JP6694408B2 - LED power supply device and LED lighting device - Google Patents

LED power supply device and LED lighting device Download PDF

Info

Publication number
JP6694408B2
JP6694408B2 JP2017074361A JP2017074361A JP6694408B2 JP 6694408 B2 JP6694408 B2 JP 6694408B2 JP 2017074361 A JP2017074361 A JP 2017074361A JP 2017074361 A JP2017074361 A JP 2017074361A JP 6694408 B2 JP6694408 B2 JP 6694408B2
Authority
JP
Japan
Prior art keywords
voltage
led
power supply
fet
led load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017074361A
Other languages
Japanese (ja)
Other versions
JP2018181438A (en
Inventor
山下 洋
洋 山下
Original Assignee
大光電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大光電機株式会社 filed Critical 大光電機株式会社
Priority to JP2017074361A priority Critical patent/JP6694408B2/en
Publication of JP2018181438A publication Critical patent/JP2018181438A/en
Application granted granted Critical
Publication of JP6694408B2 publication Critical patent/JP6694408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、LED負荷に電力を供給するためのLED電源装置、及びこの電源装置が用いられたLED照明装置に関する。   The present invention relates to an LED power supply device for supplying power to an LED load, and an LED lighting device using the power supply device.

LED(発光ダイオード)を用いたLED照明装置の電源装置として、出力電流を安定にするために、例えば特許文献1等のように、入力変動、負荷変動の影響を受けない制御方式のもの従来より知られている。   As a power supply device for an LED lighting device using an LED (light emitting diode), in order to stabilize the output current, a control system that is not affected by input fluctuations and load fluctuations, as in Patent Document 1, etc. Are known.

その一つとして、フィードバック制御方式の電源装置がある。このフィードバック制御方式の電源は、高周波スイッチングによる制御が基本であり、図4に基本構成を示すように、フィルタ部101、スイッチング部102、LED負荷103からなる出力部、制御部104等を有し、LED負荷103の電流を検出部105により検出し、LED負荷103の電流が一定になるようにスイッチング部102の周波数を制御部104により制御する。なお、図4に示す符号106は商用電源、107は整流部、108は平滑コンデンサ、109はダイオードである。   One of them is a feedback control type power supply device. The power supply of this feedback control system is basically controlled by high frequency switching, and has a filter section 101, a switching section 102, an output section including an LED load 103, a control section 104, etc., as shown in the basic configuration of FIG. The current of the LED load 103 is detected by the detection unit 105, and the frequency of the switching unit 102 is controlled by the control unit 104 so that the current of the LED load 103 becomes constant. 4, reference numeral 106 is a commercial power source, 107 is a rectifying unit, 108 is a smoothing capacitor, and 109 is a diode.

しかし、このフィードバック制御方式のLED電源装置は、ノイズが出やすい、部品点数が多く価格が高い、形状が大きくなるといった欠点がある。   However, this feedback control type LED power supply device has drawbacks that noise is likely to occur, the number of parts is large, the price is high, and the shape is large.

また、他の種類のLED電源装置として、ヒステリシス制御方式(臨界モード制御方式を含む)によるものがある。この電源装置は図5に基本構成を示すように、フィルタ部111、スイッチング部112、LED負荷113からなる出力部、制御部114等を有し、制御部114はスイッチング部112の出力が一定電圧となるようにオンとオフを繰り返す。   Further, as another type of LED power supply device, there is one using a hysteresis control system (including a critical mode control system). As shown in the basic configuration of FIG. 5, this power supply device has a filter section 111, a switching section 112, an output section including an LED load 113, a control section 114, and the like. The control section 114 outputs a constant voltage to the switching section 112. Repeated on and off so that.

このヒステリシス制御方式のLED電源装置は、フィードバック制御方式の電源装置に較べて、LED負荷の電流検出は不要であるとともに制御部114の構成が簡素化されるが、やはりスイッチング部112が存在することからノイズが出やすく部品点数が多いといった欠点がある。   This hysteresis control type LED power supply device does not require current detection of the LED load and the configuration of the control unit 114 is simplified as compared with the feedback control type power supply device, but the switching unit 112 still exists. Therefore, there is a drawback that noise is easily generated and the number of parts is large.

更に他の種類のLED電源装置として、直列制御方式の電源装置がある。この電源装置は図6に基本構成を示すように、LED負荷121からなる出力部と、LED負荷121の電流を一定にするための定電流素子122と、定電流素子122を制御するための制御部123を備えている。   Still another type of LED power supply device is a serial control type power supply device. As shown in the basic configuration of FIG. 6, this power supply device has an output section including an LED load 121, a constant current element 122 for keeping the current of the LED load 121 constant, and a control for controlling the constant current element 122. The unit 123 is provided.

この直列制御方式の電源装置は、フィードバック制御方式やヒステリシス制御方式に較べて、構成が大幅に簡素化されるが、定電流素子122での損失が大きいため効率が悪いうえ、放熱対策が必要となるため価格が高く、形状も大きくなるといった欠点がある。   This series control type power supply device has a significantly simplified structure as compared with the feedback control system and the hysteresis control system, but the efficiency is poor due to the large loss in the constant current element 122, and heat dissipation measures are required. Therefore, there is a drawback that the price is high and the shape is large.

特開2011−165920号公報JP, 2011-165920, A

このように、従来のLED電源装置は、ノイズが出やすいとか、部品点数が多く価格が高いとか、形状が大きいといった欠点があり、またノイズが出ず構成が簡素なものは効率が悪いうえ、放熱対策が必要で形状が大きくなる、といった問題があった。   As described above, the conventional LED power supply device has drawbacks that it is likely to generate noise, has a large number of parts, is expensive, and has a large shape. Moreover, a device having no noise and a simple configuration is inefficient. There was a problem that the heat dissipation measures were necessary and the shape became large.

この発明は、このような技術的背景に鑑みてなされたものであって、簡単な構成でありながら小型化が可能で安価なLED電源装置及びLED照明装置の提供を課題とする。   The present invention has been made in view of such a technical background, and an object of the present invention is to provide an LED power supply device and an LED lighting device that have a simple configuration but can be downsized and are inexpensive.

上記課題は、以下の手段によって解決される。
(1)商用電源からの入力を整流する整流回路と、LED負荷と、前記整流回路の出力における所定電位以下の部位のみの電力を、前記LED負荷に供給する電力供給部と、前記整流回路の出力を平滑化する平滑コンデンサと、前記平滑コンデンサと直列に接続されたスイッチング素子と、前記LED負荷と直列に接続された定電流回路と、前記定電流回路の電流入力側の電圧と電流出力側の電圧の差を検出する電圧検出部と、を備え、前記平滑コンデンサは、直列に接続された前記LED負荷と定電流回路に対する前記電力供給部を構成し、前記所定電位は、前記電圧検出部により検出された前記定電流回路の電圧の差が、第1の基準値まで上昇したときに前記スイッチング素子をオフにし、第2の基準値まで低下したときに前記スイッチング素子をオンにすることによって設定されることを特徴とするLED電源装置。
(2)前記所定電位はLED負荷の順方向電圧よりも1V〜50V高く設定されている前項1に記載のLED電源装置。
(3)前項1または2に記載のLED電源装置を備えたLED照明装置。
The above problem can be solved by the following means.
(1) A rectifier circuit that rectifies an input from a commercial power source, an LED load, a power supply unit that supplies the LED load with power of only a portion of the output of the rectifier circuit that is equal to or lower than a predetermined potential, and the rectifier circuit. A smoothing capacitor for smoothing the output, a switching element connected in series with the smoothing capacitor, a constant current circuit connected in series with the LED load, a voltage on the current input side of the constant current circuit, and a current output side. A voltage detector that detects a voltage difference between the LED load and the constant current circuit that are connected in series, and the predetermined potential is the voltage detector. When the difference between the voltages of the constant current circuit detected by the switch rises to a first reference value, the switching element is turned off, and when the difference decreases to a second reference value, the switch is turned off. LED power supply, characterized in that it is set by turning on the grayed elements.
(2) The LED power supply device according to item 1, wherein the predetermined potential is set to be 1 V to 50 V higher than the forward voltage of the LED load.
(3) An LED lighting device equipped with the LED power supply device according to item 1 or 2.

前項(1)に記載の発明によれば、商用電源からの入力を整流する整流回路と、LED負荷と、整流回路の出力における所定電位以下の部位のみの電力を、LED負荷に供給する電力供給部と、を備えているから、高周波のスイッチング部は不要でありノイズの問題が無いうえ構成も簡素になる。しかも、LED負荷に供給される電力は、整流回路の出力における所定電位以下の部位のみの電力であるから、損失を小さくできて効率が良いうえ
、放熱対策も不要であるから安価で小型化を図ることができる。
また、所定電位は、電圧検出部により検出された前記定電流回路の電圧の差が、第1の基準値まで上昇したときに前記スイッチング素子をオフにし、第2の基準値まで低下したときに前記スイッチング素子をオンにすることによって設定されるから、所定電位を安定的に設定することができる。
According to the invention described in the above paragraph (1), a rectifier circuit that rectifies an input from a commercial power source, an LED load, and a power supply that supplies only the power of a portion of the output of the rectifier circuit that is equal to or lower than a predetermined potential to the LED load. Since the high frequency switching section is unnecessary, there is no problem of noise and the configuration is simple. Moreover, since the electric power supplied to the LED load is the electric power of only the portion of the output of the rectifier circuit which is equal to or lower than the predetermined potential, the loss can be reduced and the efficiency is high, and no heat dissipation measures are required, so that the cost can be reduced and the size can be reduced. Can be planned.
Further, the predetermined potential is turned off when the difference between the voltages of the constant current circuit detected by the voltage detection unit rises to the first reference value and turns off when the difference decreases to the second reference value. Since it is set by turning on the switching element , the predetermined potential can be set stably.

前項(2)に記載の発明によれば、所定電位はLED負荷の順方向電圧よりも1V〜50V高く設定されているから、損失を可及的に小さくしつつLED負荷の安定した動作を保証することができる。   According to the invention described in the above paragraph (2), the predetermined potential is set to 1 V to 50 V higher than the forward voltage of the LED load, so that the loss is minimized and the stable operation of the LED load is guaranteed. can do.

前項()に記載の発明によれば、前項(1)または2)に記載のLED電源装置が奏する効果を発揮することができるLED照明装置となる。 According to the invention described in the preceding paragraph ( 3 ), the LED lighting device can exhibit the effects exhibited by the LED power supply device described in the preceding paragraph (1) or ( 2) .

この発明の一実施形態に係るLED照明装置の回路図である。It is a circuit diagram of an LED lighting device according to an embodiment of the present invention. (A)は整流回路の出力波形図、(B)は平滑コンデンサの両端電圧Vcの波形図、(C)は電圧検出部の出力V2の波形図、(D)は第1制御部からの制御信号V3の波形図である。(A) is a waveform diagram of the output of the rectifier circuit, (B) is a waveform diagram of the voltage Vc across the smoothing capacitor, (C) is a waveform diagram of the output V2 of the voltage detection unit, and (D) is control from the first control unit. It is a wave form diagram of signal V3. 図2(B)の時刻T2〜T5の様子を拡大して示す波形図である。It is a waveform diagram which expands and shows the mode of time T2-T5 of FIG. 2 (B). 従来のLED電源装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the conventional LED power supply device. 従来の他のLED電源装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the other conventional LED power supply device. 従来のさらに他のLED電源装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of further another conventional LED power supply device.

以下、この発明の実施形態を図面に基づいて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1はこの発明の一実施形態に係るLED電源装置を備えたLED照明装置1の構成を示す回路図である。このLED照明装置1は、整流回路11と、平滑コンデンサ12と、スイッチング素子13と、スイッチング素子13を制御する第1制御部14と、LED負荷15と、定電流回路16と、電圧検出部17等を備えている。   FIG. 1 is a circuit diagram showing a configuration of an LED lighting device 1 including an LED power supply device according to an embodiment of the present invention. The LED lighting device 1 includes a rectifying circuit 11, a smoothing capacitor 12, a switching element 13, a first control unit 14 that controls the switching element 13, an LED load 15, a constant current circuit 16, and a voltage detection unit 17. And so on.

整流回路11は、商用交流電源2からの交流入力を全波整流する回路である。なお、商用交流電源2と整流回路11との間には電源スイッチ3が設けられている。   The rectifier circuit 11 is a circuit that full-wave rectifies the AC input from the commercial AC power supply 2. A power switch 3 is provided between the commercial AC power supply 2 and the rectifier circuit 11.

平滑回路12は整流回路11による全波整流後の入力電圧を平滑化する役割を果たし、一端が整流回路11の正側端子に、他端がスイッチング素子13に接続されている。   The smoothing circuit 12 plays a role of smoothing the input voltage after full-wave rectification by the rectifying circuit 11, one end of which is connected to the positive terminal of the rectifying circuit 11 and the other end of which is connected to the switching element 13.

スイッチング素子13は例えばトランジスタやこの実施形態のように第1FET(電界効果トランジスタ)からなる。以下の説明ではスイッチング素子を第1FETともいう。第1FET13のドレインを平滑コンデンサ12の負側端子に、ソースを整流回路11の負側端子にそれぞれ接続されている。第1FET13は後述するように、ゲートに接続された第1制御部14からの制御信号に基づいてオンまたはオフを切り替えることにより、平滑コンデンサ12の両端電圧を制御する。   The switching element 13 is, for example, a transistor or a first FET (field effect transistor) as in this embodiment. In the following description, the switching element is also called the first FET. The drain of the first FET 13 is connected to the negative terminal of the smoothing capacitor 12, and the source is connected to the negative terminal of the rectifier circuit 11. As will be described later, the first FET 13 controls the voltage across the smoothing capacitor 12 by switching on or off based on a control signal from the first controller 14 connected to the gate.

LED負荷15は、1個または直列接続された複数個のLEDからなり、アノード側を平滑コンデンサ12の正側端子に、カソード側を定電流回路16に接続されている。   The LED load 15 is composed of one LED or a plurality of LEDs connected in series, the anode side is connected to the positive terminal of the smoothing capacitor 12, and the cathode side is connected to the constant current circuit 16.

定電流回路16は、LED負荷15を流れる電流を一定値とするための回路であり、定電流素子である第2FET161と、第2FET161を制御する第2制御部162を備えている。第2FET161は、ドレインをLED負荷15のカソード側に、ソースを第1FET13のドレインにそれぞれ接続されている。なお、第2FET161に代えてトランジスタなどの他の定電流素子を用いても良い。   The constant current circuit 16 is a circuit for keeping the current flowing through the LED load 15 at a constant value, and includes a second FET 161 that is a constant current element and a second controller 162 that controls the second FET 161. The second FET 161 has a drain connected to the cathode side of the LED load 15 and a source connected to the drain of the first FET 13. Instead of the second FET 161, another constant current element such as a transistor may be used.

第2制御部162は、第2FET161のゲートに駆動信号を入力して第2FETを能動領域で動作させ、LED負荷15を流れる電流が一定になるように制御する。   The second controller 162 inputs a drive signal to the gate of the second FET 161, operates the second FET in the active region, and controls the current flowing through the LED load 15 to be constant.

電圧検出部17は、平滑コンデンサ12の両端電圧からLED負荷15の順方向電圧Vfを除いた電圧である、第2FET161のドレイン・ソース間の電圧Vdsを検出し、検出結果に基づいて第1制御部14を制御するものであり、この実施形態では第2FET161のドレイン・ソース間の電圧Vdsに応じてHレベルとLレベルの信号を出力する比較器によって構成されている。   The voltage detection unit 17 detects the voltage Vds between the drain and source of the second FET 161 which is the voltage obtained by removing the forward voltage Vf of the LED load 15 from the voltage across the smoothing capacitor 12, and performs the first control based on the detection result. The unit 14 is controlled, and in this embodiment, it is configured by a comparator that outputs H-level and L-level signals according to the drain-source voltage Vds of the second FET 161.

次に、図1に示したLED照明装置1の動作を、図2(A)〜(C)に示す波形図を参照しつつ説明する。   Next, the operation of the LED lighting device 1 shown in FIG. 1 will be described with reference to the waveform charts shown in FIGS.

図2(A)は整流回路11の出力波形を示す図であり、商用交流電源2からの入力電圧V0が全波整流されている。この実施形態では、整流回路11の出力電圧V0により充電された平滑コンデンサ12の電荷が、LED負荷15と定電流回路16の第2FET161との直列回路を通って放電されることにより、換言すれば、平滑コンデンサ12がLED負荷15と第2FET161との直列回路に対する電力供給源として機能することにより、LED負荷15が点灯駆動される。そして、この実施形態では、同図(A)に示すように、整流回路11の出力におけるピーク値Vpよりも小さい所定電位V1以下の部位のみの電力を、LED負荷15と第2FET161との直列回路に供給するように設定されている。   FIG. 2A is a diagram showing an output waveform of the rectifier circuit 11, in which the input voltage V0 from the commercial AC power source 2 is full-wave rectified. In this embodiment, the electric charge of the smoothing capacitor 12 charged by the output voltage V0 of the rectifier circuit 11 is discharged through the series circuit of the LED load 15 and the second FET 161 of the constant current circuit 16, in other words, The smoothing capacitor 12 functions as a power supply source for the series circuit of the LED load 15 and the second FET 161, so that the LED load 15 is driven to light. Then, in this embodiment, as shown in FIG. 7A, the power of only the portion of the output of the rectifier circuit 11 which is smaller than the peak value Vp and equal to or lower than the predetermined potential V1 is supplied to the series circuit of the LED load 15 and the second FET 161. Is set to supply.

図2(B)は平滑コンデンサの両端電圧Vcの波形図であり、同図(C)は電圧検出部17の出力V2の波形図であり、同図(D)は第1制御部14の出力である第1FET13に対する制御信号V3の波形図である。   2B is a waveform diagram of the voltage Vc across the smoothing capacitor, FIG. 2C is a waveform diagram of the output V2 of the voltage detection unit 17, and FIG. 2D is an output of the first control unit 14. 5 is a waveform diagram of a control signal V3 for the first FET 13 that is

電圧検出部17の出力V2は、同図(C)に示すように、第2FET161のドレイン・ソース間電圧Vdsが上昇して基準電圧V4に達するとLレベルとなり、ドレイン・ソース間電圧Vdsが低下して基準電圧V5に達するまではLレベルを維持し、基準電圧V5に達するとHレベルとなり、次に基準電圧V4に達するまでHレベルを維持するパルス信号を出力する。そして、整流回路11の出力電圧V0が増加して所定の電位V1に達したタイミングで、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V4に達するように、また整流回路11の出力電圧V0がピークVpから減少して所定の電位V1に達したタイミングで、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V5に達するように、基準電圧V4、V5が設定されている。   The output V2 of the voltage detection unit 17 becomes L level when the drain-source voltage Vds of the second FET 161 rises to reach the reference voltage V4, and the drain-source voltage Vds decreases, as shown in FIG. Then, a pulse signal that maintains the L level until reaching the reference voltage V5, becomes the H level when reaching the reference voltage V5, and outputs the pulse signal that maintains the H level until reaching the reference voltage V4 next time. Then, at the timing when the output voltage V0 of the rectifying circuit 11 increases and reaches a predetermined potential V1, the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4, and the output voltage V0 of the rectifying circuit 11 changes. The reference voltages V4 and V5 are set so that the drain-source voltage Vds of the second FET 161 reaches the reference voltage V5 at the timing when it decreases from the peak Vp and reaches the predetermined potential V1.

従ってこの実施形態では、所定電位V1は第2FET161のドレイン・ソース間電圧Vdsによって設定されることになる。これによって所定電位V1を安定的に設定することができる。このような設定により、整流回路11の出力電圧V0が所定電位V1を超えている間は、電圧検出部17の出力V2はLレベルとなり、出力電圧V0が所定の電位V1以下の間はHレベルとなる。   Therefore, in this embodiment, the predetermined potential V1 is set by the drain-source voltage Vds of the second FET 161. As a result, the predetermined potential V1 can be set stably. With this setting, while the output voltage V0 of the rectifier circuit 11 exceeds the predetermined potential V1, the output V2 of the voltage detection unit 17 is at the L level, and when the output voltage V0 is equal to or lower than the predetermined potential V1, it is at the H level. Becomes

なお、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V4に達したときの整流回路11の出力電圧と、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V5まで低下したときの整流回路11の出力電圧が、いずれもほぼV0になるように基準電圧V4、V5を設定したが、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V4に達したときの整流回路11の出力電圧と、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V5まで低下したときの整流回路11の出力電圧は異なっていても良い。   The output voltage of the rectifier circuit 11 when the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4 and the output voltage of the rectifier circuit 11 when the drain-source voltage Vds of the second FET 161 drops to the reference voltage V5. Although the reference voltages V4 and V5 are set so that the output voltages are both approximately V0, the output voltage of the rectifier circuit 11 when the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4, and the second FET 161. The output voltage of the rectifier circuit 11 may be different when the drain-source voltage Vds of the above is reduced to the reference voltage V5.

第1制御部14から出力される制御信号V3は、同図(D)に示すように、電圧検出部17の出力V2がLレベルの時はLレベルの、Hレベルの時はHレベルであり、第1制御部14はこの制御信号V3を第1FET13のゲートに出力する。この第1制御部14からの制御信号V3に基づいて、第1FET13はオンオフを切り替える。具体的には、制御信号V3がHレベルでは第1FET13はオンとなり、Lレベルでは第1FET13はオフとなる。従って、整流回路11の出力電圧V0が所定電位V1を超えている間は、第1FET13はオフとなり、出力電圧V0が所定の電位V1以下の間は、第1FET13はオンとなる。   The control signal V3 output from the first control unit 14 is at the L level when the output V2 of the voltage detection unit 17 is at the L level and is at the H level when it is at the H level, as shown in FIG. The first control unit 14 outputs the control signal V3 to the gate of the first FET 13. Based on the control signal V3 from the first controller 14, the first FET 13 switches on and off. Specifically, when the control signal V3 is at the H level, the first FET 13 is turned on, and when the control signal V3 is at the L level, the first FET 13 is turned off. Therefore, the first FET 13 is turned off while the output voltage V0 of the rectifier circuit 11 exceeds the predetermined potential V1, and the first FET 13 is turned on while the output voltage V0 is equal to or lower than the predetermined potential V1.

電源スイッチ3の投入後、整流回路11の出力電圧V0が上昇し、平滑コンデンサ12の両端電圧が上昇し、平滑コンデンサ12の充電電荷がLED負荷15に供給されてLED負荷15は点灯駆動され、第2FET161のドレイン・ソース間電圧Vdsは上昇する。図2に示すように、第2FET161のドレイン・ソース間電圧Vdsが時刻T1で基準電圧V4に達すると電圧検出部17の出力V2はLレベルとなり、第1制御部14からの制御信号V3もLレベルとなる。このとき、整流回路11の出力電圧V0の値はほぼV1に等しい。   After the power switch 3 is turned on, the output voltage V0 of the rectifier circuit 11 rises, the voltage across the smoothing capacitor 12 rises, the charge stored in the smoothing capacitor 12 is supplied to the LED load 15, and the LED load 15 is driven to light up. The drain-source voltage Vds of the second FET 161 increases. As shown in FIG. 2, when the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4 at time T1, the output V2 of the voltage detection unit 17 becomes L level, and the control signal V3 from the first control unit 14 also becomes L level. It becomes a level. At this time, the value of the output voltage V0 of the rectifier circuit 11 is substantially equal to V1.

第1制御部14からの制御信号V3がLレベルになると、スイッチング素子である第1FET13はオフとなり、整流回路11から平滑コンデンサ12への充電は停止される。一方、平滑コンデンサ12の充電電荷はLED負荷15に供給され続けるから、平滑コンデンサ12の両端電圧Vcは図2(B)に示すように徐々に低下する。   When the control signal V3 from the first controller 14 becomes L level, the first FET 13 which is a switching element is turned off, and the charging of the smoothing capacitor 12 from the rectifier circuit 11 is stopped. On the other hand, since the charging charge of the smoothing capacitor 12 is continuously supplied to the LED load 15, the voltage Vc across the smoothing capacitor 12 gradually decreases as shown in FIG. 2 (B).

平滑コンデンサ12の両端電圧VcがLED負荷15の順方向電圧Vfに近づいた時刻T2で、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V5まで低下すると電圧検出部17はHレベルとなり、第1制御部14からの制御信号V3もHレベルとなる。このとき、整流回路11の出力電圧V0の値はほぼV1に等しい。   At time T2 when the voltage Vc across the smoothing capacitor 12 approaches the forward voltage Vf of the LED load 15, when the drain-source voltage Vds of the second FET 161 drops to the reference voltage V5, the voltage detection unit 17 becomes H level, and The control signal V3 from the control unit 14 also becomes H level. At this time, the value of the output voltage V0 of the rectifier circuit 11 is substantially equal to V1.

第1制御部14からの制御信号V3がHレベルに変化すると、第1FET13がオンとなり、整流回路11から平滑コンデンサ12、第1FET13を通って整流回路11へと戻る閉回路が形成され、平滑コンデンサ12は整流回路11の出力電圧V0によって充電される。時刻T3で、平滑コンデンサ12の出力電圧Vcが整流回路11の出力電圧に等しくなったとすると、この時点では整流回路11の出力電圧V0は低下領域にあり、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V4まで上昇していないから、電圧検出部17の出力V2はHレベルのままであり、第1制御部14からの制御信号V3もHレベルのままである。   When the control signal V3 from the first control unit 14 changes to the H level, the first FET 13 is turned on, and a closed circuit that returns from the rectifying circuit 11 to the smoothing capacitor 12 and the first FET 13 to the rectifying circuit 11 is formed. 12 is charged by the output voltage V0 of the rectifier circuit 11. Assuming that the output voltage Vc of the smoothing capacitor 12 becomes equal to the output voltage of the rectifier circuit 11 at time T3, the output voltage V0 of the rectifier circuit 11 is in the lowering region at this time, and the drain-source voltage Vds of the second FET 161 is Since the voltage has not risen to the reference voltage V4, the output V2 of the voltage detector 17 remains at H level, and the control signal V3 from the first controller 14 also remains at H level.

時刻T3の経過後、平滑コンデンサ12の両端電圧Vcは整流回路11の出力電圧V0の低下とLED負荷15への電力供給により徐々に低下するが、整流回路11の出力電圧V0の次の半波が開始された後の時刻T4からは、整流回路11の出力電圧V0の上昇に伴い、徐々に上昇し、第2FET161のドレイン・ソース間電圧Vdsも上昇する。   After the lapse of time T3, the voltage Vc across the smoothing capacitor 12 gradually decreases due to the decrease of the output voltage V0 of the rectifier circuit 11 and the power supply to the LED load 15, but the next half wave of the output voltage V0 of the rectifier circuit 11 is generated. From the time T4 after the start of T.sub.2, the output voltage V.sub.0 of the rectifier circuit 11 gradually rises, and the drain-source voltage Vds of the second FET 161 also rises.

第2FET161のドレイン・ソース間電圧Vdsが、時刻T5で基準電圧V4に達すると、電圧検出部17はLレベルとなり、第1制御部14からの制御信号もLレベルとなり、第1FET13はオフに切り替わる。すると、整流回路11の出力電圧V0による平滑コンデンサ12への充電は停止され、時刻T5の経過後は平滑コンデンサ12の両端電圧Vcは徐々に低下する。この間、LED負荷15には定電流回路16により一定電流が流れ、LED負荷15の点灯制御が安定的に行われる。   When the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4 at time T5, the voltage detection unit 17 becomes L level, the control signal from the first control unit 14 also becomes L level, and the first FET 13 is turned off. .. Then, charging of the smoothing capacitor 12 by the output voltage V0 of the rectifying circuit 11 is stopped, and the voltage Vc across the smoothing capacitor 12 gradually decreases after the time T5. During this time, a constant current flows through the LED load 15 by the constant current circuit 16, and the lighting control of the LED load 15 is stably performed.

以後、時刻T1から時刻T5までの状態が繰り返される。   After that, the state from time T1 to time T5 is repeated.

以上の説明から理解されるように、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V4に達した時刻T1から、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V5まで低下した時刻T2までは、第1FET13はオフであり、整流回路11の出力電圧V0による平滑コンデンサ12への充電は行われない。   As understood from the above description, from time T1 when the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4 to time T2 when the drain-source voltage Vds of the second FET 161 decreases to the reference voltage V5. , The first FET 13 is off, and the smoothing capacitor 12 is not charged by the output voltage V0 of the rectifier circuit 11.

また前述したとおり、整流回路11の出力電圧V0が所定電位V1に達したタイミングと、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V4に達したタイミングがほぼ同じになるように、また整流回路11の出力電圧V0が所定電位V1まで低下した達したタイミングと、第2FET161のドレイン・ソース間電圧Vdsが基準電圧V5まで低下したタイミングがほぼ同じになるように、基準電圧V4、V5が設定されている。従って、整流回路11の出力電圧V0が所定電位V1にほぼ達したときに第1FET13がオフになり、整流回路11の出力電圧V0が所定電位V1までほぼ低下したときに第1FET13がオンになるから、平滑コンデンサ12の両端電圧VcはV1を超えない。つまり、整流回路11の出力電圧V0のうち所定電位V1を超える部分については、LED負荷15への電力供給に使用されず、整流回路11の出力電圧V0における所定電位V1以下の部位のみの電力が、LED負荷15に供給されることになる。   Further, as described above, the timing when the output voltage V0 of the rectifier circuit 11 reaches the predetermined potential V1 and the timing when the drain-source voltage Vds of the second FET 161 reaches the reference voltage V4 are substantially the same, and the rectifier circuit The reference voltages V4 and V5 are set so that the timing at which the output voltage V0 of 11 drops to the predetermined potential V1 and the timing at which the drain-source voltage Vds of the second FET 161 drops to the reference voltage V5 are almost the same. ing. Therefore, the first FET 13 is turned off when the output voltage V0 of the rectifier circuit 11 almost reaches the predetermined potential V1, and the first FET 13 is turned on when the output voltage V0 of the rectifier circuit 11 is substantially reduced to the predetermined potential V1. The voltage Vc across the smoothing capacitor 12 does not exceed V1. That is, a portion of the output voltage V0 of the rectifier circuit 11 that exceeds the predetermined potential V1 is not used for supplying power to the LED load 15, and the power of only the portion of the output voltage V0 of the rectifier circuit 11 that is equal to or lower than the predetermined potential V1 is supplied. , LED load 15 will be supplied.

図3は、図2(B)の時刻T2〜T5の様子を拡大して示す波形図である。図3中、平滑コンデンサ12の両端電圧VcとLED負荷15の順方向電圧Vfの差が、電圧検出部17で検出される第2FET161のドレイン・ソース間電圧Vdsである。そして、ハッチングで示したドレイン・ソース間電圧Vdsの領域が、第2FET161による電力損失となる。   FIG. 3 is a waveform diagram showing an enlarged view of times T2 to T5 in FIG. In FIG. 3, the difference between the voltage Vc across the smoothing capacitor 12 and the forward voltage Vf of the LED load 15 is the drain-source voltage Vds of the second FET 161 detected by the voltage detection unit 17. Then, the hatched region of the drain-source voltage Vds is the power loss by the second FET 161.

上述の通り、平滑コンデンサ12の両端電圧Vcは所定電位V1を超えないから、整流回路11の出力の全部の電力をLED負荷15に供給する場合に較べて、電力損失を低減することができ効率が良くなる。しかもこの実施形態では、平滑コンデンサ12の電圧Vcの最低値は、LED負荷15の順方向電圧Vfと基準電圧V5を加算した値であって、順方向電圧Vfを下回らないから、LED負荷15の電流不足による点灯ちらつきがなく、安定した点灯動作を実現できる。   As described above, since the voltage Vc across the smoothing capacitor 12 does not exceed the predetermined potential V1, the power loss can be reduced as compared with the case where the entire power output from the rectifier circuit 11 is supplied to the LED load 15. Will get better. Moreover, in this embodiment, the minimum value of the voltage Vc of the smoothing capacitor 12 is a value obtained by adding the forward voltage Vf of the LED load 15 and the reference voltage V5 and does not fall below the forward voltage Vf. Stable lighting operation can be realized without lighting flickering due to insufficient current.

ここで、電力損失の低減効果をより有効に発揮させるためには、所定電位V1の値は、LED負荷の順方向電圧Vfよりも1V〜50V高く設定されるのが良い。1V未満では、商用電源電圧に不本意な変動が生じたときにLED負荷へ十分な電力を供給できず、点灯ちらつきが発生する恐れがあり、50Vを超えると電力損失の低減効果が乏しくなる恐れがある。   Here, in order to more effectively exert the effect of reducing power loss, the value of the predetermined potential V1 is preferably set to be 1 V to 50 V higher than the forward voltage Vf of the LED load. If it is less than 1V, sufficient power cannot be supplied to the LED load when the commercial power supply voltage changes unintentionally, and lighting flicker may occur. If it exceeds 50V, the power loss reduction effect may be poor. There is.

なお基準電圧V5はゼロであっても良く、ゼロ以上であれば良い。また、電圧検出部17は平滑コンデンサ12の電位からLED負荷15の順方向電圧Vfを除いた第2FET161のドレイン・ソース間電圧Vdsを直接に検出するのではなく、ドレイン・ソース間電圧Vdsに相当する電圧を検出する構成であっても良い。   The reference voltage V5 may be zero or may be zero or more. Further, the voltage detection unit 17 does not directly detect the drain-source voltage Vds of the second FET 161 obtained by removing the forward voltage Vf of the LED load 15 from the potential of the smoothing capacitor 12, but corresponds to the drain-source voltage Vds. The voltage may be detected.

1 LED照明装置
2 交流電源
11 整流回路
12 平滑コンデンサ
13 スイッチング素子(第1FET)
14 第1制御部
15 LED負荷
16 安定化回路
161 第2FET
162 第2制御部
17 電圧検出部
1 LED lighting device 2 AC power supply 11 Rectifier circuit 12 Smoothing capacitor 13 Switching element (first FET)
14 1st control part 15 LED load 16 Stabilization circuit 161 2nd FET
162 Second control unit 17 Voltage detection unit

Claims (3)

商用電源からの入力を整流する整流回路と、
LED負荷と、
前記整流回路の出力における所定電位以下の部位のみの電力を、前記LED負荷に供給する電力供給部と、
前記整流回路の出力を平滑化する平滑コンデンサと、
前記平滑コンデンサと直列に接続されたスイッチング素子と、
前記LED負荷と直列に接続された定電流回路と、
前記定電流回路の電流入力側の電圧と電流出力側の電圧の差を検出する電圧検出部と、
を備え
前記平滑コンデンサは、直列に接続された前記LED負荷と定電流回路に対する前記電力供給部を構成し、
前記所定電位は、前記電圧検出部により検出された前記定電流回路の電圧の差が、第1の基準値まで上昇したときに前記スイッチング素子をオフにし、第2の基準値まで低下したときに前記スイッチング素子をオンにすることによって設定されることを特徴とするLED電源装置。
A rectifier circuit that rectifies the input from the commercial power supply,
LED load,
A power supply unit for supplying to the LED load only the power of a portion of the output of the rectifier circuit that is equal to or lower than a predetermined potential;
A smoothing capacitor for smoothing the output of the rectifier circuit,
A switching element connected in series with the smoothing capacitor,
A constant current circuit connected in series with the LED load,
A voltage detection unit that detects the difference between the voltage on the current input side and the voltage on the current output side of the constant current circuit;
Equipped with
The smoothing capacitor constitutes the power supply unit for the LED load and the constant current circuit connected in series,
The predetermined potential turns off the switching element when the voltage difference of the constant current circuit detected by the voltage detection unit rises to the first reference value, and turns off when the difference decreases to the second reference value. An LED power supply device, which is set by turning on the switching element .
前記所定電位はLED負荷の順方向電圧よりも1V〜50V高く設定されている請求項1に記載のLED電源装置。   The LED power supply device according to claim 1, wherein the predetermined potential is set to be 1 V to 50 V higher than the forward voltage of the LED load. 請求項1または2に記載のLED電源装置を備えたLED照明装置。 LED lighting device provided with an LED power supply device according to claim 1 or 2.
JP2017074361A 2017-04-04 2017-04-04 LED power supply device and LED lighting device Active JP6694408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017074361A JP6694408B2 (en) 2017-04-04 2017-04-04 LED power supply device and LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017074361A JP6694408B2 (en) 2017-04-04 2017-04-04 LED power supply device and LED lighting device

Publications (2)

Publication Number Publication Date
JP2018181438A JP2018181438A (en) 2018-11-15
JP6694408B2 true JP6694408B2 (en) 2020-05-13

Family

ID=64275835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017074361A Active JP6694408B2 (en) 2017-04-04 2017-04-04 LED power supply device and LED lighting device

Country Status (1)

Country Link
JP (1) JP6694408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050764A (en) 2018-09-27 2020-04-02 セイコーエプソン株式会社 Radiation-curable inkjet composition, and inkjet recording method
CN109343637B (en) * 2018-12-26 2020-08-07 吉林大学 Voltage tracking type constant current source device

Also Published As

Publication number Publication date
JP2018181438A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US9504105B2 (en) On-time control for switched mode power supplies
KR20130120407A (en) Light emitting diode dimming apparatus
JP5710870B2 (en) DC-DC converter
JP2007059635A (en) Light emitting diode driving device and semiconductor device for driving light emitting diode
JP6534102B2 (en) Dimmer
JP6830205B2 (en) Load control device
JP6534119B2 (en) Dimmer
JP6023414B2 (en) Power supply device and lighting fixture
US9655175B2 (en) Off-time control for switched mode power supplies
JP5691790B2 (en) Constant current power supply
JP6694408B2 (en) LED power supply device and LED lighting device
US9780690B2 (en) Resonant decoupled auxiliary supply for a switched-mode power supply controller
JP6296091B2 (en) Light source lighting device and lighting fixture
JP6187024B2 (en) LED power supply device and LED lighting device
JP2011223840A (en) Electrolytic capacitor-less switching power supply circuit and power supply device
US20160028322A1 (en) Power supplying system, linear controlling module thereof, and controlling method of switching component
JP6791486B2 (en) Light emitting element drive device and its drive method
JP6111508B2 (en) Lighting device and lighting fixture using the same
JP5857214B2 (en) LED lighting device and lighting apparatus using the same
US9743471B2 (en) Lighting device and lighting fixture for current control with a solid-state lighting element
JP6357790B2 (en) Lighting device and lighting apparatus
JP6365162B2 (en) Power supply device and lighting device
JP6171590B2 (en) Lighting device and lighting device
JP2014064393A (en) Switching power supply device
JP6900840B2 (en) Lighting device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200417

R150 Certificate of patent or registration of utility model

Ref document number: 6694408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250