JP6696728B2 - Capacitor module manufacturing method - Google Patents

Capacitor module manufacturing method Download PDF

Info

Publication number
JP6696728B2
JP6696728B2 JP2015049265A JP2015049265A JP6696728B2 JP 6696728 B2 JP6696728 B2 JP 6696728B2 JP 2015049265 A JP2015049265 A JP 2015049265A JP 2015049265 A JP2015049265 A JP 2015049265A JP 6696728 B2 JP6696728 B2 JP 6696728B2
Authority
JP
Japan
Prior art keywords
cell
voltage
thickness
vcmin
cell voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015049265A
Other languages
Japanese (ja)
Other versions
JP2016171174A (en
Inventor
幸義 上野
幸義 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015049265A priority Critical patent/JP6696728B2/en
Publication of JP2016171174A publication Critical patent/JP2016171174A/en
Application granted granted Critical
Publication of JP6696728B2 publication Critical patent/JP6696728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、複数のリチウムイオンキャパシタを並べて、これらを拘束部材で拘束したキャパシタモジュールの製造方法に関する。   The present invention relates to a method for manufacturing a capacitor module in which a plurality of lithium-ion capacitors are arranged and restrained by a restraining member.

従来より、複数の蓄電素子(二次電池やキャパシタ)を並べて、これらを拘束部材で挟んで拘束した蓄電モジュールが知られている。例えば特許文献1には、所定方向に並んで配置された複数の蓄電素子と、隣り合う蓄電素子の間にそれぞれ配置された複数の仕切り板と、これら蓄電素子及び仕切り板を上記所定方向の両側から拘束するエンドプレート及びバンドとを備える蓄電装置が開示されている(特許文献1の図1等を参照)。   2. Description of the Related Art Conventionally, there has been known an electricity storage module in which a plurality of electricity storage elements (secondary batteries and capacitors) are arranged side by side and sandwiched by restraining members. For example, in Patent Document 1, a plurality of power storage elements arranged side by side in a predetermined direction, a plurality of partition plates respectively disposed between adjacent power storage elements, and these power storage elements and partition plates on both sides in the predetermined direction. There is disclosed a power storage device including an end plate and a band for restraining the power storage device (see FIG. 1 of Patent Document 1).

特開2014−35985号公報JP, 2014-35985, A

ところで、蓄電素子として、リチウムイオンキャパシタ(LiC:Lithium-ion capacitor)を用いることがある。リチウムイオンキャパシタは、リチウムイオン二次電池(LiB:Lithium-ion battery)と比べて低抵抗であり、電気二重層コンデンサ(EDLC:Electric double-layer capacitor)と比べて大容量であるなどの利点を有する。
リチウムイオンキャパシタ(以下、単に「セル」とも言う)は、正極活物質にイオンが吸着していない(リチウムイオンもPF6 - 等のアニオンも吸着していない)状態(例えばセル電圧=3.0V)が最も電気的に安定である。このため、この電圧(以下、「安定電圧」とも言う)よりもセル電圧が高い或いは低い状態で放置すると、徐々にセル電圧が安定電圧に近づく特性を有する。
By the way, a lithium ion capacitor (LiC: Lithium-ion capacitor) may be used as a storage element. Lithium-ion capacitors have low resistance compared to lithium-ion secondary batteries (LiB), and have a large capacity compared to electric double-layer capacitors (EDLC). Have.
A lithium ion capacitor (hereinafter, also simply referred to as “cell”) is in a state where no ions are adsorbed on the positive electrode active material (lithium ions or anions such as PF 6 are not adsorbed) (for example, cell voltage = 3.0 V). ) Is the most electrically stable. Therefore, if the cell voltage is left higher or lower than this voltage (hereinafter, also referred to as “stable voltage”), the cell voltage gradually approaches the stable voltage.

また、リチウムイオンキャパシタでは、セル電圧が安定電圧よりも高い場合、正極活物質にアニオンが吸着されて正極活物質層が厚くなり、電極体厚みが厚くなる。リチウムイオンキャパシタでは、正極容量に対する負極容量の比率が非常に大きいため、SOC0%〜100%においては、正極活物質層の膨張収縮量に比して、負極活物質層の膨張収縮量は無視できるほど小さいからである。このため、セルは、セル電圧が安定電圧のときに、電極体厚み及びセル厚みが最も薄く、安定電圧よりもセル電圧が高くなるほど、電極体厚み及びセル厚みが厚くなる。   Further, in the lithium-ion capacitor, when the cell voltage is higher than the stable voltage, anions are adsorbed on the positive electrode active material, the positive electrode active material layer becomes thicker, and the electrode body becomes thicker. In a lithium-ion capacitor, the ratio of the negative electrode capacity to the positive electrode capacity is very large. Therefore, at SOC 0% to 100%, the expansion / contraction amount of the negative electrode active material layer can be ignored compared to the expansion / contraction amount of the positive electrode active material layer. Because it is so small. Therefore, in the cell, the electrode body thickness and the cell thickness are the smallest when the cell voltage is the stable voltage, and the electrode body thickness and the cell thickness increase as the cell voltage becomes higher than the stable voltage.

一方、セル電圧が安定電圧よりも低い場合、負極活物質からリチウムイオンが放出されて負極活物質層は僅かに薄くなるが、正極活物質にリチウムイオンが吸着されて正極活物質層は厚くなり、電極体厚みが厚くなる。前述のように、リチウムイオンキャパシタでは、SOC0%〜100%において、正極活物質層の膨張収縮量に比して、負極活物質層の膨張収縮量は無視できるほど小さいからである。このため、セル電圧が安定電圧のときに、電極体厚み及びセル厚みが最も薄く、安定電圧よりもセル電圧が低くなるほど、電極体厚み及びセル厚みが厚くなる。   On the other hand, when the cell voltage is lower than the stable voltage, lithium ions are released from the negative electrode active material and the negative electrode active material layer becomes slightly thinner, but lithium ions are adsorbed to the positive electrode active material and the positive electrode active material layer becomes thicker. The electrode body becomes thicker. As described above, in the lithium ion capacitor, the expansion and contraction amount of the negative electrode active material layer is negligibly smaller than the expansion and contraction amount of the positive electrode active material layer at SOC 0% to 100%. Therefore, when the cell voltage is the stable voltage, the electrode body thickness and the cell thickness are the smallest, and the lower the cell voltage is below the stable voltage, the thicker the electrode body thickness and the cell thickness.

このようにリチウムイオンキャパシタは、セル電圧により電極体厚みが変化し、これに応じてセル厚みが変化する特性を有する。このため、複数のセルを拘束部材で拘束したキャパシタモジュール(以下、単に「モジュール」とも言う)を製造するにあたり、セル電圧が安定電圧とは異なる状態のセルを用いてセルの拘束を行うと、拘束後にセル電圧を安定電圧にしたときなど、セル電圧の値によっては、セル厚みが拘束時よりも薄くなるため、拘束荷重が拘束当初よりも低下する場合がある。そして、拘束当初よりも拘束荷重が大きく低下した状態で、例えばモジュールに大きな衝撃が掛かったときには、セルがズレたり脱落するおそれがあり好ましくない。   As described above, the lithium-ion capacitor has a characteristic that the thickness of the electrode body changes depending on the cell voltage and the cell thickness changes accordingly. Therefore, when manufacturing a capacitor module in which a plurality of cells are constrained by a constraining member (hereinafter, also simply referred to as “module”), when constraining cells by using cells in a state in which the cell voltage is different from the stable voltage, Depending on the value of the cell voltage, such as when the cell voltage is stabilized after restraint, the cell thickness may be thinner than when restrained, and the restraint load may be lower than when restrained. Then, when the restraint load is much lower than that at the beginning of restraint, for example, when a large impact is applied to the module, the cells may be displaced or fall out, which is not preferable.

本発明は、かかる現状に鑑みてなされたものであって、セル電圧の値に拘わらず、リチウムイオンキャパシタを拘束する拘束荷重が拘束当初よりも低くなる状態の発生を抑制したキャパシタモジュールの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a method for manufacturing a capacitor module that suppresses the occurrence of a state in which a restraining load for restraining a lithium ion capacitor becomes lower than the initial restraint regardless of the value of a cell voltage. The purpose is to provide.

上記課題を解決するための本発明の一態様は、厚み方向に並んで配置され、内部に電極体を有する直方体状で、上記電極体の電極体厚みの変化によりセル厚みが変化する複数のリチウムイオンキャパシタと、これらのリチウムイオンキャパシタを上記厚み方向に押圧し拘束して、各々の上記電極体を押圧する拘束部材と、を備えるキャパシタモジュールの製造方法であって、上記リチウムイオンキャパシタは、上記セル厚みが最小となる厚み最小電圧Vcmin(V)が、セル使用下限電圧Vce(V)よりも高く、セル使用上限電圧Vcf(V)よりも低い特性を有し、セル電圧Vc(V)を上記最小電圧Vcmin(V)にそれぞれ調整した上記リチウムイオンキャパシタを、上記厚み方向に並べ、上記厚み方向に上記拘束部材により押圧して拘束する拘束工程を備えるキャパシタモジュールの製造方法である。 One embodiment of the present invention for solving the above problems is a plurality of lithium batteries which are arranged side by side in the thickness direction and have a rectangular parallelepiped shape having an electrode body inside, in which the cell thickness changes due to a change in the electrode body thickness of the electrode body. A method of manufacturing a capacitor module, comprising: an ion capacitor ; and a restraining member that pushes and restrains these lithium ion capacitors in the thickness direction to push each of the electrode bodies. The thickness minimum voltage Vcmin (V) that minimizes the cell thickness is higher than the cell usage lower limit voltage Vce (V) and lower than the cell usage upper limit voltage Vcf (V), and the cell voltage Vc (V) A method of manufacturing a capacitor module, comprising: a restraining step of arranging the lithium ion capacitors adjusted to the minimum voltage Vcmin (V) in the thickness direction and pressing the restraint member in the thickness direction to restrain the lithium ion capacitors.

このキャパシタモジュールの製造方法によれば、拘束工程において、セル電圧Vcを厚み最小電圧Vcmin(例えば、Vcmin=OCV3.0(V))に調整したリチウムイオンキャパシタを、その厚み方向に並べ、拘束部材で拘束する。これにより、セル厚みが最も薄くなった状態で各セルを押圧して拘束するので、拘束後に各セルに掛かる拘束荷重は、各セルのセル電圧Vcをいずれの値にしても、拘束時の荷重或いはそれ以上の大きさとなる。従って、このモジュールでは、充放電や放置によりセル電圧Vcが変化しても、セル電圧Vcの値に拘わらず、各セルを拘束する拘束荷重が拘束当初よりも低くなる状態の発生を抑制できる。なお、拘束部材による拘束は、所定の拘束寸法で拘束する定寸拘束とするのが好ましい。   According to this capacitor module manufacturing method, in the restraining step, the lithium ion capacitors whose cell voltage Vc is adjusted to the minimum thickness voltage Vcmin (for example, Vcmin = OCV3.0 (V)) are arranged in the thickness direction, and the restraining member is arranged. Restrain with. As a result, each cell is pressed and restrained in the state in which the cell thickness is the thinnest, so that the restraint load applied to each cell after restraint is the load at the time of restraint regardless of the cell voltage Vc of each cell. Or it will be larger. Therefore, in this module, even if the cell voltage Vc changes due to charging / discharging or leaving, the restraint load for restraining each cell can be suppressed from being lower than the initial restraint regardless of the value of the cell voltage Vc. In addition, it is preferable that the restraint by the restraint member is a fixed-size restraint in which the restraint is performed with a predetermined restraint size.

更に、上記のキャパシタモジュールの製造方法であって、前記セル電圧Vcを所定の保持電圧Vch(V)に保持させ続けるフロート試験を行ったときに、試験前の静電容量に対する試験後の静電容量の静電容量維持率(%)が最も大きくなる電圧値を、セル調整上限電圧Vcd(V)としたとき、前記拘束工程の後、各々の前記リチウムイオンキャパシタの上記セル電圧Vcを、Vcmin<Vc≦Vcdの範囲内に調整する電圧調整工程を備えるキャパシタモジュールの製造方法とするのが好ましい。   Further, in the above-described method for manufacturing a capacitor module, when a float test for continuing to hold the cell voltage Vc at a predetermined holding voltage Vch (V) is performed, electrostatic capacitance after the test with respect to capacitance before the test is performed. When the voltage value that maximizes the capacitance retention rate (%) of the capacitance is the cell adjustment upper limit voltage Vcd (V), the cell voltage Vc of each lithium ion capacitor is set to Vcmin after the restraint step. It is preferable to use a method of manufacturing a capacitor module that includes a voltage adjusting step of adjusting the voltage within the range of <Vc ≦ Vcd.

このキャパシタモジュールの製造方法では、拘束工程の後、電圧調整工程において、各セルのセル電圧Vcを、Vcmin<Vc≦Vcd(例えばVcmin=OCV3.0(V)、Vcd=OCV3.8(V)の場合は、3.0<Vc≦3.8)の範囲内に調整する。これにより、セル電圧Vcを低すぎる値或いは高すぎる値に保持させ続けることに起因して生じる静電容量の低下を抑制できる。   In this capacitor module manufacturing method, the cell voltage Vc of each cell is set to Vcmin <Vc ≦ Vcd (for example, Vcmin = OCV3.0 (V), Vcd = OCV3.8 (V)) in the voltage adjusting process after the restraining process. In the case of, it is adjusted within the range of 3.0 <Vc ≦ 3.8). As a result, it is possible to suppress a decrease in capacitance caused by keeping the cell voltage Vc at a value that is too low or a value that is too high.

具体的には、本発明者が調査した結果、リチウムイオンキャパシタは、後に詳述するように、セル電圧Vcを所定の保持電圧Vch(V)に保持させ続けるフロート試験を行うと、保持電圧Vchが低すぎても高すぎても、時間と共に静電容量が大きく低下することが判った。
特に、セル電圧Vcを厚み最小電圧Vcmin以下の低い保持電圧Vchに保持させ続けると、静電容量が大きく低下する。従って、モジュールの製造後から出荷までの間など、モジュールが使用される(充放電が行われる)までに時間が掛かる場合には、セル電圧Vcを厚み最小電圧Vcminよりも高く(Vc>Vcmin)しておくと良い。
なお、セルの保持電圧Vchが低いときに時間と共に静電容量が低下するのは、保持電圧Vchが低く、負極電位が電解液の還元分解電位よりも低くなると、負極板で電解液が還元分解し、これに伴ってガスが発生すると共に活物質に被膜が形成されるためと考えられる。
Specifically, as a result of an investigation conducted by the present inventor, as will be described in detail later, when a lithium ion capacitor is subjected to a float test in which the cell voltage Vc is kept at a predetermined holding voltage Vch (V), the holding voltage Vch It was found that the capacitance significantly decreased with time when the value was too low or too high.
In particular, if the cell voltage Vc is kept kept at the low holding voltage Vch that is equal to or less than the minimum thickness voltage Vcmin, the electrostatic capacitance greatly decreases. Therefore, when it takes time before the module is used (charged and discharged), such as after the module is manufactured and before it is shipped, the cell voltage Vc is set higher than the minimum thickness voltage Vcmin (Vc> Vcmin). It is good to do it.
When the holding voltage Vch of the cell is low, the capacitance decreases with time because the holding voltage Vch is low and the negative electrode potential becomes lower than the reductive decomposition potential of the electrolytic solution, the electrolytic solution is reductively decomposed on the negative electrode plate. It is considered that the gas is generated along with this and a film is formed on the active material.

一方、フロート試験の試験前の静電容量に対する試験後の静電容量の静電容量維持率(%)が最も大きくなる保持電圧Vchを、セル調整上限電圧Vcd(V)としたとき、このセル調整上限電圧Vcdよりも高い保持電圧Vchに保持させ続けると、静電容量が大きく低下する。従って、モジュールの製造後から出荷までの間など、モジュールが使用される(充放電が行われる)までに時間が掛かる場合には、セル電圧Vcをセル調整上限電圧Vcd以下に(Vc≦Vcd)しておくと良い。
なお、セルの保持電圧Vchが高いときに時間と共に静電容量が低下するのは、保持電圧Vchが高く、正極電位が電解液の酸化分解電位よりも高くなると、正極板で電解液が酸化分解し、これに伴ってガスが発生すると共に活物質に被膜が形成されるためと考えられる。
On the other hand, when the holding voltage Vch at which the capacitance retention rate (%) of the capacitance after the test with respect to the capacitance before the test of the float test is the largest, the cell adjustment upper limit voltage Vcd (V) If the holding voltage Vch, which is higher than the adjustment upper limit voltage Vcd, is kept held, the electrostatic capacitance greatly decreases. Therefore, when it takes time before the module is used (charged / discharged), such as after the module is manufactured until it is shipped, the cell voltage Vc is set to the cell adjustment upper limit voltage Vcd or less (Vc ≦ Vcd). It is good to do it.
When the holding voltage Vch of the cell is high, the capacitance decreases with time because the holding voltage Vch is high and the positive electrode potential becomes higher than the oxidative decomposition potential of the electrolytic solution, the electrolytic solution is oxidatively decomposed in the positive electrode plate. It is considered that the gas is generated along with this and a film is formed on the active material.

更に、上記のキャパシタモジュールの製造方法であって、実使用時における前記セル電圧Vcの下限電圧をセル使用下限電圧Vce(V)、上限電圧をセル使用上限電圧Vcf(V)としたとき、前記電圧調整工程は、前記セル電圧Vcを、Vcd−(Vcf−Vce)×0.2≦Vc≦Vcdの範囲内に調整する工程であるキャパシタモジュールの製造方法とするのが好ましい。   Furthermore, in the method for manufacturing the capacitor module described above, when the lower limit voltage of the cell voltage Vc in actual use is a cell use lower limit voltage Vce (V) and the upper limit voltage is a cell use upper limit voltage Vcf (V), The voltage adjusting step is preferably a method of manufacturing a capacitor module, which is a step of adjusting the cell voltage Vc within a range of Vcd− (Vcf−Vce) × 0.2 ≦ Vc ≦ Vcd.

このキャパシタモジュールの製造方法では、電圧調整工程でセル電圧Vc(V)を、セル使用下限電圧Vce(V)及びセル使用上限電圧Vcf(V)に基づいて、セル調整上限電圧Vcdよりもやや低い、Vcd−(Vcf−Vce)×0.2≦Vc≦Vcd(例えばVcmin=OCV3.0(V)、Vcd=OCV3.8(V)、Vce=OCV2.2(V)、Vcf=OCV3.8(V)の場合には、3.5≦Vc≦3.8)の範囲内に調整する。このように、セル調整上限電圧Vcd以下の範囲内で、セル電圧Vcを高い値に調整することにより、セル電圧Vcを低い値に保持させ続けることによる静電容量の低下を、更に効果的に抑制できる。   In this method for manufacturing a capacitor module, the cell voltage Vc (V) is slightly lower than the cell adjustment upper limit voltage Vcd in the voltage adjustment step based on the cell use lower limit voltage Vce (V) and the cell use upper limit voltage Vcf (V). , Vcd− (Vcf−Vce) × 0.2 ≦ Vc ≦ Vcd (for example, Vcmin = OCV3.0 (V), Vcd = OCV3.8 (V), Vce = OCV2.2 (V), Vcf = OCV3.8. In the case of (V), it is adjusted within the range of 3.5 ≦ Vc ≦ 3.8. As described above, by adjusting the cell voltage Vc to a high value within the range equal to or lower than the cell adjustment upper limit voltage Vcd, it is possible to more effectively reduce the capacitance by keeping the cell voltage Vc at a low value. Can be suppressed.

実施形態に係るキャパシタモジュールの側面図である。It is a side view of the capacitor module concerning an embodiment. 実施形態に係るリチウムイオンキャパシタの斜視図である。It is a perspective view of the lithium ion capacitor which concerns on embodiment. 実施形態に係るキャパシタモジュールの製造方法に関し、拘束工程でリチウムイオンキャパシタ等を拘束した様子を示す説明図である。It is explanatory drawing which shows a mode that the lithium ion capacitor etc. were restrained in the restraint process regarding the manufacturing method of the capacitor module which concerns on embodiment. セル電圧Vcとリチウムイオンキャパシタに掛かる拘束荷重との関係を示すグラフである。It is a graph which shows the relationship between cell voltage Vc and the restraint load applied to a lithium ion capacitor. セルの保持電圧Vchとフロート試験後の静電容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the holding voltage Vch of a cell, and the electrostatic capacitance maintenance rate after a float test.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態に係るキャパシタモジュール1(以下、単に「モジュール1」とも言う)を示し、図2に、このモジュール1を構成するリチウムイオンキャパシタ10(以下、単に「セル10」とも言う)を示す。なお、以下では、セル10の厚み方向BH、横方向CH及び縦方向DHを、図2及び図1に示す方向と定めて説明する。
本実施形態のモジュール1は、ハイブリッド自動車等の車両などに搭載される。このモジュール1は、厚み方向BHに並んで配置された複数の直方体状のセル10と、隣り合うセル10同士の間にそれぞれ介在させた複数のスペーサ20と、これらセル10及びスペーサ20を厚み方向BHに押圧しつつ拘束する拘束部材30とを備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a capacitor module 1 (hereinafter, also simply referred to as “module 1”) according to the present embodiment, and FIG. 2 shows a lithium ion capacitor 10 (hereinafter, also simply referred to as “cell 10”) that constitutes this module 1. ) Is shown. In the description below, the thickness direction BH, the horizontal direction CH, and the vertical direction DH of the cell 10 are defined as the directions shown in FIGS. 2 and 1.
The module 1 of this embodiment is mounted in a vehicle such as a hybrid vehicle. This module 1 includes a plurality of rectangular parallelepiped cells 10 arranged side by side in the thickness direction BH, a plurality of spacers 20 interposed between adjacent cells 10, and the cells 10 and the spacers 20 in the thickness direction. The restraint member 30 restrains the BH while pressing it.

セル10は、その内部の電極体13の電極体厚みの変化によりセル厚みが変化する形態を有する。具体的には、セル10は、電池ケース11と、この内部に収容された扁平状の電極体13及び電解液15と、電池ケース11に支持された正極端子17及び負極端子18等から構成される。なお、本実施形態のセル10は、実使用時におけるセル電圧Vcのセル使用下限電圧Vce(V)をVce=OCV2.2(V)に、セル使用上限電圧Vcf(V)をVcf=OCV3.8(V)に定めてある。
このうち電池ケース11は、直方体状で金属(具体的にはアルミニウム)からなる。この電池ケース11の上壁11aには、アルミニウムからなる正極端子17及び銅からなる負極端子18が、それぞれ樹脂からなる絶縁部材19を介して固設されている。
The cell 10 has a form in which the cell thickness changes due to a change in the electrode body thickness of the electrode body 13 inside the cell 10. Specifically, the cell 10 includes a battery case 11, a flat electrode body 13 and an electrolytic solution 15 housed inside the battery case 11, a positive electrode terminal 17 and a negative electrode terminal 18 supported by the battery case 11, and the like. It In the cell 10 of the present embodiment, the cell use lower limit voltage Vce (V) of the cell voltage Vc in actual use is Vce = OCV2.2 (V), and the cell use upper limit voltage Vcf (V) is Vcf = OCV3. It is set to 8 (V).
Of these, the battery case 11 has a rectangular parallelepiped shape and is made of metal (specifically, aluminum). A positive electrode terminal 17 made of aluminum and a negative electrode terminal 18 made of copper are fixed to the upper wall 11a of the battery case 11 via an insulating member 19 made of resin.

電極体13は、帯状の正極板と帯状の負極板とを、樹脂からなる帯状で一対のセパレータを介して互いに重ねて捲回し、扁平状に圧縮したものである。正極板は、アルミニウムからなる正極集電箔上に、活性炭を含む正極活物質層を設けてなる。また、負極板は、銅からなる負極集電箔上に、カーボンを含む負極活物質層を設けてなる。正極端子17は、電池ケース11の内部で電極体13の正極板に接続し導通している。また、負極端子18は、電池ケース11の内部で電極体13の負極板に接続し導通している。
電解液15は、電解質がヘキサフルオロリン酸リチウム(LiPF6 )であり、非水溶媒が、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)ジエチルカーボネート(DEC)とを混合した混合有機溶媒である。
The electrode body 13 is formed by stacking a strip-shaped positive electrode plate and a strip-shaped negative electrode plate on top of each other with a pair of separators made of resin interposed therebetween and winding them into a flat shape. The positive electrode plate is formed by providing a positive electrode active material layer containing activated carbon on a positive electrode current collector foil made of aluminum. The negative electrode plate is formed by providing a negative electrode active material layer containing carbon on a negative electrode current collector foil made of copper. The positive electrode terminal 17 is electrically connected to the positive electrode plate of the electrode body 13 inside the battery case 11. Further, the negative electrode terminal 18 is connected to the negative electrode plate of the electrode body 13 inside the battery case 11 and is electrically connected.
The electrolyte of the electrolyte solution 15 is lithium hexafluorophosphate (LiPF 6 ), and the non-aqueous solvent is a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and diethyl carbonate (DEC). It is a mixed organic solvent.

モジュール1において、複数のセル10は、それぞれスペーサ20を介して厚み方向BHに列置されており、セル10同士は、バスバ40により電気的に接続されている。
スペーサ20は、矩形板状であり、樹脂で形成されている。そして、これら交互に列置されたセル10及びスペーサ20は、拘束部材30により厚み方向BHに押圧された状態で拘束されている。これにより、各セル10の内部の電極体13も、それぞれその厚み方向EH(セル10の厚み方向BHに同じ)に押圧されている。
In the module 1, the plurality of cells 10 are arranged in a row in the thickness direction BH via the spacers 20, and the cells 10 are electrically connected by the bus bar 40.
The spacer 20 has a rectangular plate shape and is made of resin. Then, the cells 10 and the spacers 20 that are alternately arranged are constrained by the constraining member 30 while being pressed in the thickness direction BH. Thereby, the electrode body 13 inside each cell 10 is also pressed in its thickness direction EH (same as the thickness direction BH of the cell 10).

拘束部材30は、一対のエンドプレート31と、4本の拘束ロッド33とを有する。エンドプレート31は、矩形板状をなし、列置されたセル10及びスペーサ20の厚み方向BHの両側にそれぞれ配置されている。拘束ロッド33は、一対のエンドプレート31の間にそれぞれ配置されて、締結ボルト35によりエンドプレート31にそれぞれ固定されている。   The restraint member 30 has a pair of end plates 31 and four restraint rods 33. The end plates 31 have a rectangular plate shape, and are arranged on both sides of the cells 10 and the spacers 20 arranged in a row in the thickness direction BH. The restraint rods 33 are arranged between the pair of end plates 31 and fixed to the end plates 31 by fastening bolts 35.

本実施形態のモジュール1は、図4に示すように、各セル10のセル電圧Vcの大きさによって、各セル10に掛かる拘束荷重が変化する。図4から明らかなように、各セル10のセル電圧Vc=OCV3.0(V)のときに、拘束荷重は最も小さく、セル電圧Vcが3.0Vよりも高くなるほど、拘束荷重は大きくなる。また、セル電圧Vcが3.0Vよりも低くなるほど、拘束荷重は大きくなる。   In the module 1 of this embodiment, as shown in FIG. 4, the constraint load applied to each cell 10 changes depending on the magnitude of the cell voltage Vc of each cell 10. As is clear from FIG. 4, when the cell voltage Vc of each cell 10 is OCV = 3.0 (V), the restraint load is the smallest, and the restraint load increases as the cell voltage Vc becomes higher than 3.0V. Further, the binding load increases as the cell voltage Vc becomes lower than 3.0V.

その理由は、以下であると考えられる。セル10は、セル電圧Vc=OCV3.0(V)のときに、電極体厚み及びセル厚みが最小となる。即ち、厚み最小電圧Vcmin=OCV3.0(V)である。セル電圧Vcが厚み最小電圧Vcmin=3.0(V)よりも高い場合、正極活物質にアニオンが吸着されて正極活物質層が厚くなると共に、負極活物質にリチウムイオンが吸蔵されて負極活物質層も厚くなる。このため、セル電圧Vcが厚み最小電圧Vcmin=3.0(V)よりも高くなるほど、電極体厚み及びセル厚みが厚くなる。モジュール1において、各セル10は厚み方向BHに拘束されているので、セル電圧Vcが厚み最小電圧Vcmin=3.0(V)よりも高くなるほど、拘束荷重が大きくなると考えられる。   The reason is considered to be as follows. The cell 10 has the minimum electrode body thickness and cell thickness when the cell voltage Vc = OCV 3.0 (V). That is, the minimum thickness voltage Vcmin = OCV3.0 (V). When the cell voltage Vc is higher than the minimum thickness voltage Vcmin = 3.0 (V), anions are adsorbed to the positive electrode active material to increase the thickness of the positive electrode active material layer, and lithium ions are occluded in the negative electrode active material to cause negative electrode activity. The material layer also becomes thicker. Therefore, as the cell voltage Vc becomes higher than the minimum thickness voltage Vcmin = 3.0 (V), the electrode body thickness and the cell thickness increase. In the module 1, since each cell 10 is constrained in the thickness direction BH, it is considered that the constraining load increases as the cell voltage Vc becomes higher than the minimum thickness voltage Vcmin = 3.0 (V).

一方、セル電圧Vcが厚み最小電圧Vcmin=3.0(V)よりも低い場合、負極活物質からリチウムイオンが放出されて負極活物質層は僅かに薄くなるが、正極活物質にリチウムイオンが吸着されて正極活物質層は厚くなる。前述のように、リチウムイオンキャパシタでは、正極容量に対する負極容量の比率が非常に大きいため、正極活物質層の膨張収縮量に比して、負極活物質層の膨張収縮量は無視できるほど小さい。このため、セル電圧Vcが厚み最小電圧Vcmin=3.0(V)よりも低くなるほど、電極体厚み及びセル厚みが厚くなる。モジュール1において、各セル10は厚み方向BHに拘束されているので、セル電圧Vcが厚み最小電圧Vcmin=3.0(V)よりも低くなるほど、拘束荷重が大きくなると考えられる。   On the other hand, when the cell voltage Vc is lower than the minimum thickness voltage Vcmin = 3.0 (V), lithium ions are released from the negative electrode active material and the negative electrode active material layer becomes slightly thin, but the positive electrode active material contains lithium ions. The positive electrode active material layer is thickened by being adsorbed. As described above, in the lithium ion capacitor, the ratio of the negative electrode capacity to the positive electrode capacity is very large, so the expansion / shrinkage amount of the negative electrode active material layer is negligibly small compared to the expansion / shrinkage amount of the positive electrode active material layer. Therefore, as the cell voltage Vc becomes lower than the minimum thickness voltage Vcmin = 3.0 (V), the electrode body thickness and the cell thickness increase. In the module 1, since each cell 10 is constrained in the thickness direction BH, it is considered that the constraining load increases as the cell voltage Vc becomes lower than the minimum thickness voltage Vcmin = 3.0 (V).

次いで、上記モジュール1の製造方法について説明する。まず、複数のセル10を用意し、各セル10のセル電圧Vc(V)を、セル厚みが最小となる厚み最小電圧Vcmin(V)にそれぞれ調整する。具体的には、前述のように、厚み最小電圧Vcmin=OCV3.0(V)であるので、各セル10について、セル電圧Vc=OCV3.0(V)に調整する。また別途、複数のスペーサ20を用意する。   Next, a method of manufacturing the module 1 will be described. First, a plurality of cells 10 are prepared, and the cell voltage Vc (V) of each cell 10 is adjusted to the minimum thickness voltage Vcmin (V) that minimizes the cell thickness. Specifically, as described above, since the minimum thickness voltage Vcmin = OCV3.0 (V), the cell voltage Vc = OCV3.0 (V) is adjusted for each cell 10. Separately, a plurality of spacers 20 are prepared.

次に、拘束工程において、図3に示すように、各セル10をスペーサ20をそれぞれ介在させて厚み方向BHに並べる。そして、拘束部材30により厚み方向BHに押圧して所定の拘束寸法で定寸拘束する。具体的には、列置されたセル10及びスペーサ20の厚み方向BHの両側にそれぞれ拘束部材30のエンドプレート31を配置すると共に、一対のエンドプレート31の間に拘束ロッド33を配置して、締結ボルト35によりエンドプレート31に固定する。これにより、各セル10が厚み方向BHに押圧され、これらの内部の電極体13もそれぞれその厚み方向EHに押圧される。   Next, in the restraint step, as shown in FIG. 3, the cells 10 are arranged in the thickness direction BH with the spacers 20 interposed therebetween. Then, the constraining member 30 presses in the thickness direction BH to constrain it to a fixed size with a predetermined constraining dimension. Specifically, the end plates 31 of the restraint member 30 are arranged on both sides of the cells 10 and the spacers 20 arranged in a row in the thickness direction BH, and the restraint rod 33 is arranged between the pair of end plates 31. The fastening bolt 35 fixes the end plate 31. As a result, each cell 10 is pressed in the thickness direction BH, and the electrode bodies 13 inside thereof are also pressed in the thickness direction EH.

次に、検査工程において、拘束部材30で拘束したセル10等を常温(20℃±15℃)で放置し、各セル10の電圧降下をそれぞれ測定する。そして、セル電圧Vcが他のセル10に比べて降下したセル10を不良品として排除する。電圧降下の大きいセル10は、異物等の混入により微小な短絡が生じていると考えられるからである。   Next, in the inspection step, the cell 10 constrained by the constraining member 30 is left at room temperature (20 ° C. ± 15 ° C.), and the voltage drop of each cell 10 is measured. Then, the cell 10 in which the cell voltage Vc drops compared to the other cells 10 is excluded as a defective product. This is because it is considered that a minute short circuit has occurred in the cell 10 having a large voltage drop due to the inclusion of foreign matter or the like.

次に、電圧調整工程において、各セル10のセル電圧Vcを、Vcmin<Vc≦Vcd、更に言うと、Vcd−(Vcf−Vce)×0.2≦Vc≦Vcdの範囲内に調整する。なお、セル調整上限電圧Vcd(V)は、後述するように、セル電圧Vcを所定の保持電圧Vch(V)に保持させ続けるフロート試験を行ったときに、試験前の静電容量に対する試験後の静電容量の静電容量維持率(%)が最も大きくなる電圧値であり、本実施形態では、セル調整上限電圧Vcd=OCV3.8(V)である。また、前述のように、厚み最小電圧Vcmin=OCV3.0(V)、セル使用下限電圧Vce=OCV2.2(V)、セル使用上限電圧Vcf=OCV3.8(V)である。従って、この電圧調整工程では、各セル10のセル電圧Vcを、3.5≦Vc≦3.8の範囲内、例えば、セル電圧Vc=OCV3.7(V)に調整する。
なお、セル電圧Vcの調整は、各セル10毎に独立して行うのが好ましい。各セル10を電気的に接続して一挙にセル電圧Vcの調整を行うと、セル10毎の静電容量や内部抵抗のバラツキにより、セル電圧Vcにもバラツキが生じる場合があるからである。
Next, in the voltage adjusting step, the cell voltage Vc of each cell 10 is adjusted within the range of Vcmin <Vc ≦ Vcd, more specifically, Vcd− (Vcf−Vce) × 0.2 ≦ Vc ≦ Vcd. It should be noted that the cell adjustment upper limit voltage Vcd (V) is, as will be described later, obtained when a float test in which the cell voltage Vc is continuously held at a predetermined holding voltage Vch (V) is performed, after the test with respect to the capacitance before the test. Is the voltage value at which the electrostatic capacity maintenance rate (%) of the electrostatic capacity is maximum, and in the present embodiment, the cell adjustment upper limit voltage Vcd = OCV 3.8 (V). Further, as described above, the minimum thickness voltage Vcmin = OCV3.0 (V), the cell use lower limit voltage Vce = OCV2.2 (V), and the cell use upper limit voltage Vcf = OCV3.8 (V). Therefore, in this voltage adjustment step, the cell voltage Vc of each cell 10 is adjusted within the range of 3.5 ≦ Vc ≦ 3.8, for example, the cell voltage Vc = OCV 3.7 (V).
The cell voltage Vc is preferably adjusted independently for each cell 10. This is because when the cells 10 are electrically connected and the cell voltage Vc is adjusted all at once, the cell voltage Vc may also vary due to variations in the capacitance and internal resistance of each cell 10.

次に、接続工程において、拘束部材30で拘束された各セル10をバスバ40を用いて電気的に接続する(図1参照)。かくして、モジュール1が完成する。   Next, in the connecting step, each cell 10 constrained by the constraining member 30 is electrically connected using the bus bar 40 (see FIG. 1). Thus, the module 1 is completed.

次いで、セル10のセル電圧Vcの大きさとセル10の耐久性との関係について行った試験の結果を説明する。まず、恒温槽内にセル10を配置し、外部から微充電を行って、4000時間、常にセル電圧Vcを所定の保持電圧Vch(V)に保持させ続ける「フロート試験」を行った。そして、試験前後でセル10の静電容量をそれぞれ測定し、試験前の静電容量に対する試験後の静電容量から、静電容量維持率(%)を算出した。保持電圧Vchは、約2.2〜約4.0Vの範囲で変更した。その結果を図5のグラフに示す。   Next, the results of tests conducted on the relationship between the cell voltage Vc of the cell 10 and the durability of the cell 10 will be described. First, the “float test” was performed in which the cell 10 was placed in a constant temperature bath, slightly charged from the outside, and the cell voltage Vc was constantly kept at a predetermined holding voltage Vch (V) for 4000 hours. Then, the capacitance of the cell 10 was measured before and after the test, and the capacitance retention rate (%) was calculated from the capacitance after the test with respect to the capacitance before the test. The holding voltage Vch was changed in the range of about 2.2 to about 4.0V. The result is shown in the graph of FIG.

なお、静電容量の測定は、以下の手法により行った。即ち、セル10の40倍放電電流(公称静電容量×電圧作動幅/3600:本実施形態では17.8A)で定格セル電圧Vc3(本実施形態ではVc3=3.8V)まで充電した後、同じ電流値で最低作動セル電圧Vc1(本実施形態ではVc1=2.2V)まで放電させる。その際、定格セル電圧Vc3の80%に当たるセル電圧Vc2から最低作動セル電圧Vc1までの放電時間Itを計測する。そして、静電容量(F)=It/(V2−V1)の式により、静電容量を求める。この測定を3回繰り返し行って、その平均値を静電容量とする。   The capacitance was measured by the following method. That is, after being charged to the rated cell voltage Vc3 (Vc3 = 3.8V in this embodiment) with 40 times the discharge current of the cell 10 (nominal capacitance × voltage operation width / 3600: 17.8A in this embodiment), The cells are discharged to the lowest operating cell voltage Vc1 (Vc1 = 2.2V in this embodiment) with the same current value. At that time, the discharge time It from the cell voltage Vc2 corresponding to 80% of the rated cell voltage Vc3 to the minimum operating cell voltage Vc1 is measured. Then, the electrostatic capacitance is obtained from the formula of electrostatic capacitance (F) = It / (V2-V1). This measurement is repeated 3 times, and the average value is taken as the capacitance.

図5から明らかなように、セル電圧Vcが3.8Vよりも低い、即ち、セル調整上限電圧Vcdよりも低い範囲では、セル電圧Vcを低い保持電圧Vchに保持させ続けると、保持電圧Vchが低いほど静電容量が大きく低下することが判る。特に、セル電圧Vcを厚み最小電圧Vcmin=3.0V以下の保持電圧Vchに保持させ続けると、静電容量が大きく低下する。このようにセル10の保持電圧Vchが低いと静電容量が低下するのは、前述のように、保持電圧Vchが低く、負極電位が電解液の還元分解電位よりも低くなると、負極板で電解液15が還元分解し、これに伴ってガスが発生すると共に活物質に被膜が形成されるためと考えられる。   As is clear from FIG. 5, in the range where the cell voltage Vc is lower than 3.8V, that is, in the range lower than the cell adjustment upper limit voltage Vcd, when the cell voltage Vc is kept held at the low holding voltage Vch, the holding voltage Vch becomes It can be seen that the lower the capacitance, the lower the capacitance. In particular, if the cell voltage Vc is kept kept at the holding voltage Vch of the minimum thickness voltage Vcmin = 3.0V or less, the electrostatic capacitance greatly decreases. As described above, when the holding voltage Vch of the cell 10 is low, the electrostatic capacity is decreased. As described above, when the holding voltage Vch is low and the negative electrode potential is lower than the reductive decomposition potential of the electrolytic solution, electrolysis occurs on the negative electrode plate. It is considered that the liquid 15 is reductively decomposed, gas is generated with this, and a film is formed on the active material.

この結果から、モジュール1の製造後から出荷までの間など、モジュール1が使用される(充放電が行われる)までに時間が掛かる場合には、セル電圧Vcを厚み最小電圧Vcminよりも大きく(Vc>Vcmin)しておくと良いことが判る。
特に、セル電圧Vcを3.8Vよりもやや低い、3.5〜3.8Vの範囲内、即ち、Vcd−(Vcf−Vce)×0.2≦Vc≦Vcdに調整することで、セル電圧Vcを低い値に保持させ続けることによる静電容量の低下を、効果的に抑制できる。
From this result, when it takes time to use (charge and discharge) the module 1 after manufacturing the module 1 to shipping it, the cell voltage Vc is set higher than the minimum thickness voltage Vcmin ( It is understood that it is better to keep Vc> Vcmin).
In particular, by adjusting the cell voltage Vc within a range of 3.5 to 3.8V, which is slightly lower than 3.8V, that is, Vcd− (Vcf−Vce) × 0.2 ≦ Vc ≦ Vcd, the cell voltage is adjusted. It is possible to effectively suppress a decrease in electrostatic capacitance caused by keeping Vc at a low value.

一方、セル電圧Vcを3.8Vよりも高くすると、即ち、セル調整上限電圧Vcdを越える範囲では、セル電圧Vcを高い保持電圧Vchに保持させ続けると、保持電圧Vchが高いほど静電容量が大きく低下することが判る。このようにセル10の保持電圧Vchが高いと静電容量が低下するのは、前述のように、保持電圧Vchが高く、正極電位が電解液の酸化分解電位よりも高くなると、正極板で電解液15が酸化分解し、これに伴ってガスが発生すると共に活物質に被膜が形成されるためと考えられる。   On the other hand, if the cell voltage Vc is set higher than 3.8V, that is, in the range where the cell adjustment upper limit voltage Vcd is exceeded, if the cell voltage Vc is kept held at the high holding voltage Vch, the higher the holding voltage Vch is, the higher the capacitance becomes. It can be seen that it drops significantly. As described above, the electrostatic capacitance decreases when the holding voltage Vch of the cell 10 is high, as described above, when the holding voltage Vch is high and the positive electrode potential is higher than the oxidative decomposition potential of the electrolytic solution, the positive electrode plate is electrolyzed. It is considered that the liquid 15 is oxidatively decomposed, gas is generated with this, and a film is formed on the active material.

この結果から、モジュール1の製造後から出荷までの間など、モジュール1が使用される(充放電が行われる)までに時間が掛かる場合には、セル電圧Vcをセル調整上限電圧Vcd以下に(Vc≦Vcd)しておくと良いことが判る。
以上より、セル電圧VcをVcmin<Vc≦Vcd、更に好ましくは、Vcd−(Vcf−Vce)×0.2≦Vc≦Vcdに調整しておくことで、セル電圧Vcを低すぎる値或いは高すぎる値に保持させ続けることによる静電容量の低下を抑制できる。
From this result, when it takes time before the module 1 is used (charged and discharged) after the module 1 is manufactured and before shipment, the cell voltage Vc is set to the cell adjustment upper limit voltage Vcd or less ( It is understood that it is better to keep Vc ≦ Vcd).
From the above, by adjusting the cell voltage Vc to Vcmin <Vc ≦ Vcd, more preferably Vcd− (Vcf−Vce) × 0.2 ≦ Vc ≦ Vcd, the cell voltage Vc is too low or too high. It is possible to suppress a decrease in electrostatic capacitance caused by continuing to hold the value.

以上で説明したように、本実施形態のモジュール1の製造方法によれば、拘束工程において、セル電圧Vcを厚み最小電圧Vcmin(具体的には、Vcmin=OCV3.0(V))に調整したセル10を、その厚み方向BHに並べ、拘束部材30で拘束する。これにより、セル厚みが最も薄くなった状態で各セル10を押圧して拘束するので、拘束後に各セル10に掛かる拘束荷重は、各セル10のセル電圧Vcをいずれの値にしても、拘束時の荷重或いはそれ以上の大きさとなる(図4参照)。従って、このモジュール1では、充放電や放置によりセル電圧Vcが変化しても、セル電圧Vcの値に拘わらず、各セル10を拘束する拘束荷重が拘束当初よりも低くなる状態の発生を抑制できる。   As described above, according to the method for manufacturing the module 1 of the present embodiment, the cell voltage Vc is adjusted to the minimum thickness voltage Vcmin (specifically, Vcmin = OCV3.0 (V)) in the constraint step. The cells 10 are arranged in the thickness direction BH and restrained by the restraining member 30. As a result, since each cell 10 is pressed and constrained in the state where the cell thickness is thinnest, the constraining load applied to each cell 10 after constraining is constrained regardless of the value of the cell voltage Vc of each cell 10. The load will be equal to or greater than the actual load (see Fig. 4). Therefore, in this module 1, even if the cell voltage Vc changes due to charging / discharging or leaving, the restraint load for restraining each cell 10 is suppressed from being lower than the restraint load regardless of the value of the cell voltage Vc. it can.

更に本実施形態では、拘束工程の後、電圧調整工程において、各セル10のセル電圧Vc(V)を、Vcmin<Vc≦Vcd(具体的には、3.0<Vc≦3.8)の範囲内に、更に言えば、Vcd−(Vcf−Vce)×0.2≦Vc≦Vcd(具体的には、3.5≦Vc≦3.8)の範囲内に調整する。これにより、セル電圧Vcを低すぎる値或いは高すぎる値に保持させ続けることによる静電容量の低下を、効果的に抑制できる。   Further, in the present embodiment, in the voltage adjusting step after the restraining step, the cell voltage Vc (V) of each cell 10 is Vcmin <Vc ≦ Vcd (specifically, 3.0 <Vc ≦ 3.8). Within the range, more specifically, within the range of Vcd− (Vcf−Vce) × 0.2 ≦ Vc ≦ Vcd (specifically, 3.5 ≦ Vc ≦ 3.8). As a result, it is possible to effectively suppress a decrease in electrostatic capacitance caused by keeping the cell voltage Vc at a value that is too low or too high.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   Although the present invention has been described above according to the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the scope of the invention.

1 キャパシタモジュール
10 リチウムイオンキャパシタ
13 電極体
20 スペーサ
30 拘束部材
40 バスバ
BH (セルの)厚み方向
CH (セルの)横方向
DH (セルの)縦方向
EH (電極体の)厚み方向
1 Capacitor Module 10 Lithium Ion Capacitor 13 Electrode Body 20 Spacer 30 Restraining Member 40 Bus Bar BH (Cell's) Thickness Direction CH (Cell's) Lateral DH (Cell's) Vertical Direction EH (Electrode's) Thickness Direction

Claims (1)

厚み方向に並んで配置され、内部に電極体を有する直方体状で、上記電極体の電極体厚みの変化によりセル厚みが変化する複数のリチウムイオンキャパシタと、
これらのリチウムイオンキャパシタを上記厚み方向に押圧し拘束して、各々の上記電極体を押圧する拘束部材と、を備える
キャパシタモジュールの製造方法であって、
上記リチウムイオンキャパシタは、
上記セル厚みが最小となる厚み最小電圧Vcmin(V)が、セル使用下限電圧Vce(V)よりも高く、セル使用上限電圧Vcf(V)よりも低い特性を有し、
セル電圧Vc(V)を上記最小電圧Vcmin(V)にそれぞれ調整した上記リチウムイオンキャパシタを、上記厚み方向に並べ、上記厚み方向に上記拘束部材により押圧して拘束する拘束工程を備える
キャパシタモジュールの製造方法。
A plurality of lithium ion capacitors that are arranged side by side in the thickness direction and have a rectangular parallelepiped shape having an electrode body inside, in which the cell thickness changes due to a change in the electrode body thickness of the electrode body,
A method of manufacturing a capacitor module, comprising: a constraint member that presses and constrains these lithium ion capacitors in the thickness direction to press each of the electrode bodies,
The lithium ion capacitor is
The thickness minimum voltage Vcmin (V) that minimizes the cell thickness is higher than the cell use lower limit voltage Vce (V) and lower than the cell use upper limit voltage Vcf (V),
The lithium ion capacitor cell voltage Vc (V) is adjusted respectively to the minimum voltage Vcmin (V), arranged in the thickness direction, of the capacitor module with constraints step of restraining by pressing by the restraining member in the thickness direction Production method.
JP2015049265A 2015-03-12 2015-03-12 Capacitor module manufacturing method Expired - Fee Related JP6696728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049265A JP6696728B2 (en) 2015-03-12 2015-03-12 Capacitor module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049265A JP6696728B2 (en) 2015-03-12 2015-03-12 Capacitor module manufacturing method

Publications (2)

Publication Number Publication Date
JP2016171174A JP2016171174A (en) 2016-09-23
JP6696728B2 true JP6696728B2 (en) 2020-05-20

Family

ID=56982531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049265A Expired - Fee Related JP6696728B2 (en) 2015-03-12 2015-03-12 Capacitor module manufacturing method

Country Status (1)

Country Link
JP (1) JP6696728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951666B2 (en) * 2018-02-16 2021-10-20 トヨタ自動車株式会社 Deterioration estimation device for lithium ion capacitors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223376A (en) * 1998-11-25 2000-08-11 Ngk Insulators Ltd Manufacture of electrochemical capacitor
JP4988153B2 (en) * 2004-08-10 2012-08-01 日本ケミコン株式会社 Manufacturing method of electric double layer capacitor
JP2007165698A (en) * 2005-12-15 2007-06-28 Mitsubishi Electric Corp Electric power storage device
JP4918418B2 (en) * 2007-06-13 2012-04-18 アドバンスト・キャパシタ・テクノロジーズ株式会社 Lithium ion pre-doping method and method for producing lithium ion capacitor storage element
JP2010080279A (en) * 2008-09-26 2010-04-08 Nissan Motor Co Ltd Secondary battery system and vehicle using the same
JP5966314B2 (en) * 2011-10-28 2016-08-10 三洋電機株式会社 Power supply

Also Published As

Publication number Publication date
JP2016171174A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
KR101873659B1 (en) Method of producing nonaqueous secondary battery
US8030901B2 (en) Electric energy storage device
EP1962356A1 (en) Energy conversion device
US9166248B2 (en) Manufacturing method of battery pack
JP5464118B2 (en) Method for producing lithium ion secondary battery
US10263276B2 (en) Producing method of assembled battery
Xia et al. Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols
Campillo-Robles et al. General hybrid asymmetric capacitor model: validation with a commercial lithium ion capacitor
JP2017084550A (en) Battery pack
JP2016085895A (en) Lithium ion secondary cell module
JP2017106867A (en) Manufacturing method for secondary batteries
JP2009259607A (en) Battery pack
EP3067967B1 (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
JP6696728B2 (en) Capacitor module manufacturing method
JP2013053943A (en) Device and method for estimation
JP7136017B2 (en) Non-aqueous electrolyte secondary battery
US20230208172A1 (en) Recovery processing method of lithium ion battery, charge/discharge device, and storage medium
JP6897411B2 (en) How to manufacture a secondary battery
JP5299434B2 (en) Manufacturing method of battery pack
KR101008795B1 (en) Energy storage device
US20200220195A1 (en) Method of producing battery
JP2017126539A (en) Method for manufacturing secondary battery
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JP2020024935A (en) Power storage system and computer program
JP2014078325A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R151 Written notification of patent or utility model registration

Ref document number: 6696728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees