first sputtered film is a first transparent conductive oxide film, and the second sputtered film is a second transparent conductive oxide film.
The present invention is a film forming method using the above-described film forming apparatus, wherein the first holder of the substrate holder conveying mechanism allows the substrate holder to pass through the first film forming region. A first film forming step of forming a first sputtered film on the first surface of the substrate held by the substrate holder by sputtering, the first film being transported along the transport path in the first transport direction; The first carrier of the substrate holder carrying mechanism carries the substrate holder in the first carrying direction along the carrying path, with respect to the first sputtered film on the first surface of the substrate. A first vacuum annealing step of performing a vacuum annealing process by the first vacuum annealing process mechanism, and the transfer path in a state in which the substrate holder is maintained in a vertical relationship by a transfer folding portion of the substrate holder transfer mechanism. A step of folding the substrate holder from the first carrier portion toward the second carrier portion and carrying the substrate holder along the carrier path by a second carrier portion of the substrate holder carrier mechanism. With respect to the first sputtered film on the first surface of the substrate that has been transported in the second transport direction and has been vacuum-annealed by the first vacuum annealing processing mechanism, the annealing annealing vacuum annealing processing mechanism is used. Further, an annealing accelerating step of performing a vacuum annealing process, and a second transport unit of the substrate holder transport mechanism configured to move the substrate holder through the second film formation region so as to pass the second path along the second path. A second film forming step of forming a second sputtered film on the second surface of the substrate held by the substrate holder by sputtering, and a second step of the substrate holder conveying mechanism. The substrate holder is transported in the second transport direction along the transport path by the transport unit of the second vacuum annealing mechanism for the second sputtered film on the second surface of the substrate. And a second vacuum annealing treatment step in which the vacuum annealing treatment is performed .
The present invention is a method for manufacturing a solar cell using the film forming apparatus described above, wherein an i-type amorphous silicon layer and a p-type amorphous silicon layer are formed on the first surface of an n-type crystalline silicon substrate as the substrate. A substrate is provided in which the i-type amorphous silicon layer and the n-type amorphous silicon layer are sequentially provided on the second surface of the n-type crystalline silicon substrate, and the first transport of the substrate holder transport mechanism is performed. On the first surface of the substrate held by the substrate holder, the substrate holder being conveyed in the first conveying direction along the conveying path so as to pass through the first film formation region by a unit. A step of forming a first transparent conductive oxide film in an amorphous state by sputtering on the substrate holder, and a first carrier part of the substrate holder carrier mechanism for moving the substrate holder along the carrier path in the first carrier direction. A first vacuum annealing treatment step of carrying out vacuum annealing treatment to the first transparent conductive oxide film in the amorphous state on the first surface of the substrate by the first vacuum annealing treatment mechanism, A step of folding back and transporting the substrate holder along the transport path from the first transporting portion toward the second transporting portion in a state in which the transporting and folding portion of the substrate holder transporting mechanism maintains the vertical relationship. And the second holder of the substrate holder transfer mechanism transfers the substrate holder in the second transfer direction along the transfer path, and is vacuum annealed by the first vacuum annealing processing mechanism. An annealing promotion step of further performing a vacuum annealing treatment on the first sputtered film on the first surface of the substrate by the annealing promotion vacuum annealing treatment mechanism, and a second conveyance section of the substrate holder conveyance mechanism. The substrate holder is conveyed in the second conveyance direction along the conveyance path so as to pass through the second film formation region, and sputtering is performed on the second surface of the substrate held by the substrate holder. Forming a second transparent conductive oxide film in an amorphous state by means of: and carrying the substrate holder in the second carrying direction along the carrying path by the second carrying part of the substrate holder carrying mechanism. And a second vacuum annealing treatment step of subjecting the second transparent conductive oxide film in the amorphous state on the second surface of the substrate to the vacuum annealing treatment by the second vacuum annealing treatment mechanism. It is a manufacturing method of a battery .

本発明にあっては、真空中において、基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜(例えば第1の透明導電酸化物膜)に対して第1の真空アニール処理を行うとともに、基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜(例えば第2の透明導電酸化物膜)に対して第2の真空アニール処理を行うようにしたことから、これら結晶状態の例えば第1及び第2の透明導電酸化物膜の結晶粒を肥大化させることによってキャリアの移動度を向上させることができ、これにより例えばヘテロ接合型太陽電池に用いる基板の両面に高品質で均一な透明導電酸化物膜を形成することができ、しかも真空アニール処理は大気中のアニール処理に比べて高速で結晶化が進行するので、成膜及びアニール処理の効率を向上させることができる。   In the present invention, the first vacuum annealing treatment is performed on the first sputtered film (for example, the first transparent conductive oxide film) in an amorphous state formed on the first surface of the substrate in vacuum. Since the second vacuum annealing process is performed on the second sputtered film (for example, the second transparent conductive oxide film) in the amorphous state formed on the second surface of the substrate, The carrier mobility can be improved by enlarging the crystal grains of the first and second transparent conductive oxide films in a crystalline state, and thus, for example, it is possible to improve the mobility on both sides of the substrate used for the heterojunction solar cell. It is possible to form a transparent conductive oxide film of uniform quality, and since crystallization progresses faster in vacuum annealing than in atmospheric annealing, it is possible to improve the efficiency of film formation and annealing. it can.

また、基板の第1面上の第1のスパッタ膜に対して第1の真空アニール処理を行った後で基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する前に、基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うことにより、ある程度結晶化が進行したアモルファス状態の第1のスパッタ膜の結晶化の進行を促進させることができ、これにより基板の第1面上の結晶状態の第1のスパッタ膜のキャリアの移動度を向上させることができるので、例えばヘテロ接合型太陽電池に用いる基板の受光面側に高品質で均一な結晶状態の透明導電酸化物膜を形成することができる。 In addition , after performing the first vacuum annealing treatment on the first sputtered film on the first surface of the substrate and before forming the second sputtered film in an amorphous state on the second surface of the substrate, the substrate by further performing vacuum annealing process on the first sputter film on the first surface of the can to facilitate the progress of some degree crystallization of the first sputter film in an amorphous state in which crystallization has progressed, this As a result, it is possible to improve the carrier mobility of the first sputtered film in the crystalline state on the first surface of the substrate. Transparent conductive oxide film can be formed.

本発明に係る成膜装置の実施の形態の全体を示す概略構成図Schematic configuration diagram showing the entire embodiment of a film forming apparatus according to the present invention (a)(b):本実施の形態における基板保持器搬送機構及び方向転換機構の基本構成を示すもので、図2(a)は平面図、図2(b)は正面図(A) (b): It shows the basic configuration of the substrate holder transporting mechanism and the direction changing mechanism in the present embodiment. FIG. 2 (a) is a plan view and FIG. 2 (b) is a front view. (a)(b):本実施の形態に用いる基板保持器の構成を示すもので、図3(a)は平面図、図3(b)は側面図3A and 3B show the structure of the substrate holder used in the present embodiment. FIG. 3A is a plan view and FIG. 3B is a side view. 本実施の形態における方向転換機構の構成を示す正面図The front view which shows the structure of the direction change mechanism in this Embodiment. (a)〜(d):本実施の形態における透明導電酸化物膜の形成方法を示す断面工程図(A)-(d): Sectional process drawings showing the method for forming the transparent conductive oxide film in the present embodiment. 本実施の形態の成膜装置の動作を示す説明図(その1)Explanatory diagram showing the operation of the film forming apparatus of the present embodiment (Part 1) 本実施の形態の成膜装置の動作を示す説明図(その2)Explanatory diagram showing the operation of the film forming apparatus of the present embodiment (Part 2) 本実施の形態の成膜装置の動作を示す説明図(その3)Explanatory diagram showing the operation of the film forming apparatus of the present embodiment (Part 3) (a)(b):本実施の形態における基板保持器搬送機構の動作を示す説明図(その1)(A) (b): Explanatory drawing which shows operation | movement of the board | substrate holder conveyance mechanism in this Embodiment (the 1). (a)〜(c):本実施の形態における基板保持器搬送機構及び方向転換機構の動作を示す説明図(その1)(A)-(c): Explanatory drawing which shows operation | movement of the board | substrate holder conveyance mechanism in this Embodiment, and a direction change mechanism (the 1). (a)〜(c):本実施の形態における基板保持器搬送機構及び方向転換機構の動作を示す説明図(その2)(A)-(c): Explanatory drawing which shows operation | movement of the board | substrate holder conveyance mechanism in this Embodiment, and a direction change mechanism (the 2). (a)(b):本実施の形態における基板保持器搬送機構の動作を示す説明図(その3)(A) (b): Explanatory drawing which shows operation | movement of the board | substrate holder conveyance mechanism in this Embodiment (the 3). 本実施の形態の成膜装置の動作を示す説明図(その4)Explanatory drawing (4) which shows operation | movement of the film-forming apparatus of this Embodiment. 本実施の形態の成膜装置の動作を示す説明図(その5)Explanatory drawing (5) which shows operation | movement of the film-forming apparatus of this Embodiment. 本実施の形態の成膜装置の動作を示す説明図(その6)Explanatory drawing (6) which shows operation | movement of the film-forming apparatus of this Embodiment. 方向転換機構の他の例の構成を示す正面図Front view showing the configuration of another example of the direction changing mechanism (a)〜(c):基板保持器搬送機構及び方向転換機構の他の例の動作を示す説明図(その1)(A)-(c): Explanatory drawing which shows operation | movement of the other example of a board | substrate holder conveyance mechanism and a direction change mechanism (the 1). (a)〜(c):基板保持器搬送機構及び方向転換機構の他の例の動作を示す説明図(その2)(A)-(c): Explanatory drawing which shows operation | movement of the other example of a board | substrate holder conveyance mechanism and a direction change mechanism (the 2). 一般的なヘテロ接合型太陽電池セルの概略構成を示す断面図Sectional drawing which shows the schematic structure of a general heterojunction solar cell. (a)(b):実施例の酸化インジウム膜の表面及び断面を示すSEM写真(A) and (b): SEM photographs showing the surface and cross section of the indium oxide film of the example. (a)(b):比較例の酸化インジウム膜の表面及び断面を示すSEM写真(A) and (b): SEM photographs showing the surface and cross section of the indium oxide film of the comparative example.

以下、本発明の実施の形態を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る成膜装置の実施の形態の全体を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an entire embodiment of a film forming apparatus according to the present invention.

また、図2(a)(b)は、本実施の形態における基板保持器搬送機構及び方向転換機構の基本構成を示すもので、図2(a)は平面図、図2(b)は正面図である。   2 (a) and 2 (b) show the basic structure of the substrate holder transporting mechanism and the direction changing mechanism in the present embodiment. FIG. 2 (a) is a plan view and FIG. 2 (b) is a front view. It is a figure.

さらに、図3(a)(b)は、本実施の形態に用いる基板保持器の構成を示すもので、図3(a)は平面図、図3(b)は側面図である。   Further, FIGS. 3A and 3B show the structure of the substrate holder used in the present embodiment. FIG. 3A is a plan view and FIG. 3B is a side view.

さらにまた、図4は、本実施の形態における方向転換機構の構成を示す正面図である。   Furthermore, FIG. 4 is a front view showing the configuration of the direction changing mechanism in the present embodiment.

図1に示すように、本実施の形態の成膜装置1は、例えばターボ分子ポンプを有する真空排気装置1aに接続された、単一の真空雰囲気が形成される真空槽2を有している。   As shown in FIG. 1, the film forming apparatus 1 of the present embodiment has a vacuum chamber 2 connected to a vacuum evacuation apparatus 1a having, for example, a turbo molecular pump, in which a single vacuum atmosphere is formed. ..

真空槽2の内部には、後述する基板保持器11を搬送経路に沿って搬送する基板保持器搬送機構3が設けられている。   Inside the vacuum chamber 2, a substrate holder transport mechanism 3 that transports a substrate holder 11 described later along a transport path is provided.

この基板保持器搬送機構3は、基板10を保持する複数の基板保持器11を連続して搬送するように構成されている。   The substrate holder transport mechanism 3 is configured to continuously transport the plurality of substrate holders 11 holding the substrate 10.

ここで、基板保持器搬送機構3は、例えばスプロケット等からなり駆動機構(図示せず)から回転駆動力が伝達されて動作する同一径の円形の第1及び第2の駆動輪31、32を有し、これら第1及び第2の駆動輪31、32が、それぞれの回転軸線を平行にした状態で所定距離をおいて配置されている。   Here, the substrate holder transport mechanism 3 includes, for example, circular first and second drive wheels 31 and 32 having the same diameter, which are operated by a rotational drive force transmitted from a drive mechanism (not shown), such as a sprocket. The first and second drive wheels 31 and 32 are arranged with a predetermined distance in a state where their respective rotation axes are parallel to each other.

そして、第1及び第2の駆動輪31、32には例えばチェーン等からなる一連の搬送駆動部材33が架け渡されている。   A series of transport drive members 33, such as chains, are bridged between the first and second drive wheels 31 and 32.

さらに、これら第1及び第2の駆動輪31、32に搬送駆動部材33が架け渡された構造体が所定の距離をおいて平行に配置され(図2(a)参照)、これら一対の搬送駆動部材33により鉛直面に対して一連の環状となる搬送経路が形成されている。   Further, the structure in which the transport drive member 33 is bridged over the first and second drive wheels 31 and 32 is arranged in parallel at a predetermined distance (see FIG. 2A), and the pair of transports is carried. The drive member 33 forms a series of annular transport paths with respect to the vertical plane.

本実施の形態では、搬送経路を構成する搬送駆動部材33のうち上側の部分に、第1の駆動輪31から第2の駆動輪32に向って移動して基板保持器11を第1の搬送方向P1に搬送する往路側搬送部(第1の搬送部)33aが形成されるとともに、第2の駆動輪32の周囲の部分の搬送駆動部材33によって基板保持器11の搬送方向を折り返して反対方向に転換する折り返し部33bが形成され、さらに、搬送駆動部材33のうち下側の部分に、第2の駆動輪32から第1の駆動輪31に向って移動して基板保持器11を第2の搬送方向P2に搬送する復路側搬送部(第2の搬送部)33cが形成されている。   In the present embodiment, the substrate holder 11 is moved to the upper part of the transfer driving member 33 constituting the transfer path from the first drive wheel 31 toward the second drive wheel 32 to transfer the substrate holder 11 to the first transfer wheel. An outward-side transport unit (first transport unit) 33a that transports in the direction P1 is formed, and the transport direction of the substrate holder 11 is folded back and opposite by the transport drive member 33 around the second drive wheel 32. A turn-back portion 33b that changes the direction is formed. Further, the substrate holder 11 is moved to the lower portion of the transport driving member 33 by moving from the second driving wheel 32 toward the first driving wheel 31. A return path side transport section (second transport section) 33c for transporting in the second transport direction P2 is formed.

本実施の形態の基板保持器搬送機構3は、各搬送駆動部材33の上側に位置する往路側搬送部33aと、各搬送駆動部材33の下側に位置する復路側搬送部33cとがそれぞれ対向し、鉛直方向に関して重なるように構成されている。   In the substrate holder transporting mechanism 3 of the present embodiment, a forward transporting section 33a located above each transport driving member 33 and a return transporting section 33c located below each transport driving member 33 face each other. However, they are configured to overlap in the vertical direction.

また、基板保持器搬送機構3には、基板保持器11を導入する基板保持器導入部30Aと、基板保持器11を折り返して搬送する搬送折り返し部30Bと、基板保持器11を排出する基板保持器排出部30Cが設けられている。   In addition, the substrate holder transport mechanism 3 includes a substrate holder introducing section 30A for introducing the substrate holder 11, a transport folding section 30B for folding and transporting the substrate holder 11, and a substrate holder for discharging the substrate holder 11. A container discharge unit 30C is provided.

ここで、搬送折り返し部30Bの近傍には、後述する方向転換機構40が設けられている。   Here, a direction changing mechanism 40, which will be described later, is provided in the vicinity of the transport folding section 30B.

真空槽2内には、第1及び第2の成膜領域4、5が設けられている。   In the vacuum chamber 2, first and second film forming regions 4 and 5 are provided.

本実施の形態では、真空槽2内において、基板保持器搬送機構3の例えば上部に、第1のスパッタ源4Tを有する第1の成膜領域4が設けられ、基板保持器搬送機構3の例えば下部に、第2のスパッタ源5Tを有する第2の成膜領域5が設けられている。   In the present embodiment, in the vacuum chamber 2, the first film formation region 4 having the first sputtering source 4T is provided, for example, above the substrate holder transport mechanism 3, and the substrate holder transport mechanism 3 is A second film formation region 5 having a second sputtering source 5T is provided below.

本実施の形態では、上述した搬送駆動部材33の往路側搬送部33aが、上記第1の成膜領域4を直線的に水平方向に通過するように構成され、復路側搬送部33cが、上記第2の成膜領域5を直線的に水平方向に通過するように構成されている。   In the present embodiment, the forward path side transport part 33a of the above-described transport drive member 33 is configured to linearly pass through the first film formation region 4 in the horizontal direction, and the return path side transport part 33c is configured as described above. It is configured to pass through the second film forming region 5 linearly in the horizontal direction.

そして、搬送経路を構成するこれら搬送駆動部材33の往路側搬送部33a及び復路側搬送部33cを基板保持器11が通過する場合に、基板保持器11に保持された複数の基板10(図2(a)参照)が水平状態で搬送されるようになっている。   Then, when the substrate holder 11 passes through the forward path side transport section 33a and the backward path side transport section 33c of the transport drive members 33 that form the transport path, the plurality of substrates 10 held by the substrate holder 11 (see FIG. 2). (See (a)) is conveyed in a horizontal state.

図1に示すように、本実施の形態では、真空槽2内の上記第1の成膜領域4の第1の搬送方向P1側の近傍に、第1の真空アニール処理機構21が設けられている。   As shown in FIG. 1, in the present embodiment, a first vacuum annealing processing mechanism 21 is provided in the vacuum chamber 2 in the vicinity of the first transport direction P1 side of the first film formation region 4. There is.

また、真空槽2内の上記第2の成膜領域5の第2の搬送方向P2側の近傍に、第2の真空アニール処理機構22が設けられている。   Further, a second vacuum annealing treatment mechanism 22 is provided in the vacuum chamber 2 near the second transport direction P2 side of the second film formation region 5.

これら第1及び第2の真空アニール処理機構21、22としては、例えばシースヒーター等の輻射(放射)電熱方式のヒーターを好適に用いることができる。   As the first and second vacuum annealing treatment mechanisms 21 and 22, for example, a radiation (radiation) electrothermal type heater such as a sheath heater can be preferably used.

さらに、第1及び第2の成膜領域4、5の間で、例えば第2の駆動輪32の下方には、アニール促進用真空アニール処理機構23が設けられている。   Further, between the first and second film forming regions 4 and 5, for example, below the second drive wheel 32, a vacuum annealing treatment mechanism 23 for annealing promotion is provided.

このアニール促進用真空アニール処理機構23は、上記第1及び第2の真空アニール処理機構21、22と同様に、例えばシースヒーター等の輻射(放射)電熱方式のヒーターを好適に用いることができる。   As the vacuum anneal processing mechanism 23 for accelerating the anneal, similarly to the first and second vacuum anneal processing mechanisms 21 and 22, for example, a radiation (radiation) electrothermal type heater such as a sheath heater can be preferably used.

一方、アニール促進用真空アニール処理機構23の第2の搬送方向P2側で、上記第2の成膜領域5の第1の搬送方向P1側の近傍に、冷却機構25が設けられている。   On the other hand, a cooling mechanism 25 is provided on the second transport direction P2 side of the annealing accelerating vacuum annealing mechanism 23 and near the first transport direction P1 side of the second film formation region 5.

この冷却機構25としては、例えば熱伝導率の良好な銅を冷却媒体を用いて冷却するようにした構造体や金属板に配管を介して冷却水を循環させるようにした板等の輻射(放射)方式の手段を好適に用いることができる。   As the cooling mechanism 25, for example, radiation (radiation) of a structure in which copper having good thermal conductivity is cooled using a cooling medium or a plate in which cooling water is circulated through a metal plate through a pipe ) Method can be preferably used.

真空槽2内の基板保持器搬送機構3の近傍の位置、例えば第1の駆動輪31に隣接する位置には、基板保持器搬送機構3との間で基板保持器11を受け渡し且つ受け取るための基板搬入搬出機構6が設けられている。   For transferring and receiving the substrate holder 11 to and from the substrate holder transfer mechanism 3 at a position near the substrate holder transfer mechanism 3 in the vacuum chamber 2, for example, at a position adjacent to the first drive wheel 31. A substrate loading / unloading mechanism 6 is provided.

本実施の形態の基板搬入搬出機構6は、昇降機構60によって例えば鉛直上下方向に駆動される駆動ロッド61の先(上)端部に設けられた支持部62を有している。   The substrate loading / unloading mechanism 6 of the present embodiment has a support portion 62 provided at the tip (upper) end of a drive rod 61 that is driven by the elevating mechanism 60 in the vertical vertical direction, for example.

本実施の形態では、基板搬入搬出機構6の支持部62上に搬送ロボット64が設けられ、この搬送ロボット64上に上述した基板保持器11を支持して基板保持器11を鉛直上下方向に移動させ、かつ、搬送ロボット64によって基板保持器搬送機構3との間で基板保持器11を受け渡し且つ受け取るように構成されている。   In the present embodiment, the transfer robot 64 is provided on the support portion 62 of the substrate loading / unloading mechanism 6, and the substrate holder 11 is supported on the transfer robot 64 to move the substrate holder 11 in the vertical and vertical directions. The transfer robot 64 transfers and receives the substrate holder 11 to and from the substrate holder transfer mechanism 3.

この場合、後述するように、基板搬入搬出機構6から基板保持器搬送機構3の往路側搬送部33aの基板保持器導入部30Aに基板保持器11を受け渡し(この位置を「基板保持器受け渡し位置」という。)、かつ、基板保持器搬送機構3の復路側搬送部33cの基板保持器排出部30Cから基板保持器11を取り出す(この位置を「基板保持器取り出し位置」という。)ように構成されている。   In this case, as will be described later, the substrate holder 11 is delivered from the substrate loading / unloading mechanism 6 to the substrate holder introducing portion 30A of the outward transport section 33a of the substrate holder transport mechanism 3 (this position is referred to as “substrate holder delivery position”). In addition, the substrate holder 11 is taken out from the substrate holder discharge part 30C of the backward path side carrier part 33c of the substrate holder carrier mechanism 3 (this position is referred to as a "substrate holder take-out position"). Has been done.

真空槽2の例えば上部には、真空槽2内に基板10を搬入し且つ真空槽2から基板10を搬出するための基板搬入搬出室2Aが設けられている。   A substrate loading / unloading chamber 2A for loading the substrate 10 into the vacuum chamber 2 and unloading the substrate 10 from the vacuum chamber 2 is provided, for example, in the upper part of the vacuum chamber 2.

この基板搬入搬出室2Aは、例えば上述した基板搬入搬出機構6の支持部62の上方の位置に連通口2Bを介して設けられており、例えば基板搬入搬出室2Aの上部には、開閉可能な蓋部2aが設けられている。   The substrate loading / unloading chamber 2A is provided, for example, at a position above the support portion 62 of the substrate loading / unloading mechanism 6 via the communication port 2B. For example, the substrate loading / unloading chamber 2A can be opened and closed at the upper portion of the substrate loading / unloading chamber 2A. A lid portion 2a is provided.

そして、後述するように、基板搬入搬出室2A内に搬入された成膜前の基板10aを基板搬入搬出機構6の支持部62の搬送ロボット64上の基板保持器11に受け渡して保持させ、かつ、成膜後の基板10bを基板搬入搬出機構6の支持部62の搬送ロボット64上の基板保持器11から例えば真空槽2の外部の大気中に搬出するように構成されている。   Then, as will be described later, the pre-deposition substrate 10a loaded into the substrate loading / unloading chamber 2A is delivered to and held by the substrate holder 11 on the transfer robot 64 of the support portion 62 of the substrate loading / unloading mechanism 6, and The substrate 10b after film formation is carried out from the substrate holder 11 on the transfer robot 64 of the support portion 62 of the substrate loading / unloading mechanism 6 to the atmosphere outside the vacuum chamber 2, for example.

なお、本実施の形態の場合、基板搬入搬出機構6の支持部62の上部の縁部に、基板10を搬入及び搬出する際に基板搬入搬出室2Aと真空槽2内の雰囲気を隔離するための例えばOリング等のシール部材63が設けられている。   In the case of the present embodiment, in order to isolate the atmosphere in the substrate loading / unloading chamber 2A and the vacuum chamber 2 when loading / unloading the substrate 10 to / from the upper edge of the support portion 62 of the substrate loading / unloading mechanism 6. A seal member 63 such as an O-ring is provided.

この場合、基板搬入搬出機構6の支持部62を基板搬入搬出室2A側に向って上昇させ、支持部62上のシール部材63を真空槽2の内壁に密着させて連通口2Bを塞ぐことにより、真空槽2内の雰囲気に対して基板搬入搬出室2A内の雰囲気を隔離するように構成されている。   In this case, the support portion 62 of the substrate loading / unloading mechanism 6 is raised toward the substrate loading / unloading chamber 2A side, and the seal member 63 on the support portion 62 is brought into close contact with the inner wall of the vacuum chamber 2 to close the communication port 2B. The atmosphere in the substrate loading / unloading chamber 2A is isolated from the atmosphere in the vacuum chamber 2.

図2(a)(b)に示すように、本実施の形態の基板保持器搬送機構3の一対の搬送駆動部材33には、それぞれ所定の間隔をおいて複数の第1の駆動部36が搬送駆動部材33の外方側に突出するように設けられている。   As shown in FIGS. 2 (a) and 2 (b), a plurality of first drive units 36 are provided at predetermined intervals in the pair of transfer drive members 33 of the substrate holder transfer mechanism 3 of the present embodiment. It is provided so as to project to the outside of the transport drive member 33.

第1の駆動部36は、例えばJフック形状(搬送方向下流側の突部の高さが搬送方向上流側の突部の高さより低くなるような溝部が形成された形状)に形成され、以下に説明する基板保持器支持機構18によって支持された基板保持器11の後述する第1の被駆動軸12と接触して当該基板保持器11を第1又は第2の搬送方向P1、P2に駆動するように構成されている。   The first drive portion 36 is formed in, for example, a J-hook shape (a shape in which a groove is formed such that the height of the protrusion on the downstream side in the transport direction is lower than the height of the protrusion on the upstream side in the transport direction). The substrate holder 11 supported by the substrate holder support mechanism 18 described in (1) is brought into contact with the later-described first driven shaft 12 of the substrate holder 11 to drive the substrate holder 11 in the first or second transport direction P1, P2. Is configured to.

一対の搬送駆動部材33の内側には、搬送する基板保持器11を支持する一対の基板保持器支持機構18が設けられている。   Inside the pair of transport driving members 33, a pair of substrate holder support mechanisms 18 that support the substrate holder 11 to be transported are provided.

基板保持器支持機構18は、例えば複数のローラ等の回転可能な部材からなるもので、それぞれ搬送駆動部材33の近傍に設けられている。   The substrate holder support mechanism 18 is composed of a rotatable member such as a plurality of rollers, and is provided near the transport drive member 33.

本実施の形態では、搬送駆動部材33の往路側搬送部33aの上方近傍に往路側基板保持器支持機構18aが設けられるとともに、搬送駆動部材33の復路側搬送部33cの下方近傍に復路側基板保持器支持機構18cが設けられ、搬送される基板保持器11の下面の両縁部を支持するように配置構成されている。   In the present embodiment, the forward path side substrate holder support mechanism 18a is provided near the forward path side transfer section 33a of the transfer drive member 33, and the return path side substrate is provided near the backward path side transfer section 33c of the transfer drive member 33. A holder support mechanism 18c is provided and arranged so as to support both edges of the lower surface of the substrate holder 11 being conveyed.

なお、往路側基板保持器支持機構18aは、後述する方向転換機構40の第1の方向転換経路51の進入口の近傍まで設けられ、復路側基板保持器支持機構18cは、後述する方向転換機構40の第2の方向転換経路52の排出口の近傍まで設けられている。   The forward path side substrate holder support mechanism 18a is provided up to the vicinity of the entrance of the first direction change path 51 of the direction change mechanism 40 described later, and the backward path side substrate holder support mechanism 18c is the direction change mechanism described later. It is provided up to the vicinity of the outlet of the second direction changing path 52 of 40.

本実施の形態に用いる基板保持器11は、基板10の両面上に真空処理を行うためのもので、開口部を有するトレイ状のものからなる。   The substrate holder 11 used in the present embodiment is for performing vacuum processing on both surfaces of the substrate 10, and is made of a tray-shaped member having an opening.

図2(a)及び図3(a)に示すように、本実施の形態の基板保持器11は、例えば長尺矩形の平板状に形成され、その長手方向即ち第1及び第2の搬送方向P1、P2に対して直交する方向に例えば矩形状の複数の基板10を一列に並べてそれぞれ保持する複数の保持部14が設けられている。   As shown in FIGS. 2A and 3A, the substrate holder 11 according to the present embodiment is formed in, for example, a long rectangular flat plate shape, and its longitudinal direction, that is, the first and second conveyance directions. A plurality of holding portions 14 that hold, for example, a plurality of rectangular substrates 10 arranged in a line in a direction orthogonal to P1 and P2, respectively, are provided.

ここで、各保持部14には、各基板10と同等の大きさ及び形状で各基板10の両面が全面的に露出する例えば矩形状の開口部が設けられ、図示しない保持部材によって各基板10を水平に保持するように構成されている。   Here, each holding portion 14 is provided with, for example, a rectangular opening in which both surfaces of each substrate 10 are exposed in the same size and shape as each substrate 10, and each substrate 10 is held by a holding member (not shown). Is configured to be held horizontally.

本発明では、特に限定されることはないが、設置面積を小さくし且つ処理能力を向上させる観点からは、基板保持器11について、本実施の形態のように、搬送方向に対して直交する方向に複数の基板10を一列に並べてそれぞれ保持するように構成することが好ましい。   In the present invention, although not particularly limited, from the viewpoint of reducing the installation area and improving the processing capacity, the substrate holder 11 has a direction orthogonal to the transport direction as in the present embodiment. In addition, it is preferable that the plurality of substrates 10 are arranged in a line and held respectively.

ただし、処理効率を向上させる観点からは、搬送方向に対して直交する方向に複数の基板10を複数列に並べることも可能である。   However, from the viewpoint of improving the processing efficiency, it is possible to arrange the plurality of substrates 10 in a plurality of rows in a direction orthogonal to the transport direction.

一方、基板保持器11の長手方向の両端部で第1の搬送方向P1の上流側の端部に第1の被駆動軸12がそれぞれ設けられ、また、第1の搬送方向P1の下流側の端部に第2の被駆動軸13がそれぞれ設けられている。   On the other hand, the first driven shafts 12 are provided at both ends of the substrate holder 11 in the longitudinal direction on the upstream side in the first transport direction P1, and on the downstream side in the first transport direction P1. A second driven shaft 13 is provided at each end.

これら第1及び第2の被駆動軸12、13は、それぞれ搬送方向に対して直交する方向即ち基板保持器11の長手方向に延びる回転軸線を中心として断面円形状に形成されている。   Each of the first and second driven shafts 12 and 13 is formed in a circular cross section around a rotation axis extending in a direction orthogonal to the transport direction, that is, the longitudinal direction of the substrate holder 11.

本実施の形態では、第2の被駆動軸13の長さが第1の被駆動軸12の長さより長くなるようにその寸法が定められている。   In the present embodiment, the dimension of the second driven shaft 13 is determined such that the length of the second driven shaft 13 is longer than the length of the first driven shaft 12.

具体的には、図2(a)に示すように、基板保持器11を基板保持器搬送機構3に配置した場合に基板保持器11の両側部の第1の被駆動軸12が基板保持器搬送機構3の第1の駆動部36と接触し、かつ、基板保持器11を後述する方向転換機構40に配置した場合に第2の被駆動軸13が後述する第2の駆動部46と接触するように第1及び第2の被駆動軸12、13の寸法が定められている。   Specifically, as shown in FIG. 2A, when the substrate holder 11 is arranged in the substrate holder transport mechanism 3, the first driven shafts 12 on both sides of the substrate holder 11 are mounted on the substrate holder 11. The second driven shaft 13 contacts the first drive unit 36 of the transport mechanism 3 and contacts the second drive unit 46 described later when the substrate holder 11 is arranged in the direction changing mechanism 40 described later. The dimensions of the first and second driven shafts 12 and 13 are determined so that

一対の搬送駆動部材33の第1の搬送方向P1の下流側には、同一構成の一対の方向転換機構40が設けられている。   A pair of direction changing mechanisms 40 having the same configuration is provided on the downstream side of the pair of transport driving members 33 in the first transport direction P1.

本実施の形態の場合、一対の方向転換機構40は、それぞれ第1及び第2の搬送方向P1、P2に関して一対の搬送駆動部材33の外側の位置に配置されている。   In the case of the present embodiment, the pair of direction changing mechanisms 40 are arranged at positions outside the pair of transport driving members 33 with respect to the first and second transport directions P1 and P2, respectively.

また、これら一対の方向転換機構40は、それぞれ第1の搬送方向P1の上流側の部分が各搬送駆動部材33の第1の搬送方向P1の下流側の部分と若干重なるように設けられている。   Further, the pair of direction changing mechanisms 40 are provided such that the upstream side portion in the first transport direction P1 slightly overlaps the downstream side portion in the first transport direction P1 of each transport driving member 33. ..

図4に示すように、本実施の形態の方向転換機構40は、第1のガイド部材41、第2のガイド部材42、第3のガイド部材43を有し、これら第1〜第3のガイド部材41〜43は、第1の搬送方向P1の上流側からこの順で配置されている。   As shown in FIG. 4, the direction changing mechanism 40 of the present embodiment has a first guide member 41, a second guide member 42, and a third guide member 43, and these first to third guides are provided. The members 41 to 43 are arranged in this order from the upstream side in the first transport direction P1.

本実施の形態では、第1〜第3のガイド部材41〜43は、一対の搬送駆動部材33の外側近傍の位置にそれぞれ配置され、さらに、第1〜第3のガイド部材41〜43の外側近傍の位置に、後述する搬送駆動部材45がそれぞれ配置されている。   In the present embodiment, the first to third guide members 41 to 43 are arranged at positions near the outer sides of the pair of transport driving members 33, respectively, and further outside the first to third guide members 41 to 43. The transport driving members 45, which will be described later, are arranged at positions near each other.

なお、図2(b)では、方向転換機構40の一部を省略するとともに、部材の重なり関係を無視して搬送方向についての部材間の位置関係が明確になるように示されている。   In addition, in FIG. 2B, a part of the direction changing mechanism 40 is omitted, and the positional relationship between the members in the transport direction is illustrated by ignoring the overlapping relationship of the members.

図2(a)及び図4に示すように、第1〜第3のガイド部材41〜43は、例えば板状の部材からなり、それぞれ鉛直方向に向けて設けられている。   As shown in FIGS. 2A and 4, the first to third guide members 41 to 43 are, for example, plate-shaped members, and are provided in the vertical direction.

ここで、第1のガイド部材41の第1の搬送方向P1側の部分は、第1の搬送方向P1側に凸となる曲面形状に形成され、また、第2のガイド部材42の第2の搬送方向P2側の部分は、第1の搬送方向P1側に凹となる曲面形状に形成されている。   Here, the portion of the first guide member 41 on the first transport direction P1 side is formed into a curved surface shape that is convex toward the first transport direction P1 side, and the second guide member 42 has a second curved surface shape. The portion on the transport direction P2 side is formed into a curved surface shape that is concave toward the first transport direction P1 side.

第1及び第2のガイド部材41、42は、第1のガイド部材41の第1の搬送方向P1側の部分と第2のガイド部材42の第2の搬送方向P2側の部分が同等の曲面形状に形成され、これらの部分が基板保持器11の第1の被駆動軸12の直径より若干大きな隙間を設けて対向するように近接配置されている。そして、この隙間によって基板保持器11の第1の被駆動軸12を案内する第1の方向転換経路51が設けられている。   The first and second guide members 41 and 42 have curved surfaces in which a portion of the first guide member 41 on the first transport direction P1 side and a portion of the second guide member 42 on the second transport direction P2 side are equal. The portions are formed in a shape, and these portions are closely arranged so as to face each other with a gap slightly larger than the diameter of the first driven shaft 12 of the substrate holder 11. A first direction changing path 51 that guides the first driven shaft 12 of the substrate holder 11 by this gap is provided.

また、第2のガイド部材42の第1の搬送方向P1側の部分は、第1の搬送方向P1側に凸となる曲面形状に形成され、また、第3のガイド部材43の第2の搬送方向P2側の部分は、第1の搬送方向P1側に凹となる曲面形状に形成されている。   Further, the portion of the second guide member 42 on the first transport direction P1 side is formed into a curved surface shape that is convex toward the first transport direction P1 side, and the second transport of the third guide member 43 is performed. The portion on the direction P2 side is formed in a curved surface shape that is concave toward the first transport direction P1 side.

第2及び第3のガイド部材42、43は、第2のガイド部材42の第1の搬送方向P1側の部分と第3のガイド部材43の第2の搬送方向P2側の部分が同等の曲面形状に形成され、これらの部分が基板保持器11の第2の被駆動軸13の直径より若干大きな隙間を設けて対向するように近接配置されている。そして、この隙間によって基板保持器11の第2の被駆動軸13を案内する第2の方向転換経路52が設けられている。   The second and third guide members 42, 43 have curved surfaces in which a portion of the second guide member 42 on the first transport direction P1 side and a portion of the third guide member 43 on the second transport direction P2 side are equal. They are formed in a shape, and these portions are closely arranged so as to face each other with a gap slightly larger than the diameter of the second driven shaft 13 of the substrate holder 11. A second direction changing path 52 for guiding the second driven shaft 13 of the substrate holder 11 is provided by this gap.

そして、本実施の形態では、第1の方向転換経路51と第2の方向転換経路52とが同等の曲面形状に形成されている。   And in this Embodiment, the 1st direction change path 51 and the 2nd direction change path 52 are formed in the equivalent curved surface shape.

さらに、第1及び第2の方向転換経路51、52の各部分の水平方向についての距離が、基板保持器11の第1及び第2の被駆動軸12、13の間の距離と同等となるようにその寸法が定められている。   Further, the horizontal distance of each part of the first and second direction changing paths 51, 52 is equal to the distance between the first and second driven shafts 12, 13 of the substrate holder 11. The dimensions are defined as follows.

また、本実施の形態では、第1の方向転換経路51の上側の開口部が基板保持器11の第1の被駆動軸12の進入口となっており、その高さ位置が、往路側基板保持器支持機構18aに支持された基板保持器11の第2の被駆動軸13の高さ位置より低い位置となるように構成されている(図2(b)参照)。   Further, in the present embodiment, the upper opening of the first direction changing path 51 serves as the entrance of the first driven shaft 12 of the substrate holder 11, and the height position thereof is the forward path substrate. The substrate holder 11 supported by the holder support mechanism 18a is arranged at a position lower than the height of the second driven shaft 13 (see FIG. 2B).

さらに、第1の方向転換経路51の下側の開口部が基板保持器11の第1の被駆動軸12の排出口となっており、その高さ位置が、復路側基板保持器支持機構18cに支持された基板保持器11の第2の被駆動軸13の高さ位置より高い位置となるように構成されている(図2(b)参照)。   Further, the opening on the lower side of the first direction change path 51 serves as the discharge port of the first driven shaft 12 of the substrate holder 11, and the height position thereof is the return path side substrate holder support mechanism 18c. The substrate holder 11 is supported by the second driven shaft 13 and is positioned higher than the height of the second driven shaft 13 (see FIG. 2B).

また、第2の方向転換経路52については、その上側の開口部が基板保持器11の第2の被駆動軸13の進入口となっており、その高さ位置が、往路側基板保持器支持機構18aに支持された基板保持器11の第2の被駆動軸13の高さ位置と同等の位置となるように構成されている(図2(b)参照)。   Further, with respect to the second direction change path 52, the opening on the upper side thereof serves as the entrance of the second driven shaft 13 of the substrate holder 11, and the height position thereof is the forward side substrate holder support. The substrate holder 11 supported by the mechanism 18a is configured to have a position equivalent to the height position of the second driven shaft 13 (see FIG. 2B).

一方、第2の方向転換経路52の下側の開口部が基板保持器11の第2の被駆動軸13の排出口となっており、その高さ位置が、復路側基板保持器支持機構18cに支持された基板保持器11の第2の被駆動軸13の高さ位置と同等の位置となるように構成されている(図2(b)参照)。   On the other hand, the opening on the lower side of the second direction change path 52 serves as the discharge port of the second driven shaft 13 of the substrate holder 11, and the height position thereof is the return path side substrate holder support mechanism 18c. The substrate holder 11 is supported by the second driven shaft 13 and is positioned at the same height as the driven shaft 13 (see FIG. 2B).

本実施の形態の方向転換機構40は、例えば一対のスプロケットと、これら一対のスプロケットに架け渡されたチェーンからなる搬送駆動部材45を有し、この搬送駆動部材45は鉛直面に対して一連の環状となるように構成されている。   The direction changing mechanism 40 of the present embodiment has, for example, a pair of sprockets and a transport driving member 45 composed of a chain spanned by the pair of sprockets. It is configured to have an annular shape.

この搬送駆動部材45は、その折り返し部分の曲率半径が、基板保持器搬送機構3の搬送駆動部材33の折り返し部33bの曲率半径と同等となるように構成されている。   The transport drive member 45 is configured such that the radius of curvature of the folded portion is equal to the radius of curvature of the folded portion 33b of the transport drive member 33 of the substrate holder transport mechanism 3.

また、搬送駆動部材45は、その上側の部分が第1の搬送方向P1に移動し、下側の部分が第2の搬送方向P2に移動するように駆動される。   Further, the transport driving member 45 is driven so that the upper portion thereof moves in the first transport direction P1 and the lower portion thereof moves in the second transport direction P2.

搬送駆動部材45には、所定の間隔をおいて複数の第2の駆動部46が搬送駆動部材45の外方側に突出するように設けられている。   The transport drive member 45 is provided with a plurality of second drive portions 46 at predetermined intervals so as to project to the outside of the transport drive member 45.

第2の駆動部46は、搬送駆動部材45の外方側の部分に凹部が形成され、この凹部の縁部が基板保持器11の第2の被駆動軸13と接触して当該基板保持器11を第2の方向転換経路52に沿って支持駆動するように構成されている。   The second drive unit 46 has a recess formed on the outer side of the transport drive member 45, and the edge of the recess contacts the second driven shaft 13 of the substrate holder 11 to cause the substrate holder to move. 11 is configured to be supported and driven along the second turning path 52.

また、本実施の形態の第2の駆動部46は、後述するように、第2の方向転換経路52の進入口及び排出口の位置に到達した場合にその凹部側の端部が第2の方向転換経路52から退避するように搬送駆動部材45の経路及び第2の駆動部46の寸法が設定されている(図2(b)参照)。   Further, in the second drive unit 46 of the present embodiment, as will be described later, when the positions of the entrance and the exit of the second direction change path 52 are reached, the end portion on the recess side is the second end. The path of the transport drive member 45 and the dimensions of the second drive section 46 are set so as to retract from the direction change path 52 (see FIG. 2B).

本実施の形態では、後述するように、第2の駆動部46が基板保持器搬送機構3の第1の駆動部36と同期して動作するように基板保持器搬送機構3の搬送駆動部材33と方向転換機構40の搬送駆動部材45の動作を制御する。   In the present embodiment, as will be described later, the transport drive member 33 of the substrate holder transport mechanism 3 so that the second drive unit 46 operates in synchronization with the first drive unit 36 of the substrate holder transport mechanism 3. And the operation of the transport driving member 45 of the direction changing mechanism 40.

そして、本実施の形態では、基板保持器搬送機構3の第1の駆動部36によって基板保持器11を第1の搬送方向P1に駆動して第1及び第2の被駆動軸12、13を第1及び第2の方向転換経路51、52内に進入させた場合に、基板保持器11が上下関係を維持しつつ第1及び第2の駆動部36、46によって第1及び第2の被駆動軸12、13が支持されて移動し、円滑に第1及び第2の方向転換経路51、52から排出されるように、第1及び第2の駆動部36、46、並びに、第1及び第2の方向転換経路51、52の形状及び寸法がそれぞれ設定されている。   Then, in the present embodiment, the first holder 36 of the substrate holder transfer mechanism 3 drives the substrate holder 11 in the first transfer direction P1 to move the first and second driven shafts 12 and 13. When the substrate holder 11 is inserted into the first and second direction changing paths 51 and 52, the first and second drive units 36 and 46 maintain the vertical relationship, and the first and second driven units 36 and 46 are operated. The first and second drive parts 36, 46, and the first and second drive parts 36, 46 are supported so that the drive shafts 12, 13 move and are smoothly discharged from the first and second direction changing paths 51, 52. The shapes and dimensions of the second direction changing paths 51 and 52 are set respectively.

一方、第1のガイド部材41と第2のガイド部材42の下方で第1の方向転換経路51の排出口の近傍には、基板保持器11を方向転換機構40から基板保持器支持機構18の復路側基板保持器支持機構18cへ円滑に受け渡すための受け渡し部材47が設けられている。   On the other hand, below the first guide member 41 and the second guide member 42, in the vicinity of the discharge port of the first direction changing path 51, the substrate holder 11 is moved from the direction changing mechanism 40 to the substrate holder supporting mechanism 18. A delivery member 47 is provided for smoothly delivering to the return path side substrate holder support mechanism 18c.

この受け渡し部材47は、例えば水平方向に延びる細長の部材からなり、その第2の搬送方向P2側の端部で復路側基板保持器支持機構18cの下方の位置に設けられた回転軸48を中心として上下方向に回転移動するように構成されている。そして、受け渡し部材47は、第1の搬送方向P1側の部分が例えば図示しない弾性部材によって上方に付勢されている。   The transfer member 47 is, for example, an elongated member that extends in the horizontal direction, and has a rotary shaft 48 provided at a position below the backward path side substrate holder support mechanism 18c at an end portion thereof on the second transport direction P2 side. Is configured to rotate in the vertical direction. The portion of the delivery member 47 on the first transport direction P1 side is biased upward by an elastic member (not shown), for example.

本発明において用いる弾性部材としては、特に限定されることはないが、部品点数を増やすことなく座屈を確実に防止する観点からは、コイルばね(例えば圧縮コイルばね)より、ねじりコイルばねを用いることが好ましい。   The elastic member used in the present invention is not particularly limited, but from the viewpoint of surely preventing buckling without increasing the number of parts, a torsion coil spring is used rather than a coil spring (for example, a compression coil spring). Preferably.

受け渡し部材47の上部には、第1の方向転換経路51の排出口の第2の搬送方向P2側の近傍の部分に、第1の方向転換経路51と連続し、かつ、基板保持器支持機構18の復路側基板保持器支持機構18cと連続するように曲面形状に形成された受け渡し部47aが設けられている(図2(b)参照)。   An upper part of the transfer member 47 is continuous with the first direction changing path 51 at a portion in the vicinity of the discharge port of the first direction changing path 51 on the second conveyance direction P2 side, and the substrate holder support mechanism. A curved transfer portion 47a is provided so as to be continuous with the return path side substrate holder supporting mechanism 18c (see FIG. 2B).

また、受け渡し部材47の上部には、第1の搬送方向P1側の部分に、第1の搬送方向P1に向って下側に傾斜する傾斜面47bが設けられている。この傾斜面47bは、第2の方向転換経路52の排出口と対向する高さ位置に設けられている。   Further, on the upper part of the transfer member 47, an inclined surface 47b that is inclined downward toward the first transport direction P1 is provided at a portion on the first transport direction P1 side. The inclined surface 47b is provided at a height position facing the discharge port of the second direction changing path 52.

以下、本実施の形態の成膜装置1の動作及び成膜方法の例を図5(a)〜(d)乃至図15を参照して説明する。   Hereinafter, an example of the operation of the film forming apparatus 1 of the present embodiment and the film forming method will be described with reference to FIGS.

図5(a)〜(d)は、本実施の形態における透明導電酸化物膜の形成方法を示す断面工程図である。   5A to 5D are cross-sectional process charts showing the method for forming the transparent conductive oxide film in the present embodiment.

本実施の形態に用いる成膜前の基板10aは、図5(a)に示すように、n型結晶シリコン基板10Aの第1面(本実施の形態では受光面である上面)上に、i型アモルファスシリコン層10B及び第1導電型(例えばp型)のアモルファスシリコン層10Dが順次設けられるとともに、このn型結晶シリコン基板10Aの第2面(本実施の形態では反射面側である下面)上に、i型アモルファスシリコン層10C及び第2導電型(例えばn型)のアモルファスシリコン層10Eが順次設けられているものである。   As shown in FIG. 5A, the substrate 10a before film formation used in the present embodiment has an i layer on the first surface (the upper surface which is the light receiving surface in the present embodiment) of the n-type crystalline silicon substrate 10A. Type amorphous silicon layer 10B and a first conductivity type (for example, p type) amorphous silicon layer 10D are sequentially provided, and the second surface of the n-type crystalline silicon substrate 10A (the lower surface which is the reflection surface side in the present embodiment). An i-type amorphous silicon layer 10C and a second conductivity type (for example, n-type) amorphous silicon layer 10E are sequentially provided thereon.

本実施の形態では、まず、基板搬入搬出機構6の支持部62上のシール部材63を真空槽2の内壁に密着させて真空槽2内の雰囲気に対して基板搬入搬出室2A内の雰囲気を隔離した状態で、大気圧までベントした後、図6に示すように、基板搬入搬出室2Aの蓋部2aを開ける。   In the present embodiment, first, the seal member 63 on the support portion 62 of the substrate loading / unloading mechanism 6 is brought into close contact with the inner wall of the vacuum chamber 2 so that the atmosphere in the substrate loading / unloading chamber 2A is changed relative to the atmosphere in the vacuum chamber 2. After venting to atmospheric pressure in the isolated state, as shown in FIG. 6, the lid portion 2a of the substrate loading / unloading chamber 2A is opened.

その後、図示しない搬送ロボットを用いて成膜前の基板10aを基板搬入搬出機構6の支持部62の搬送ロボット64上の基板保持器11に装着して保持させる。   After that, the substrate 10a before film formation is mounted and held on the substrate holder 11 on the transport robot 64 of the support portion 62 of the substrate loading / unloading mechanism 6 by using a transport robot (not shown).

そして、基板搬入搬出室2Aの蓋部2aを閉じて所定の圧力となるまで真空排気した後、図7に示すように、基板搬入搬出機構6の支持部62を上述した基板保持器受け渡し位置まで下降させ、基板保持器11の高さが搬送駆動部材33の往路側搬送部33aと同等の高さ位置となるようにする。   Then, after closing the lid portion 2a of the substrate loading / unloading chamber 2A and evacuating to a predetermined pressure, the supporting portion 62 of the substrate loading / unloading mechanism 6 is moved to the substrate holder delivery position described above, as shown in FIG. The substrate holder 11 is lowered so that the height of the substrate holder 11 is at the same height as the forward path transporting portion 33a of the transporting drive member 33.

さらに、図8に示すように、基板搬入搬出機構6の支持部62に設けた搬送ロボット64によって基板保持器11を基板保持器搬送機構3の基板保持器導入部30Aに配置する。   Further, as shown in FIG. 8, the substrate holder 11 is arranged in the substrate holder introduction part 30A of the substrate holder transport mechanism 3 by the transport robot 64 provided on the support portion 62 of the substrate loading / unloading mechanism 6.

この場合、図9(a)に示すように、基板保持器11の第1の被駆動軸12を第1の駆動部36の溝部内に配置されるように位置決めして往路側基板保持器支持機構18a上に載置する。   In this case, as shown in FIG. 9A, the first driven shaft 12 of the substrate holder 11 is positioned so as to be arranged in the groove portion of the first drive unit 36, and the forward substrate holder support is performed. It is placed on the mechanism 18a.

この状態で、図9(b)に示すように、基板保持器搬送機構3の搬送駆動部材33の往路側搬送部33aを第1の搬送方向P1に移動させる。   In this state, as shown in FIG. 9B, the outward path side transport portion 33a of the transport driving member 33 of the substrate holder transport mechanism 3 is moved in the first transport direction P1.

これにより、搬送駆動部材33の往路側搬送部33a上の第1の駆動部36によって基板保持器11の第1の被駆動軸12が第1の搬送方向P1に駆動され、基板保持器11が搬送駆動部材33の往路側搬送部33a上を搬送折り返し部30Bに向って搬送される。   As a result, the first drive shaft 36 of the substrate holder 11 is driven in the first transport direction P1 by the first drive unit 36 on the forward path transport unit 33a of the transport drive member 33, and the substrate holder 11 moves. The sheet is conveyed on the outward-side conveyance section 33a of the conveyance driving member 33 toward the conveyance folding section 30B.

この動作の際、基板保持器11に保持された成膜前の基板10aの第1面(上面)に対し、第1の成膜領域4を通過する際に、基板保持器11の上方に位置する第1のスパッタ源4Tによってスパッタリングによる成膜を行う。   In this operation, when passing through the first film formation region 4 with respect to the first surface (upper surface) of the substrate 10a before film formation held by the substrate holder 11, a position above the substrate holder 11 is set. A film is formed by sputtering with the first sputtering source 4T.

具体的には、図5(b)に示すように、成膜前の基板10aのp型アモルファスシリコン層10Dの表面に、スパッタリングによって例えばn型の第1の透明導電酸化物膜(第1のスパッタ膜)10fを全面的に形成する。この時点では、第1の透明導電酸化物膜10fは、アモルファス状態の膜である。   Specifically, as shown in FIG. 5B, the surface of the p-type amorphous silicon layer 10D of the substrate 10a before film formation is, for example, an n-type first transparent conductive oxide film (first Sputtered film) 10f is formed on the entire surface. At this point, the first transparent conductive oxide film 10f is a film in an amorphous state.

本発明の場合、第1の透明導電酸化物膜10fの材料としては特に限定されることはないが、低抵抗で光透過性の材料である酸化インジウム系のものを用いることが好ましく、より好ましくは、酸化インジウムに、酸化チタン、酸化ジルコニウム、酸化タングステン、酸化セリウム、酸化ガリウム、酸化シリコンなどの金属酸化物を少なくとも1種以上微量添加したものである。   In the case of the present invention, the material of the first transparent conductive oxide film 10f is not particularly limited, but it is preferable to use an indium oxide-based material which is a low resistance and light transmissive material, and more preferably. Is a material in which at least one or more kinds of metal oxides such as titanium oxide, zirconium oxide, tungsten oxide, cerium oxide, gallium oxide, and silicon oxide are added to indium oxide in a trace amount.

この成膜後、基板保持器11が基板保持器搬送機構3の搬送折り返し部30Bに到達する前に、上述した第1の真空アニール処理機構21(図1参照)によってアモルファス状態の第1の透明導電酸化物膜10fを加熱して第1の真空アニール処理を行う。   After this film formation, before the substrate holder 11 reaches the transport folding section 30B of the substrate holder transport mechanism 3, the first vacuum annealing treatment mechanism 21 (see FIG. 1) described above makes the first transparent state in the amorphous state. The conductive oxide film 10f is heated to perform the first vacuum annealing treatment.

この場合、加熱条件は、180℃以上220℃以下となるように設定することが好ましい。   In this case, the heating condition is preferably set to 180 ° C. or higher and 220 ° C. or lower.

図10(a)〜(c)並びに図11(a)〜(c)は、本実施の形態における基板保持器搬送機構及び方向転換機構の動作を示す説明図である。   10 (a) to 10 (c) and 11 (a) to 11 (c) are explanatory views showing the operation of the substrate holder transport mechanism and the direction changing mechanism in the present embodiment.

本実施の形態では、上述した成膜工程の後、基板保持器搬送機構3の第1の駆動部36を第1の搬送方向P1に移動させることにより、図10(a)に示すように、基板保持器搬送機構3の搬送折り返し部30Bに到達した基板保持器11を更に第1の搬送方向P1に移動させ、基板保持器11の第2の被駆動軸13を方向転換機構40の第2の方向転換経路52の進入口の位置に配置する。   In the present embodiment, after the above-described film forming process, by moving the first drive unit 36 of the substrate holder transport mechanism 3 in the first transport direction P1, as shown in FIG. The substrate holder 11 that has reached the transport folding section 30B of the substrate holder transport mechanism 3 is further moved in the first transport direction P1, and the second driven shaft 13 of the substrate holder 11 is moved to the second direction of the direction changing mechanism 40. It is arranged at the entrance of the turning path 52 of the.

この場合、方向転換機構40の第2の駆動部46が基板保持器11の第2の被駆動軸13の下方に位置するように搬送駆動部材45の動作を制御する。   In this case, the operation of the transport driving member 45 is controlled so that the second driving unit 46 of the direction changing mechanism 40 is located below the second driven shaft 13 of the substrate holder 11.

そして、基板保持器搬送機構3の搬送駆動部材33を駆動して第1の駆動部36を第1の搬送方向P1に移動させるとともに、方向転換機構40の搬送駆動部材45を駆動して第2の駆動部46を第1の搬送方向P1に移動させる。この場合、第1の駆動部36と第2の駆動部46の動作が同期するように制御する。   Then, the transport drive member 33 of the substrate holder transport mechanism 3 is driven to move the first drive section 36 in the first transport direction P1, and the transport drive member 45 of the direction changing mechanism 40 is driven to drive the second drive unit 45. The driving unit 46 of is moved in the first transport direction P1. In this case, the operations of the first drive unit 36 and the second drive unit 46 are controlled so as to be synchronized.

これにより、図10(b)に示すように、基板保持器11の第1及び第2の被駆動軸12、13が第1及び第2の駆動部36、46によってそれぞれ支持駆動され、第1及び第2の方向転換経路51、52内を下方に向ってそれぞれ移動する。   As a result, as shown in FIG. 10B, the first and second driven shafts 12 and 13 of the substrate holder 11 are supported and driven by the first and second drive portions 36 and 46, respectively, And the second direction change paths 51 and 52, respectively, moving downward.

なお、この過程においては、基板保持器11の第1の被駆動軸12は第1の方向転換経路51内において同時に接触することはないが第1のガイド部材41と第2のガイド部材42の縁部にも接触し、また第2の被駆動軸13は第2の方向転換経路52内において同時に接触することはないが第2のガイド部材42と第3のガイド部材43の縁部にも接触するが、基板保持器11は上下関係を維持している。   In this process, the first driven shaft 12 of the substrate holder 11 does not come into contact with each other in the first direction changing path 51 at the same time, but the first guide member 41 and the second guide member 42 do not contact each other. The edge of the second driven member 13 does not contact the edge of the second guide member 42 and the edge of the third guide member 43 at the same time in the second turning path 52. Although in contact, the substrate holder 11 maintains the vertical relationship.

そして、第1及び第2の被駆動軸12、13が第1及び第2の方向転換経路51、52の中腹部分をそれぞれ通過した付近から、第1及び第2の被駆動軸12、13の搬送方向が、基板保持器11の上下関係を維持した状態で第1の搬送方向P1と反対方向の第2の搬送方向P2にそれぞれ転換される。   Then, from the vicinity where the first and second driven shafts 12 and 13 have passed through the middle portions of the first and second direction changing paths 51 and 52, respectively, from the vicinity of the first and second driven shafts 12 and 13, The carrying direction is changed to the second carrying direction P2 opposite to the first carrying direction P1 while maintaining the vertical relationship of the substrate holder 11.

なお、この過程においては、基板保持器11の第1の被駆動軸12は第1の方向転換経路51内において同時に接触することはないが第1のガイド部材41と第2のガイド部材42の縁部にも接触し、また第2の被駆動軸13は第2の方向転換経路52内において同時に接触することはないが第2のガイド部材42と第3のガイド部材43の縁部にも接触する。   In this process, the first driven shaft 12 of the substrate holder 11 does not come into contact with each other in the first direction changing path 51 at the same time, but the first guide member 41 and the second guide member 42 do not contact each other. The edge of the second driven member 13 does not contact the edge of the second guide member 42 and the edge of the third guide member 43 at the same time in the second turning path 52. Contact.

さらに、基板保持器搬送機構3の搬送駆動部材33と方向転換機構40の搬送駆動部材45の駆動を継続すると、図10(c)に示すように、基板保持器11の第1の被駆動軸12が第1の方向転換経路51の排出口並びに受け渡し部材47の受け渡し部47aを経由して受け渡し部材47の上方の位置に配置されるとともに、基板保持器11の第2の被駆動軸13が第2の方向転換経路52の排出口の位置に配置され、その後、図11(a)に示すように、基板保持器11は、基板保持器支持機構18の復路側基板保持器支持機構18cに受け渡される。   Further, when the transport drive member 33 of the substrate holder transport mechanism 3 and the transport drive member 45 of the direction changing mechanism 40 are continuously driven, as shown in FIG. 10C, the first driven shaft of the substrate holder 11 is driven. 12 is arranged at a position above the transfer member 47 via the discharge port of the first direction changing path 51 and the transfer portion 47a of the transfer member 47, and the second driven shaft 13 of the substrate holder 11 is The substrate holder 11 is arranged at the position of the discharge port of the second direction changing path 52, and then the substrate holder 11 is attached to the return path side substrate holder supporting mechanism 18c of the substrate holder supporting mechanism 18 as shown in FIG. Delivered.

なお、図10(c)に示す時点で方向転換機構40の第2の駆動部46と基板保持器11の第2の被駆動軸13は接触しておらず、基板保持器11は、基板保持器搬送機構3の第1の駆動部36と第1の被駆動軸12との接触による駆動によって第2の搬送方向P2へ移動する。   At the time point shown in FIG. 10C, the second drive unit 46 of the direction changing mechanism 40 and the second driven shaft 13 of the substrate holder 11 are not in contact with each other, and the substrate holder 11 holds the substrate holder. The first drive unit 36 of the container transport mechanism 3 is driven by the contact between the first driven shaft 12 and the first driven shaft 12 to move in the second transport direction P2.

そして、更なる基板保持器搬送機構3の搬送駆動部材33の駆動により、図11(b)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材47の傾斜面47bに接触して受け渡し部材47が回転軸48を中心として下方に回転移動し、図11(c)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材47の上方を通過して基板保持器11が第2の搬送方向P2へ移動する。   Then, by further driving the transport driving member 33 of the substrate holder transport mechanism 3, the second driven shaft 13 of the substrate holder 11 is moved to the inclined surface 47 b of the delivery member 47 as shown in FIG. 11B. Upon contact, the transfer member 47 rotates downward about the rotation shaft 48, and as shown in FIG. 11C, the second driven shaft 13 of the substrate holder 11 passes above the transfer member 47. Substrate holder 11 moves in the second transport direction P2.

なお、受け渡し部材47は、この過程の後に図示しない弾性部材の付勢力によって元の位置に戻る。   The delivery member 47 returns to the original position by the urging force of the elastic member (not shown) after this process.

その後、図12(a)に示すように、基板保持器搬送機構3の搬送駆動部材33の復路側搬送部33cを第2の搬送方向P2に移動させ、第1の駆動部36を同方向に駆動することにより、基板保持器11を基板保持器排出部30Cに向って搬送する。   After that, as shown in FIG. 12A, the backward path side transport unit 33c of the transport drive member 33 of the substrate holder transport mechanism 3 is moved in the second transport direction P2, and the first drive unit 36 is moved in the same direction. By driving, the substrate holder 11 is conveyed toward the substrate holder discharge unit 30C.

この場合、成膜前の基板10aは、方向転換機構40を通過する際に温度が低下しているから、基板保持器11を基板保持器排出部30Cに向って搬送する際に、基板保持器11に保持された成膜前の基板10aの第2面(下面)を、上述したアニール促進用真空アニール処理機構23(図1参照)によって加熱し、アモルファス状態の第1の透明導電酸化物膜10fを更に加熱して真空アニール処理を行う。   In this case, since the temperature of the substrate 10a before film formation is lowered when passing through the direction changing mechanism 40, the substrate holder 11 is conveyed when the substrate holder 11 is conveyed toward the substrate holder discharge unit 30C. The second surface (lower surface) of the substrate 10a before film formation held by 11 is heated by the above-described annealing annealing vacuum annealing mechanism 23 (see FIG. 1), and the first transparent conductive oxide film in an amorphous state. 10f is further heated to perform vacuum annealing treatment.

この場合、加熱条件は、180℃以上220℃以下となるように設定することが好ましい。そして、このアニール処理により当該透明導電酸化物膜10fの結晶化の進行が促進される。なお、上述した第1の真空アニール処理とこのアニール促進用アニール処理の時間は、合わせて数分程度である。   In this case, the heating condition is preferably set to 180 ° C. or higher and 220 ° C. or lower. Then, this annealing treatment promotes the progress of crystallization of the transparent conductive oxide film 10f. In addition, the time of the above-mentioned first vacuum annealing process and this annealing process for promoting annealing is about several minutes in total.

そして、基板温度の過度の上昇を防止するため、必要に応じて上述した冷却機構25(図1参照)によって当該基板10aの冷却を行う。   Then, in order to prevent the substrate temperature from rising excessively, the cooling mechanism 25 (see FIG. 1) described above cools the substrate 10a as necessary.

その後、図1に示す第2の成膜領域5を通過する際に、基板保持器11に保持された当該基板10aの第2面(下面)のn型アモルファスシリコン層10Eの表面に、基板保持器11の下方に位置する第2のスパッタ源5Tによってスパッタリングによって例えばn型の第2の透明導電酸化物膜(第2のスパッタ膜)10gを全面的に形成する(図5(c)参照)。この時点では、第2の透明導電酸化物膜10gは、アモルファス状態の膜である。   After that, when passing through the second film formation region 5 shown in FIG. 1, the substrate is held on the surface of the n-type amorphous silicon layer 10E on the second surface (lower surface) of the substrate 10a held by the substrate holder 11. For example, an n-type second transparent conductive oxide film (second sputtered film) 10g is entirely formed by sputtering by a second sputter source 5T located below the container 11 (see FIG. 5C). . At this point, the second transparent conductive oxide film 10g is an amorphous film.

なお、第2の透明導電酸化物膜10gを形成する際には、この基板10aの第1面に形成された第1の透明導電酸化物膜10fと短絡しないように、図示しないマスクを用いて第1の透明導電酸化物膜10fの縁部が当該基板10aの縁部に対して若干内方側に位置するように形成することが好ましい。   When forming the second transparent conductive oxide film 10g, a mask not shown is used so as not to short-circuit with the first transparent conductive oxide film 10f formed on the first surface of the substrate 10a. It is preferable to form the edge of the first transparent conductive oxide film 10f so as to be located slightly inward of the edge of the substrate 10a.

本発明の場合、第2の透明導電酸化物膜10gの材料としては特に限定されることはないが、上述した第1の透明導電酸化物膜10fと同様に、低抵抗で光透過性の材料である酸化インジウム系のものを用いることが好ましく、より好ましくは、酸化インジウムに、酸化チタン、酸化ジルコニウム、酸化タングステン、酸化セリウム、酸化ガリウム、酸化シリコンなどの金属酸化物を少なくとも1種以上微量添加したものである。   In the case of the present invention, the material of the second transparent conductive oxide film 10g is not particularly limited, but similar to the above-mentioned first transparent conductive oxide film 10f, a low resistance and light transmissive material. It is preferable to use an indium oxide-based material, and more preferably, at least one metal oxide such as titanium oxide, zirconium oxide, tungsten oxide, cerium oxide, gallium oxide, or silicon oxide is added to indium oxide in a trace amount. It was done.

本実施の形態では、アモルファス状態の第2の透明導電酸化物膜10gのスパッタ成膜の際に、放電によるプラズマの熱によって当該基板10aの第1面上のある程度結晶化が進行したアモルファス状態の第1の透明導電酸化物膜10fの結晶化が更に進行してほぼ終了する。そして、これにより、図5(c)に示すように、結晶状態の第1の透明導電酸化物膜10Fが形成される。   In the present embodiment, when the second transparent conductive oxide film 10g in the amorphous state is formed by sputtering, the amorphous state in which the crystallization on the first surface of the substrate 10a has progressed to some extent by the heat of the plasma due to the discharge Crystallization of the first transparent conductive oxide film 10f further progresses and is almost completed. Then, as shown in FIG. 5C, this forms the first transparent conductive oxide film 10F in a crystalline state.

さらに、本実施の形態では、上述した成膜後、基板保持器11が基板保持器搬送機構3の基板保持器排出部30Cに到達する前に、上述した第2の真空アニール処理機構22(図1参照)によってアモルファス状態の第2の透明導電酸化物膜10gを加熱して真空アニール処理を行う。   Furthermore, in the present embodiment, after the above-described film formation, before the substrate holder 11 reaches the substrate holder discharge part 30C of the substrate holder transport mechanism 3, the above-mentioned second vacuum annealing treatment mechanism 22 (FIG. The second transparent conductive oxide film 10g in the amorphous state is heated according to (1) to perform a vacuum annealing process.

この場合、加熱条件は、180℃以上220℃以下となるように設定することが好ましい。   In this case, the heating condition is preferably set to 180 ° C. or higher and 220 ° C. or lower.

この第2のアニール処理により、アモルファス状態の第2の透明導電酸化物膜10gが結晶化して結晶状態の第2の透明導電酸化物膜10Gが形成され、これにより図5(d)に示すように、成膜後の基板10bを得る。   By this second annealing treatment, the second transparent conductive oxide film 10g in the amorphous state is crystallized to form the second transparent conductive oxide film 10G in the crystalline state. As a result, as shown in FIG. Then, the substrate 10b after film formation is obtained.

そして、第2の搬送方向P2に移動する基板保持器11が基板保持器排出部30Cに到達した後、搬送駆動部材33の復路側搬送部33cを第2の搬送方向P2に移動させ、第1の駆動部36を同方向に駆動すると、復路側搬送部33cの移動に伴って第1の駆動部36が鉛直方向から傾斜した状態になるに従い、図12(b)に示すように、第1の駆動部36と、第1の被駆動軸12との接触が外れ、これにより基板保持器11は推進力を失うから、図13に示す基板搬入搬出機構6の搬送ロボット64によって基板保持器11を第2の搬送方向P2に移動させて第1の駆動部36に対して離間させる。   Then, after the substrate holder 11 moving in the second transport direction P2 reaches the substrate holder discharge portion 30C, the backward path transport portion 33c of the transport driving member 33 is moved in the second transport direction P2, and When the drive unit 36 of the first drive unit 36 is driven in the same direction as the first drive unit 36 is inclined from the vertical direction with the movement of the backward path side transport unit 33c, as shown in FIG. The driving part 36 of the substrate and the first driven shaft 12 are disengaged from each other, and the substrate holder 11 loses its propulsive force. Therefore, the transfer robot 64 of the substrate loading / unloading mechanism 6 shown in FIG. Is moved in the second transport direction P2 to be separated from the first drive unit 36.

さらに、基板搬入搬出機構6の搬送ロボット64を用いて基板保持器11の取り出し動作を行い、図13に示すように、基板保持器11を搬送ロボット64と共に支持部62上に配置する。   Further, the transfer robot 64 of the substrate loading / unloading mechanism 6 is used to take out the substrate holder 11, and the substrate holder 11 is placed on the support portion 62 together with the transport robot 64, as shown in FIG.

その後、図14に示すように、基板搬入搬出機構6の支持部62を上昇させ、支持部62上のシール部材63を真空槽2の内壁に密着させて真空槽2内の雰囲気に対して基板搬入搬出室2A内の雰囲気を隔離した状態で、大気圧までベントを行う。   After that, as shown in FIG. 14, the support part 62 of the substrate loading / unloading mechanism 6 is raised, and the seal member 63 on the support part 62 is brought into close contact with the inner wall of the vacuum chamber 2 so that the substrate is exposed to the atmosphere in the vacuum chamber 2. Venting is performed up to atmospheric pressure in a state where the atmosphere in the carry-in / carry-out chamber 2A is isolated.

そして、図15に示すように、基板搬入搬出室2Aの蓋部2aを開け、図示しない搬送ロボットを用い、成膜後の基板10bを基板保持器11から大気中に取り出す。   Then, as shown in FIG. 15, the lid 2a of the substrate loading / unloading chamber 2A is opened, and the substrate 10b after film formation is taken out from the substrate holder 11 to the atmosphere by using a transfer robot (not shown).

その後、図6に示す状態に戻り、上述した動作を繰り返すことにより、複数の成膜前の基板10aに対してそれぞれ両面上に上述した成膜及びアニール処理を行う。   After that, by returning to the state shown in FIG. 6 and repeating the above-described operation, the above-described film formation and annealing treatment are performed on both surfaces of each of the plurality of substrates 10a before film formation.

なお、ヘテロ接合型太陽電池の表面電極については、上述した結晶状態の第1及び第2の透明導電酸化物膜10F、10G上に例えば銀ペーストをスクリーン印刷によって塗布し、焼成により形成することができる。   The surface electrode of the heterojunction solar cell may be formed by applying, for example, a silver paste by screen printing on the above-described first and second transparent conductive oxide films 10F and 10G in the crystalline state, and firing the paste. it can.

以上述べた本実施の形態にあっては、真空中において、成膜前の基板10aの第1面上に形成されたアモルファス状態の第1の透明導電酸化物膜10fに対して第1の真空アニール処理を行うとともに、当該基板10aの第2面上に形成されたアモルファス状態の第2の透明導電酸化物膜10gに対して第2の真空アニール処理を行うようにしたことから、アニール処理後の結晶状態の第1及び第2の透明導電酸化物膜10F、10Gの結晶粒を肥大化させることによってキャリアの移動度を向上させることができ、これにより例えばヘテロ接合型太陽電池に用いる基板の両面に高品質で均一な透明導電酸化物膜を形成することができ、しかも真空アニール処理は大気中のアニール処理に比べて高速で結晶化が進行するので、成膜及びアニール処理の効率を向上させることができる。   In the present embodiment described above, the first vacuum is applied to the first transparent conductive oxide film 10f in the amorphous state formed on the first surface of the substrate 10a before film formation in vacuum. After performing the annealing process, the second vacuum annealing process is performed on the second transparent conductive oxide film 10g in the amorphous state formed on the second surface of the substrate 10a. The mobility of carriers can be improved by enlarging the crystal grains of the first and second transparent conductive oxide films 10F and 10G in the crystalline state of, thereby, for example, a substrate used for a heterojunction solar cell. High-quality and uniform transparent conductive oxide film can be formed on both sides, and vacuum anneal improves crystallization faster than anneal in air, improving the efficiency of film formation and anneal. Can be made.

この場合、当該基板10aの第1面上の第1の透明導電酸化物膜10fに対して第1の真空アニール処理を行った後で当該基板10aの第2面上にアモルファス状態の第2の透明導電酸化物膜10gを形成する前に、当該基板10aの第1面上のアモルファス状態の第1の透明導電酸化物膜10fに対して更に真空アニール処理を行うようにすれば、当該第1の透明導電酸化物膜10fの結晶化の進行を促進させることができ、これにより当該基板10aの第1面上の結晶状態の第1の透明導電酸化物膜10Fのキャリアの移動度を更に向上させることができるので、例えばヘテロ接合型太陽電池に用いる基板の受光面側に高品質で均一な透明導電酸化物膜を形成することができる。   In this case, after performing the first vacuum annealing treatment on the first transparent conductive oxide film 10f on the first surface of the substrate 10a, the second amorphous state film is formed on the second surface of the substrate 10a. If the first transparent conductive oxide film 10f in the amorphous state on the first surface of the substrate 10a is further vacuum-annealed before forming the transparent conductive oxide film 10g, the first The crystallization of the transparent conductive oxide film 10f can be accelerated, which further improves the carrier mobility of the crystalline first transparent conductive oxide film 10F on the first surface of the substrate 10a. Therefore, for example, a high-quality and uniform transparent conductive oxide film can be formed on the light-receiving surface side of the substrate used for the heterojunction solar cell.

図16は、方向転換機構の他の例の構成を示す正面図である。   FIG. 16 is a front view showing the configuration of another example of the direction changing mechanism.

図16に示すように、本例の方向転換機構40Aは、図4に示す受け渡し部材47の代わりとなる受け渡し部材49を有している。   As shown in FIG. 16, the direction changing mechanism 40A of the present example has a delivery member 49 that replaces the delivery member 47 shown in FIG.

この受け渡し部材49は、例えば搬送方向に延びる細長の部材からなり、方向転換機構40Aの第1の方向転換経路51の排出口の近傍で復路側基板保持器支持機構18cの上方に設けられた回転軸49aを中心として第2の搬送方向P2側に延びる部分が上下方向に回転移動するように構成されている。   The transfer member 49 is, for example, an elongated member extending in the transport direction, and is provided above the return path side substrate holder support mechanism 18c in the vicinity of the discharge port of the first direction changing path 51 of the direction changing mechanism 40A. A portion extending toward the second transport direction P2 side about the shaft 49a is configured to rotate and move in the vertical direction.

受け渡し部材49は、下側の部分49bが平面状に形成され、その下側の部分49bの第2の搬送方向P2側の先端部49cが上方向に傾斜するように形成されている。   The delivery member 49 has a lower portion 49b formed in a planar shape, and a lower end portion 49b of the delivery member 49 is formed such that a front end portion 49c thereof on the second transport direction P2 side is inclined upward.

この受け渡し部材49は、回転軸49aに対して第2の搬送方向P2側の部分が外力が作用しない状態で水平方向に対して若干下方に傾斜するように構成されている。   The delivery member 49 is configured such that a portion thereof on the second transport direction P2 side with respect to the rotation shaft 49a is inclined slightly downward with respect to the horizontal direction in a state where no external force acts.

この場合、受け渡し部材49の第2の搬送方向P2側の部分を例えば図示しないねじりコイルばね等の弾性部材によって下方に付勢することにより外力が作用しない状態で当該第2の搬送方向P2側の部分を水平方向に対して若干下方に傾斜させるように構成することができ、また、受け渡し部材49の自重によって外力が作用しない状態で当該第2の搬送方向P2側の部分が水平方向に対して若干下方に傾斜するように構成することもできる。   In this case, a portion of the delivery member 49 on the second conveyance direction P2 side is urged downward by an elastic member such as a torsion coil spring (not shown) to prevent the external force from acting on the second conveyance direction P2 side. The portion can be configured to be inclined slightly downward with respect to the horizontal direction, and the portion on the second conveyance direction P2 side with respect to the horizontal direction can be configured in a state where external force does not act due to the weight of the transfer member 49. It can also be configured to incline slightly downward.

図17(a)〜(c)並びに図18(a)〜(c)は、本例における基板保持器搬送機構及び方向転換機構の動作を示す説明図である。   17A to 17C and FIGS. 18A to 18C are explanatory views showing the operation of the substrate holder transport mechanism and the direction changing mechanism in this example.

本例においても、基板保持器搬送機構3の第1の駆動部36を第1の搬送方向P1に移動させることにより、図17(a)に示すように、成膜工程が終了し基板保持器搬送機構3の搬送折り返し部30Bに到達した基板保持器11を更に第1の搬送方向P1に移動させ、基板保持器11の第2の被駆動軸13を方向転換機構40Aの第2の方向転換経路52の進入口の位置に配置し、方向転換機構40Aの第2の駆動部46が基板保持器11の第2の被駆動軸13の下方に位置するように搬送駆動部材45の動作を制御する。   Also in this example, by moving the first driving unit 36 of the substrate holder transport mechanism 3 in the first transport direction P1, as shown in FIG. 17A, the film formation process is completed and the substrate holder is completed. The substrate holder 11 that has reached the transport folding section 30B of the transport mechanism 3 is further moved in the first transport direction P1, and the second driven shaft 13 of the substrate holder 11 is redirected to the second direction of the redirecting mechanism 40A. It is arranged at the entrance of the path 52, and the operation of the transport drive member 45 is controlled so that the second drive portion 46 of the direction changing mechanism 40A is located below the second driven shaft 13 of the substrate holder 11. To do.

そして、第1の駆動部36と第2の駆動部46とを同期させて第1の搬送方向P1にそれぞれ移動させることにより、図17(b)に示すように、基板保持器11の第1及び第2の被駆動軸12、13を第1及び第2の駆動部36、46によってそれぞれ支持駆動し、第1及び第2の方向転換経路51、52内を下方に向ってそれぞれ移動させることにより、基板保持器11を上下関係を維持した状態で下方に向って移動させる。   Then, the first drive unit 36 and the second drive unit 46 are synchronously moved in the first transport direction P1, respectively, so that as shown in FIG. And driving the first and second driven shafts 12 and 13 by the first and second drive units 36 and 46, respectively, and moving the first and second direction change paths 51 and 52 downward. Thus, the substrate holder 11 is moved downward while maintaining the vertical relationship.

そして、第1及び第2の被駆動軸12、13が第1及び第2の方向転換経路51、52の中腹部分をそれぞれ通過した付近から、第1及び第2の被駆動軸12、13の搬送方向が、基板保持器11の上下関係を維持した状態で第1の搬送方向P1と反対方向の第2の搬送方向P2にそれぞれ転換される。   Then, from the vicinity where the first and second driven shafts 12 and 13 have passed through the middle portions of the first and second direction changing paths 51 and 52, respectively, from the vicinity of the first and second driven shafts 12 and 13, The carrying direction is changed to the second carrying direction P2 opposite to the first carrying direction P1 while maintaining the vertical relationship of the substrate holder 11.

さらに、基板保持器搬送機構3の搬送駆動部材33と方向転換機構40Aの搬送駆動部材45の駆動を継続すると、図17(c)に示すように、基板保持器11の第1の被駆動軸12が第1の方向転換経路51の排出口並びに受け渡し部材49を通過するとともに、基板保持器11の第2の被駆動軸13が第2の方向転換経路52の排出口の位置に配置され、その後、図18(a)に示すように、基板保持器11は、基板保持器支持機構18の復路側基板保持器支持機構18cに受け渡される。   Further, when the transport drive member 33 of the substrate holder transport mechanism 3 and the transport drive member 45 of the direction changing mechanism 40A continue to be driven, as shown in FIG. 17C, the first driven shaft of the substrate holder 11 is driven. 12 passes through the outlet of the first direction changing path 51 and the transfer member 49, and the second driven shaft 13 of the substrate holder 11 is arranged at the position of the outlet of the second direction changing path 52. After that, as shown in FIG. 18A, the substrate holder 11 is transferred to the return path side substrate holder supporting mechanism 18 c of the substrate holder supporting mechanism 18.

なお、図17(c)に示す時点で方向転換機構40Aの第2の駆動部46と基板保持器11の第2の被駆動軸13は接触しておらず、基板保持器11は、基板保持器搬送機構3の第1の駆動部36と第1の被駆動軸12との接触による駆動によって第2の搬送方向P2へ移動する。   17C, the second drive unit 46 of the direction changing mechanism 40A and the second driven shaft 13 of the substrate holder 11 are not in contact with each other, and the substrate holder 11 holds the substrate. The first drive unit 36 of the container transport mechanism 3 is driven by the contact between the first driven shaft 12 and the first driven shaft 12 to move in the second transport direction P2.

そして、更なる基板保持器搬送機構3の搬送駆動部材33の駆動により、図18(b)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材49の下側の部分49bに接触して受け渡し部材49が回転軸49aを中心として上方に回転移動し、図18(c)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材49の先端部49cの下方を通過して基板保持器11が第2の搬送方向P2へ移動する。   Then, by further driving the transport drive member 33 of the substrate holder transport mechanism 3, as shown in FIG. 18B, the second driven shaft 13 of the substrate holder 11 is located below the transfer member 49. 18b, the transfer member 49 is rotated upward about the rotation shaft 49a, and the second driven shaft 13 of the substrate holder 11 is connected to the tip of the transfer member 49 as shown in FIG. 18C. The substrate holder 11 moves in the second transport direction P2 by passing below 49c.

なお、受け渡し部材49は、この過程の後に図示しない弾性部材の付勢力又はその自重によって元の位置に戻る。   After this process, the transfer member 49 returns to the original position by the urging force of the elastic member (not shown) or its own weight.

以上述べた本例の受け渡し部材49を有する方向転換機構40Aによれば、基板保持器11が受け渡し部材49を通過する際の摩擦力を最小限にする。   According to the direction changing mechanism 40A having the transfer member 49 of the present embodiment described above, the frictional force when the substrate holder 11 passes through the transfer member 49 is minimized.

なお、本発明は上述した実施の形態に限られず、種々の変更を行うことができる。   Note that the present invention is not limited to the above-described embodiment, and various changes can be made.

例えば上記実施の形態においては、鉛直面に対する投影形状が一連の環状となるように形成された搬送経路を有する成膜装置を例にとって説明したが、本発明はこれに限られず、直線状の搬送経路を有する所謂インライン方式の成膜装置にも適用することができる。   For example, in the above-described embodiment, the film forming apparatus having the transfer path formed so that the projection shape on the vertical plane is a series of loops has been described as an example, but the present invention is not limited to this, and the linear transfer is performed. It can also be applied to a so-called in-line type film forming apparatus having a path.

また、上記実施の形態においては、搬送駆動部材33のうち上側の部分を第1の搬送部である往路側搬送部33aとするとともに、搬送駆動部材33のうち下側の部分を第2の搬送部である復路側搬送部33cとするようにしたが、本発明はこれに限られず、これらの上下関係を逆にすることもできる。   Further, in the above-described embodiment, the upper portion of the transport driving member 33 is the forward transport portion 33a which is the first transport portion, and the lower portion of the transport driving member 33 is the second transport portion. Although the return path side transport unit 33c, which is a unit, is used, the present invention is not limited to this, and the vertical relationship between them may be reversed.

さらに、上記実施の形態では、基板の上面を第1面とし、下面を第2面としたが、基板の下面を第1面とし、上面を第2面とすることもできる。   Further, in the above embodiment, the upper surface of the substrate is the first surface and the lower surface is the second surface, but the lower surface of the substrate may be the first surface and the upper surface may be the second surface.

さらにまた、上記実施の形態では、ヘテロ接合型太陽電池用の基板の両面上に透明導電酸化物膜を形成する場合を例にとって説明したが、本発明はこれに限られず、種々の基板の両面上に種々の膜を形成する場合に適用することができる。   Furthermore, in the above-described embodiment, the case where the transparent conductive oxide film is formed on both surfaces of the substrate for the heterojunction solar cell has been described as an example, but the present invention is not limited to this, and both surfaces of various substrates are described. It can be applied when forming various films on top.

ただし、本発明は、ヘテロ接合型太陽電池用の基板の両面上に透明導電酸化物膜を形成する場合に特に有効となるものである。   However, the present invention is particularly effective when the transparent conductive oxide film is formed on both surfaces of the substrate for the heterojunction solar cell.

また、上記実施の形態では、基板保持器搬送機構3及び方向転換機構40について、一対のスプロケットと、これら一対のスプロケットに架け渡されたチェーンから構成するようにしたが、例えばベルトやレールを用いた環状形状の搬送駆動機構を用いることもできる。   Further, in the above embodiment, the substrate holder transport mechanism 3 and the direction changing mechanism 40 are composed of a pair of sprockets and a chain spanning the pair of sprockets. However, for example, a belt or a rail is used. It is also possible to use an annular transport drive mechanism.

さらに、基板保持器支持機構18については、ローラではなくベルトやレールを用いて構成することもできる。   Further, the substrate holder supporting mechanism 18 may be configured by using a belt or rail instead of the roller.

さらに、本発明は、上記実施の形態のように、成膜前の基板10aを真空槽2内に搬入し、成膜後の基板10bを真空槽2から搬出する場合のみならず、成膜前の基板10aを基板保持器11と共に真空槽2内に搬入し、成膜後の基板10bを基板保持器11と共に真空槽2から搬出する場合にも適用することができる。   Furthermore, the present invention is not limited to the case where the substrate 10a before film formation is carried into the vacuum chamber 2 and the substrate 10b after film formation is carried out from the vacuum chamber 2 as in the above-described embodiment. The present invention can also be applied to the case where the substrate 10a of 1) is carried into the vacuum chamber 2 together with the substrate holder 11, and the substrate 10b after film formation is carried out together with the substrate holder 11 from the vacuum chamber 2.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

<実施例>
ガラス基板上にスパッタリングによって厚さ110nmの酸化インジウム(In23)からなる膜を形成した。
この酸化インジウム膜のシート抵抗値を測定したところ、42.9Ω/□であった。
<Example>
A 110 nm-thick film of indium oxide (In 2 O 3 ) was formed on a glass substrate by sputtering.
When the sheet resistance value of this indium oxide film was measured, it was 42.9 Ω / □.

そして、酸化インジウム膜に対し、シースヒーターを用い、真空中において温度200℃で5分間アニール処理を行った。
さらに、アニール処理後の酸化インジウム膜を、温度40℃のリン硝酢酸(リン酸73:硝酸3:酢酸7:水17)に70秒浸漬してハーフエッチングを行った後、SEMによって表面及び断面を観察した。
その結果を図20(a)(b)に示す。
Then, the indium oxide film was annealed at a temperature of 200 ° C. for 5 minutes in vacuum using a sheath heater.
Further, the annealed indium oxide film is immersed in phosphorous nitric acid (phosphoric acid 73: nitric acid 3: acetic acid 7: water 17) at a temperature of 40 ° C. for 70 seconds to perform half etching, and then the surface and the cross section are observed by SEM. Was observed.
The results are shown in FIGS. 20 (a) and 20 (b).

このハーフエッチング後の酸化インジウム膜のシート抵抗値を測定したところ、44.0Ω/□であった。   The sheet resistance of the indium oxide film after the half etching was measured and found to be 44.0 Ω / □.

<比較例>
上記実施例と同一の方法によって形成した酸化インジウム膜のシート抵抗値を測定したところ、41.4Ω/□であった。
<Comparative example>
The sheet resistance value of the indium oxide film formed by the same method as in the above example was measured and found to be 41.4 Ω / □.

さらに、この酸化インジウム膜を、温度40℃の上記リン硝酢酸に70秒浸漬してハーフエッチングを行った後、SEMによって表面及び断面を観察した。
その結果を図21(a)(b)に示す。
Further, the indium oxide film was immersed in the phosphorous nitric acid acetic acid at 40 ° C. for 70 seconds for half etching, and then the surface and cross section were observed by SEM.
The results are shown in FIGS. 21 (a) and 21 (b).

このハーフエッチング後の酸化インジウム膜のシート抵抗値を測定したところ、1518Ω/□であった。   When the sheet resistance value of the indium oxide film after the half etching was measured, it was 1518 Ω / □.

<評価>
図20(a)(b)に示すように、成膜後真空アニール処理を行った実施例の酸化インジウム膜は、表面及び内部が均一で緻密に形成されており、ハーフエッチング後においても、シート抵抗値は殆ど上昇しなかった。
<Evaluation>
As shown in FIGS. 20 (a) and 20 (b), the indium oxide film of the example subjected to the vacuum annealing treatment after the film formation has a uniform surface and the inside and is densely formed. The resistance value hardly increased.

これに対し、成膜後真空アニール処理を行わなかった比較例の酸化インジウム膜は、図21(a)(b)に示すように、表面が島状に形成されており、また内部に空隙が多数見られた。   On the other hand, in the indium oxide film of the comparative example in which the vacuum annealing process was not performed after the film formation, as shown in FIGS. 21A and 21B, the surface was formed in an island shape and voids were formed inside. Many were seen.

さらに、比較例の酸化インジウム膜は、ハーフエッチング後においてシート抵抗値が大幅(41.4Ω/□→1518Ω/□)に上昇した。   Furthermore, the sheet resistance value of the indium oxide film of the comparative example increased significantly (41.4 Ω / □ → 1518 Ω / □) after the half etching.

以上より、本発明の真空アニール処理を行うことにより、成膜装置から排出された時点で均一で高品質のスパッタ膜を形成できることが判明した。   From the above, it was found that by performing the vacuum annealing treatment of the present invention, it is possible to form a uniform and high quality sputtered film when it is discharged from the film forming apparatus.

1…成膜装置
2…真空槽
3…基板保持器搬送機構
4…第1の成膜領域
4T…第1のスパッタ源
5…第2の成膜領域
5T…第2のスパッタ源
6…基板搬入搬出機構
10…基板
10a…成膜前の基板
10b…成膜後の基板
10A…n型結晶シリコン基板
10B、10C…i型アモルファスシリコン層
10D…p型アモルファスシリコン層
10E…n型アモルファスシリコン層
10f…アモルファス状態の第1の透明導電酸化物膜(アモルファス状態の第1のスパッタ膜)
10F…結晶状態の第1の透明導電酸化物膜(結晶状態の第1のスパッタ膜)
10g…アモルファス状態の第2の透明導電酸化物膜(アモルファス状態の第2のスパッタ膜)
10G…結晶状態の第2の透明導電酸化物膜(結晶状態の第2のスパッタ膜)
11…基板保持器
12…第1の被駆動軸
13…第2の被駆動軸
14…保持部
18…基板保持器支持機構
21…第1の真空アニール処理機構
22…第2の真空アニール処理機構
23…アニール促進用真空アニール処理機構
25…冷却機構
30A…基板保持器導入部
30B…搬送折り返し部
30C…基板保持器排出部
33…搬送駆動部材(搬送経路)
33a…往路側搬送部(第1の搬送部)
33b…折り返し部
33c…復路側搬送部(第2の搬送部)
40…方向転換機構
P1…第1の搬送方向
P2…第2の搬送方向
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 2 ... Vacuum tank 3 ... Substrate holder conveyance mechanism 4 ... 1st film-forming area | region 4T ... 1st sputtering source 5 ... 2nd film-forming area | region 5T ... 2nd sputtering source 6 ... Substrate carry-in Unloading mechanism 10 ... Substrate 10a ... Substrate 10b before film formation ... Substrate 10A after film formation ... n-type crystalline silicon substrate 10B ... 10C ... i-type amorphous silicon layer 10D ... p-type amorphous silicon layer 10E ... n-type amorphous silicon layer 10f ... First transparent conductive oxide film in amorphous state (first sputtered film in amorphous state)
10F ... First transparent conductive oxide film in crystalline state (first sputtered film in crystalline state)
10 g ... second transparent conductive oxide film in amorphous state (second sputtered film in amorphous state)
10G ... Second transparent conductive oxide film in crystalline state (second sputtered film in crystalline state)
11 ... Substrate holder 12 ... 1st driven shaft 13 ... 2nd driven shaft 14 ... Holding part 18 ... Substrate holder support mechanism 21 ... 1st vacuum annealing processing mechanism 22 ... 2nd vacuum annealing processing mechanism 23 ... Vacuum annealing treatment mechanism for accelerating annealing 25 ... Cooling mechanism 30A ... Substrate holder introducing section 30B ... Conveyance folding section 30C ... Substrate holder discharging section 33 ... Conveyance driving member (conveyance path)
33a ... Forward side transport unit (first transport unit)
33b ... Fold-back section 33c ... Return path side transport section (second transport section)
40 ... Direction changing mechanism P1 ... 1st conveyance direction P2 ... 2nd conveyance direction

Claims (6)

搬送経路に沿って基板を搬送可能な真空槽と、
前記真空槽内に設けられ、前記基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、
前記第1の成膜領域の搬送方向下流側に設けられ、当該第1の成膜領域において前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構と、
前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、
前記第2の成膜領域の搬送方向下流側に設けられ、当該第2の成膜領域において前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構とを有し、
前記第1の真空アニール処理機構と、前記第2の成膜領域との間に、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている成膜装置。
A vacuum chamber that can transport substrates along the transport path,
A first film formation region which is provided in the vacuum chamber and has a first sputtering source for forming a film on the first surface of the substrate;
A vacuum annealing process is performed on the first sputtered film in the amorphous state, which is provided on the downstream side of the first film formation region in the transport direction and is formed on the first surface of the substrate in the first film formation region. A first vacuum annealing treatment mechanism to perform,
A second film formation region provided in the vacuum chamber and having a second sputtering source for forming a film on the second surface of the substrate;
A vacuum annealing process is performed on the second sputter film in an amorphous state, which is provided on the downstream side of the second film forming region in the transport direction and is formed on the second surface of the substrate in the second film forming region. second have a vacuum annealing treatment mechanism for performing,
Between the first vacuum annealing treatment mechanism and the second film formation region, a first sputtered film on the first surface of the substrate vacuum-annealed by the first vacuum annealing treatment mechanism is formed. On the other hand, a film forming apparatus provided with a vacuum annealing treatment mechanism for promoting annealing that further performs vacuum annealing treatment .
単一の真空雰囲気が形成される真空槽と、
前記真空槽内に設けられ、基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、
前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、
鉛直面に対する投影形状が一連の環状となるように形成され、前記第1及び第2の成膜領域を通過するように設けられた搬送経路と、
前記基板の第1及び第2面が露出する開口部を有し且つ当該基板を水平状態に保持する基板保持器を、前記搬送経路に沿って搬送する基板保持器搬送機構とを備え、
前記基板保持器搬送機構は、前記基板保持器を前記第1の成膜領域を通過するように第1の搬送方向に搬送する第1の搬送部と、前記基板保持器を前記第2の成膜領域を通過するように前記第1の搬送方向と反対の第2の搬送方向に搬送する第2の搬送部と、前記基板保持器を上下関係を維持した状態で前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する搬送折り返し部とを有し、
前記第1の搬送部の前記第1の成膜領域の搬送方向下流側に、前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構が設けられるとともに、
前記第2の搬送部の前記第2の成膜領域の搬送方向下流側に、前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構が設けられ
さらに、前記第2の搬送部の前記第2の成膜領域に対して前記第1の搬送方向側に、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている成膜装置。
A vacuum chamber in which a single vacuum atmosphere is formed,
A first film formation region provided in the vacuum chamber and having a first sputtering source for forming a film on the first surface of the substrate;
A second film formation region provided in the vacuum chamber and having a second sputtering source for forming a film on the second surface of the substrate;
A conveyance path that is formed so that the projection shape on the vertical plane is a series of annular shapes and that is provided so as to pass through the first and second film formation regions;
A substrate holder transport mechanism for transporting a substrate holder having an opening for exposing the first and second surfaces of the substrate and holding the substrate in a horizontal state along the transport path;
The substrate holder transport mechanism transports the substrate holder in the first transport direction so as to pass through the first film formation region, and the substrate holder transports the second holder. A second transport unit that transports in a second transport direction opposite to the first transport direction so as to pass through the film region, and the substrate holder from the first transport unit in a state where the substrate holder is maintained in a vertical relationship. A transporting and folding section for folding and transporting toward the second transporting section,
A vacuum annealing process is performed on the first sputtered film in the amorphous state formed on the first surface of the substrate, on the downstream side in the transport direction of the first film formation region of the first transport unit. With the vacuum annealing treatment mechanism of
A second annealing process is performed on the second sputter film in an amorphous state formed on the second surface of the substrate, on the downstream side of the second film formation region in the second conveyance region in the conveyance direction. vacuum annealing mechanism is provided,
Further, on the first transport direction side of the second transport portion in the second transport portion, on the first surface of the substrate that has been vacuum annealed by the first vacuum annealing mechanism. A film forming apparatus provided with a vacuum annealing treatment mechanism for promoting annealing, which further performs vacuum annealing treatment on the first sputtered film .
真空中で基板を移動させながら当該基板の両面上にスパッタリングによって成膜を行う成膜方法であって、
前記基板の第1面上にアモルファス状態の第1のスパッタ膜を形成する第1の成膜工程と、
前記基板の第1面上の前記第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程と、
前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程と、
前記基板の第2面上の前記第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理工程とを有し、
前記基板の第1面上の前記アモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程の後で且つ前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程の前において、前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進工程を有する成膜方法。
A method of forming a film by sputtering on both surfaces of the substrate while moving the substrate in a vacuum,
A first film forming step of forming a first sputtered film in an amorphous state on the first surface of the substrate;
A first vacuum annealing treatment step of performing a vacuum annealing treatment on the first sputtered film on the first surface of the substrate;
A second film forming step of forming a second sputtered film in an amorphous state on the second surface of the substrate;
Have a second vacuum annealing step of performing vacuum annealing process on the second sputter film on the second side of the substrate,
After the first vacuum annealing process of performing the vacuum annealing process on the first sputtered film in the amorphous state on the first surface of the substrate, the second sputtered film in the amorphous state is formed on the second surface of the substrate. A film forming method comprising an annealing promoting step of further performing a vacuum annealing treatment on the first sputtered film on the first surface of the substrate before the second film forming step of forming the sputtered film .
真空中で基板を移動させながら当該基板の両面上にスパッタリングによって成膜を行う成膜方法であって、
前記基板の第1面上にアモルファス状態の第1のスパッタ膜を形成する第1の成膜工程と、
前記基板の第1面上の前記第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程と、
前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程と、
前記基板の第2面上の前記第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理工程と、
前記基板の第1面上の前記アモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程の後で且つ前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程の前において、前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進工程とを有し、
前記基板が、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板であり、
前記第1のスパッタ膜が第1の透明導電酸化物膜で、かつ、前記第2のスパッタ膜が第2の透明導電酸化物膜である成膜方法。
A method of forming a film by sputtering on both surfaces of the substrate while moving the substrate in a vacuum,
A first film forming step of forming a first sputtered film in an amorphous state on the first surface of the substrate;
A first vacuum annealing treatment step of performing a vacuum annealing treatment on the first sputtered film on the first surface of the substrate;
A second film forming step of forming a second sputtered film in an amorphous state on the second surface of the substrate;
A second vacuum annealing treatment step of performing a vacuum annealing treatment on the second sputtered film on the second surface of the substrate;
After the first vacuum annealing process of performing the vacuum annealing process on the first sputtered film in the amorphous state on the first surface of the substrate, the second sputtered film in the amorphous state is formed on the second surface of the substrate. Before the second film forming step of forming the sputtered film, an annealing promoting step of further performing a vacuum annealing process on the first sputtered film on the first surface of the substrate,
The i-type amorphous silicon layer and the p-type amorphous silicon layer are sequentially provided on the first surface of the n-type crystalline silicon substrate, and the i-type amorphous silicon layer is formed on the second surface of the n-type crystalline silicon substrate. A substrate on which a layer and an n-type amorphous silicon layer are sequentially provided,
Wherein the first sputter film is in the first transparent conductive oxide film, and said second sputter film and the second transparent conductive oxide film Der Ru film forming method.
請求項記載の成膜装置を用いた成膜方法であって、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによって第1のスパッタ膜を形成する第1の成膜工程と、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記第1のスパッタ膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、
前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1のスパッタ膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによって第2のスパッタ膜を形成する第2の成膜工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2のスパッタ膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法。
A film forming method using the film forming apparatus according to claim 2 ,
The first carrier of the substrate holder carrying mechanism carries the substrate holder in the first carrying direction along the carrying path so as to pass through the first film forming region, and the substrate holder A first film forming step of forming a first sputtered film by sputtering on the first surface of the substrate held at
The first carrier of the substrate holder carrying mechanism carries the substrate holder in the first carrying direction along the carrying path, with respect to the first sputtered film on the first surface of the substrate. A first vacuum annealing treatment step of performing a vacuum annealing treatment by the first vacuum annealing treatment mechanism,
A step of folding back and transporting the substrate holder along the transport path from the first transporting portion toward the second transporting portion in a state in which the transporting and folding portion of the substrate holder transporting mechanism maintains the vertical relationship. When,
The substrate that has been transported in the second transport direction along the transport path by the second transport section of the substrate holder transport mechanism in the second transport direction and has been vacuum annealed by the first vacuum annealing mechanism. An annealing promoting step of further performing a vacuum annealing process on the first sputtered film on the first surface by the annealing promoting vacuum annealing mechanism.
The second carrier of the substrate holder carrying mechanism carries the substrate holder in the second carrying direction along the carrying path so as to pass through the second film formation region, and the substrate holder. A second film forming step of forming a second sputtered film by sputtering on the second surface of the substrate held at
The second carrier of the substrate holder carrying mechanism carries the substrate holder in the second carrying direction along the carrying path, with respect to the second sputtered film on the second surface of the substrate. A second vacuum annealing treatment step of performing a vacuum annealing treatment by the second vacuum annealing treatment mechanism.
請求項記載の成膜装置を用いた太陽電池の製造方法であって、
前記基板として、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板を用意し、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによってアモルファス状態の第1の透明導電酸化物膜を形成する工程と、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記アモルファス状態の第1の透明導電酸化物膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、
前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1の透明導電酸化物膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによってアモルファス状態の第2の透明導電酸化物膜を形成する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記アモルファス状態の第2の透明導電酸化物膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する太陽電池の製造方法。
A method for manufacturing a solar cell using the film forming apparatus according to claim 2 ,
As the substrate, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially provided on a first surface of an n-type crystalline silicon substrate, and an i-type amorphous silicon layer is provided on a second surface of the n-type crystalline silicon substrate. A substrate on which a layer and an n-type amorphous silicon layer are sequentially provided,
The first carrier of the substrate holder carrying mechanism carries the substrate holder in the first carrying direction along the carrying path so as to pass through the first film forming region, and the substrate holder Forming a first transparent conductive oxide film in an amorphous state on the first surface of the substrate held by sputtering by sputtering.
The first transport unit of the substrate holder transport mechanism transports the substrate holder in the first transport direction along the transport path, and the first transparent substrate in the amorphous state on the first surface of the substrate. A first vacuum annealing treatment step of performing a vacuum annealing treatment on the conductive oxide film by the first vacuum annealing treatment mechanism;
A step of folding back and transporting the substrate holder along the transport path from the first transporting portion toward the second transporting portion in a state in which the transporting and folding portion of the substrate holder transporting mechanism maintains the vertical relationship. When,
The substrate that has been transported in the second transport direction along the transport path by the second transport section of the substrate holder transport mechanism in the second transport direction and has been vacuum annealed by the first vacuum annealing mechanism. An annealing promoting step of further performing a vacuum annealing process on the first transparent conductive oxide film on the first surface of the first transparent conductive oxide film by the annealing promoting vacuum annealing process mechanism;
The second carrier of the substrate holder carrying mechanism carries the substrate holder in the second carrying direction along the carrying path so as to pass through the second film formation region, and the substrate holder. Forming a second transparent conductive oxide film in an amorphous state by sputtering on the second surface of the substrate held at
The second carrier of the substrate holder carrying mechanism carries the substrate holder in the second carrying direction along the carrying path, and the second transparent substrate in the amorphous state on the second surface of the substrate. A second method for producing a solar cell, comprising: performing a second vacuum annealing process on the conductive oxide film by the second vacuum annealing process mechanism.
JP2019146379A 2018-08-27 2019-08-08 Film forming apparatus, film forming method, and solar cell manufacturing method Active JP6697118B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157943 2018-08-27
JP2018157943 2018-08-27

Publications (2)

Publication Number Publication Date
JP2020033641A JP2020033641A (en) 2020-03-05
JP6697118B2 true JP6697118B2 (en) 2020-05-20

Family

ID=69652038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146379A Active JP6697118B2 (en) 2018-08-27 2019-08-08 Film forming apparatus, film forming method, and solar cell manufacturing method

Country Status (2)

Country Link
JP (1) JP6697118B2 (en)
CN (1) CN110863180A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309372A (en) * 2001-04-13 2002-10-23 Canon Inc Inline type film deposition apparatus, film deposition method and liquid crystal element
US10508332B2 (en) * 2016-08-25 2019-12-17 Ulvac, Inc. Film formation apparatus, film formation method, and manufacturing method of solar battery
WO2018047977A1 (en) * 2016-09-12 2018-03-15 株式会社アルバック Production method of substrate with transparent conductive film, production device of substrate with transparent conductive film, and transparent conductive film
KR101972730B1 (en) * 2016-11-02 2019-04-25 가부시키가이샤 알박 Vacuum processor
CN111647870A (en) * 2016-11-04 2020-09-11 株式会社爱发科 Film forming apparatus

Also Published As

Publication number Publication date
CN110863180A (en) 2020-03-06
JP2020033641A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US8828479B2 (en) Process for producing light absorbing layer for chalcopyrite type thin-film solar cell
US8618410B2 (en) Manufacturing apparatus and method for large-scale production of thin-film solar cells
JP3839750B2 (en) Photovoltaic device manufacturing equipment
CN108603281B (en) Method for manufacturing substrate with transparent conductive film, apparatus for manufacturing substrate with transparent conductive film, and solar cell
JP5182610B2 (en) Thin film solar cell manufacturing equipment
CN108368605B (en) Vacuum processing apparatus
JP6379318B1 (en) Film forming apparatus, film forming method, and solar cell manufacturing method
WO2021218760A1 (en) Conveying carrier plate, vacuum coating device, and vacuum coating method
KR101992074B1 (en) Film forming apparatus and film forming method and manufacturing method of solar cell
KR20140037198A (en) Method and system for inline chemical vapor deposition
JP6697118B2 (en) Film forming apparatus, film forming method, and solar cell manufacturing method
JP4985209B2 (en) Thin film solar cell manufacturing equipment
JP6754530B2 (en) Film formation equipment, film formation method, and solar cell manufacturing method
JP3268965B2 (en) Apparatus and method for forming a semiconductor film on a substrate
JP6279176B1 (en) Film forming apparatus, film forming method, and solar cell manufacturing method
TWI476835B (en) High-temperature activation process
US20130252367A1 (en) System and process for forming thin film photovoltaic device
JPH08260149A (en) Reduced pressure surface treating device and apparatus for producing solar battery
CN117119859B (en) Perovskite solar cell preparation device and perovskite solar cell preparation method
JP2006245100A (en) Baking furnace, method for baking body to be treated by using the same, and method for manufacturing solar cell element
JP2014056874A (en) Solar cell manufacturing method and solar cell manufacturing apparatus
JP2012015323A (en) Method of manufacturing cis-based film
JP2017165554A (en) Substrate conveying and processing device
JPH0817695A (en) Manufacturing device for semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200306

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6697118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250