JP2020033641A - Film deposition apparatus, film deposition method, and manufacturing method of solar cell - Google Patents

Film deposition apparatus, film deposition method, and manufacturing method of solar cell Download PDF

Info

Publication number
JP2020033641A
JP2020033641A JP2019146379A JP2019146379A JP2020033641A JP 2020033641 A JP2020033641 A JP 2020033641A JP 2019146379 A JP2019146379 A JP 2019146379A JP 2019146379 A JP2019146379 A JP 2019146379A JP 2020033641 A JP2020033641 A JP 2020033641A
Authority
JP
Japan
Prior art keywords
transport
substrate
substrate holder
film
vacuum annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019146379A
Other languages
Japanese (ja)
Other versions
JP6697118B2 (en
Inventor
淳介 松崎
Junsuke Matsuzaki
淳介 松崎
高橋 明久
Akihisa Takahashi
明久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of JP2020033641A publication Critical patent/JP2020033641A/en
Application granted granted Critical
Publication of JP6697118B2 publication Critical patent/JP6697118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a technology for forming a high quality and uniform transparent conductive oxide film on both faces of a substrate to be used for, for example, a heterojunction type solar cell, in a passage type film deposition apparatus using a plurality of substrate holders.SOLUTION: A film deposition apparatus includes a first film deposition region 4 where sputter film deposition is performed on a first surface of a substrate 10, a first vacuum annealing mechanism 21 for vacuum annealing a first sputter film in an amorphous state formed on the first surface of the substrate 10 in the first film deposition region, downstream from the first film deposition region 4 in the conveying direction, a second film deposition region 5 where sputter film deposition is performed on a second surface of the substrate 10, and a second vacuum annealing mechanism 22 for vacuum annealing a second sputter film in an amorphous state formed on the second surface of the substrate 10 downstream from the second film deposition region 5 in the conveying direction, in a vacuum tank 2 capable of conveying the substrate 10 along a conveying passage.SELECTED DRAWING: Figure 1

Description

本発明は、真空中で基板の両面上にスパッタリングによって成膜を行う成膜装置の技術に関し、特にヘテロ接合型太陽電池の基板の両面上に透明導電酸化物膜を形成する技術に関する。   The present invention relates to a technology of a film forming apparatus for forming a film on both surfaces of a substrate by sputtering in a vacuum, and more particularly to a technology of forming a transparent conductive oxide film on both surfaces of a substrate of a heterojunction solar cell.

近年、クリーンで安全なエネルギー源として太陽電池が実用化されているが、その中でも、ヘテロ接合型の太陽電池に注目が集まっている。   In recent years, solar cells have been put to practical use as a clean and safe energy source. Among them, heterojunction type solar cells have attracted attention.

図19は、一般的なヘテロ接合型太陽電池セルの概略構成を示す断面図である。
図19に示すように、このヘテロ接合型太陽電池セル100は、n型結晶シリコン基板101の一方側(太陽光側)の面上に、i型アモルファスシリコン層102、p型アモルファスシリコン層103、第1の透明導電酸化物膜104、電極層105が順次形成され、さらに、n型結晶シリコン基板101の他方側の面上に、i型アモルファスシリコン層106、n型アモルファスシリコン層107、第2の透明導電酸化物膜108、電極層109が順次形成されて構成されている。
FIG. 19 is a cross-sectional view illustrating a schematic configuration of a general heterojunction solar cell.
As shown in FIG. 19, this heterojunction solar cell 100 has an i-type amorphous silicon layer 102, a p-type amorphous silicon layer 103, on one side (sunlight side) of an n-type crystalline silicon substrate 101. A first transparent conductive oxide film 104 and an electrode layer 105 are sequentially formed. Further, on the other surface of the n-type crystalline silicon substrate 101, an i-type amorphous silicon layer 106, an n-type amorphous silicon layer 107, a second The transparent conductive oxide film 108 and the electrode layer 109 are sequentially formed.

ヘテロ接合型太陽電池は、シリコンウエハをアモルファスシリコン層パッシベーションすることによって、界面の発電損失を大幅に低減できることから、従来の結晶太陽電池と比較して変換効率が高く、シリコンの使用量を減らすことができる等の利点がある。   Heterojunction solar cells can significantly reduce the power generation loss at the interface by passivating the amorphous silicon layer of the silicon wafer, and therefore have higher conversion efficiency and reduce the amount of silicon used compared to conventional crystalline solar cells. There are advantages such as being able to.

また、ヘテロ接合型太陽電池は、n型結晶シリコン基板を挟んで両面側で発電が可能であるため、高い発電効率を達成することができるという利点もある。   In addition, the heterojunction solar cell has an advantage that high power generation efficiency can be achieved since power can be generated on both sides of the n-type crystalline silicon substrate.

しかし、ヘテロ接合型太陽電池は、n型結晶シリコン基板の両面側に例えば酸化インジウムからなる透明導電酸化物膜が存在することに起因する問題がある。   However, the heterojunction solar cell has a problem caused by the presence of a transparent conductive oxide film made of, for example, indium oxide on both sides of the n-type crystalline silicon substrate.

すなわち、受光面側の透明導電酸化物膜は、特に低い抵抗値と高い光透過率が求められ、この高い光透過率は、可視光領域のみならず近赤外領域においても求められ、これを達成するためには、キャリアの高い移動度が必要である。   That is, the transparent conductive oxide film on the light receiving surface side is required to have a particularly low resistance value and a high light transmittance, and this high light transmittance is required not only in the visible light region but also in the near infrared region. Achieving requires high carrier mobility.

従来、キャリアの高い移動度を得る方法として、スパッタリング法によって透明導電酸化物膜を成膜する際に水素を含むスパッタガスを用いることが知られている。   Conventionally, as a method for obtaining high carrier mobility, it is known to use a sputtering gas containing hydrogen when forming a transparent conductive oxide film by a sputtering method.

これは、より大きな結晶粒を形成させキャリアのトラップの原因となる結晶粒界を減少させることがキャリアの移動度を高めることに寄与している。   This contributes to increasing the mobility of carriers by forming larger crystal grains and reducing crystal grain boundaries that cause carrier traps.

キャリアの高い移動度を得るプロセスでは、スパッタリングによる成膜直後のアモルファスの膜に対し、アニール処理を行うことによって透明導電酸化物が結晶化しつつ粒が肥大化することでキャリアの高い移動度がもたらされる。   In the process of obtaining high carrier mobility, annealing is performed on the amorphous film immediately after film formation by sputtering, whereby the transparent conductive oxide is crystallized and the particles are enlarged, resulting in high carrier mobility. It is.

このような従来技術においては、結晶シリコン太陽電池の電極を焼成によって形成する際の熱履歴を用いてアモルファス膜のアニール処理を行っているが、電極の焼成温度と焼成時間が電極材料の種類や成分によって異なるため、高品質で均一な透明導電酸化物膜を形成することは困難であった。   In such a conventional technique, the annealing process of the amorphous film is performed using the heat history when the electrode of the crystalline silicon solar cell is formed by firing. It is difficult to form a high-quality and uniform transparent conductive oxide film because it differs depending on the components.

また、アニール処理の温度が低い場合やアニール処理の時間が不十分である場合には透明導電酸化物膜本来の能力が十分に発揮されず、その結果として結晶シリコン太陽電池の発電効率が低下してしまうという問題があった。   In addition, when the annealing temperature is low or the annealing time is insufficient, the intrinsic performance of the transparent conductive oxide film is not sufficiently exhibited, and as a result, the power generation efficiency of the crystalline silicon solar cell decreases. There was a problem that would.

特開2011−146528号公報JP 2011-146528 A

本発明は、このような従来の技術の課題を考慮してなされたもので、その目的とするところは、複数の基板保持器を用いる通過型の成膜装置において、例えばヘテロ接合型太陽電池に用いる基板の両面に高品質で均一な透明導電酸化物膜を形成する技術を提供することにある。   The present invention has been made in view of such problems of the conventional technology, and an object thereof is to provide, for example, a heterojunction solar cell in a pass-through film forming apparatus using a plurality of substrate holders. An object of the present invention is to provide a technique for forming a high-quality and uniform transparent conductive oxide film on both surfaces of a substrate to be used.

上記目的を達成するためになされた本発明は、搬送経路に沿って基板を搬送可能な真空槽と、前記真空槽内に設けられ、前記基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、前記第1の成膜領域の搬送方向下流側に設けられ、当該第1の成膜領域において前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構と、前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、前記第2の成膜領域の搬送方向下流側に設けられ、当該第2の成膜領域において前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構とを有する成膜装置である。
本発明は、前記第1の真空アニール処理機構と、前記第2の成膜領域との間に、当該第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている成膜装置である。
本発明は、単一の真空雰囲気が形成される真空槽と、前記真空槽内に設けられ、基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、鉛直面に対する投影形状が一連の環状となるように形成され、前記第1及び第2の成膜領域を通過するように設けられた搬送経路と、前記基板の第1及び第2面が露出する開口部を有し且つ当該基板を水平状態に保持する基板保持器を、前記搬送経路に沿って搬送する基板保持器搬送機構とを備え、前記基板保持器搬送機構は、前記基板保持器を前記第1の成膜領域を通過するように第1の搬送方向に搬送する第1の搬送部と、前記基板保持器を前記第2の成膜領域を通過するように前記第1の搬送方向と反対の第2の搬送方向に搬送する第2の搬送部と、前記基板保持器を上下関係を維持した状態で前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する搬送折り返し部とを有し、前記第1の搬送部の前記第1の成膜領域の搬送方向下流側に、前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構が設けられるとともに、前記第2の搬送部の前記第2の成膜領域の搬送方向下流側に、前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構が設けられている成膜装置である。
本発明は、前記第2の搬送部の前記第2の成膜領域に対して前記第1の搬送方向側に、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている成膜装置である。
本発明は、真空中で基板を移動させながら当該基板の両面上にスパッタリングによって成膜を行う成膜方法であって、前記基板の第1面上にアモルファス状態の第1のスパッタ膜を形成する第1の成膜工程と、前記基板の第1面上の前記第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程と、前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程と、前記基板の第2面上の前記第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法である。
本発明は、前記基板の第1面上の前記アモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程の後で且つ前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程の前において、前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進工程を有する成膜方法である。
本発明は、前記基板が、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板であり、前記第1のスパッタ膜が第1の透明導電酸化物膜で、かつ、前記第2のスパッタ膜が第2の透明導電酸化物膜である成膜方法である。
本発明は、上記記載の成膜装置を用いた成膜方法であって、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによって第1のスパッタ膜を形成する第1の成膜工程と、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記第1のスパッタ膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによって第2のスパッタ膜を形成する第2の成膜工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2のスパッタ膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法である。
本発明は、上記記載の成膜装置を用いた成膜方法であって、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによって第1のスパッタ膜を形成する第1の成膜工程と、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記第1のスパッタ膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1のスパッタ膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによって第2のスパッタ膜を形成する第2の成膜工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2のスパッタ膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法である。
本発明は、上記記載の成膜装置を用いた太陽電池の製造方法であって、前記基板として、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板を用意し、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによってアモルファス状態の第1の透明導電酸化物膜を形成する工程と、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記アモルファス状態の第1の透明導電酸化物膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによってアモルファス状態の第2の透明導電酸化物膜を形成する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記アモルファス状態の第2の透明導電酸化物膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する太陽電池の製造方法である。
本発明は、上記記載の成膜装置を用いた太陽電池の製造方法であって、前記基板として、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板を用意し、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによってアモルファス状態の第1の透明導電酸化物膜を形成する工程と、前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記アモルファス状態の第1の透明導電酸化物膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1の透明導電酸化物膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによってアモルファス状態の第2の透明導電酸化物膜を形成する工程と、前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2の透明導電酸化物膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する太陽電池の製造方法である。
In order to achieve the above object, the present invention provides a vacuum chamber capable of transporting a substrate along a transport path, and a first chamber provided in the vacuum chamber and configured to form a film on a first surface of the substrate. A first film formation region having a sputtering source, and an amorphous state formed on the first surface of the substrate in the first film formation region on the downstream side in the transport direction of the first film formation region. A first vacuum annealing mechanism for performing a vacuum annealing process on the first sputtered film, and a second sputtering source provided in the vacuum chamber and configured to form a film on a second surface of the substrate. And a second sputtered film in an amorphous state provided on the second surface of the substrate in the second film formation region and provided on the downstream side in the transport direction of the second film formation region. A second vacuum annealing mechanism for performing vacuum annealing on Is a film-forming apparatus having.
According to the present invention, a first vacuum annealing process is performed between the first vacuum annealing mechanism and the second film forming region on the first surface of the substrate that has been vacuum-annealed by the first vacuum annealing mechanism. This is a film forming apparatus provided with an annealing promoting vacuum annealing mechanism for further performing a vacuum annealing process on the sputtered film.
The present invention provides a vacuum chamber in which a single vacuum atmosphere is formed, and a first film formation region provided in the vacuum chamber and having a first sputtering source for forming a film on a first surface of a substrate. A second film formation region provided in the vacuum chamber and having a second sputtering source for forming a film on the second surface of the substrate, and formed so that a projection shape to a vertical plane becomes a series of rings. A transfer path provided to pass through the first and second film formation regions, an opening exposing first and second surfaces of the substrate, and holding the substrate in a horizontal state. A substrate holder transport mechanism that transports the substrate holder along the transport path, wherein the substrate holder transport mechanism moves the substrate holder through a first film formation region in a first direction. A first transport unit that transports the substrate in the transport direction, and the substrate holder that passes through the second film formation region. A second transport unit for transporting the substrate holder in a second transport direction opposite to the first transport direction, and the second transport unit from the first transport unit while maintaining the substrate holder in a vertical relationship. And a transport turn-back portion for transporting the substrate in a direction to be transported downstream of the first film-forming region of the first transport unit in an amorphous state formed on the first surface of the substrate. A first vacuum annealing mechanism for performing a vacuum annealing process on the first sputtered film is provided, and a first vacuum annealing process mechanism is provided downstream of the second film forming region of the second transport unit in the transport direction. This is a film forming apparatus provided with a second vacuum annealing mechanism for performing vacuum annealing on a second sputtered film in an amorphous state formed on two surfaces.
The first surface of the substrate that has been vacuum-annealed by the first vacuum annealing mechanism on the first transport direction side with respect to the second film-forming region of the second transport unit. This is a film forming apparatus provided with an annealing promoting vacuum annealing mechanism for further performing a vacuum annealing process on the first sputtered film.
The present invention is a film forming method for forming a film by sputtering on both surfaces of a substrate while moving the substrate in a vacuum, wherein a first sputtered film in an amorphous state is formed on a first surface of the substrate. A first film forming process, a first vacuum annealing process for performing a vacuum annealing process on the first sputtered film on the first surface of the substrate, and an amorphous state on the second surface of the substrate. A second film forming step of forming a second sputtered film, and a second vacuum annealing step of performing a vacuum annealing process on the second sputtered film on the second surface of the substrate Is the way.
The present invention is characterized in that after the first vacuum annealing process step of performing a vacuum annealing process on the first sputtered film in the amorphous state on the first surface of the substrate and on the second surface of the substrate, Before the second film forming step of forming the second sputtered film, a film forming method having an annealing promoting step of further performing a vacuum annealing process on the first sputtered film on the first surface of the substrate is there.
According to the present invention, the substrate is provided with an i-type amorphous silicon layer and a p-type amorphous silicon layer sequentially on a first surface of an n-type crystalline silicon substrate, and on a second surface of the n-type crystalline silicon substrate, a substrate on which an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially provided, wherein the first sputtered film is a first transparent conductive oxide film, and the second sputtered film is a second transparent conductive oxide film. This is a film formation method that is a conductive oxide film.
According to another aspect of the present invention, there is provided a film forming method using the film forming apparatus described above, wherein the first transport unit of the substrate holder transport mechanism passes the substrate holder through the first film forming region. A first deposition step of transporting the first transport direction along the transport path and forming a first sputtered film by sputtering on a first surface of the substrate held by the substrate holder; The substrate holder is transported in the first transport direction along the transport path by a first transport unit of the substrate holder transport mechanism, and the first sputter film on the first surface of the substrate is moved. A first vacuum annealing process for performing a vacuum annealing process by the first vacuum annealing mechanism, and the transfer path in a state where the substrate holder is maintained in an up-down relationship by a transfer turning portion of the substrate holder transfer mechanism. Along the said Returning the substrate holder from the transfer unit to the second transfer unit, and transferring the substrate holder through the second film formation region by the second transfer unit of the substrate holder transfer mechanism. A second deposition step of transporting the second transport direction along the transport path and forming a second sputtered film by sputtering on a second surface of the substrate held by the substrate holder; The substrate holder is transported in the second transport direction along the transport path by a second transport unit of the substrate holder transport mechanism, and the second holder is transported with respect to the second sputtered film on the second surface of the substrate. And a second vacuum annealing step of performing a vacuum annealing process by the second vacuum annealing mechanism.
According to another aspect of the present invention, there is provided a film forming method using the film forming apparatus described above, wherein the first transport unit of the substrate holder transport mechanism passes the substrate holder through the first film forming region. A first deposition step of transporting the first transport direction along the transport path and forming a first sputtered film by sputtering on a first surface of the substrate held by the substrate holder; The substrate holder is transported in the first transport direction along the transport path by a first transport unit of the substrate holder transport mechanism, and the first sputter film on the first surface of the substrate is moved. A first vacuum annealing process for performing a vacuum annealing process by the first vacuum annealing mechanism, and the transfer path in a state where the substrate holder is maintained in an up-down relationship by a transfer turning portion of the substrate holder transfer mechanism. Along the said Returning the substrate holder from the transfer unit to the second transfer unit and transferring the substrate holder along the transfer path by the second transfer unit of the substrate holder transfer mechanism in the second transfer direction. The first sputtered film on the first surface of the substrate that has been vacuum-annealed by the first vacuum annealing mechanism is further subjected to vacuum annealing by the annealing promoting vacuum annealing mechanism. An annealing promoting step, and transporting the substrate holder in the second transport direction along the transport path so as to pass through the second film formation region by a second transport unit of the substrate holder transport mechanism. A second film forming step of forming a second sputtered film on the second surface of the substrate held by the substrate holder by sputtering, and a second transfer unit of the substrate holder transfer mechanism. Transporting the substrate holder along the transport path in the second transport direction, and subjecting the second sputtered film on the second surface of the substrate to vacuum annealing by the second vacuum annealing mechanism. And a second vacuum annealing process for performing the process.
The present invention is a method for manufacturing a solar cell using the film forming apparatus described above, wherein, as the substrate, an i-type amorphous silicon layer and a p-type amorphous silicon layer are provided on a first surface of an n-type crystalline silicon substrate. A substrate is provided in which an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially provided on a second surface of the n-type crystalline silicon substrate, and a first transfer of the substrate holder transfer mechanism is performed. Transporting the substrate holder in the first transport direction along the transport path so as to pass through the first film formation region by the unit, and on the first surface of the substrate held by the substrate holder. Forming a first transparent conductive oxide film in an amorphous state by sputtering, and moving the substrate holder along the transport path by a first transport unit of the substrate holder transport mechanism. A first transfer unit that transfers the substrate in the first transfer direction and performs a vacuum annealing process on the first transparent conductive oxide film in an amorphous state on the first surface of the substrate by the first vacuum annealing mechanism; A vacuum annealing process and a process in which the substrate holder is moved up and down from the first transport unit to the second transport unit along the transport path while maintaining the vertical relationship of the substrate holder by the transport turn-back unit of the substrate holder transport mechanism. And transporting the substrate holder by the second transport unit along the transport path so that the substrate holder passes through the second film formation region by the second transport unit of the substrate holder transport mechanism. Forming a second transparent conductive oxide film in an amorphous state by sputtering on a second surface of the substrate held by the substrate holder, and a second step of the substrate holder transfer mechanism. The transport unit transports the substrate holder in the second transport direction along the transport path, and moves the second transparent conductive oxide film on the second surface of the substrate in the amorphous state to the second transparent conductive oxide film. And a second vacuum annealing treatment step of performing a vacuum annealing treatment by the vacuum annealing treatment mechanism of (1).
The present invention is a method for manufacturing a solar cell using the film forming apparatus described above, wherein, as the substrate, an i-type amorphous silicon layer and a p-type amorphous silicon layer are provided on a first surface of an n-type crystalline silicon substrate. A substrate is provided in which an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially provided on a second surface of the n-type crystalline silicon substrate, and a first transfer of the substrate holder transfer mechanism is performed. Transporting the substrate holder in the first transport direction along the transport path so as to pass through the first film formation region by the unit, and on the first surface of the substrate held by the substrate holder. Forming a first transparent conductive oxide film in an amorphous state by sputtering, and moving the substrate holder along the transport path by a first transport unit of the substrate holder transport mechanism. A first transfer unit that transfers the substrate in the first transfer direction and performs a vacuum annealing process on the first transparent conductive oxide film in an amorphous state on the first surface of the substrate by the first vacuum annealing mechanism; A vacuum annealing process and a process in which the substrate holder is moved up and down from the first transport unit to the second transport unit along the transport path while maintaining the vertical relationship of the substrate holder by the transport turn-back unit of the substrate holder transport mechanism. And transporting the substrate holder in the second transport direction along the transport path by the second transport unit of the substrate holder transport mechanism, and the first vacuum annealing mechanism The first transparent conductive oxide film on the first surface of the substrate, which has been subjected to vacuum annealing by the above, is further subjected to vacuum annealing by the annealing promoting vacuum annealing mechanism. And promoting the substrate holder by the second transport unit of the substrate holder transport mechanism in the second transport direction along the transport path so as to pass through the second film formation region. Forming a second transparent conductive oxide film in an amorphous state by sputtering on a second surface of the substrate held by the substrate holder, and forming the second transparent conductive oxide film in an amorphous state by a second transfer unit of the substrate holder transfer mechanism. The substrate holder is transported along the transport path in the second transport direction, and the second transparent conductive oxide film on the second surface of the substrate is vacuumed by the second vacuum annealing mechanism. And a second vacuum annealing process for performing an annealing process.

本発明にあっては、真空中において、基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜(例えば第1の透明導電酸化物膜)に対して第1の真空アニール処理を行うとともに、基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜(例えば第2の透明導電酸化物膜)に対して第2の真空アニール処理を行うようにしたことから、これら結晶状態の例えば第1及び第2の透明導電酸化物膜の結晶粒を肥大化させることによってキャリアの移動度を向上させることができ、これにより例えばヘテロ接合型太陽電池に用いる基板の両面に高品質で均一な透明導電酸化物膜を形成することができ、しかも真空アニール処理は大気中のアニール処理に比べて高速で結晶化が進行するので、成膜及びアニール処理の効率を向上させることができる。   According to the present invention, a first vacuum annealing process is performed on a first sputtered film (for example, a first transparent conductive oxide film) in an amorphous state formed on a first surface of a substrate in a vacuum. In addition, since the second vacuum annealing process is performed on the amorphous second sputtered film (for example, the second transparent conductive oxide film) formed on the second surface of the substrate, The mobility of carriers can be improved by enlarging the crystal grains of, for example, the first and second transparent conductive oxide films in a crystalline state. A uniform transparent conductive oxide film of high quality can be formed, and crystallization progresses faster in vacuum annealing than in air, improving the efficiency of film formation and annealing. It can be.

この場合、基板の第1面上の第1のスパッタ膜に対して第1の真空アニール処理を行った後で基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する前に、基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うようにすれば、ある程度結晶化が進行したアモルファス状態の第1のスパッタ膜の結晶化の進行を促進させることができ、これにより基板の第1面上の結晶状態の第1のスパッタ膜のキャリアの移動度を向上させることができるので、例えばヘテロ接合型太陽電池に用いる基板の受光面側に高品質で均一な結晶状態の透明導電酸化物膜を形成することができる。   In this case, after performing the first vacuum annealing process on the first sputtered film on the first surface of the substrate and before forming the second sputtered film in an amorphous state on the second surface of the substrate, By further performing a vacuum annealing process on the first sputtered film on the first surface of the substrate, it is possible to promote the progress of crystallization of the first sputtered film in an amorphous state in which crystallization has progressed to some extent. This makes it possible to improve the mobility of carriers of the first sputtered film in a crystalline state on the first surface of the substrate. It is possible to form a transparent conductive oxide film in a crystalline state.

本発明に係る成膜装置の実施の形態の全体を示す概略構成図Schematic configuration diagram showing the entire embodiment of a film forming apparatus according to the present invention (a)(b):本実施の形態における基板保持器搬送機構及び方向転換機構の基本構成を示すもので、図2(a)は平面図、図2(b)は正面図(A) and (b): Basic structures of a substrate holder transport mechanism and a direction change mechanism in the present embodiment, wherein FIG. 2 (a) is a plan view and FIG. 2 (b) is a front view. (a)(b):本実施の形態に用いる基板保持器の構成を示すもので、図3(a)は平面図、図3(b)は側面図FIGS. 3A and 3B show the configuration of the substrate holder used in the present embodiment, where FIG. 3A is a plan view and FIG. 3B is a side view. 本実施の形態における方向転換機構の構成を示す正面図Front view showing the configuration of the direction change mechanism in the present embodiment. (a)〜(d):本実施の形態における透明導電酸化物膜の形成方法を示す断面工程図(A) to (d): cross-sectional process diagrams illustrating a method for forming a transparent conductive oxide film in this embodiment. 本実施の形態の成膜装置の動作を示す説明図(その1)Explanatory drawing showing the operation of the film forming apparatus of the present embodiment (part 1) 本実施の形態の成膜装置の動作を示す説明図(その2)Explanatory drawing showing the operation of the film forming apparatus of the present embodiment (part 2) 本実施の形態の成膜装置の動作を示す説明図(その3)Explanatory drawing showing the operation of the film forming apparatus of the present embodiment (part 3) (a)(b):本実施の形態における基板保持器搬送機構の動作を示す説明図(その1)(A) and (b): Explanatory diagrams showing the operation of the substrate holder transport mechanism in the present embodiment (part 1) (a)〜(c):本実施の形態における基板保持器搬送機構及び方向転換機構の動作を示す説明図(その1)(A) to (c): Explanatory diagrams (part 1) showing the operations of the substrate holder transport mechanism and the direction changing mechanism in the present embodiment. (a)〜(c):本実施の形態における基板保持器搬送機構及び方向転換機構の動作を示す説明図(その2)(A) to (c): Explanatory diagrams showing the operations of the substrate holder transport mechanism and the direction changing mechanism in the present embodiment (part 2) (a)(b):本実施の形態における基板保持器搬送機構の動作を示す説明図(その3)(A) and (b): Explanatory diagrams showing the operation of the substrate holder transport mechanism in the present embodiment (part 3) 本実施の形態の成膜装置の動作を示す説明図(その4)Explanatory drawing showing the operation of the film forming apparatus of the present embodiment (part 4) 本実施の形態の成膜装置の動作を示す説明図(その5)Explanatory drawing showing the operation of the film forming apparatus of the present embodiment (part 5) 本実施の形態の成膜装置の動作を示す説明図(その6)Explanatory drawing showing the operation of the film forming apparatus of the present embodiment (part 6) 方向転換機構の他の例の構成を示す正面図Front view showing the configuration of another example of the direction change mechanism (a)〜(c):基板保持器搬送機構及び方向転換機構の他の例の動作を示す説明図(その1)(A)-(c): Explanatory drawing (1) which shows operation | movement of the other example of a board | substrate holder conveyance mechanism and a direction change mechanism. (a)〜(c):基板保持器搬送機構及び方向転換機構の他の例の動作を示す説明図(その2)(A)-(c): Explanatory drawing (2) which shows operation | movement of the other example of a board | substrate holder conveyance mechanism and a direction change mechanism. 一般的なヘテロ接合型太陽電池セルの概略構成を示す断面図Sectional view showing a schematic configuration of a general heterojunction solar cell (a)(b):実施例の酸化インジウム膜の表面及び断面を示すSEM写真(A) and (b): SEM photographs showing the surface and cross section of the indium oxide film of the example. (a)(b):比較例の酸化インジウム膜の表面及び断面を示すSEM写真(A) and (b): SEM photographs showing the surface and cross section of the indium oxide film of the comparative example.

以下、本発明の実施の形態を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る成膜装置の実施の形態の全体を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an entire embodiment of a film forming apparatus according to the present invention.

また、図2(a)(b)は、本実施の形態における基板保持器搬送機構及び方向転換機構の基本構成を示すもので、図2(a)は平面図、図2(b)は正面図である。   FIGS. 2A and 2B show the basic structure of the substrate holder transport mechanism and the direction changing mechanism in the present embodiment. FIG. 2A is a plan view, and FIG. FIG.

さらに、図3(a)(b)は、本実施の形態に用いる基板保持器の構成を示すもので、図3(a)は平面図、図3(b)は側面図である。   3 (a) and 3 (b) show the configuration of the substrate holder used in the present embodiment. FIG. 3 (a) is a plan view and FIG. 3 (b) is a side view.

さらにまた、図4は、本実施の形態における方向転換機構の構成を示す正面図である。   FIG. 4 is a front view showing the configuration of the direction changing mechanism in the present embodiment.

図1に示すように、本実施の形態の成膜装置1は、例えばターボ分子ポンプを有する真空排気装置1aに接続された、単一の真空雰囲気が形成される真空槽2を有している。   As shown in FIG. 1, the film forming apparatus 1 according to the present embodiment has a vacuum chamber 2 connected to a vacuum pumping apparatus 1a having, for example, a turbo molecular pump, in which a single vacuum atmosphere is formed. .

真空槽2の内部には、後述する基板保持器11を搬送経路に沿って搬送する基板保持器搬送機構3が設けられている。   A substrate holder transport mechanism 3 that transports a substrate holder 11 described below along a transport path is provided inside the vacuum chamber 2.

この基板保持器搬送機構3は、基板10を保持する複数の基板保持器11を連続して搬送するように構成されている。   The substrate holder transport mechanism 3 is configured to continuously transport a plurality of substrate holders 11 that hold a substrate 10.

ここで、基板保持器搬送機構3は、例えばスプロケット等からなり駆動機構(図示せず)から回転駆動力が伝達されて動作する同一径の円形の第1及び第2の駆動輪31、32を有し、これら第1及び第2の駆動輪31、32が、それぞれの回転軸線を平行にした状態で所定距離をおいて配置されている。   Here, the substrate holder transport mechanism 3 includes first and second circular drive wheels 31 and 32 having the same diameter and operating by transmitting a rotational driving force from a drive mechanism (not shown) made of, for example, a sprocket or the like. The first and second drive wheels 31 and 32 are arranged at a predetermined distance in a state where their rotation axes are parallel to each other.

そして、第1及び第2の駆動輪31、32には例えばチェーン等からなる一連の搬送駆動部材33が架け渡されている。   A series of transport drive members 33, for example, composed of a chain or the like are bridged between the first and second drive wheels 31, 32.

さらに、これら第1及び第2の駆動輪31、32に搬送駆動部材33が架け渡された構造体が所定の距離をおいて平行に配置され(図2(a)参照)、これら一対の搬送駆動部材33により鉛直面に対して一連の環状となる搬送経路が形成されている。   Further, a structure in which a transport drive member 33 is bridged between the first and second drive wheels 31 and 32 is arranged in parallel at a predetermined distance (see FIG. 2A), and the pair of transports is provided. The drive member 33 forms a series of annular transport paths with respect to the vertical plane.

本実施の形態では、搬送経路を構成する搬送駆動部材33のうち上側の部分に、第1の駆動輪31から第2の駆動輪32に向って移動して基板保持器11を第1の搬送方向P1に搬送する往路側搬送部(第1の搬送部)33aが形成されるとともに、第2の駆動輪32の周囲の部分の搬送駆動部材33によって基板保持器11の搬送方向を折り返して反対方向に転換する折り返し部33bが形成され、さらに、搬送駆動部材33のうち下側の部分に、第2の駆動輪32から第1の駆動輪31に向って移動して基板保持器11を第2の搬送方向P2に搬送する復路側搬送部(第2の搬送部)33cが形成されている。   In the present embodiment, the substrate holder 11 is moved from the first drive wheel 31 toward the second drive wheel 32 to the upper portion of the transport drive member 33 constituting the transport path to move the substrate holder 11 to the first transport wheel. A forward transport section (first transport section) 33a for transporting in the direction P1 is formed, and the transport direction of the substrate holder 11 is reversed by the transport drive member 33 around the second drive wheel 32. A return portion 33b that changes the direction is formed, and further, the lower portion of the transport drive member 33 is moved from the second drive wheel 32 toward the first drive wheel 31 to move the substrate holder 11 to the first position. A return-side transport section (second transport section) 33c that transports the sheet in the second transport direction P2 is formed.

本実施の形態の基板保持器搬送機構3は、各搬送駆動部材33の上側に位置する往路側搬送部33aと、各搬送駆動部材33の下側に位置する復路側搬送部33cとがそれぞれ対向し、鉛直方向に関して重なるように構成されている。   In the substrate holder transport mechanism 3 of the present embodiment, a forward transport section 33a located above each transport drive member 33 and a return transport section 33c located below each transport drive member 33 face each other. In addition, they are configured to overlap in the vertical direction.

また、基板保持器搬送機構3には、基板保持器11を導入する基板保持器導入部30Aと、基板保持器11を折り返して搬送する搬送折り返し部30Bと、基板保持器11を排出する基板保持器排出部30Cが設けられている。   Further, the substrate holder transport mechanism 3 includes a substrate holder introduction part 30A for introducing the substrate holder 11, a transport return part 30B for returning the substrate holder 11 and transporting the same, and a substrate holder for discharging the substrate holder 11. A container discharge unit 30C is provided.

ここで、搬送折り返し部30Bの近傍には、後述する方向転換機構40が設けられている。   Here, a direction changing mechanism 40, which will be described later, is provided in the vicinity of the transport turn-back portion 30B.

真空槽2内には、第1及び第2の成膜領域4、5が設けられている。   First and second film formation regions 4 and 5 are provided in the vacuum chamber 2.

本実施の形態では、真空槽2内において、基板保持器搬送機構3の例えば上部に、第1のスパッタ源4Tを有する第1の成膜領域4が設けられ、基板保持器搬送機構3の例えば下部に、第2のスパッタ源5Tを有する第2の成膜領域5が設けられている。   In the present embodiment, a first film formation region 4 having a first sputtering source 4T is provided, for example, above the substrate holder transport mechanism 3 in the vacuum chamber 2, and the substrate holder transport mechanism 3, for example, is provided. A second film formation region 5 having a second sputtering source 5T is provided below.

本実施の形態では、上述した搬送駆動部材33の往路側搬送部33aが、上記第1の成膜領域4を直線的に水平方向に通過するように構成され、復路側搬送部33cが、上記第2の成膜領域5を直線的に水平方向に通過するように構成されている。   In the present embodiment, the outward transport section 33a of the transport driving member 33 described above is configured to pass straight through the first film formation region 4 in the horizontal direction, and the return transport section 33c is It is configured to pass straight through the second film formation region 5 in the horizontal direction.

そして、搬送経路を構成するこれら搬送駆動部材33の往路側搬送部33a及び復路側搬送部33cを基板保持器11が通過する場合に、基板保持器11に保持された複数の基板10(図2(a)参照)が水平状態で搬送されるようになっている。   Then, when the substrate holder 11 passes through the forward-side transport portion 33a and the backward-side transport portion 33c of the transport drive member 33 constituting the transport path, the plurality of substrates 10 (FIG. (See (a)) is conveyed in a horizontal state.

図1に示すように、本実施の形態では、真空槽2内の上記第1の成膜領域4の第1の搬送方向P1側の近傍に、第1の真空アニール処理機構21が設けられている。   As shown in FIG. 1, in the present embodiment, a first vacuum annealing mechanism 21 is provided near the first transport direction P1 side of the first film formation region 4 in the vacuum chamber 2. I have.

また、真空槽2内の上記第2の成膜領域5の第2の搬送方向P2側の近傍に、第2の真空アニール処理機構22が設けられている。   Further, a second vacuum annealing mechanism 22 is provided near the second transport direction P2 side of the second film formation region 5 in the vacuum chamber 2.

これら第1及び第2の真空アニール処理機構21、22としては、例えばシースヒーター等の輻射(放射)電熱方式のヒーターを好適に用いることができる。   As the first and second vacuum annealing mechanisms 21 and 22, for example, a radiant (radiation) electric heater such as a sheath heater can be suitably used.

さらに、第1及び第2の成膜領域4、5の間で、例えば第2の駆動輪32の下方には、アニール促進用真空アニール処理機構23が設けられている。   Further, between the first and second film forming regions 4 and 5, for example, below the second drive wheel 32, an annealing accelerating vacuum annealing mechanism 23 is provided.

このアニール促進用真空アニール処理機構23は、上記第1及び第2の真空アニール処理機構21、22と同様に、例えばシースヒーター等の輻射(放射)電熱方式のヒーターを好適に用いることができる。   As in the first and second vacuum annealing mechanisms 21 and 22, the radiating (radiation) electric heating type heater such as a sheath heater can be suitably used as the annealing promoting vacuum annealing mechanism 23.

一方、アニール促進用真空アニール処理機構23の第2の搬送方向P2側で、上記第2の成膜領域5の第1の搬送方向P1側の近傍に、冷却機構25が設けられている。   On the other hand, a cooling mechanism 25 is provided on the second transport direction P2 side of the annealing promoting vacuum annealing mechanism 23 and in the vicinity of the second transport area 5 on the first transport direction P1 side.

この冷却機構25としては、例えば熱伝導率の良好な銅を冷却媒体を用いて冷却するようにした構造体や金属板に配管を介して冷却水を循環させるようにした板等の輻射(放射)方式の手段を好適に用いることができる。   As the cooling mechanism 25, for example, radiation (radiation) of a structure configured to cool copper having a good thermal conductivity using a cooling medium or a plate configured to circulate cooling water through a pipe through a metal plate is used. ) Method can be suitably used.

真空槽2内の基板保持器搬送機構3の近傍の位置、例えば第1の駆動輪31に隣接する位置には、基板保持器搬送機構3との間で基板保持器11を受け渡し且つ受け取るための基板搬入搬出機構6が設けられている。   A position for transferring and receiving the substrate holder 11 to and from the substrate holder transport mechanism 3 is provided at a position near the substrate holder transport mechanism 3 in the vacuum chamber 2, for example, at a position adjacent to the first drive wheel 31. A substrate loading / unloading mechanism 6 is provided.

本実施の形態の基板搬入搬出機構6は、昇降機構60によって例えば鉛直上下方向に駆動される駆動ロッド61の先(上)端部に設けられた支持部62を有している。   The substrate carry-in / carry-out mechanism 6 of the present embodiment has a support part 62 provided at the tip (upper) end of a drive rod 61 driven vertically by, for example, a vertical mechanism.

本実施の形態では、基板搬入搬出機構6の支持部62上に搬送ロボット64が設けられ、この搬送ロボット64上に上述した基板保持器11を支持して基板保持器11を鉛直上下方向に移動させ、かつ、搬送ロボット64によって基板保持器搬送機構3との間で基板保持器11を受け渡し且つ受け取るように構成されている。   In the present embodiment, the transfer robot 64 is provided on the support portion 62 of the substrate loading / unloading mechanism 6, and supports the above-described substrate holder 11 on the transfer robot 64 to move the substrate holder 11 in the vertical and vertical directions. The transfer robot 64 is configured to transfer and receive the substrate holder 11 to and from the substrate holder transport mechanism 3.

この場合、後述するように、基板搬入搬出機構6から基板保持器搬送機構3の往路側搬送部33aの基板保持器導入部30Aに基板保持器11を受け渡し(この位置を「基板保持器受け渡し位置」という。)、かつ、基板保持器搬送機構3の復路側搬送部33cの基板保持器排出部30Cから基板保持器11を取り出す(この位置を「基板保持器取り出し位置」という。)ように構成されている。   In this case, as described later, the substrate holder 11 is transferred from the substrate loading / unloading mechanism 6 to the substrate holder introduction section 30A of the forward-side transport section 33a of the substrate holder transport mechanism 3 (this position is referred to as a “substrate holder transfer position”). ), And the substrate holder 11 is taken out from the substrate holder ejecting section 30C of the return-side transfer section 33c of the substrate holder transfer mechanism 3 (this position is referred to as a “substrate holder take-out position”). Have been.

真空槽2の例えば上部には、真空槽2内に基板10を搬入し且つ真空槽2から基板10を搬出するための基板搬入搬出室2Aが設けられている。   A substrate loading / unloading chamber 2 </ b> A for loading the substrate 10 into the vacuum chamber 2 and unloading the substrate 10 from the vacuum chamber 2 is provided, for example, above the vacuum chamber 2.

この基板搬入搬出室2Aは、例えば上述した基板搬入搬出機構6の支持部62の上方の位置に連通口2Bを介して設けられており、例えば基板搬入搬出室2Aの上部には、開閉可能な蓋部2aが設けられている。   The substrate loading / unloading chamber 2A is provided, for example, at a position above the support section 62 of the above-described substrate loading / unloading mechanism 6 via the communication port 2B. A lid 2a is provided.

そして、後述するように、基板搬入搬出室2A内に搬入された成膜前の基板10aを基板搬入搬出機構6の支持部62の搬送ロボット64上の基板保持器11に受け渡して保持させ、かつ、成膜後の基板10bを基板搬入搬出機構6の支持部62の搬送ロボット64上の基板保持器11から例えば真空槽2の外部の大気中に搬出するように構成されている。   Then, as described later, the substrate 10a before film formation carried into the substrate carry-in / carry-out chamber 2A is delivered to and held by the substrate holder 11 on the transfer robot 64 of the support portion 62 of the substrate carry-in / carry-out mechanism 6, and The substrate 10b after film formation is configured to be carried out from the substrate holder 11 on the transfer robot 64 of the support portion 62 of the substrate carry-in / carry-out mechanism 6 into, for example, the atmosphere outside the vacuum chamber 2.

なお、本実施の形態の場合、基板搬入搬出機構6の支持部62の上部の縁部に、基板10を搬入及び搬出する際に基板搬入搬出室2Aと真空槽2内の雰囲気を隔離するための例えばOリング等のシール部材63が設けられている。   In the case of the present embodiment, the substrate loading / unloading chamber 2A is isolated from the atmosphere in the vacuum chamber 2 when loading and unloading the substrate 10 at the upper edge of the support portion 62 of the substrate loading / unloading mechanism 6. For example, a seal member 63 such as an O-ring is provided.

この場合、基板搬入搬出機構6の支持部62を基板搬入搬出室2A側に向って上昇させ、支持部62上のシール部材63を真空槽2の内壁に密着させて連通口2Bを塞ぐことにより、真空槽2内の雰囲気に対して基板搬入搬出室2A内の雰囲気を隔離するように構成されている。   In this case, the supporting portion 62 of the substrate loading / unloading mechanism 6 is raised toward the substrate loading / unloading chamber 2A, and the seal member 63 on the supporting portion 62 is brought into close contact with the inner wall of the vacuum chamber 2 to close the communication port 2B. The atmosphere in the substrate loading / unloading chamber 2 </ b> A is configured to be isolated from the atmosphere in the vacuum chamber 2.

図2(a)(b)に示すように、本実施の形態の基板保持器搬送機構3の一対の搬送駆動部材33には、それぞれ所定の間隔をおいて複数の第1の駆動部36が搬送駆動部材33の外方側に突出するように設けられている。   As shown in FIGS. 2A and 2B, a plurality of first driving units 36 are provided at a predetermined interval between the pair of transport driving members 33 of the substrate holder transport mechanism 3 of the present embodiment. It is provided so as to protrude outward from the transport driving member 33.

第1の駆動部36は、例えばJフック形状(搬送方向下流側の突部の高さが搬送方向上流側の突部の高さより低くなるような溝部が形成された形状)に形成され、以下に説明する基板保持器支持機構18によって支持された基板保持器11の後述する第1の被駆動軸12と接触して当該基板保持器11を第1又は第2の搬送方向P1、P2に駆動するように構成されている。   The first drive unit 36 is formed in, for example, a J-hook shape (a shape in which a groove is formed such that the height of the protrusion on the downstream side in the transport direction is lower than the height of the protrusion on the upstream side in the transport direction). To drive the substrate holder 11 in the first or second transport direction P1 or P2 by contacting the first driven shaft 12 of the substrate holder 11 supported by the substrate holder support mechanism 18 described later. It is configured to be.

一対の搬送駆動部材33の内側には、搬送する基板保持器11を支持する一対の基板保持器支持機構18が設けられている。   A pair of substrate holder supporting mechanisms 18 that support the substrate holder 11 to be transported are provided inside the pair of transport driving members 33.

基板保持器支持機構18は、例えば複数のローラ等の回転可能な部材からなるもので、それぞれ搬送駆動部材33の近傍に設けられている。   The substrate holder supporting mechanism 18 is composed of a rotatable member such as a plurality of rollers, for example, and is provided near the transport driving member 33, respectively.

本実施の形態では、搬送駆動部材33の往路側搬送部33aの上方近傍に往路側基板保持器支持機構18aが設けられるとともに、搬送駆動部材33の復路側搬送部33cの下方近傍に復路側基板保持器支持機構18cが設けられ、搬送される基板保持器11の下面の両縁部を支持するように配置構成されている。   In the present embodiment, the forward-side substrate holder support mechanism 18a is provided near the forward path-side transport section 33a of the transport drive member 33, and the backward-path substrate is located near the downstream path-side transport section 33c of the transport drive member 33. A holder support mechanism 18c is provided, and is arranged and configured to support both edges of the lower surface of the substrate holder 11 to be conveyed.

なお、往路側基板保持器支持機構18aは、後述する方向転換機構40の第1の方向転換経路51の進入口の近傍まで設けられ、復路側基板保持器支持機構18cは、後述する方向転換機構40の第2の方向転換経路52の排出口の近傍まで設けられている。   The forward-side substrate holder support mechanism 18a is provided up to the vicinity of the entrance of the first direction change path 51 of the later-described direction change mechanism 40, and the return-side substrate holder support mechanism 18c is provided with a later-described direction change mechanism. 40 is provided to the vicinity of the outlet of the second direction change path 52.

本実施の形態に用いる基板保持器11は、基板10の両面上に真空処理を行うためのもので、開口部を有するトレイ状のものからなる。   The substrate holder 11 used in the present embodiment is for performing vacuum processing on both surfaces of the substrate 10 and is formed of a tray having an opening.

図2(a)及び図3(a)に示すように、本実施の形態の基板保持器11は、例えば長尺矩形の平板状に形成され、その長手方向即ち第1及び第2の搬送方向P1、P2に対して直交する方向に例えば矩形状の複数の基板10を一列に並べてそれぞれ保持する複数の保持部14が設けられている。   As shown in FIGS. 2A and 3A, the substrate holder 11 of the present embodiment is formed in, for example, a long rectangular flat plate shape, and its longitudinal direction, that is, the first and second transport directions. A plurality of holding units 14 are provided for holding, for example, a plurality of rectangular substrates 10 in a row in a direction orthogonal to P1 and P2.

ここで、各保持部14には、各基板10と同等の大きさ及び形状で各基板10の両面が全面的に露出する例えば矩形状の開口部が設けられ、図示しない保持部材によって各基板10を水平に保持するように構成されている。   Here, each holding unit 14 is provided with, for example, a rectangular opening having the same size and shape as each substrate 10 and both surfaces of each substrate 10 are entirely exposed. Is held horizontally.

本発明では、特に限定されることはないが、設置面積を小さくし且つ処理能力を向上させる観点からは、基板保持器11について、本実施の形態のように、搬送方向に対して直交する方向に複数の基板10を一列に並べてそれぞれ保持するように構成することが好ましい。   In the present invention, although not particularly limited, from the viewpoint of reducing the installation area and improving the processing capability, the substrate holder 11 may be moved in a direction orthogonal to the transport direction as in the present embodiment. It is preferable that a plurality of substrates 10 are arranged in a line and held respectively.

ただし、処理効率を向上させる観点からは、搬送方向に対して直交する方向に複数の基板10を複数列に並べることも可能である。   However, from the viewpoint of improving processing efficiency, it is also possible to arrange a plurality of substrates 10 in a plurality of rows in a direction orthogonal to the transport direction.

一方、基板保持器11の長手方向の両端部で第1の搬送方向P1の上流側の端部に第1の被駆動軸12がそれぞれ設けられ、また、第1の搬送方向P1の下流側の端部に第2の被駆動軸13がそれぞれ設けられている。   On the other hand, first driven shafts 12 are provided at both ends in the longitudinal direction of the substrate holder 11 on the upstream side in the first transport direction P1, respectively, and on the downstream side in the first transport direction P1. A second driven shaft 13 is provided at each end.

これら第1及び第2の被駆動軸12、13は、それぞれ搬送方向に対して直交する方向即ち基板保持器11の長手方向に延びる回転軸線を中心として断面円形状に形成されている。   Each of the first and second driven shafts 12 and 13 is formed in a circular cross section with a rotation axis extending in a direction orthogonal to the transport direction, that is, a longitudinal direction of the substrate holder 11 as a center.

本実施の形態では、第2の被駆動軸13の長さが第1の被駆動軸12の長さより長くなるようにその寸法が定められている。   In the present embodiment, the size is determined such that the length of the second driven shaft 13 is longer than the length of the first driven shaft 12.

具体的には、図2(a)に示すように、基板保持器11を基板保持器搬送機構3に配置した場合に基板保持器11の両側部の第1の被駆動軸12が基板保持器搬送機構3の第1の駆動部36と接触し、かつ、基板保持器11を後述する方向転換機構40に配置した場合に第2の被駆動軸13が後述する第2の駆動部46と接触するように第1及び第2の被駆動軸12、13の寸法が定められている。   Specifically, as shown in FIG. 2A, when the substrate holder 11 is disposed on the substrate holder transport mechanism 3, the first driven shafts 12 on both sides of the substrate holder 11 are connected to the substrate holder. When the substrate holder 11 is in contact with the first driving unit 36 of the transport mechanism 3 and the substrate holder 11 is disposed on the direction changing mechanism 40 described below, the second driven shaft 13 contacts the second driving unit 46 described later. The dimensions of the first and second driven shafts 12 and 13 are determined in such a manner.

一対の搬送駆動部材33の第1の搬送方向P1の下流側には、同一構成の一対の方向転換機構40が設けられている。   A pair of direction change mechanisms 40 having the same configuration are provided downstream of the pair of transport driving members 33 in the first transport direction P1.

本実施の形態の場合、一対の方向転換機構40は、それぞれ第1及び第2の搬送方向P1、P2に関して一対の搬送駆動部材33の外側の位置に配置されている。   In the case of the present embodiment, the pair of direction change mechanisms 40 are disposed outside the pair of transport driving members 33 in the first and second transport directions P1 and P2, respectively.

また、これら一対の方向転換機構40は、それぞれ第1の搬送方向P1の上流側の部分が各搬送駆動部材33の第1の搬送方向P1の下流側の部分と若干重なるように設けられている。   In addition, the pair of direction change mechanisms 40 are provided such that an upstream portion in the first transport direction P1 slightly overlaps a downstream portion of each transport drive member 33 in the first transport direction P1. .

図4に示すように、本実施の形態の方向転換機構40は、第1のガイド部材41、第2のガイド部材42、第3のガイド部材43を有し、これら第1〜第3のガイド部材41〜43は、第1の搬送方向P1の上流側からこの順で配置されている。   As shown in FIG. 4, the direction changing mechanism 40 of the present embodiment has a first guide member 41, a second guide member 42, and a third guide member 43, and these first to third guide members are provided. The members 41 to 43 are arranged in this order from the upstream side in the first transport direction P1.

本実施の形態では、第1〜第3のガイド部材41〜43は、一対の搬送駆動部材33の外側近傍の位置にそれぞれ配置され、さらに、第1〜第3のガイド部材41〜43の外側近傍の位置に、後述する搬送駆動部材45がそれぞれ配置されている。   In the present embodiment, the first to third guide members 41 to 43 are respectively disposed at positions near the outside of the pair of transport driving members 33, and further, the outside of the first to third guide members 41 to 43. At a nearby position, a transport driving member 45 described later is arranged.

なお、図2(b)では、方向転換機構40の一部を省略するとともに、部材の重なり関係を無視して搬送方向についての部材間の位置関係が明確になるように示されている。   In FIG. 2B, a part of the direction changing mechanism 40 is omitted, and the positional relationship between the members in the transport direction is shown ignoring the overlapping relationship of the members.

図2(a)及び図4に示すように、第1〜第3のガイド部材41〜43は、例えば板状の部材からなり、それぞれ鉛直方向に向けて設けられている。   As shown in FIGS. 2A and 4, the first to third guide members 41 to 43 are made of, for example, plate-like members, and are provided in the vertical direction, respectively.

ここで、第1のガイド部材41の第1の搬送方向P1側の部分は、第1の搬送方向P1側に凸となる曲面形状に形成され、また、第2のガイド部材42の第2の搬送方向P2側の部分は、第1の搬送方向P1側に凹となる曲面形状に形成されている。   Here, the portion of the first guide member 41 on the first transport direction P1 side is formed in a curved shape that is convex toward the first transport direction P1 side, and the second guide member 42 has the second surface. The portion on the transport direction P2 side is formed in a curved shape that is concave on the first transport direction P1 side.

第1及び第2のガイド部材41、42は、第1のガイド部材41の第1の搬送方向P1側の部分と第2のガイド部材42の第2の搬送方向P2側の部分が同等の曲面形状に形成され、これらの部分が基板保持器11の第1の被駆動軸12の直径より若干大きな隙間を設けて対向するように近接配置されている。そして、この隙間によって基板保持器11の第1の被駆動軸12を案内する第1の方向転換経路51が設けられている。   The first and second guide members 41 and 42 have a curved surface in which a portion of the first guide member 41 on the first transport direction P1 side and a portion of the second guide member 42 on the second transport direction P2 side are equivalent. These parts are arranged close to each other with a gap slightly larger than the diameter of the first driven shaft 12 of the substrate holder 11. A first direction change path 51 that guides the first driven shaft 12 of the substrate holder 11 through the gap is provided.

また、第2のガイド部材42の第1の搬送方向P1側の部分は、第1の搬送方向P1側に凸となる曲面形状に形成され、また、第3のガイド部材43の第2の搬送方向P2側の部分は、第1の搬送方向P1側に凹となる曲面形状に形成されている。   Further, the portion of the second guide member 42 on the first transport direction P1 side is formed in a curved shape that is convex toward the first transport direction P1 side, and the second transport of the third guide member 43 is The portion on the direction P2 side is formed in a curved shape concave toward the first transport direction P1 side.

第2及び第3のガイド部材42、43は、第2のガイド部材42の第1の搬送方向P1側の部分と第3のガイド部材43の第2の搬送方向P2側の部分が同等の曲面形状に形成され、これらの部分が基板保持器11の第2の被駆動軸13の直径より若干大きな隙間を設けて対向するように近接配置されている。そして、この隙間によって基板保持器11の第2の被駆動軸13を案内する第2の方向転換経路52が設けられている。   The second and third guide members 42 and 43 have a curved surface in which a portion of the second guide member 42 on the first transport direction P1 side and a portion of the third guide member 43 on the second transport direction P2 side are equivalent. These portions are arranged close to each other with a gap slightly larger than the diameter of the second driven shaft 13 of the substrate holder 11. Then, a second direction change path 52 for guiding the second driven shaft 13 of the substrate holder 11 through the gap is provided.

そして、本実施の形態では、第1の方向転換経路51と第2の方向転換経路52とが同等の曲面形状に形成されている。   In the present embodiment, the first direction change path 51 and the second direction change path 52 are formed in the same curved shape.

さらに、第1及び第2の方向転換経路51、52の各部分の水平方向についての距離が、基板保持器11の第1及び第2の被駆動軸12、13の間の距離と同等となるようにその寸法が定められている。   Furthermore, the distance in the horizontal direction of each part of the first and second direction change paths 51 and 52 is equal to the distance between the first and second driven shafts 12 and 13 of the substrate holder 11. The dimensions are determined as follows.

また、本実施の形態では、第1の方向転換経路51の上側の開口部が基板保持器11の第1の被駆動軸12の進入口となっており、その高さ位置が、往路側基板保持器支持機構18aに支持された基板保持器11の第2の被駆動軸13の高さ位置より低い位置となるように構成されている(図2(b)参照)。   Further, in the present embodiment, the upper opening of the first direction change path 51 is the entrance of the first driven shaft 12 of the substrate holder 11, and the height position of the opening is The substrate holder 11 supported by the holder support mechanism 18a is configured to be at a position lower than the height position of the second driven shaft 13 (see FIG. 2B).

さらに、第1の方向転換経路51の下側の開口部が基板保持器11の第1の被駆動軸12の排出口となっており、その高さ位置が、復路側基板保持器支持機構18cに支持された基板保持器11の第2の被駆動軸13の高さ位置より高い位置となるように構成されている(図2(b)参照)。   Further, the opening on the lower side of the first direction change path 51 is an outlet of the first driven shaft 12 of the substrate holder 11, and the height position thereof is determined by the return-side substrate holder support mechanism 18c. (See FIG. 2 (b)). The substrate holder 11 is supported at a position higher than the height of the second driven shaft 13.

また、第2の方向転換経路52については、その上側の開口部が基板保持器11の第2の被駆動軸13の進入口となっており、その高さ位置が、往路側基板保持器支持機構18aに支持された基板保持器11の第2の被駆動軸13の高さ位置と同等の位置となるように構成されている(図2(b)参照)。   In the second direction changing path 52, the upper opening is an entrance of the second driven shaft 13 of the substrate holder 11, and the height position of the opening is the forward path side substrate holder support. The substrate holder 11 supported by the mechanism 18a is configured to be at a position equivalent to the height position of the second driven shaft 13 (see FIG. 2B).

一方、第2の方向転換経路52の下側の開口部が基板保持器11の第2の被駆動軸13の排出口となっており、その高さ位置が、復路側基板保持器支持機構18cに支持された基板保持器11の第2の被駆動軸13の高さ位置と同等の位置となるように構成されている(図2(b)参照)。   On the other hand, the opening on the lower side of the second direction change path 52 is an outlet of the second driven shaft 13 of the substrate holder 11, and its height position is determined by the return-side substrate holder support mechanism 18c. (See FIG. 2B) so as to be at a position equivalent to the height position of the second driven shaft 13 of the substrate holder 11 supported by the substrate holder 11.

本実施の形態の方向転換機構40は、例えば一対のスプロケットと、これら一対のスプロケットに架け渡されたチェーンからなる搬送駆動部材45を有し、この搬送駆動部材45は鉛直面に対して一連の環状となるように構成されている。   The direction changing mechanism 40 according to the present embodiment includes, for example, a pair of sprockets, and a transport driving member 45 composed of a chain spanned over the pair of sprockets. It is configured to be annular.

この搬送駆動部材45は、その折り返し部分の曲率半径が、基板保持器搬送機構3の搬送駆動部材33の折り返し部33bの曲率半径と同等となるように構成されている。   The transport drive member 45 is configured such that the radius of curvature of the folded portion is equal to the radius of curvature of the folded portion 33b of the transport drive member 33 of the substrate holder transport mechanism 3.

また、搬送駆動部材45は、その上側の部分が第1の搬送方向P1に移動し、下側の部分が第2の搬送方向P2に移動するように駆動される。   The transport driving member 45 is driven such that the upper portion moves in the first transport direction P1 and the lower portion moves in the second transport direction P2.

搬送駆動部材45には、所定の間隔をおいて複数の第2の駆動部46が搬送駆動部材45の外方側に突出するように設けられている。   The transport drive member 45 is provided with a plurality of second drive units 46 at predetermined intervals so as to protrude outward from the transport drive member 45.

第2の駆動部46は、搬送駆動部材45の外方側の部分に凹部が形成され、この凹部の縁部が基板保持器11の第2の被駆動軸13と接触して当該基板保持器11を第2の方向転換経路52に沿って支持駆動するように構成されている。   The second driving unit 46 has a concave portion formed in a portion on the outer side of the transport driving member 45, and the edge of the concave portion contacts the second driven shaft 13 of the substrate holder 11, and 11 is configured to be supported and driven along the second direction change path 52.

また、本実施の形態の第2の駆動部46は、後述するように、第2の方向転換経路52の進入口及び排出口の位置に到達した場合にその凹部側の端部が第2の方向転換経路52から退避するように搬送駆動部材45の経路及び第2の駆動部46の寸法が設定されている(図2(b)参照)。   In addition, as described later, when the second driving section 46 of the present embodiment has reached the positions of the entrance and the exit of the second direction change path 52, its end on the concave side is the second direction. The path of the transport drive member 45 and the dimensions of the second drive unit 46 are set so as to retreat from the direction change path 52 (see FIG. 2B).

本実施の形態では、後述するように、第2の駆動部46が基板保持器搬送機構3の第1の駆動部36と同期して動作するように基板保持器搬送機構3の搬送駆動部材33と方向転換機構40の搬送駆動部材45の動作を制御する。   In the present embodiment, as will be described later, the transport drive member 33 of the substrate holder transport mechanism 3 operates such that the second driver 46 operates in synchronization with the first driver 36 of the substrate holder transport mechanism 3. And the operation of the transport driving member 45 of the direction changing mechanism 40 is controlled.

そして、本実施の形態では、基板保持器搬送機構3の第1の駆動部36によって基板保持器11を第1の搬送方向P1に駆動して第1及び第2の被駆動軸12、13を第1及び第2の方向転換経路51、52内に進入させた場合に、基板保持器11が上下関係を維持しつつ第1及び第2の駆動部36、46によって第1及び第2の被駆動軸12、13が支持されて移動し、円滑に第1及び第2の方向転換経路51、52から排出されるように、第1及び第2の駆動部36、46、並びに、第1及び第2の方向転換経路51、52の形状及び寸法がそれぞれ設定されている。   In the present embodiment, the substrate holder 11 is driven in the first transport direction P1 by the first drive unit 36 of the substrate holder transport mechanism 3 to move the first and second driven shafts 12 and 13. When the substrate holder 11 enters the first and second direction change paths 51 and 52, the first and second driving units 36 and 46 maintain the vertical relationship of the substrate holder 11, and the first and second driving units 36 and 46 respectively. The first and second driving units 36 and 46, and the first and second driving units 36 and 46 so that the driving shafts 12 and 13 are supported and move, and are smoothly discharged from the first and second turning paths 51 and 52. The shapes and dimensions of the second direction change paths 51 and 52 are respectively set.

一方、第1のガイド部材41と第2のガイド部材42の下方で第1の方向転換経路51の排出口の近傍には、基板保持器11を方向転換機構40から基板保持器支持機構18の復路側基板保持器支持機構18cへ円滑に受け渡すための受け渡し部材47が設けられている。   On the other hand, below the first guide member 41 and the second guide member 42 and near the discharge port of the first direction changing path 51, the substrate holder 11 is moved from the direction changing mechanism 40 to the substrate holder supporting mechanism 18. A delivery member 47 is provided for smoothly delivering the substrate to the return-side substrate holder support mechanism 18c.

この受け渡し部材47は、例えば水平方向に延びる細長の部材からなり、その第2の搬送方向P2側の端部で復路側基板保持器支持機構18cの下方の位置に設けられた回転軸48を中心として上下方向に回転移動するように構成されている。そして、受け渡し部材47は、第1の搬送方向P1側の部分が例えば図示しない弾性部材によって上方に付勢されている。   The transfer member 47 is formed of, for example, an elongated member extending in the horizontal direction. The transfer member 47 is centered on a rotation shaft 48 provided at a position below the return-side substrate holder support mechanism 18c at an end on the second transport direction P2 side. It is configured to rotate vertically. The portion of the transfer member 47 on the first transport direction P1 side is urged upward by, for example, an elastic member (not shown).

本発明において用いる弾性部材としては、特に限定されることはないが、部品点数を増やすことなく座屈を確実に防止する観点からは、コイルばね(例えば圧縮コイルばね)より、ねじりコイルばねを用いることが好ましい。   The elastic member used in the present invention is not particularly limited, but from the viewpoint of reliably preventing buckling without increasing the number of parts, a torsion coil spring is used rather than a coil spring (for example, a compression coil spring). Is preferred.

受け渡し部材47の上部には、第1の方向転換経路51の排出口の第2の搬送方向P2側の近傍の部分に、第1の方向転換経路51と連続し、かつ、基板保持器支持機構18の復路側基板保持器支持機構18cと連続するように曲面形状に形成された受け渡し部47aが設けられている(図2(b)参照)。   In the upper part of the transfer member 47, a portion adjacent to the discharge port of the first direction changing path 51 on the second transport direction P2 side is continuous with the first direction changing path 51 and has a substrate holder supporting mechanism. A transfer portion 47a having a curved shape is provided so as to be continuous with the return-side substrate holder support mechanism 18c of FIG. 18 (see FIG. 2B).

また、受け渡し部材47の上部には、第1の搬送方向P1側の部分に、第1の搬送方向P1に向って下側に傾斜する傾斜面47bが設けられている。この傾斜面47bは、第2の方向転換経路52の排出口と対向する高さ位置に設けられている。   In the upper part of the transfer member 47, an inclined surface 47b that is inclined downward toward the first transport direction P1 is provided at a portion on the first transport direction P1 side. The inclined surface 47b is provided at a height position facing the discharge port of the second direction change path 52.

以下、本実施の形態の成膜装置1の動作及び成膜方法の例を図5(a)〜(d)乃至図15を参照して説明する。   Hereinafter, an operation of the film forming apparatus 1 and an example of a film forming method of the present embodiment will be described with reference to FIGS. 5 (a) to 5 (d) to FIG.

図5(a)〜(d)は、本実施の形態における透明導電酸化物膜の形成方法を示す断面工程図である。   5A to 5D are cross-sectional process diagrams illustrating a method for forming a transparent conductive oxide film in the present embodiment.

本実施の形態に用いる成膜前の基板10aは、図5(a)に示すように、n型結晶シリコン基板10Aの第1面(本実施の形態では受光面である上面)上に、i型アモルファスシリコン層10B及び第1導電型(例えばp型)のアモルファスシリコン層10Dが順次設けられるとともに、このn型結晶シリコン基板10Aの第2面(本実施の形態では反射面側である下面)上に、i型アモルファスシリコン層10C及び第2導電型(例えばn型)のアモルファスシリコン層10Eが順次設けられているものである。   As shown in FIG. 5A, the substrate 10a before film formation used in the present embodiment is formed on the first surface (the upper surface, which is the light receiving surface in the present embodiment) of the n-type crystalline silicon substrate 10A. A-type amorphous silicon layer 10B and a first conductivity type (for example, p-type) amorphous silicon layer 10D are sequentially provided, and the second surface of the n-type crystal silicon substrate 10A (the lower surface which is the reflection surface side in this embodiment). An i-type amorphous silicon layer 10C and a second conductivity type (for example, n-type) amorphous silicon layer 10E are sequentially provided thereon.

本実施の形態では、まず、基板搬入搬出機構6の支持部62上のシール部材63を真空槽2の内壁に密着させて真空槽2内の雰囲気に対して基板搬入搬出室2A内の雰囲気を隔離した状態で、大気圧までベントした後、図6に示すように、基板搬入搬出室2Aの蓋部2aを開ける。   In the present embodiment, first, the sealing member 63 on the support portion 62 of the substrate loading / unloading mechanism 6 is brought into close contact with the inner wall of the vacuum tank 2 to reduce the atmosphere in the substrate loading / unloading chamber 2A with respect to the atmosphere in the vacuum tank 2. After venting to atmospheric pressure in the isolated state, as shown in FIG. 6, the lid 2a of the substrate loading / unloading chamber 2A is opened.

その後、図示しない搬送ロボットを用いて成膜前の基板10aを基板搬入搬出機構6の支持部62の搬送ロボット64上の基板保持器11に装着して保持させる。   Thereafter, the substrate 10a before film formation is mounted and held on the substrate holder 11 on the transfer robot 64 of the support portion 62 of the substrate carry-in / carry-out mechanism 6 using a transfer robot (not shown).

そして、基板搬入搬出室2Aの蓋部2aを閉じて所定の圧力となるまで真空排気した後、図7に示すように、基板搬入搬出機構6の支持部62を上述した基板保持器受け渡し位置まで下降させ、基板保持器11の高さが搬送駆動部材33の往路側搬送部33aと同等の高さ位置となるようにする。   Then, after closing the lid 2a of the substrate loading / unloading chamber 2A and evacuating it to a predetermined pressure, as shown in FIG. 7, the supporting portion 62 of the substrate loading / unloading mechanism 6 is moved to the above-described substrate holder transfer position. The substrate holder 11 is lowered so that the height of the substrate holder 11 is equal to the height position of the forward-side transport section 33 a of the transport drive member 33.

さらに、図8に示すように、基板搬入搬出機構6の支持部62に設けた搬送ロボット64によって基板保持器11を基板保持器搬送機構3の基板保持器導入部30Aに配置する。   Further, as shown in FIG. 8, the substrate holder 11 is arranged in the substrate holder introduction portion 30A of the substrate holder transport mechanism 3 by the transport robot 64 provided on the support portion 62 of the substrate loading / unloading mechanism 6.

この場合、図9(a)に示すように、基板保持器11の第1の被駆動軸12を第1の駆動部36の溝部内に配置されるように位置決めして往路側基板保持器支持機構18a上に載置する。   In this case, as shown in FIG. 9A, the first driven shaft 12 of the substrate holder 11 is positioned so as to be disposed in the groove of the first drive unit 36, and the forward-side substrate holder is supported. It is placed on the mechanism 18a.

この状態で、図9(b)に示すように、基板保持器搬送機構3の搬送駆動部材33の往路側搬送部33aを第1の搬送方向P1に移動させる。   In this state, as shown in FIG. 9B, the forward-side transport section 33a of the transport drive member 33 of the substrate holder transport mechanism 3 is moved in the first transport direction P1.

これにより、搬送駆動部材33の往路側搬送部33a上の第1の駆動部36によって基板保持器11の第1の被駆動軸12が第1の搬送方向P1に駆動され、基板保持器11が搬送駆動部材33の往路側搬送部33a上を搬送折り返し部30Bに向って搬送される。   Thus, the first driven shaft 12 of the substrate holder 11 is driven in the first transport direction P1 by the first drive unit 36 on the forward transport unit 33a of the transport drive member 33, and the substrate holder 11 is moved. The sheet is transported on the forward transport section 33a of the transport drive member 33 toward the transport turning section 30B.

この動作の際、基板保持器11に保持された成膜前の基板10aの第1面(上面)に対し、第1の成膜領域4を通過する際に、基板保持器11の上方に位置する第1のスパッタ源4Tによってスパッタリングによる成膜を行う。   In this operation, the first surface (upper surface) of the substrate 10 a before film formation held by the substrate holder 11 is positioned above the substrate holder 11 when passing through the first film formation region 4. The first sputtering source 4T performs film formation by sputtering.

具体的には、図5(b)に示すように、成膜前の基板10aのp型アモルファスシリコン層10Dの表面に、スパッタリングによって例えばn型の第1の透明導電酸化物膜(第1のスパッタ膜)10fを全面的に形成する。この時点では、第1の透明導電酸化物膜10fは、アモルファス状態の膜である。   Specifically, as shown in FIG. 5B, for example, an n-type first transparent conductive oxide film (the first transparent conductive oxide film) is formed on the surface of the p-type amorphous silicon layer 10D of the substrate 10a before film formation by sputtering. A sputtered film 10f is entirely formed. At this point, the first transparent conductive oxide film 10f is a film in an amorphous state.

本発明の場合、第1の透明導電酸化物膜10fの材料としては特に限定されることはないが、低抵抗で光透過性の材料である酸化インジウム系のものを用いることが好ましく、より好ましくは、酸化インジウムに、酸化チタン、酸化ジルコニウム、酸化タングステン、酸化セリウム、酸化ガリウム、酸化シリコンなどの金属酸化物を少なくとも1種以上微量添加したものである。   In the case of the present invention, the material of the first transparent conductive oxide film 10f is not particularly limited, but it is preferable to use an indium oxide-based material which is a low-resistance and light-transmitting material, and more preferably. Is a material in which at least one or more metal oxides such as titanium oxide, zirconium oxide, tungsten oxide, cerium oxide, gallium oxide, and silicon oxide are added to indium oxide in trace amounts.

この成膜後、基板保持器11が基板保持器搬送機構3の搬送折り返し部30Bに到達する前に、上述した第1の真空アニール処理機構21(図1参照)によってアモルファス状態の第1の透明導電酸化物膜10fを加熱して第1の真空アニール処理を行う。   After this film formation, before the substrate holder 11 arrives at the transport turn-back portion 30B of the substrate holder transport mechanism 3, the first vacuum annealing processing mechanism 21 (see FIG. 1) described above makes the first transparent amorphous state transparent. The first vacuum annealing treatment is performed by heating the conductive oxide film 10f.

この場合、加熱条件は、180℃以上220℃以下となるように設定することが好ましい。   In this case, it is preferable to set the heating conditions so as to be 180 ° C. or more and 220 ° C. or less.

図10(a)〜(c)並びに図11(a)〜(c)は、本実施の形態における基板保持器搬送機構及び方向転換機構の動作を示す説明図である。   FIGS. 10A to 10C and FIGS. 11A to 11C are explanatory views showing the operations of the substrate holder transport mechanism and the direction changing mechanism in the present embodiment.

本実施の形態では、上述した成膜工程の後、基板保持器搬送機構3の第1の駆動部36を第1の搬送方向P1に移動させることにより、図10(a)に示すように、基板保持器搬送機構3の搬送折り返し部30Bに到達した基板保持器11を更に第1の搬送方向P1に移動させ、基板保持器11の第2の被駆動軸13を方向転換機構40の第2の方向転換経路52の進入口の位置に配置する。   In the present embodiment, after the above-described film forming process, by moving the first drive unit 36 of the substrate holder transport mechanism 3 in the first transport direction P1, as shown in FIG. The substrate holder 11 that has reached the transfer folding portion 30B of the substrate holder transfer mechanism 3 is further moved in the first transfer direction P1, and the second driven shaft 13 of the substrate holder 11 is moved to the second position of the direction change mechanism 40. At the entrance of the direction change path 52.

この場合、方向転換機構40の第2の駆動部46が基板保持器11の第2の被駆動軸13の下方に位置するように搬送駆動部材45の動作を制御する。   In this case, the operation of the transport driving member 45 is controlled such that the second driving section 46 of the direction changing mechanism 40 is located below the second driven shaft 13 of the substrate holder 11.

そして、基板保持器搬送機構3の搬送駆動部材33を駆動して第1の駆動部36を第1の搬送方向P1に移動させるとともに、方向転換機構40の搬送駆動部材45を駆動して第2の駆動部46を第1の搬送方向P1に移動させる。この場合、第1の駆動部36と第2の駆動部46の動作が同期するように制御する。   Then, the transport drive member 33 of the substrate holder transport mechanism 3 is driven to move the first drive unit 36 in the first transport direction P1, and the transport drive member 45 of the direction change mechanism 40 is driven to drive the Is moved in the first transport direction P1. In this case, control is performed such that the operations of the first drive unit 36 and the second drive unit 46 are synchronized.

これにより、図10(b)に示すように、基板保持器11の第1及び第2の被駆動軸12、13が第1及び第2の駆動部36、46によってそれぞれ支持駆動され、第1及び第2の方向転換経路51、52内を下方に向ってそれぞれ移動する。   Thereby, as shown in FIG. 10B, the first and second driven shafts 12 and 13 of the substrate holder 11 are supported and driven by the first and second driving units 36 and 46, respectively, and And move downward in the second direction changing paths 51 and 52, respectively.

なお、この過程においては、基板保持器11の第1の被駆動軸12は第1の方向転換経路51内において同時に接触することはないが第1のガイド部材41と第2のガイド部材42の縁部にも接触し、また第2の被駆動軸13は第2の方向転換経路52内において同時に接触することはないが第2のガイド部材42と第3のガイド部材43の縁部にも接触するが、基板保持器11は上下関係を維持している。   In this process, the first driven shaft 12 of the substrate holder 11 does not contact the first direction changing path 51 at the same time, but the first guide member 41 and the second guide member 42 The second driven shaft 13 does not contact at the same time in the second turning path 52, but also contacts the edge of the second guide member 42 and the third guide member 43. Although they make contact, the substrate holder 11 maintains the vertical relationship.

そして、第1及び第2の被駆動軸12、13が第1及び第2の方向転換経路51、52の中腹部分をそれぞれ通過した付近から、第1及び第2の被駆動軸12、13の搬送方向が、基板保持器11の上下関係を維持した状態で第1の搬送方向P1と反対方向の第2の搬送方向P2にそれぞれ転換される。   Then, from the vicinity where the first and second driven shafts 12 and 13 pass through the middle portions of the first and second direction change paths 51 and 52, respectively, the first and second driven shafts 12 and 13 The transport direction is changed to a second transport direction P2 opposite to the first transport direction P1 while maintaining the vertical relationship of the substrate holder 11.

なお、この過程においては、基板保持器11の第1の被駆動軸12は第1の方向転換経路51内において同時に接触することはないが第1のガイド部材41と第2のガイド部材42の縁部にも接触し、また第2の被駆動軸13は第2の方向転換経路52内において同時に接触することはないが第2のガイド部材42と第3のガイド部材43の縁部にも接触する。   In this process, the first driven shaft 12 of the substrate holder 11 does not contact the first direction changing path 51 at the same time, but the first guide member 41 and the second guide member 42 The second driven shaft 13 does not contact at the same time in the second turning path 52, but also contacts the edge of the second guide member 42 and the third guide member 43. Contact.

さらに、基板保持器搬送機構3の搬送駆動部材33と方向転換機構40の搬送駆動部材45の駆動を継続すると、図10(c)に示すように、基板保持器11の第1の被駆動軸12が第1の方向転換経路51の排出口並びに受け渡し部材47の受け渡し部47aを経由して受け渡し部材47の上方の位置に配置されるとともに、基板保持器11の第2の被駆動軸13が第2の方向転換経路52の排出口の位置に配置され、その後、図11(a)に示すように、基板保持器11は、基板保持器支持機構18の復路側基板保持器支持機構18cに受け渡される。   Further, when the drive of the transport drive member 33 of the substrate holder transport mechanism 3 and the drive of the transport drive member 45 of the direction change mechanism 40 are continued, the first driven shaft of the substrate holder 11 is moved as shown in FIG. 12 is disposed above the transfer member 47 via the discharge port of the first direction change path 51 and the transfer portion 47a of the transfer member 47, and the second driven shaft 13 of the substrate holder 11 is The substrate holder 11 is disposed at the position of the discharge port of the second direction change path 52, and then, as shown in FIG. 11A, the substrate holder 11 is connected to the return-side substrate holder support mechanism 18 c of the substrate holder support mechanism 18. Handed over.

なお、図10(c)に示す時点で方向転換機構40の第2の駆動部46と基板保持器11の第2の被駆動軸13は接触しておらず、基板保持器11は、基板保持器搬送機構3の第1の駆動部36と第1の被駆動軸12との接触による駆動によって第2の搬送方向P2へ移動する。   At the time shown in FIG. 10C, the second driving unit 46 of the direction changing mechanism 40 and the second driven shaft 13 of the substrate holder 11 are not in contact, and the substrate holder 11 The first transport unit 36 of the container transport mechanism 3 is driven in contact with the first driven shaft 12 to move in the second transport direction P2.

そして、更なる基板保持器搬送機構3の搬送駆動部材33の駆動により、図11(b)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材47の傾斜面47bに接触して受け渡し部材47が回転軸48を中心として下方に回転移動し、図11(c)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材47の上方を通過して基板保持器11が第2の搬送方向P2へ移動する。   Then, by further driving of the transport driving member 33 of the substrate holder transport mechanism 3, the second driven shaft 13 of the substrate holder 11 is moved to the inclined surface 47 b of the transfer member 47 as shown in FIG. Upon contact, the transfer member 47 rotates downward around the rotation shaft 48, and the second driven shaft 13 of the substrate holder 11 passes above the transfer member 47 as shown in FIG. Then, the substrate holder 11 moves in the second transport direction P2.

なお、受け渡し部材47は、この過程の後に図示しない弾性部材の付勢力によって元の位置に戻る。   After this process, the transfer member 47 returns to the original position by the urging force of an elastic member (not shown).

その後、図12(a)に示すように、基板保持器搬送機構3の搬送駆動部材33の復路側搬送部33cを第2の搬送方向P2に移動させ、第1の駆動部36を同方向に駆動することにより、基板保持器11を基板保持器排出部30Cに向って搬送する。   Thereafter, as shown in FIG. 12A, the backward transport portion 33c of the transport drive member 33 of the substrate holder transport mechanism 3 is moved in the second transport direction P2, and the first drive portion 36 is moved in the same direction. By driving, the substrate holder 11 is transported toward the substrate holder discharge unit 30C.

この場合、成膜前の基板10aは、方向転換機構40を通過する際に温度が低下しているから、基板保持器11を基板保持器排出部30Cに向って搬送する際に、基板保持器11に保持された成膜前の基板10aの第2面(下面)を、上述したアニール促進用真空アニール処理機構23(図1参照)によって加熱し、アモルファス状態の第1の透明導電酸化物膜10fを更に加熱して真空アニール処理を行う。   In this case, since the temperature of the substrate 10a before film formation decreases when passing through the direction changing mechanism 40, when the substrate holder 11 is transported toward the substrate holder discharge unit 30C, the substrate holder The second surface (lower surface) of the substrate 10a before film formation held by the substrate 11 is heated by the above-described vacuum accelerating mechanism for accelerating annealing 23 (see FIG. 1) to form the first transparent conductive oxide film in an amorphous state. 10f is further heated to perform a vacuum annealing process.

この場合、加熱条件は、180℃以上220℃以下となるように設定することが好ましい。そして、このアニール処理により当該透明導電酸化物膜10fの結晶化の進行が促進される。なお、上述した第1の真空アニール処理とこのアニール促進用アニール処理の時間は、合わせて数分程度である。   In this case, it is preferable to set the heating conditions so as to be 180 ° C. or more and 220 ° C. or less. Then, the progress of crystallization of the transparent conductive oxide film 10f is promoted by this annealing treatment. The total time of the first vacuum annealing process and the annealing process for annealing promotion is about several minutes.

そして、基板温度の過度の上昇を防止するため、必要に応じて上述した冷却機構25(図1参照)によって当該基板10aの冷却を行う。   Then, in order to prevent the substrate temperature from excessively rising, the substrate 10a is cooled by the cooling mechanism 25 (see FIG. 1) as necessary.

その後、図1に示す第2の成膜領域5を通過する際に、基板保持器11に保持された当該基板10aの第2面(下面)のn型アモルファスシリコン層10Eの表面に、基板保持器11の下方に位置する第2のスパッタ源5Tによってスパッタリングによって例えばn型の第2の透明導電酸化物膜(第2のスパッタ膜)10gを全面的に形成する(図5(c)参照)。この時点では、第2の透明導電酸化物膜10gは、アモルファス状態の膜である。   Thereafter, when passing through the second film formation region 5 shown in FIG. 1, the substrate is held on the surface of the n-type amorphous silicon layer 10 </ b> E on the second surface (lower surface) of the substrate 10 a held by the substrate holder 11. For example, an n-type second transparent conductive oxide film (second sputtered film) 10g is entirely formed by sputtering by a second sputter source 5T located below the vessel 11 (see FIG. 5C). . At this point, the second transparent conductive oxide film 10g is an amorphous film.

なお、第2の透明導電酸化物膜10gを形成する際には、この基板10aの第1面に形成された第1の透明導電酸化物膜10fと短絡しないように、図示しないマスクを用いて第1の透明導電酸化物膜10fの縁部が当該基板10aの縁部に対して若干内方側に位置するように形成することが好ましい。   When forming the second transparent conductive oxide film 10g, a mask (not shown) is used to prevent a short circuit with the first transparent conductive oxide film 10f formed on the first surface of the substrate 10a. It is preferable to form the first transparent conductive oxide film 10f such that the edge of the first transparent conductive oxide film 10f is located slightly inward with respect to the edge of the substrate 10a.

本発明の場合、第2の透明導電酸化物膜10gの材料としては特に限定されることはないが、上述した第1の透明導電酸化物膜10fと同様に、低抵抗で光透過性の材料である酸化インジウム系のものを用いることが好ましく、より好ましくは、酸化インジウムに、酸化チタン、酸化ジルコニウム、酸化タングステン、酸化セリウム、酸化ガリウム、酸化シリコンなどの金属酸化物を少なくとも1種以上微量添加したものである。   In the case of the present invention, the material of the second transparent conductive oxide film 10g is not particularly limited, but similarly to the above-described first transparent conductive oxide film 10f, a low-resistance and light-transmitting material is used. It is preferable to use an indium oxide-based material. More preferably, a trace amount of at least one metal oxide such as titanium oxide, zirconium oxide, tungsten oxide, cerium oxide, gallium oxide, and silicon oxide is added to indium oxide. It was done.

本実施の形態では、アモルファス状態の第2の透明導電酸化物膜10gのスパッタ成膜の際に、放電によるプラズマの熱によって当該基板10aの第1面上のある程度結晶化が進行したアモルファス状態の第1の透明導電酸化物膜10fの結晶化が更に進行してほぼ終了する。そして、これにより、図5(c)に示すように、結晶状態の第1の透明導電酸化物膜10Fが形成される。   In the present embodiment, when the second transparent conductive oxide film 10 g in the amorphous state is formed by sputtering, the amorphous state in which crystallization has progressed to some extent on the first surface of the substrate 10 a by the heat of the plasma due to the discharge. The crystallization of the first transparent conductive oxide film 10f further proceeds and is almost completed. Then, as shown in FIG. 5C, the first transparent conductive oxide film 10F in a crystalline state is formed.

さらに、本実施の形態では、上述した成膜後、基板保持器11が基板保持器搬送機構3の基板保持器排出部30Cに到達する前に、上述した第2の真空アニール処理機構22(図1参照)によってアモルファス状態の第2の透明導電酸化物膜10gを加熱して真空アニール処理を行う。   Furthermore, in the present embodiment, after the above-described film formation, before the substrate holder 11 reaches the substrate holder discharge unit 30C of the substrate holder transport mechanism 3, the second vacuum annealing mechanism 22 (FIG. 1), the second transparent conductive oxide film 10g in an amorphous state is heated to perform vacuum annealing.

この場合、加熱条件は、180℃以上220℃以下となるように設定することが好ましい。   In this case, it is preferable to set the heating conditions so as to be 180 ° C. or more and 220 ° C. or less.

この第2のアニール処理により、アモルファス状態の第2の透明導電酸化物膜10gが結晶化して結晶状態の第2の透明導電酸化物膜10Gが形成され、これにより図5(d)に示すように、成膜後の基板10bを得る。   By this second annealing, the second transparent conductive oxide film 10g in an amorphous state is crystallized to form a second transparent conductive oxide film 10G in a crystalline state. As a result, as shown in FIG. Then, the substrate 10b after film formation is obtained.

そして、第2の搬送方向P2に移動する基板保持器11が基板保持器排出部30Cに到達した後、搬送駆動部材33の復路側搬送部33cを第2の搬送方向P2に移動させ、第1の駆動部36を同方向に駆動すると、復路側搬送部33cの移動に伴って第1の駆動部36が鉛直方向から傾斜した状態になるに従い、図12(b)に示すように、第1の駆動部36と、第1の被駆動軸12との接触が外れ、これにより基板保持器11は推進力を失うから、図13に示す基板搬入搬出機構6の搬送ロボット64によって基板保持器11を第2の搬送方向P2に移動させて第1の駆動部36に対して離間させる。   Then, after the substrate holder 11 that moves in the second transport direction P2 reaches the substrate holder discharge unit 30C, the backward transport unit 33c of the transport driving member 33 is moved in the second transport direction P2, and the first transport direction is performed. When the drive unit 36 is driven in the same direction, the first drive unit 36 is inclined from the vertical direction with the movement of the return-side transport unit 33c, as shown in FIG. The contact between the driving unit 36 and the first driven shaft 12 is released, whereby the substrate holder 11 loses the propulsive force. Therefore, the substrate holding unit 11 is moved by the transfer robot 64 of the substrate loading / unloading mechanism 6 shown in FIG. Is moved in the second transport direction P <b> 2 to be separated from the first drive unit 36.

さらに、基板搬入搬出機構6の搬送ロボット64を用いて基板保持器11の取り出し動作を行い、図13に示すように、基板保持器11を搬送ロボット64と共に支持部62上に配置する。   Further, the substrate holding device 11 is taken out using the transfer robot 64 of the substrate loading / unloading mechanism 6, and the substrate holder 11 is arranged on the support portion 62 together with the transfer robot 64 as shown in FIG.

その後、図14に示すように、基板搬入搬出機構6の支持部62を上昇させ、支持部62上のシール部材63を真空槽2の内壁に密着させて真空槽2内の雰囲気に対して基板搬入搬出室2A内の雰囲気を隔離した状態で、大気圧までベントを行う。   Thereafter, as shown in FIG. 14, the support portion 62 of the substrate loading / unloading mechanism 6 is raised, and the sealing member 63 on the support portion 62 is brought into close contact with the inner wall of the vacuum tank 2, and the substrate Vent to atmospheric pressure with the atmosphere in the loading / unloading chamber 2A isolated.

そして、図15に示すように、基板搬入搬出室2Aの蓋部2aを開け、図示しない搬送ロボットを用い、成膜後の基板10bを基板保持器11から大気中に取り出す。   Then, as shown in FIG. 15, the lid 2a of the substrate loading / unloading chamber 2A is opened, and the substrate 10b after film formation is taken out of the substrate holder 11 into the atmosphere using a transfer robot (not shown).

その後、図6に示す状態に戻り、上述した動作を繰り返すことにより、複数の成膜前の基板10aに対してそれぞれ両面上に上述した成膜及びアニール処理を行う。   Thereafter, returning to the state shown in FIG. 6, the above-described operation is repeated to perform the above-described film formation and annealing on both surfaces of each of the plurality of substrates 10a before film formation.

なお、ヘテロ接合型太陽電池の表面電極については、上述した結晶状態の第1及び第2の透明導電酸化物膜10F、10G上に例えば銀ペーストをスクリーン印刷によって塗布し、焼成により形成することができる。   The surface electrode of the heterojunction solar cell can be formed by applying, for example, a silver paste by screen printing on the first and second transparent conductive oxide films 10F and 10G in the above-described crystalline state, and by firing. it can.

以上述べた本実施の形態にあっては、真空中において、成膜前の基板10aの第1面上に形成されたアモルファス状態の第1の透明導電酸化物膜10fに対して第1の真空アニール処理を行うとともに、当該基板10aの第2面上に形成されたアモルファス状態の第2の透明導電酸化物膜10gに対して第2の真空アニール処理を行うようにしたことから、アニール処理後の結晶状態の第1及び第2の透明導電酸化物膜10F、10Gの結晶粒を肥大化させることによってキャリアの移動度を向上させることができ、これにより例えばヘテロ接合型太陽電池に用いる基板の両面に高品質で均一な透明導電酸化物膜を形成することができ、しかも真空アニール処理は大気中のアニール処理に比べて高速で結晶化が進行するので、成膜及びアニール処理の効率を向上させることができる。   In the present embodiment described above, in vacuum, the first vacuum is applied to the amorphous first transparent conductive oxide film 10f formed on the first surface of the substrate 10a before film formation. Since the second vacuum annealing process is performed on the second transparent conductive oxide film 10g in an amorphous state formed on the second surface of the substrate 10a while performing the annealing process, The mobility of carriers can be improved by enlarging the crystal grains of the first and second transparent conductive oxide films 10F and 10G in the crystalline state. Since a high-quality and uniform transparent conductive oxide film can be formed on both sides, and crystallization proceeds at a higher speed in vacuum annealing than in air, the film formation and annealing are performed. It is possible to improve the efficiency of the process.

この場合、当該基板10aの第1面上の第1の透明導電酸化物膜10fに対して第1の真空アニール処理を行った後で当該基板10aの第2面上にアモルファス状態の第2の透明導電酸化物膜10gを形成する前に、当該基板10aの第1面上のアモルファス状態の第1の透明導電酸化物膜10fに対して更に真空アニール処理を行うようにすれば、当該第1の透明導電酸化物膜10fの結晶化の進行を促進させることができ、これにより当該基板10aの第1面上の結晶状態の第1の透明導電酸化物膜10Fのキャリアの移動度を更に向上させることができるので、例えばヘテロ接合型太陽電池に用いる基板の受光面側に高品質で均一な透明導電酸化物膜を形成することができる。   In this case, after performing a first vacuum annealing process on the first transparent conductive oxide film 10f on the first surface of the substrate 10a, a second amorphous state is formed on the second surface of the substrate 10a. Before the transparent conductive oxide film 10g is formed, the first transparent conductive oxide film 10f in an amorphous state on the first surface of the substrate 10a may be further subjected to vacuum annealing treatment. Can promote the crystallization of the transparent conductive oxide film 10f, thereby further improving the carrier mobility of the crystalline first transparent conductive oxide film 10F on the first surface of the substrate 10a. Therefore, for example, a high-quality and uniform transparent conductive oxide film can be formed on the light receiving surface side of a substrate used for a heterojunction solar cell.

図16は、方向転換機構の他の例の構成を示す正面図である。   FIG. 16 is a front view showing the configuration of another example of the direction changing mechanism.

図16に示すように、本例の方向転換機構40Aは、図4に示す受け渡し部材47の代わりとなる受け渡し部材49を有している。   As shown in FIG. 16, the direction changing mechanism 40A of the present example has a transfer member 49 that replaces the transfer member 47 shown in FIG.

この受け渡し部材49は、例えば搬送方向に延びる細長の部材からなり、方向転換機構40Aの第1の方向転換経路51の排出口の近傍で復路側基板保持器支持機構18cの上方に設けられた回転軸49aを中心として第2の搬送方向P2側に延びる部分が上下方向に回転移動するように構成されている。   The transfer member 49 is formed of, for example, an elongated member extending in the transport direction, and is provided near the discharge port of the first direction change path 51 of the direction change mechanism 40A and above the return path side substrate holder support mechanism 18c. The portion extending toward the second transport direction P2 around the shaft 49a is configured to rotate vertically.

受け渡し部材49は、下側の部分49bが平面状に形成され、その下側の部分49bの第2の搬送方向P2側の先端部49cが上方向に傾斜するように形成されている。   The transfer member 49 is formed such that a lower portion 49b is formed in a planar shape, and a tip portion 49c of the lower portion 49b on the second transport direction P2 side is inclined upward.

この受け渡し部材49は、回転軸49aに対して第2の搬送方向P2側の部分が外力が作用しない状態で水平方向に対して若干下方に傾斜するように構成されている。   The transfer member 49 is configured such that a portion on the second transport direction P2 side with respect to the rotation shaft 49a is slightly downwardly inclined with respect to the horizontal direction in a state where no external force is applied.

この場合、受け渡し部材49の第2の搬送方向P2側の部分を例えば図示しないねじりコイルばね等の弾性部材によって下方に付勢することにより外力が作用しない状態で当該第2の搬送方向P2側の部分を水平方向に対して若干下方に傾斜させるように構成することができ、また、受け渡し部材49の自重によって外力が作用しない状態で当該第2の搬送方向P2側の部分が水平方向に対して若干下方に傾斜するように構成することもできる。   In this case, the portion of the transfer member 49 on the second transport direction P2 side is urged downward by an elastic member such as a torsion coil spring (not shown) so that no external force acts on the portion on the second transport direction P2 side. The portion can be inclined slightly downward with respect to the horizontal direction, and the portion on the second transport direction P2 side with respect to the horizontal direction in a state where no external force acts due to the weight of the transfer member 49. It may be configured to be slightly inclined downward.

図17(a)〜(c)並びに図18(a)〜(c)は、本例における基板保持器搬送機構及び方向転換機構の動作を示す説明図である。   FIGS. 17A to 17C and FIGS. 18A to 18C are explanatory views showing the operation of the substrate holder transport mechanism and the direction changing mechanism in this example.

本例においても、基板保持器搬送機構3の第1の駆動部36を第1の搬送方向P1に移動させることにより、図17(a)に示すように、成膜工程が終了し基板保持器搬送機構3の搬送折り返し部30Bに到達した基板保持器11を更に第1の搬送方向P1に移動させ、基板保持器11の第2の被駆動軸13を方向転換機構40Aの第2の方向転換経路52の進入口の位置に配置し、方向転換機構40Aの第2の駆動部46が基板保持器11の第2の被駆動軸13の下方に位置するように搬送駆動部材45の動作を制御する。   Also in this example, by moving the first driving unit 36 of the substrate holder transport mechanism 3 in the first transport direction P1, as shown in FIG. The substrate holder 11 that has reached the transport turn-back portion 30B of the transport mechanism 3 is further moved in the first transport direction P1, and the second driven shaft 13 of the substrate holder 11 is changed in the second direction by the direction changing mechanism 40A. It is disposed at the entrance of the path 52, and controls the operation of the transport driving member 45 so that the second driving section 46 of the direction changing mechanism 40A is located below the second driven shaft 13 of the substrate holder 11. I do.

そして、第1の駆動部36と第2の駆動部46とを同期させて第1の搬送方向P1にそれぞれ移動させることにより、図17(b)に示すように、基板保持器11の第1及び第2の被駆動軸12、13を第1及び第2の駆動部36、46によってそれぞれ支持駆動し、第1及び第2の方向転換経路51、52内を下方に向ってそれぞれ移動させることにより、基板保持器11を上下関係を維持した状態で下方に向って移動させる。   Then, the first driving unit 36 and the second driving unit 46 are moved in the first transport direction P1 in synchronization with each other, and as shown in FIG. And the second driven shafts 12 and 13 are supported and driven by the first and second driving units 36 and 46, respectively, and are moved downward in the first and second direction change paths 51 and 52, respectively. Thereby, the substrate holder 11 is moved downward while maintaining the vertical relationship.

そして、第1及び第2の被駆動軸12、13が第1及び第2の方向転換経路51、52の中腹部分をそれぞれ通過した付近から、第1及び第2の被駆動軸12、13の搬送方向が、基板保持器11の上下関係を維持した状態で第1の搬送方向P1と反対方向の第2の搬送方向P2にそれぞれ転換される。   Then, from the vicinity where the first and second driven shafts 12 and 13 pass through the middle portions of the first and second direction change paths 51 and 52, respectively, the first and second driven shafts 12 and 13 The transport direction is changed to a second transport direction P2 opposite to the first transport direction P1 while maintaining the vertical relationship of the substrate holder 11.

さらに、基板保持器搬送機構3の搬送駆動部材33と方向転換機構40Aの搬送駆動部材45の駆動を継続すると、図17(c)に示すように、基板保持器11の第1の被駆動軸12が第1の方向転換経路51の排出口並びに受け渡し部材49を通過するとともに、基板保持器11の第2の被駆動軸13が第2の方向転換経路52の排出口の位置に配置され、その後、図18(a)に示すように、基板保持器11は、基板保持器支持機構18の復路側基板保持器支持機構18cに受け渡される。   Further, when the drive of the transport drive member 33 of the substrate holder transport mechanism 3 and the drive of the transport drive member 45 of the direction changing mechanism 40A are continued, the first driven shaft of the substrate holder 11 is moved as shown in FIG. The second driven shaft 13 of the substrate holder 11 is disposed at the position of the discharge port of the second direction change path 52 while the 12 passes through the discharge port of the first direction change path 51 and the transfer member 49, Thereafter, as shown in FIG. 18A, the substrate holder 11 is transferred to the return-side substrate holder support mechanism 18c of the substrate holder support mechanism 18.

なお、図17(c)に示す時点で方向転換機構40Aの第2の駆動部46と基板保持器11の第2の被駆動軸13は接触しておらず、基板保持器11は、基板保持器搬送機構3の第1の駆動部36と第1の被駆動軸12との接触による駆動によって第2の搬送方向P2へ移動する。   At the time shown in FIG. 17C, the second driving portion 46 of the direction changing mechanism 40A and the second driven shaft 13 of the substrate holder 11 are not in contact with each other, and the substrate holder 11 The first transport unit 36 of the container transport mechanism 3 is driven in contact with the first driven shaft 12 to move in the second transport direction P2.

そして、更なる基板保持器搬送機構3の搬送駆動部材33の駆動により、図18(b)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材49の下側の部分49bに接触して受け渡し部材49が回転軸49aを中心として上方に回転移動し、図18(c)に示すように、基板保持器11の第2の被駆動軸13が受け渡し部材49の先端部49cの下方を通過して基板保持器11が第2の搬送方向P2へ移動する。   Then, by further driving of the transport driving member 33 of the substrate holder transport mechanism 3, as shown in FIG. 18B, the second driven shaft 13 of the substrate holder 11 is moved to a lower portion of the transfer member 49. The transfer member 49 comes into contact with the transfer member 49b and rotates upward about the rotation shaft 49a. As shown in FIG. 18C, the second driven shaft 13 of the substrate holder 11 is moved to the distal end of the transfer member 49. The substrate holder 11 moves in the second transport direction P2 after passing below the portion 49c.

なお、受け渡し部材49は、この過程の後に図示しない弾性部材の付勢力又はその自重によって元の位置に戻る。   After this process, the transfer member 49 returns to its original position by the urging force of an elastic member (not shown) or its own weight.

以上述べた本例の受け渡し部材49を有する方向転換機構40Aによれば、基板保持器11が受け渡し部材49を通過する際の摩擦力を最小限にする。   According to the direction changing mechanism 40A having the transfer member 49 of the present embodiment described above, the frictional force when the substrate holder 11 passes through the transfer member 49 is minimized.

なお、本発明は上述した実施の形態に限られず、種々の変更を行うことができる。   Note that the present invention is not limited to the above-described embodiment, and various changes can be made.

例えば上記実施の形態においては、鉛直面に対する投影形状が一連の環状となるように形成された搬送経路を有する成膜装置を例にとって説明したが、本発明はこれに限られず、直線状の搬送経路を有する所謂インライン方式の成膜装置にも適用することができる。   For example, in the above-described embodiment, a film forming apparatus having a transfer path formed such that a projection shape on a vertical plane is formed into a series of annular shapes has been described as an example. However, the present invention is not limited to this. The invention can also be applied to a so-called in-line type film forming apparatus having a path.

また、上記実施の形態においては、搬送駆動部材33のうち上側の部分を第1の搬送部である往路側搬送部33aとするとともに、搬送駆動部材33のうち下側の部分を第2の搬送部である復路側搬送部33cとするようにしたが、本発明はこれに限られず、これらの上下関係を逆にすることもできる。   In the above-described embodiment, the upper portion of the transport driving member 33 is the forward transport portion 33a, which is the first transport portion, and the lower portion of the transport driving member 33 is the second transport portion. Although the return-side transport unit 33c is a unit, the present invention is not limited to this, and the up-down relationship can be reversed.

さらに、上記実施の形態では、基板の上面を第1面とし、下面を第2面としたが、基板の下面を第1面とし、上面を第2面とすることもできる。   Further, in the above embodiment, the upper surface of the substrate is the first surface, and the lower surface is the second surface. However, the lower surface of the substrate may be the first surface, and the upper surface may be the second surface.

さらにまた、上記実施の形態では、ヘテロ接合型太陽電池用の基板の両面上に透明導電酸化物膜を形成する場合を例にとって説明したが、本発明はこれに限られず、種々の基板の両面上に種々の膜を形成する場合に適用することができる。   Furthermore, in the above embodiment, the case where the transparent conductive oxide film is formed on both surfaces of the substrate for the heterojunction solar cell has been described as an example, but the present invention is not limited to this, and the present invention is not limited to this. It can be applied to the case where various films are formed thereon.

ただし、本発明は、ヘテロ接合型太陽電池用の基板の両面上に透明導電酸化物膜を形成する場合に特に有効となるものである。   However, the present invention is particularly effective when transparent conductive oxide films are formed on both surfaces of a substrate for a heterojunction solar cell.

また、上記実施の形態では、基板保持器搬送機構3及び方向転換機構40について、一対のスプロケットと、これら一対のスプロケットに架け渡されたチェーンから構成するようにしたが、例えばベルトやレールを用いた環状形状の搬送駆動機構を用いることもできる。   Further, in the above-described embodiment, the substrate holder transport mechanism 3 and the direction changing mechanism 40 are configured by a pair of sprockets and a chain bridged over the pair of sprockets. An annular transport drive mechanism can also be used.

さらに、基板保持器支持機構18については、ローラではなくベルトやレールを用いて構成することもできる。   Further, the substrate holder supporting mechanism 18 may be configured using a belt or a rail instead of a roller.

さらに、本発明は、上記実施の形態のように、成膜前の基板10aを真空槽2内に搬入し、成膜後の基板10bを真空槽2から搬出する場合のみならず、成膜前の基板10aを基板保持器11と共に真空槽2内に搬入し、成膜後の基板10bを基板保持器11と共に真空槽2から搬出する場合にも適用することができる。   Furthermore, the present invention is not limited to the case where the substrate 10a before film formation is carried into the vacuum chamber 2 and the substrate 10b after film formation is carried out of the vacuum chamber 2 as in the above-described embodiment. The present invention can also be applied to a case where the substrate 10a is carried into the vacuum chamber 2 together with the substrate holder 11, and the substrate 10b after film formation is carried out from the vacuum chamber 2 together with the substrate holder 11.

以下、本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described.

<実施例>
ガラス基板上にスパッタリングによって厚さ110nmの酸化インジウム(In23)からなる膜を形成した。
この酸化インジウム膜のシート抵抗値を測定したところ、42.9Ω/□であった。
<Example>
A film made of indium oxide (In 2 O 3 ) having a thickness of 110 nm was formed on a glass substrate by sputtering.
The sheet resistance of this indium oxide film was 42.9 Ω / □.

そして、酸化インジウム膜に対し、シースヒーターを用い、真空中において温度200℃で5分間アニール処理を行った。
さらに、アニール処理後の酸化インジウム膜を、温度40℃のリン硝酢酸(リン酸73:硝酸3:酢酸7:水17)に70秒浸漬してハーフエッチングを行った後、SEMによって表面及び断面を観察した。
その結果を図20(a)(b)に示す。
The indium oxide film was annealed at 200 ° C. for 5 minutes in a vacuum using a sheath heater.
Furthermore, the indium oxide film after the annealing treatment is immersed in phosphoric acid acetic acid (phosphoric acid 73: nitric acid 3: acetic acid 7: water 17) at a temperature of 40 ° C. for 70 seconds to perform half etching, and then the surface and the cross section are observed by SEM Was observed.
The results are shown in FIGS.

このハーフエッチング後の酸化インジウム膜のシート抵抗値を測定したところ、44.0Ω/□であった。   The sheet resistance of the indium oxide film after the half etching was measured and found to be 44.0 Ω / □.

<比較例>
上記実施例と同一の方法によって形成した酸化インジウム膜のシート抵抗値を測定したところ、41.4Ω/□であった。
<Comparative example>
The sheet resistance of the indium oxide film formed by the same method as in the above example was measured and found to be 41.4 Ω / □.

さらに、この酸化インジウム膜を、温度40℃の上記リン硝酢酸に70秒浸漬してハーフエッチングを行った後、SEMによって表面及び断面を観察した。
その結果を図21(a)(b)に示す。
Further, the indium oxide film was immersed in the above-mentioned phosphoric acid nitric acid at a temperature of 40 ° C. for 70 seconds to perform half etching, and then the surface and the cross section were observed by SEM.
The results are shown in FIGS.

このハーフエッチング後の酸化インジウム膜のシート抵抗値を測定したところ、1518Ω/□であった。   The sheet resistance of the indium oxide film after the half etching was measured and found to be 1518 Ω / □.

<評価>
図20(a)(b)に示すように、成膜後真空アニール処理を行った実施例の酸化インジウム膜は、表面及び内部が均一で緻密に形成されており、ハーフエッチング後においても、シート抵抗値は殆ど上昇しなかった。
<Evaluation>
As shown in FIGS. 20 (a) and 20 (b), the indium oxide film of the example in which the vacuum annealing treatment was performed after the film formation had a uniform and dense surface and inside, and even after half-etching, The resistance value hardly increased.

これに対し、成膜後真空アニール処理を行わなかった比較例の酸化インジウム膜は、図21(a)(b)に示すように、表面が島状に形成されており、また内部に空隙が多数見られた。   On the other hand, as shown in FIGS. 21A and 21B, the surface of the indium oxide film of the comparative example in which the vacuum annealing treatment was not performed after the film formation was formed in an island shape, and voids were formed inside. Many were seen.

さらに、比較例の酸化インジウム膜は、ハーフエッチング後においてシート抵抗値が大幅(41.4Ω/□→1518Ω/□)に上昇した。   Furthermore, the sheet resistance of the indium oxide film of the comparative example was significantly increased (41.4Ω / □ → 1518Ω / □) after half-etching.

以上より、本発明の真空アニール処理を行うことにより、成膜装置から排出された時点で均一で高品質のスパッタ膜を形成できることが判明した。   From the above, it has been found that by performing the vacuum annealing treatment of the present invention, a uniform and high-quality sputtered film can be formed at the time when the film is discharged from the film forming apparatus.

1…成膜装置
2…真空槽
3…基板保持器搬送機構
4…第1の成膜領域
4T…第1のスパッタ源
5…第2の成膜領域
5T…第2のスパッタ源
6…基板搬入搬出機構
10…基板
10a…成膜前の基板
10b…成膜後の基板
10A…n型結晶シリコン基板
10B、10C…i型アモルファスシリコン層
10D…p型アモルファスシリコン層
10E…n型アモルファスシリコン層
10f…アモルファス状態の第1の透明導電酸化物膜(アモルファス状態の第1のスパッタ膜)
10F…結晶状態の第1の透明導電酸化物膜(結晶状態の第1のスパッタ膜)
10g…アモルファス状態の第2の透明導電酸化物膜(アモルファス状態の第2のスパッタ膜)
10G…結晶状態の第2の透明導電酸化物膜(結晶状態の第2のスパッタ膜)
11…基板保持器
12…第1の被駆動軸
13…第2の被駆動軸
14…保持部
18…基板保持器支持機構
21…第1の真空アニール処理機構
22…第2の真空アニール処理機構
23…アニール促進用真空アニール処理機構
25…冷却機構
30A…基板保持器導入部
30B…搬送折り返し部
30C…基板保持器排出部
33…搬送駆動部材(搬送経路)
33a…往路側搬送部(第1の搬送部)
33b…折り返し部
33c…復路側搬送部(第2の搬送部)
40…方向転換機構
P1…第1の搬送方向
P2…第2の搬送方向
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 2 ... Vacuum tank 3 ... Substrate holder conveyance mechanism 4 ... 1st film-forming area 4T ... 1st sputtering source 5 ... 2nd film-forming area 5T ... 2nd sputter source 6 ... Substrate carrying in Unloading mechanism 10 Substrate 10a Substrate 10b before film formation Substrate 10A after film formation n-type crystalline silicon substrate 10B, 10C ... i-type amorphous silicon layer 10D ... p-type amorphous silicon layer 10E ... n-type amorphous silicon layer 10f ... Amorphous first transparent conductive oxide film (amorphous first sputtered film)
10F: first transparent conductive oxide film in a crystalline state (first sputtered film in a crystalline state)
10g: A second transparent conductive oxide film in an amorphous state (a second sputtered film in an amorphous state)
10G: second transparent conductive oxide film in a crystalline state (second sputtered film in a crystalline state)
11 substrate holder 12 first driven shaft 13 second driven shaft 14 holding unit 18 substrate holder support mechanism 21 first vacuum annealing mechanism 22 second vacuum annealing mechanism 23 ... Vacuum annealing treatment mechanism 25 for promoting annealing 25 ... Cooling mechanism 30A ... Substrate holder introduction part 30B ... Transfer folding part 30C ... Substrate holder discharge part 33 ... Transport drive member (transport path)
33a: forward path transport section (first transport section)
33b ... return part 33c ... return-side transport unit (second transport unit)
40 direction changing mechanism P1 first transport direction P2 second transport direction

Claims (11)

搬送経路に沿って基板を搬送可能な真空槽と、
前記真空槽内に設けられ、前記基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、
前記第1の成膜領域の搬送方向下流側に設けられ、当該第1の成膜領域において前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構と、
前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、
前記第2の成膜領域の搬送方向下流側に設けられ、当該第2の成膜領域において前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構とを有する成膜装置。
A vacuum chamber capable of transporting the substrate along the transport path,
A first film formation region provided in the vacuum chamber and having a first sputtering source for forming a film on a first surface of the substrate;
A vacuum annealing process is performed on the first sputtered film in the amorphous state, which is provided on the downstream side in the transport direction of the first film formation region and formed on the first surface of the substrate in the first film formation region. A first vacuum annealing mechanism to be performed;
A second film formation region provided in the vacuum chamber and having a second sputtering source for forming a film on the second surface of the substrate;
A vacuum annealing process is performed on the second sputtered film in the amorphous state, which is provided on the downstream side in the transport direction of the second film formation region and is formed on the second surface of the substrate in the second film formation region. A second vacuum annealing mechanism for performing the process.
前記第1の真空アニール処理機構と、前記第2の成膜領域との間に、当該第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている請求項1記載の成膜装置。   A first sputtered film on the first surface of the substrate that has been vacuum-annealed by the first vacuum annealing mechanism between the first vacuum annealing mechanism and the second film formation region. 2. The film forming apparatus according to claim 1, further comprising an annealing promoting vacuum annealing mechanism for performing a vacuum annealing process. 単一の真空雰囲気が形成される真空槽と、
前記真空槽内に設けられ、基板の第1面上に成膜を行う第1のスパッタ源を有する第1の成膜領域と、
前記真空槽内に設けられ、前記基板の第2面上に成膜を行う第2のスパッタ源を有する第2の成膜領域と、
鉛直面に対する投影形状が一連の環状となるように形成され、前記第1及び第2の成膜領域を通過するように設けられた搬送経路と、
前記基板の第1及び第2面が露出する開口部を有し且つ当該基板を水平状態に保持する基板保持器を、前記搬送経路に沿って搬送する基板保持器搬送機構とを備え、
前記基板保持器搬送機構は、前記基板保持器を前記第1の成膜領域を通過するように第1の搬送方向に搬送する第1の搬送部と、前記基板保持器を前記第2の成膜領域を通過するように前記第1の搬送方向と反対の第2の搬送方向に搬送する第2の搬送部と、前記基板保持器を上下関係を維持した状態で前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する搬送折り返し部とを有し、
前記第1の搬送部の前記第1の成膜領域の搬送方向下流側に、前記基板の第1面上に形成されたアモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理機構が設けられるとともに、
前記第2の搬送部の前記第2の成膜領域の搬送方向下流側に、前記基板の第2面上に形成されたアモルファス状態の第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理機構が設けられている成膜装置。
A vacuum chamber in which a single vacuum atmosphere is formed;
A first film formation region provided in the vacuum chamber and having a first sputtering source for forming a film on the first surface of the substrate;
A second film formation region provided in the vacuum chamber and having a second sputtering source for forming a film on the second surface of the substrate;
A transport path formed so that the projected shape with respect to the vertical plane is formed into a series of annular shapes, and provided so as to pass through the first and second film formation regions;
A substrate holder having an opening through which the first and second surfaces of the substrate are exposed and holding the substrate in a horizontal state, a substrate holder transport mechanism for transporting the substrate along the transport path;
The substrate holder transport mechanism includes a first transport unit that transports the substrate holder in a first transport direction so as to pass through the first film formation area, and transports the substrate holder to the second component. A second transport unit that transports in a second transport direction opposite to the first transport direction so as to pass through the film region, and a first transport unit that maintains the substrate holder in an up-down relationship. Having a transport turn-back portion for returning and transporting toward the second transport portion,
A vacuum annealing process is performed on the first sputtered film in an amorphous state formed on the first surface of the substrate on the downstream side in the transport direction of the first film formation region of the first transport unit. Vacuum annealing mechanism is provided,
A vacuum annealing process is performed on the second sputtered film in the amorphous state formed on the second surface of the substrate, on the downstream side in the transport direction of the second film formation region of the second transport unit. A film forming apparatus provided with a vacuum annealing mechanism.
前記第2の搬送部の前記第2の成膜領域に対して前記第1の搬送方向側に、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進用真空アニール処理機構が設けられている請求項3記載の成膜装置。   The first vacuum annealing mechanism performs a first vacuum annealing process on the first surface of the substrate on the first transport direction side of the second transport area with respect to the second film forming region. 4. The film forming apparatus according to claim 3, further comprising an annealing promoting vacuum annealing mechanism for performing a vacuum annealing process on said sputtered film. 真空中で基板を移動させながら当該基板の両面上にスパッタリングによって成膜を行う成膜方法であって、
前記基板の第1面上にアモルファス状態の第1のスパッタ膜を形成する第1の成膜工程と、
前記基板の第1面上の前記第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程と、
前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程と、
前記基板の第2面上の前記第2のスパッタ膜に対して真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法。
A film forming method for forming a film by sputtering on both surfaces of the substrate while moving the substrate in a vacuum,
A first film forming step of forming a first sputtered film in an amorphous state on a first surface of the substrate;
A first vacuum annealing process for performing a vacuum annealing process on the first sputtered film on the first surface of the substrate;
A second film forming step of forming a second sputtered film in an amorphous state on the second surface of the substrate;
Performing a vacuum annealing process on the second sputtered film on the second surface of the substrate.
前記基板の第1面上の前記アモルファス状態の第1のスパッタ膜に対して真空アニール処理を行う第1の真空アニール処理工程の後で且つ前記基板の第2面上にアモルファス状態の第2のスパッタ膜を形成する第2の成膜工程の前において、前記基板の第1面上の第1のスパッタ膜に対して更に真空アニール処理を行うアニール促進工程を有する請求項5記載の成膜方法。   After a first vacuum annealing process of performing a vacuum annealing process on the first sputtered film in the amorphous state on the first surface of the substrate and on the second surface of the substrate, a second amorphous state is formed. 6. The film forming method according to claim 5, further comprising, before the second film forming step of forming the sputtered film, an annealing promoting step of further performing a vacuum annealing process on the first sputtered film on the first surface of the substrate. . 前記基板が、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板であり、
前記第1のスパッタ膜が第1の透明導電酸化物膜で、かつ、前記第2のスパッタ膜が第2の透明導電酸化物膜である請求項5又は6のいずれか1項記載の成膜方法。
The substrate has an i-type amorphous silicon layer and a p-type amorphous silicon layer sequentially provided on a first surface of an n-type crystalline silicon substrate, and an i-type amorphous silicon layer is provided on a second surface of the n-type crystalline silicon substrate. A substrate in which a layer and an n-type amorphous silicon layer are sequentially provided,
The film formation according to claim 5, wherein the first sputtered film is a first transparent conductive oxide film, and the second sputtered film is a second transparent conductive oxide film. Method.
請求項3記載の成膜装置を用いた成膜方法であって、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによって第1のスパッタ膜を形成する第1の成膜工程と、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記第1のスパッタ膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、
前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによって第2のスパッタ膜を形成する第2の成膜工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2のスパッタ膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法。
A film forming method using the film forming apparatus according to claim 3,
Transporting the substrate holder in the first transport direction along the transport path so as to pass through the first film formation region by a first transport unit of the substrate holder transport mechanism; A first film forming step of forming a first sputtered film by sputtering on the first surface of the substrate held at
The substrate holder is transported in the first transport direction along the transport path by a first transport unit of the substrate holder transport mechanism, and the first sputter film on the first surface of the substrate is moved. A first vacuum annealing step of performing a vacuum annealing process by the first vacuum annealing mechanism;
A step of returning the substrate holder from the first transport section to the second transport section along the transport path while maintaining the vertical relationship of the substrate holder by the transport folding section of the substrate holder transport mechanism; When,
Transporting the substrate holder in the second transport direction along the transport path so as to pass through the second film formation region by a second transport unit of the substrate holder transport mechanism; A second film forming step of forming a second sputtered film by sputtering on the second surface of the substrate held at
The substrate holder is transported in the second transport direction along the transport path by a second transport unit of the substrate holder transport mechanism, and the second holder is transported with respect to the second sputtered film on the second surface of the substrate. A second vacuum annealing treatment step of performing a vacuum annealing treatment by the second vacuum annealing treatment mechanism.
請求項4記載の成膜装置を用いた成膜方法であって、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによって第1のスパッタ膜を形成する第1の成膜工程と、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記第1のスパッタ膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、
前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1のスパッタ膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによって第2のスパッタ膜を形成する第2の成膜工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2のスパッタ膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する成膜方法。
A film forming method using the film forming apparatus according to claim 4,
Transporting the substrate holder in the first transport direction along the transport path so as to pass through the first film formation region by a first transport unit of the substrate holder transport mechanism; A first film forming step of forming a first sputtered film by sputtering on the first surface of the substrate held at
The substrate holder is transported in the first transport direction along the transport path by a first transport unit of the substrate holder transport mechanism, and the first sputter film on the first surface of the substrate is moved. A first vacuum annealing step of performing a vacuum annealing process by the first vacuum annealing mechanism;
A step of returning the substrate holder from the first transport section to the second transport section along the transport path while maintaining the vertical relationship of the substrate holder by the transport folding section of the substrate holder transport mechanism; When,
The substrate that has been transported in the second transport direction along the transport path by the second transport unit of the substrate holder transport mechanism and that has been subjected to vacuum annealing by the first vacuum annealing mechanism An annealing accelerating step of further performing a vacuum annealing process on the first sputtered film on the first surface by the annealing accelerating vacuum annealing mechanism;
Transporting the substrate holder in the second transport direction along the transport path so as to pass through the second film formation region by a second transport unit of the substrate holder transport mechanism; A second film forming step of forming a second sputtered film by sputtering on the second surface of the substrate held at
The substrate holder is transported in the second transport direction along the transport path by a second transport unit of the substrate holder transport mechanism, and the second holder is transported with respect to the second sputtered film on the second surface of the substrate. A second vacuum annealing treatment step of performing a vacuum annealing treatment by the second vacuum annealing treatment mechanism.
請求項3記載の成膜装置を用いた太陽電池の製造方法であって、
前記基板として、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板を用意し、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによってアモルファス状態の第1の透明導電酸化物膜を形成する工程と、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記アモルファス状態の第1の透明導電酸化物膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、
前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによってアモルファス状態の第2の透明導電酸化物膜を形成する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記アモルファス状態の第2の透明導電酸化物膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する太陽電池の製造方法。
It is a manufacturing method of the solar cell using the film-forming apparatus of Claim 3, Comprising:
As the substrate, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially provided on a first surface of an n-type crystalline silicon substrate, and an i-type amorphous silicon layer is provided on a second surface of the n-type crystalline silicon substrate. Prepare a substrate on which a layer and an n-type amorphous silicon layer are sequentially provided,
Transporting the substrate holder in the first transport direction along the transport path so as to pass through the first film formation region by a first transport unit of the substrate holder transport mechanism; Forming a first transparent conductive oxide film in an amorphous state by sputtering on the first surface of the substrate held in;
The substrate holder is transported in the first transport direction along the transport path by a first transport unit of the substrate holder transport mechanism, and the first transparent substrate in the amorphous state on the first surface of the substrate is transported. A first vacuum annealing process for performing a vacuum annealing process on the conductive oxide film by the first vacuum annealing process mechanism;
A step of returning the substrate holder from the first transport section to the second transport section along the transport path while maintaining the vertical relationship of the substrate holder by the transport folding section of the substrate holder transport mechanism; When,
Transporting the substrate holder in the second transport direction along the transport path so as to pass through the second film formation region by a second transport unit of the substrate holder transport mechanism; Forming a second transparent conductive oxide film in an amorphous state by sputtering on the second surface of the substrate held in
The second transport unit of the substrate holder transport mechanism transports the substrate holder in the second transport direction along the transport path, and the second transparent substrate in the amorphous state on the second surface of the substrate. A second vacuum annealing step of performing a vacuum annealing process on the conductive oxide film by the second vacuum annealing mechanism.
請求項4記載の成膜装置を用いた太陽電池の製造方法であって、
前記基板として、n型結晶シリコン基板の第1面上に、i型アモルファスシリコン層及びp型アモルファスシリコン層が順次設けられるとともに、前記n型結晶シリコン基板の第2面上に、i型アモルファスシリコン層及びn型アモルファスシリコン層が順次設けられた基板を用意し、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記第1の成膜領域を通過するように前記搬送経路に沿って前記第1の搬送方向に搬送し、当該基板保持器に保持された前記基板の第1面上にスパッタリングによってアモルファス状態の第1の透明導電酸化物膜を形成する工程と、
前記基板保持器搬送機構の第1の搬送部によって前記基板保持器を前記搬送経路に沿って前記第1の搬送方向に搬送し、前記基板の第1面上の前記アモルファス状態の第1の透明導電酸化物膜に対し、前記第1の真空アニール処理機構によって真空アニール処理を行う第1の真空アニール処理工程と、
前記基板保持器搬送機構の搬送折り返し部によって前記基板保持器を上下関係を維持した状態で前記搬送経路に沿って前記第1の搬送部から前記第2の搬送部に向って折り返して搬送する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記第1の真空アニール処理機構によって真空アニール処理された前記基板の第1面上の前記第1の透明導電酸化物膜に対し、前記アニール促進用真空アニール処理機構によって更に真空アニール処理を行うアニール促進工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記第2の成膜領域を通過するように前記搬送経路に沿って前記第2の搬送方向に搬送し、当該基板保持器に保持された前記基板の第2面上にスパッタリングによってアモルファス状態の第2の透明導電酸化物膜を形成する工程と、
前記基板保持器搬送機構の第2の搬送部によって前記基板保持器を前記搬送経路に沿って前記第2の搬送方向に搬送し、前記基板の第2面上の前記第2の透明導電酸化物膜に対し、前記第2の真空アニール処理機構によって真空アニール処理を行う第2の真空アニール処理工程とを有する太陽電池の製造方法。
It is a manufacturing method of the solar cell using the film-forming apparatus of Claim 4, Comprising:
As the substrate, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially provided on a first surface of an n-type crystalline silicon substrate, and an i-type amorphous silicon layer is provided on a second surface of the n-type crystalline silicon substrate. Prepare a substrate on which a layer and an n-type amorphous silicon layer are sequentially provided,
Transporting the substrate holder in the first transport direction along the transport path so as to pass through the first film formation region by a first transport unit of the substrate holder transport mechanism; Forming a first transparent conductive oxide film in an amorphous state by sputtering on the first surface of the substrate held in;
The substrate holder is transported in the first transport direction along the transport path by a first transport unit of the substrate holder transport mechanism, and the first transparent substrate in the amorphous state on the first surface of the substrate is transported. A first vacuum annealing process for performing a vacuum annealing process on the conductive oxide film by the first vacuum annealing process mechanism;
A step of returning the substrate holder from the first transport section to the second transport section along the transport path while maintaining the vertical relationship of the substrate holder by the transport folding section of the substrate holder transport mechanism; When,
The substrate that has been transported in the second transport direction along the transport path by the second transport unit of the substrate holder transport mechanism and that has been subjected to vacuum annealing by the first vacuum annealing mechanism An annealing promoting step of further performing a vacuum annealing process on the first transparent conductive oxide film on the first surface by the annealing promoting vacuum annealing mechanism;
Transporting the substrate holder in the second transport direction along the transport path so as to pass through the second film formation region by a second transport unit of the substrate holder transport mechanism; Forming a second transparent conductive oxide film in an amorphous state by sputtering on the second surface of the substrate held in
The substrate holder is transported in the second transport direction along the transport path by a second transport unit of the substrate holder transport mechanism, and the second transparent conductive oxide on the second surface of the substrate is transported. A second vacuum annealing treatment step of performing a vacuum annealing treatment on the film by the second vacuum annealing treatment mechanism.
JP2019146379A 2018-08-27 2019-08-08 Film forming apparatus, film forming method, and solar cell manufacturing method Active JP6697118B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157943 2018-08-27
JP2018157943 2018-08-27

Publications (2)

Publication Number Publication Date
JP2020033641A true JP2020033641A (en) 2020-03-05
JP6697118B2 JP6697118B2 (en) 2020-05-20

Family

ID=69652038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146379A Active JP6697118B2 (en) 2018-08-27 2019-08-08 Film forming apparatus, film forming method, and solar cell manufacturing method

Country Status (2)

Country Link
JP (1) JP6697118B2 (en)
CN (1) CN110863180A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309372A (en) * 2001-04-13 2002-10-23 Canon Inc Inline type film deposition apparatus, film deposition method and liquid crystal element
WO2018037907A1 (en) * 2016-08-25 2018-03-01 株式会社アルバック Film-forming apparatus, film-forming method, and solar cell production method
WO2018047977A1 (en) * 2016-09-12 2018-03-15 株式会社アルバック Production method of substrate with transparent conductive film, production device of substrate with transparent conductive film, and transparent conductive film
WO2018084286A1 (en) * 2016-11-04 2018-05-11 株式会社アルバック Film formation device
WO2018084214A1 (en) * 2016-11-02 2018-05-11 株式会社アルバック Vacuum processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309372A (en) * 2001-04-13 2002-10-23 Canon Inc Inline type film deposition apparatus, film deposition method and liquid crystal element
WO2018037907A1 (en) * 2016-08-25 2018-03-01 株式会社アルバック Film-forming apparatus, film-forming method, and solar cell production method
WO2018047977A1 (en) * 2016-09-12 2018-03-15 株式会社アルバック Production method of substrate with transparent conductive film, production device of substrate with transparent conductive film, and transparent conductive film
WO2018084214A1 (en) * 2016-11-02 2018-05-11 株式会社アルバック Vacuum processing device
WO2018084286A1 (en) * 2016-11-04 2018-05-11 株式会社アルバック Film formation device

Also Published As

Publication number Publication date
JP6697118B2 (en) 2020-05-20
CN110863180A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
US8828479B2 (en) Process for producing light absorbing layer for chalcopyrite type thin-film solar cell
ES2297827T3 (en) PROCEDURE AND APPLIANCE FOR MANUFACTURING PHOTOVOLTAIC DEVICES AND RESULTING PRODUCT.
TWI701686B (en) Method of manufacturing substrate with transparent conductive film, manufacturing apparatus of substrate with transparent conductive film, substrate with transparent conductive film, and solar cell
US10994938B2 (en) Vacuum processing device
CN112582322A (en) Laser annealing apparatus, continuous conveyance path for laser annealing, and laser annealing method
JP6379318B1 (en) Film forming apparatus, film forming method, and solar cell manufacturing method
US10367116B2 (en) Method of reducing sodium concentration in a transparent conductive oxide layer of a semiconductor device
US10508332B2 (en) Film formation apparatus, film formation method, and manufacturing method of solar battery
TWI559434B (en) Apparatus and process for producing thin layers
JP2014523479A (en) In-line chemical vapor deposition method and system
JP4703782B2 (en) Manufacturing method of semiconductor components, especially metal backside contacts of solar cells
JP2020033641A (en) Film deposition apparatus, film deposition method, and manufacturing method of solar cell
US9478448B2 (en) Thermal treatment system and method of performing thermal treatment and method of manufacturing CIGS solar cell using the same
ES2400361T3 (en) High-rate electrochemical deposition procedures of a semiconductor compound on large surface substrates
JP6055229B2 (en) To-be-processed object conveyance mechanism and vacuum processing apparatus
JP6754530B2 (en) Film formation equipment, film formation method, and solar cell manufacturing method
JP6053117B2 (en) Vacuum processing equipment
JP6279176B1 (en) Film forming apparatus, film forming method, and solar cell manufacturing method
US20130252367A1 (en) System and process for forming thin film photovoltaic device
CN117119859B (en) Perovskite solar cell preparation device and perovskite solar cell preparation method
JPH08260149A (en) Reduced pressure surface treating device and apparatus for producing solar battery
JP2006245100A (en) Baking furnace, method for baking body to be treated by using the same, and method for manufacturing solar cell element
JP2014056874A (en) Solar cell manufacturing method and solar cell manufacturing apparatus
KR20170052147A (en) Substrate processing system, and substrate processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200306

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6697118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250