JP6694321B2 - Reception quality measuring device and program - Google Patents

Reception quality measuring device and program Download PDF

Info

Publication number
JP6694321B2
JP6694321B2 JP2016094102A JP2016094102A JP6694321B2 JP 6694321 B2 JP6694321 B2 JP 6694321B2 JP 2016094102 A JP2016094102 A JP 2016094102A JP 2016094102 A JP2016094102 A JP 2016094102A JP 6694321 B2 JP6694321 B2 JP 6694321B2
Authority
JP
Japan
Prior art keywords
reception
signal
band
deterioration amount
condition number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016094102A
Other languages
Japanese (ja)
Other versions
JP2017204677A (en
Inventor
佐藤 明彦
明彦 佐藤
慎悟 朝倉
慎悟 朝倉
研一 村山
研一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2016094102A priority Critical patent/JP6694321B2/en
Publication of JP2017204677A publication Critical patent/JP2017204677A/en
Application granted granted Critical
Publication of JP6694321B2 publication Critical patent/JP6694321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特定の地点の受信品質を測定する受信品質測定装置及びプログラムに関する。   The present invention relates to a reception quality measuring device and program for measuring reception quality at a specific point.

8Kスーパーハイビジョンの伝送を目指して、衛星放送だけでなく次世代地上放送の検討が進められている。その中で、水平偏波及び垂直偏波を同時に使い、伝送容量を2倍に拡大させる偏波MIMO技術が注目されている。   With the aim of transmitting 8K Super Hi-Vision, next-generation terrestrial broadcasting is being studied in addition to satellite broadcasting. Among them, the polarization MIMO technology that doubles the transmission capacity by simultaneously using the horizontal polarization and the vertical polarization is drawing attention.

このような偏波MIMO技術において、信号の品質を判断する指標として、例えば搬送波電力対雑音電力比(C/N:Carrier to Noise Ratio)を用いることで、高精度に信号を分離する手法が知られている(例えば、特許文献1を参照)。   In such a polarization MIMO technique, a method of separating signals with high accuracy is known, for example, by using a carrier power to noise power ratio (C / N: Carrier to Noise Ratio) as an index for determining signal quality. (For example, see Patent Document 1).

また、偏波MIMO技術を用いた地上デジタル放送において、MERまたは搬送波電力対雑音電力比(C/N:Carrier to Noise Ratio)を用いることで、特定の地点の受信品質を測定する受信品質測定装置が知られている。   Further, in terrestrial digital broadcasting using polarization MIMO technology, a reception quality measuring device for measuring reception quality at a specific point by using MER or carrier power to noise power ratio (C / N: Carrier to Noise Ratio) It has been known.

この受信品質測定装置は、特定の地点のMERまたは受信C/Nを測定し、送信側から信号を誤りなく受信するために必要なMERまたは受信C/N(以下、所要MER、所要C/Nという。)までの差を測定し、これを余裕度として提示する。余裕度の値が大きいほど、受信品質が良いことになる。   This reception quality measuring device measures the MER or the reception C / N at a specific point and receives the MER or the reception C / N (hereinafter, required MER, required C / N) necessary for receiving a signal from the transmission side without error. The difference up to () is measured and presented as a margin. The larger the margin value, the better the reception quality.

地上デジタル放送では、水平偏波または垂直偏波のうちの片方の偏波のみを用いて送受信を行う技術、及び反射または遮蔽による周波数特性の歪みを補償する技術によって、所要C/Nの変動を小さくすることができる。これにより、その地点の受信品質の余裕度を観測することができる。   In terrestrial digital broadcasting, the required C / N fluctuation can be reduced by the technology of transmitting and receiving using only one of the horizontal polarization and the vertical polarization, and the technology of compensating the distortion of the frequency characteristic due to reflection or shielding. Can be made smaller. By this means, it is possible to observe the margin of reception quality at that point.

しかしながら、偏波MIMO技術において、受信側は、受信特性の異なる2つの偏波を受信して復調を行い、偏波間の干渉を除去するための信号分離を行う。このため、同じ偏波MIMO伝送システムであっても、伝搬環境によっては所要C/Nが大きく変動してしまうことがあり得る。   However, in the polarization MIMO technique, the reception side receives two polarizations having different reception characteristics, demodulates them, and performs signal separation for eliminating interference between the polarizations. Therefore, even in the same polarization MIMO transmission system, the required C / N may vary greatly depending on the propagation environment.

図7は、伝搬環境によって受信品質が変動する様子を示す図である。図7(a)は、帯域内の周波数特性(伝送路特性)が一定であり、伝搬環境が良好な場合の受信品質を示し、図7(b)は、周波数特性が一定でなく歪んでおり、伝搬環境が悪い場合の受信品質を示す。   FIG. 7 is a diagram showing how the reception quality varies depending on the propagation environment. FIG. 7A shows the reception quality when the frequency characteristic (transmission path characteristic) in the band is constant and the propagation environment is good. In FIG. 7B, the frequency characteristic is not constant and distorted. , Shows the reception quality when the propagation environment is bad.

図7(a)に示すように、伝搬環境が良好な場合には、その地点における実際の所要C/Nは、偏波MIMO伝送システム本来の所要C/Nから乖離しない。このため、見かけの余裕度は、本来の余裕度に等しい。   As shown in FIG. 7A, when the propagation environment is good, the actual required C / N at that point does not deviate from the original required C / N of the polarization MIMO transmission system. Therefore, the apparent allowance is equal to the original allowance.

一方、図7(b)に示すように、伝搬環境が悪い場合には、その地点における実際の所要C/Nは、偏波MIMO伝送システム本来の所要C/Nから乖離する。このため、見かけの余裕度は、実際の余裕度と大きく異なる。伝搬環境が極端に悪い場合には、実際の所要C/Nが受信C/Nを上回ってしまい、見かけは余裕があるにも関わらず受信不可という事態も起こり得る。   On the other hand, as shown in FIG. 7B, when the propagation environment is bad, the actual required C / N at that point deviates from the original required C / N of the polarization MIMO transmission system. Therefore, the apparent allowance is significantly different from the actual allowance. When the propagation environment is extremely bad, the actual required C / N exceeds the received C / N, and there may occur a situation in which reception is impossible despite the apparent allowance.

偏波MIMO伝送システムにおいて、本来の所要C/Nと実際の所要C/Nとの間の差(所要C/N劣化量)は、条件数に対して、ある傾向を示すことが知られている(例えば、非特許文献1を参照)。   In the polarization MIMO transmission system, it is known that the difference between the original required C / N and the actual required C / N (required C / N deterioration amount) shows a certain tendency with respect to the number of conditions. (For example, see Non-Patent Document 1).

この傾向は、帯域内の各キャリアにおいて条件数が一定である場合に適用することができるが、帯域内の各キャリアにおいて条件数が一定でない場合には適用が難しい。   This tendency can be applied when the condition number is constant in each carrier in the band, but it is difficult to apply when the condition number is not constant in each carrier in the band.

図8は、偏波MIMO伝送システムにおいて、実際のフィールドの伝送実験にて取得した帯域内の平均条件数及び所要C/N劣化量の関係を示す図である。横軸は帯域内の平均条件数(dB)、すなわち、帯域内で各キャリアの条件数を平均した値を示す。縦軸は所要C/N劣化量(dB)を示す。丸印は、取得したサンプルであり、αは、取得したサンプルに基づいて設定した両者の傾向を示す曲線である。   FIG. 8 is a diagram showing the relationship between the average number of conditions in a band and the required C / N deterioration amount acquired in an actual field transmission experiment in a polarization MIMO transmission system. The horizontal axis represents the average condition number (dB) in the band, that is, the value obtained by averaging the condition numbers of the carriers in the band. The vertical axis represents the required C / N deterioration amount (dB). Circles are acquired samples, and α is a curve showing the tendency of both set based on the acquired samples.

図8において、曲線αは、帯域内で条件数が一定の場合の所要C/N劣化量の特性を示しており、条件数に対する所要C/N劣化量の理想値を表している。また、図8から、曲線αから大きく乖離しているサンプルが存在していることがわかる。これらは、帯域内で条件数が一定でなく変動しているサンプルである。   In FIG. 8, a curve α shows the characteristic of the required C / N deterioration amount when the condition number is constant in the band, and represents the ideal value of the required C / N deterioration amount with respect to the condition number. In addition, it can be seen from FIG. 8 that there are samples that deviate significantly from the curve α. These are samples whose condition number is not constant but fluctuating within the band.

図9は、帯域内で条件数が一定でない測定地点における、条件数の周波数特性を示す図である。横軸は帯域の周波数を示し、縦軸は条件数を示す。図9から、この測定地点では、帯域内で条件数が一定でないことがわかる。   FIG. 9 is a diagram showing frequency characteristics of the condition number at the measurement points where the condition number is not constant in the band. The horizontal axis represents the frequency of the band, and the vertical axis represents the condition number. It can be seen from FIG. 9 that the number of conditions is not constant within the band at this measurement point.

従来の受信品質測定装置は、前述の非特許文献1からすると、帯域内の平均条件数に対する所要C/N劣化量を求めることが想定される。つまり、従来の受信品質測定装置は、MIMO伝送路の伝送路行列から、帯域内のキャリア毎に条件数を算出し、帯域内で条件数を平均した平均値(帯域内の平均条件数)を算出し、当該平均条件数に対する所要C/N劣化量を求める。   According to Non-Patent Document 1 described above, the conventional reception quality measuring apparatus is supposed to obtain the required C / N deterioration amount with respect to the average condition number in the band. That is, the conventional reception quality measuring apparatus calculates the condition number for each carrier in the band from the transmission line matrix of the MIMO transmission line, and obtains the average value of the condition numbers in the band (average condition number in the band). The required C / N deterioration amount for the average condition number is calculated.

特開2012−15922号公報JP, 2012-15922, A

“LTEテストにおけるMIMO性能とコンディション・ナンバー”、[online]、アジレント・テクノロジー株式会社、[平成28年2月15日検索]、インターネット<http://cp.literature.agilent.com/litweb/pdf/5990-4759JAJP.pdf>"MIMO performance and condition number in LTE test", [online], Agilent Technologies, Inc. [Search February 15, 2016], Internet <http://cp.literature.agilent.com/litweb/pdf /5990-4759JAJP.pdf>

しかしながら、従来の受信品質測定装置により得られる所要C/N劣化量は、図8に示した伝送実験にて取得したサンプルのうち、帯域内で条件数が一定の場合の所要C/N劣化量の特性を示す曲線αのサンプルの箇所のみである。   However, the required C / N deterioration amount obtained by the conventional reception quality measuring apparatus is the required C / N deterioration amount when the number of conditions is constant in the band among the samples acquired in the transmission experiment shown in FIG. It is only at the sample points of the curve α showing the characteristics of.

このように、従来の受信品質測定装置では、図8に示した伝送実験にて取得したサンプルのうち、曲線αから大きく乖離しているサンプル、すなわち帯域内で条件数が一定でなく変動しているサンプルの所要C/N劣化量を得ることができない。   As described above, in the conventional reception quality measuring apparatus, among the samples acquired in the transmission experiment shown in FIG. 8, the samples that are largely deviated from the curve α, that is, the condition number is not constant and fluctuates within the band. The required C / N deterioration amount of the existing sample cannot be obtained.

図8に示したように、帯域内で条件数が一定でなく変動が大きい場合の所要C/N劣化量は、帯域内で条件数が一定の場合の所要C/N劣化量に対して乖離が大きくなる。この場合、図7(b)に示したように、実際の所要C/Nは本来の所要C/Nから大きく変動してしまい、実際の所要C/Nを推定することが困難となる。   As shown in FIG. 8, the required C / N deterioration amount in the case where the number of conditions is not constant and has a large variation in the band is different from the required C / N deterioration amount in the case where the number of conditions is constant in the band. Will grow. In this case, as shown in FIG. 7B, the actual required C / N greatly varies from the original required C / N, making it difficult to estimate the actual required C / N.

地上デジタル放送では、建造物または地形による反射または遮蔽の影響を受け易いため、伝搬環境は良好でないといえる。このため、安定した受信を実現する機器を選定したり、安定した受信が可能となるように改善指導を行ったりするには、その地点における受信品質を正確に測定することが必要となる。   In terrestrial digital broadcasting, the propagation environment is not good because it is easily affected by reflection or shielding due to buildings or terrain. Therefore, in order to select a device that realizes stable reception or give improvement guidance so that stable reception is possible, it is necessary to accurately measure the reception quality at that point.

そこで、本発明は前記課題を解決するためになされたものであり、その目的は、MIMO伝送システムにおいて、特定の地点の受信品質を正確に測定可能な受信品質測定装置及びプログラムを提供することにある。   Then, this invention is made in order to solve the said subject, The objective is to provide the receiving quality measuring apparatus and program which can measure the receiving quality of a specific point correctly in a MIMO transmission system. is there.

前記課題を解決するために、請求項1の受信品質測定装置は、複数のアンテナからなる送信アンテナを介して送信された信号を、MIMO伝送路及び複数のアンテナからなる受信アンテナを介して受信し、受信信号に基づいて、所定地点の受信品質を測定する受信品質測定装置において、前記受信信号に基づいて、帯域内のキャリア毎に、前記MIMO伝送路の伝送路行列を推定する伝送路推定部と、前記伝送路推定部により推定された前記伝送路行列に基づいて、前記帯域内のキャリア毎に、条件数を算出する条件数算出部と、前記条件数算出部により算出された前記条件数に対応する所要C/N劣化量を、条件数及び当該条件数に対応する所要C/N劣化量が格納されたテーブル、または、条件数及び当該条件数に対応する所要C/N劣化量の関係が定義された数式を用いて、前記帯域内のキャリア毎に特定し、前記帯域内のキャリア毎の所要C/N劣化量を前記帯域内で平均化し、帯域内平均所要C/N劣化量を求める所要C/N算出部と、を備えたことを特徴とする。   In order to solve the problem, the reception quality measuring apparatus according to claim 1 receives a signal transmitted via a transmission antenna including a plurality of antennas via a MIMO transmission path and a reception antenna including a plurality of antennas. In a reception quality measuring device that measures reception quality at a predetermined point based on a received signal, a transmission line estimation unit that estimates a transmission line matrix of the MIMO transmission line for each carrier in the band based on the received signal. And a condition number calculation unit that calculates a condition number for each carrier in the band based on the transmission line matrix estimated by the transmission line estimation unit, and the condition number calculated by the condition number calculation unit The required C / N deterioration amount corresponding to the condition number and the required C / N deterioration amount corresponding to the condition number are stored in a table, or the required number of conditions and the required C / N deterioration amount corresponding to the condition number are inferior. Using a mathematical expression in which the relationship of the amount is defined, it is specified for each carrier within the band, the required C / N deterioration amount for each carrier within the band is averaged within the band, and the average required C / N within the band is calculated. And a required C / N calculator for obtaining the deterioration amount.

また、請求項2の受信品質測定装置は、請求項1に記載の受信品質測定装置において、さらに、前記受信信号に基づいて、受信C/Nを計算するC/N計算部と、前記所要C/N算出部により求めた帯域内平均所要C/N劣化量を、予め設定された本来の所要C/Nに加算し、実際の所要C/Nを求め、前記C/N計算部により計算された前記受信C/Nから前記実際の所要C/Nを減算することで、余裕度を算出する余裕度算出部と、を備えたことを特徴とする。   The reception quality measuring apparatus according to claim 2 is the reception quality measuring apparatus according to claim 1, further comprising: a C / N calculating section for calculating a reception C / N based on the received signal, and the required C. The average required C / N deterioration amount within the band obtained by the / N calculating unit is added to the preset original required C / N to obtain the actual required C / N, and the calculated required C / N is calculated by the C / N calculating unit. And a margin calculating unit that calculates the margin by subtracting the actual required C / N from the received C / N.

また、請求項3の受信品質測定装置は、複数のアンテナからなる送信アンテナを介して送信された水平偏波の変調信号及び垂直偏波の変調信号を、MIMO伝送路及び複数のアンテナからなる受信アンテナを介して受信し、水平偏波の受信信号及び垂直偏波の受信信号に基づいて、所定地点の受信品質を測定する受信品質測定装置において、前記水平偏波の受信信号に基づいて、前記水平偏波の受信信号の受信電力を測定し、前記垂直偏波の受信信号に基づいて、前記垂直偏波の受信信号の受信電力を測定する受信電力測定部と、前記水平偏波の受信信号に基づいて、前記水平偏波の受信信号の受信C/Nを計算し、前記垂直偏波の受信信号に基づいて、前記垂直偏波の受信信号の受信C/Nを計算するC/N計算部と、前記水平偏波の受信信号及び前記垂直偏波の受信信号、前記受信電力測定部により測定された前記水平偏波の受信信号の受信電力及び前記垂直偏波の受信信号の受信電力、並びに、前記送信アンテナを介して送信された前記水平偏波の変調信号及び前記垂直偏波の変調信号に含まれる既知信号に基づいて、帯域内のキャリア毎に、前記MIMO伝送路の伝送路行列を推定する伝送路推定部と、前記伝送路推定部により推定された前記伝送路行列に基づいて、前記帯域内のキャリア毎に、条件数を算出する条件数算出部と、前記条件数算出部により算出された前記条件数に対応する所要C/N劣化量を、条件数及び当該条件数に対応する所要C/N劣化量が格納されたテーブル、または、条件数及び当該条件数に対応する所要C/N劣化量の関係が定義された数式を用いて、前記帯域内のキャリア毎に特定し、前記帯域内のキャリア毎の所要C/N劣化量を前記帯域内で平均化し、帯域内平均所要C/N劣化量を求める所要C/N算出部と、前記所要C/N算出部により求めた帯域内平均所要C/N劣化量を、予め設定された本来の所要C/Nに加算し、実際の所要C/Nを求め、前記C/N計算部により計算された前記受信C/Nから前記実際の所要C/Nを減算することで、余裕度を算出する余裕度算出部と、を備えたことを特徴とする。   Further, the reception quality measuring device according to claim 3 receives a horizontally polarized modulation signal and a vertically polarized modulation signal transmitted via a transmission antenna including a plurality of antennas, from a MIMO transmission line and a plurality of antennas. Received via an antenna, based on the received signal of horizontal polarization and the received signal of vertical polarization, in a reception quality measuring device for measuring the reception quality at a predetermined point, based on the received signal of the horizontal polarization, A reception power measuring unit for measuring the reception power of the horizontal polarization reception signal and measuring the reception power of the vertical polarization reception signal based on the vertical polarization reception signal, and the horizontal polarization reception signal C / N calculation for calculating the reception C / N of the horizontal polarization reception signal based on the above, and for calculating the reception C / N of the vertical polarization reception signal based on the vertical polarization reception signal Section and reception of the horizontal polarization Signal and the received signal of the vertically polarized wave, the received power of the received signal of the horizontally polarized wave and the received power of the received signal of the vertically polarized wave measured by the received power measuring unit, and the transmission through the transmitting antenna A transmission path estimation unit that estimates a transmission path matrix of the MIMO transmission path for each carrier in the band based on known signals included in the modulated signal of the horizontally polarized wave and the modulated signal of the vertically polarized wave, Corresponding to the condition number calculation unit that calculates the condition number for each carrier in the band based on the transmission line matrix estimated by the transmission line estimation unit, and the condition number calculated by the condition number calculation unit The required C / N deterioration amount is a table in which the number of conditions and the required C / N deterioration amount corresponding to the condition number are stored, or the relationship between the number of conditions and the required C / N deterioration amount corresponding to the condition number is Defined formula By using each carrier in the band, the required C / N deterioration amount for each carrier in the band is averaged in the band to calculate the average required C / N deterioration amount in the band. Section and the in-band average required C / N deterioration amount obtained by the required C / N calculation section are added to a preset original required C / N to obtain an actual required C / N. And a margin calculating section for calculating a margin by subtracting the actual required C / N from the received C / N calculated by the N calculating section.

さらに、請求項4の受信品質測定プログラムは、コンピュータを、請求項1から3までのいずれか一項に記載の受信品質測定装置として機能させることを特徴とする。   Furthermore, the reception quality measurement program according to claim 4 causes a computer to function as the reception quality measurement device according to any one of claims 1 to 3.

以上のように、本発明によれば、MIMO伝送システムにおいて、特定の地点の受信品質を正確に測定することが可能となる。   As described above, according to the present invention, it is possible to accurately measure the reception quality at a specific point in a MIMO transmission system.

本発明の実施形態による受信品質測定装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the receiving quality measuring apparatus by embodiment of this invention. 伝送路推定部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a transmission path estimation part. テーブルのデータ構成例を示す図である。It is a figure which shows the data structural example of a table. フィールドの各地点における、伝送実験にて取得した所要C/N劣化量(真値)、従来技術及び本発明の実施形態にて取得した所要C/N劣化量を示す図である。It is a figure which shows the required C / N deterioration amount (true value) acquired by the transmission experiment, and the required C / N deterioration amount acquired by the prior art and embodiment of this invention in each point of a field. 本発明の実施形態による受信品質測定装置の使用例を説明する図である。It is a figure explaining the example of use of the receiving quality measuring device by an embodiment of the present invention. 送信アンテナを介して送信される送信信号のフォーマットの一例を説明する図である。It is a figure explaining an example of a format of a transmission signal transmitted via a transmitting antenna. 伝搬環境によって受信品質が変動する様子を示す図である。It is a figure which shows a mode that reception quality changes with propagation environments. 偏波MIMO伝送システムにおいて、実際のフィールドの伝送実験にて取得した帯域内の平均条件数及び所要C/N劣化量の関係を示す図である。FIG. 6 is a diagram showing the relationship between the average number of conditions in a band and the required C / N deterioration amount acquired in an actual field transmission experiment in a polarization MIMO transmission system. 帯域内で条件数が一定でない測定地点における、条件数の周波数特性を示す図である。It is a figure which shows the frequency characteristic of a condition number in the measurement point where the condition number is not constant in a band.

以下、本発明を実施するための形態について図面を用いて詳細に説明する。
〔本発明の概要〕
まず、本発明の概要について説明する。本発明は、帯域内のキャリア毎に条件数を算出し、帯域内のキャリア毎に条件数に対応する所要C/N劣化量を特定し、帯域内で所要C/N劣化量を平均化することで、特定の地点の受信品質を測定することを特徴とする。これにより、帯域内で条件数が一定でなく大きく変動する場合においても、精度の高い受信品質を測定することができる。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
[Outline of the present invention]
First, the outline of the present invention will be described. The present invention calculates the condition number for each carrier in the band, specifies the required C / N deterioration amount corresponding to the condition number for each carrier in the band, and averages the required C / N deterioration amount in the band. Therefore, the reception quality at a specific point is measured. By this means, it is possible to measure reception quality with high accuracy even when the number of conditions is not constant within the band but greatly fluctuates.

以下、水平偏波及び垂直偏波を用いた2×2のMIMO伝送システムを例に挙げて説明する。MIMO伝送路に用いる送信アンテナは、水平偏波用アンテナ及び垂直偏波用アンテナからなる偏波共用送信アンテナであり、受信アンテナは、水平偏波用アンテナ及び垂直偏波用アンテナからなる偏波共用受信アンテナである。MIMO伝送路を数式で表すと、以下のようになる。

Figure 0006694321
Hereinafter, a 2 × 2 MIMO transmission system using horizontal polarization and vertical polarization will be described as an example. The transmission antenna used for the MIMO transmission line is a polarization-polarized transmission antenna composed of a horizontal polarization antenna and a vertical polarization antenna, and the reception antenna is a polarization polarization shared of a horizontal polarization antenna and a vertical polarization antenna. It is a receiving antenna. The MIMO transmission path can be expressed as follows.
Figure 0006694321

前記数式(1)において、YHは、水平偏波の受信信号、YVは垂直偏波の受信信号、XHは、水平偏波の送信信号、XVは垂直偏波の送信信号、nHは水平偏波の雑音、nVは垂直偏波の雑音をそれぞれ示す。 In the formula (1), Y H is a horizontally polarized wave reception signal, Y V is a vertically polarized wave reception signal, X H is a horizontally polarized wave transmission signal, X V is a vertically polarized wave transmission signal, and n is H indicates noise of horizontal polarization, and n V indicates noise of vertical polarization.

HHは、受信側の水平偏波のアンテナ素子(水平偏波用アンテナ)と送信側の水平偏波のアンテナ素子(水平偏波用アンテナ)との間の伝送路特性を示す。hVVは、受信側の垂直偏波のアンテナ素子(垂直偏波用アンテナ)と送信側の垂直偏波のアンテナ素子(垂直偏波用アンテナ)との間の伝送路特性を示す。 h HH represents a transmission line characteristic between a horizontal polarization antenna element on the reception side (horizontal polarization antenna) and a horizontal polarization antenna element on the transmission side (horizontal polarization antenna). h VV represents the transmission path characteristic between the vertically polarized antenna element on the receiving side (vertical polarized antenna) and the vertically polarized antenna element on the transmitting side (vertical polarized antenna).

HVは、受信側の水平偏波のアンテナ素子(水平偏波用アンテナ)と送信側の垂直偏波のアンテナ素子(垂直偏波用アンテナ)との間の伝送路特性を示し、垂直偏波から水平偏波に漏れ込む信号の伝送路特性に相当する。hVHは、受信側の垂直偏波のアンテナ素子(垂直偏波用アンテナ)と送信側の水平偏波のアンテナ素子(水平偏波用アンテナ)との間の伝送路特性を示し、水平偏波から垂直偏波に漏れ込む信号の伝送路特性に相当する。 h HV represents the transmission line characteristic between the receiving side horizontally polarized antenna element (horizontal polarized antenna) and the transmitting side vertically polarized antenna element (vertically polarized antenna). Corresponds to the transmission line characteristics of the signal leaking from the horizontal polarization. h VH indicates the transmission line characteristic between the receiving side vertically polarized antenna element (vertical polarized wave antenna) and the transmitting side horizontally polarized antenna element (horizontal polarized wave antenna). Corresponds to the transmission line characteristic of the signal leaking from the vertical polarization.

以下の数式のように、これらの伝送路特性hHH,hVV,hHV,hVHを要素として、伝送路行列Hが生成される。

Figure 0006694321
A transmission line matrix H is generated by using these transmission line characteristics h HH , h VV , h HV , and h VH as elements, as in the following formula.
Figure 0006694321

条件数K(H)は、以下の数式のように、伝送路行列Hを固有値分解して得られる第1固有値λ1及び第2固有値λ2のうち、最大値λmaxと最小値λminとの間の比にて算出される。

Figure 0006694321
ここで、条件数K(H)は1以上の値をとる。条件数K(H)が1に近い小さい値の場合、伝送路行列Hは良条件の行列であり、精度の高いMIMO復調を実現できることを示している。一方、条件数K(H)が大きい値の場合、伝送路行列Hは悪条件の行列であり、精度が低く誤差の生じるMIMO復調が実現されることを示している。 The condition number K (H) is the maximum value λ max and the minimum value λ min among the first eigenvalue λ 1 and the second eigenvalue λ 2 obtained by eigenvalue decomposition of the transmission line matrix H, as in the following formula. It is calculated by the ratio between.
Figure 0006694321
Here, the condition number K (H) takes a value of 1 or more. When the condition number K (H) is a small value close to 1, the transmission line matrix H is a well-conditioned matrix, which shows that highly accurate MIMO demodulation can be realized. On the other hand, when the condition number K (H) has a large value, the transmission channel matrix H is a badly conditioned matrix, and it is shown that MIMO demodulation with low accuracy and error is realized.

MIMO伝送路が理想的であり、受信アンテナを構成する水平偏波用アンテナにおける受信利得と垂直偏波用アンテナにおける受信利得とが完全に一致し、交差偏波に漏れ込む信号が極小の場合、以下の数式で表される。この場合、MIMO復調にて受信信号を理想的に分離し、送信信号を復元することができる。

Figure 0006694321
If the MIMO transmission path is ideal, the reception gain of the horizontal polarization antenna and the reception gain of the vertical polarization antenna that form the reception antenna are completely the same, and the signal leaking to the cross polarization is minimal, It is expressed by the following formula. In this case, it is possible to ideally separate the received signal by MIMO demodulation and restore the transmitted signal.
Figure 0006694321

しかしながら、例えば、受信アンテナを構成する水平偏波用アンテナと垂直偏波用アンテナとの間の指向性の違いに起因して、水平偏波と垂直偏波との間に受信利得の差(受信レベル差)が生じることがある。交差偏波に漏れ込む信号が存在する場合には、この受信レベル差が伝送路行列Hの対角位置の要素値の差となり、条件数K(H)は1に近くない大きい値となり、結果として所要C/Nに劣化が生じる。つまり、条件数K(H)が小さいほど、両アンテナの受信レベル差による所要C/Nの劣化は小さくなり、条件数K(H)が大きいほど、所要C/Nの劣化は大きくなるという関係がある。   However, for example, due to the difference in directivity between the horizontal polarization antenna and the vertical polarization antenna forming the reception antenna, the difference in reception gain between the horizontal polarization and the vertical polarization (reception Level difference) may occur. When there is a signal leaking into cross-polarized waves, this reception level difference becomes the difference between the element values at the diagonal positions of the transmission line matrix H, and the condition number K (H) becomes a large value that is not close to 1 As a result, the required C / N deteriorates. That is, the smaller the condition number K (H), the smaller the deterioration of the required C / N due to the difference in the reception levels of both antennas, and the larger the condition number K (H), the larger the deterioration of the required C / N. There is.

そこで、本発明の実施形態では、条件数K(H)と所要C/N劣化量との間の関係が定義されたテーブル等を用いて、帯域内のキャリア毎に所要C/N劣化量を特定し、帯域内で所要C/N劣化量を平均化して受信品質を測定する。条件数K(H)と所要C/N劣化量との間の関係は、変調多値数、誤り訂正符号等のシステム要件により異なるが、特定のMIMO伝送システムにおいて、計算機シミュレーションまたは実験により算出することができる。   Therefore, in the embodiment of the present invention, the required C / N deterioration amount is determined for each carrier in the band by using a table in which the relationship between the condition number K (H) and the required C / N deterioration amount is defined. The reception quality is measured by specifying and averaging the required C / N deterioration amount within the band. The relationship between the condition number K (H) and the required C / N deterioration amount varies depending on the system requirements such as the modulation multi-level number and error correction code, but is calculated by computer simulation or experiment in a specific MIMO transmission system. be able to.

従来は、帯域内で条件数が一定であることを前提として受信品質を測定していたが、本発明の実施形態では、帯域内で条件数がキャリア毎に異なることを前提として受信品質を測定する。   Conventionally, the reception quality is measured on the assumption that the condition number is constant in the band, but in the embodiment of the present invention, the reception quality is measured on the assumption that the condition number is different for each carrier in the band. To do.

これにより、帯域内で条件数が一定でなく変動が大きい場合に、本発明の実施形態により算出される帯域内の所要C/N劣化量(キャリア毎の所要C/N劣化量を平均化した値)は、従来技術にて算出される帯域内の所要C/N劣化量(帯域内の平均条件数を用いて求めた所要C/N劣化量)よりも精度の良い値となる。したがって、本発明の実施形態では、MIMO伝送システムにおいて、特定の地点の受信品質を正確に測定することが可能となる。   As a result, when the number of conditions is not constant in the band and the fluctuation is large, the required C / N deterioration amount in the band calculated by the embodiment of the present invention (the required C / N deterioration amount for each carrier is averaged. The value) is a more accurate value than the required C / N deterioration amount in the band calculated by the conventional technique (the required C / N deterioration amount obtained by using the average condition number in the band). Therefore, according to the embodiments of the present invention, it is possible to accurately measure the reception quality at a specific point in a MIMO transmission system.

〔受信品質測定装置〕
以下、本発明の実施形態による受信品質測定装置について説明する。説明の簡略化のため、2×2の偏波MIMO伝送システムにおいて、特定の地点の受信品質を測定する例を挙げて説明する。送信側の送信アンテナを介して送信される送信信号は、OFDMまたはシングルキャリア等の変調信号であるものとする。
[Reception quality measuring device]
Hereinafter, a reception quality measuring device according to an exemplary embodiment of the present invention will be described. For simplification of description, an example of measuring the reception quality at a specific point in a 2 × 2 polarization MIMO transmission system will be described. It is assumed that the transmission signal transmitted via the transmission antenna on the transmission side is a modulation signal such as OFDM or single carrier.

送信側は、送信アンテナを介して、伝送路を推定するための既知信号(例えばパイロット信号)を含む水平偏波の信号及び垂直偏波の信号を送信する。受信側の受信品質測定装置は、送信側から送信された水平偏波の信号及び垂直偏波の信号を、受信アンテナを介して受信する。送信アンテナは、水平偏波用アンテナ及び垂直偏波用アンテナにより構成され、受信アンテナも、水平偏波用アンテナ及び垂直偏波用アンテナにより構成される。   The transmitting side transmits a horizontally polarized signal and a vertically polarized signal including a known signal (for example, a pilot signal) for estimating the transmission path via the transmitting antenna. The reception quality measuring device on the receiving side receives the horizontally polarized signal and the vertically polarized signal transmitted from the transmitting side via the receiving antenna. The transmitting antenna is composed of a horizontally polarized antenna and a vertically polarized antenna, and the receiving antenna is also composed of a horizontally polarized antenna and a vertically polarized antenna.

図6は、送信アンテナを介して送信される送信信号のフォーマットの一例を説明する図である。図6(a)は、送信アンテナの水平偏波用アンテナから送信される信号(水平偏波送信信号)のフォーマットを示し、図6(b)は、送信アンテナの垂直偏波用アンテナから送信される信号(垂直偏波送信信号)のフォーマットを示す。横軸は周波数(キャリア番号)を示し、縦軸は時間(シンボル番号)を示す。黒塗りで表した位置の信号は、既知のSP(Scattered Pilot)信号であり、斜め横線で表した位置の信号は、既知のヌル(Null)信号であり、白塗りで表した位置の信号はデータである。   FIG. 6 is a diagram illustrating an example of a format of a transmission signal transmitted via the transmission antenna. FIG. 6A shows the format of a signal (horizontal polarization transmission signal) transmitted from the horizontal polarization antenna of the transmission antenna, and FIG. 6B shows the format of the signal transmitted from the vertical polarization antenna of the transmission antenna. The format of the signal (vertically polarized transmission signal) is shown. The horizontal axis represents frequency (carrier number), and the vertical axis represents time (symbol number). The signal at the position shown in black is a known SP (Scattered Pilot) signal, the signal at the position shown by a diagonal horizontal line is a known null signal, and the signal at the position shown in white is The data.

図6(a)の水平偏波送信信号では、基準信号であるSP信号及びヌル信号が所定の周波数間隔及び時間間隔で配置され、図6(b)の垂直偏波送信信号においても、基準信号であるSP信号及びヌル信号が同じ所定の周波数間隔及び時間間隔で配置されている。図6(a)の水平偏波送信信号におけるSP信号が配置された位置には、図6(b)の垂直偏波送信信号におけるヌル信号が配置されている。また、図6(a)の水平偏波送信信号におけるヌル信号が配置された位置には、図6(b)の垂直偏波送信信号におけるSP信号が配置されている。   In the horizontal polarization transmission signal of FIG. 6A, the SP signal and the null signal, which are reference signals, are arranged at predetermined frequency intervals and time intervals, and even in the vertical polarization transmission signal of FIG. The SP signal and the null signal are arranged at the same predetermined frequency interval and time interval. A null signal in the vertically polarized transmission signal of FIG. 6B is arranged at a position where the SP signal is arranged in the horizontally polarized transmission signal of FIG. 6A. Further, the SP signal in the vertically polarized transmission signal of FIG. 6B is arranged at the position where the null signal is arranged in the horizontally polarized transmission signal of FIG. 6A.

このようなSP信号及びヌル信号の配置により、水平偏波と垂直偏波との間で直交性を持たせることができるから、受信側の受信品質測定装置は、送信アンテナと受信アンテナとの間の伝送路行列Hの各要素を個別に求めることができる。   By arranging the SP signal and the null signal as described above, it is possible to provide orthogonality between the horizontal polarized wave and the vertical polarized wave. Therefore, the reception quality measuring device on the receiving side is arranged between the transmitting antenna and the receiving antenna. Each element of the transmission line matrix H can be calculated individually.

図1は、本発明の実施形態による受信品質測定装置の構成例を示すブロック図である。この受信品質測定装置1は、受信電力測定部10−1,10−2、C/N計算部11−1,11−2、伝送路推定部12、条件数算出部13、テーブル14、所要C/N算出部15、余裕度算出部16及び測定結果出力部17を備えている。   FIG. 1 is a block diagram showing a configuration example of a reception quality measuring apparatus according to an embodiment of the present invention. The reception quality measuring apparatus 1 includes reception power measuring units 10-1 and 10-2, C / N calculating units 11-1 and 11-2, a transmission path estimating unit 12, a condition number calculating unit 13, a table 14, and a required C. A / N calculator 15, a margin calculator 16, and a measurement result output unit 17 are provided.

受信品質測定装置1は、送信側の送信アンテナを介して送信されたOFDMまたはシングルキャリア等の変調信号を、図示しない受信アンテナを介して受信する。この変調信号には、前述のとおり、伝送路行列Hを推定するための既知信号(例えばパイロット信号)が含まれている。受信アンテナは、水平偏波用アンテナ及び垂直偏波用アンテナにより構成される。   The reception quality measuring apparatus 1 receives a modulated signal such as OFDM or a single carrier transmitted via a transmission antenna on the transmission side via a reception antenna (not shown). As described above, this modulated signal includes a known signal (for example, pilot signal) for estimating the transmission line matrix H. The receiving antenna is composed of an antenna for horizontal polarization and an antenna for vertical polarization.

受信品質測定装置1は、水平偏波用アンテナを介して受信した受信信号YHを入力し、垂直偏波用アンテナを介して受信した受信信号YVを入力し、以下のように、受信信号YH,YVに基づいて、当該受信品質測定装置1の地点の受信品質を測定する。 The reception quality measuring device 1 inputs the reception signal Y H received via the horizontal polarization antenna and the reception signal Y V received via the vertical polarization antenna. The reception quality at the point of the reception quality measuring device 1 is measured based on Y H and Y V.

受信電力測定部10−1は、受信アンテナを介して受信した受信信号YHを入力し、受信信号YHに基づいて受信電力PHを測定する。そして、受信電力測定部10−1は、受信電力PHを伝送路推定部12及び測定結果出力部17に出力する。 The reception power measuring unit 10-1 inputs the reception signal Y H received via the reception antenna and measures the reception power P H based on the reception signal Y H. Then, the reception power measurement unit 10-1 outputs the reception power P H to the transmission path estimation unit 12 and the measurement result output unit 17.

受信電力測定部10−2は、受信アンテナを介して受信した受信信号YVを入力し、受信信号YVに基づいて受信電力PVを測定する。そして、受信電力測定部10−2は、受信電力PVを伝送路推定部12及び測定結果出力部17に出力する。 The reception power measuring unit 10-2 inputs the reception signal Y V received via the reception antenna and measures the reception power P V based on the reception signal Y V. Then, the reception power measurement unit 10-2 outputs the reception power P V to the transmission path estimation unit 12 and the measurement result output unit 17.

C/N計算部11−1は、受信信号YHを入力し、受信信号YHに基づいて受信C/NHを計算する。そして、C/N計算部11−1は、受信C/NHを余裕度算出部16及び測定結果出力部17に出力する。 C / N calculation section 11-1 receives the received signal Y H, calculates the reception C / N H based on the received signal Y H. Then, the C / N calculation unit 11-1 outputs the received C / N H to the margin calculation unit 16 and the measurement result output unit 17.

C/N計算部11−2は、受信信号YVを入力し、受信信号YVに基づいて受信C/NVを計算する。そして、C/N計算部11−2は、受信C/NVを余裕度算出部16及び測定結果出力部17に出力する。 C / N calculation section 11-2 receives the received signal Y V, calculates a reception C / N V based on the received signal Y V. Then, the C / N calculation unit 11-2 outputs the received C / N V to the margin calculation unit 16 and the measurement result output unit 17.

伝送路推定部12は、受信信号YH,YVを入力すると共に、受信電力測定部10−1,10−2から受信電力PH,PVを入力する。そして、伝送路推定部12は、受信信号YH,YV、受信電力PH,PV、及び予め設定された既知信号XH,XVに基づいて、水平偏波及び垂直偏波の受信電力差を正確に反映させた伝送路行列H’を推定する。伝送路推定部12は、伝送路行列H’を条件数算出部13に出力する。 The transmission path estimation unit 12 inputs the received signals Y H and Y V, and the received powers P H and P V from the received power measuring units 10-1 and 10-2. Then, the transmission path estimation unit 12 receives the horizontally polarized wave and the vertically polarized wave based on the received signals Y H and Y V , the received powers P H and P V , and the preset known signals X H and X V. A transmission line matrix H ′ accurately reflecting the power difference is estimated. The transmission channel estimation unit 12 outputs the transmission channel matrix H ′ to the condition number calculation unit 13.

予め設定された既知信号XH,XVは、送信側から送信アンテナを介して送信された変調信号に含まれる信号と同一の信号であって、伝送路を推定するための信号(図6の例ではSP信号及びヌル信号)である。これらは、それぞれ水平偏波の既知信号及び垂直偏波の既知信号である。 The preset known signals X H and X V are the same as the signals included in the modulated signal transmitted from the transmitting side via the transmitting antenna, and are signals for estimating the transmission path (see FIG. 6). SP signal and null signal in the example). These are a horizontally polarized known signal and a vertically polarized known signal, respectively.

MIMO伝送路を数式で表した前記数式(1)を展開すると、水平偏波の受信信号YH及び垂直偏波の受信信号YVは、以下の数式で表される。尚、雑音nH,nVは0とする。

Figure 0006694321
Figure 0006694321
When the above-mentioned formula (1), which represents the MIMO transmission path by a formula, is developed, the horizontal polarization reception signal Y H and the vertical polarization reception signal Y V are expressed by the following formulas. The noises n H and n V are 0.
Figure 0006694321
Figure 0006694321

伝送路推定部12は、伝送路特性hHH,hVV,hHV,hVHを算出し、これらを要素とした伝送路行列Hに対し、水平偏波及び垂直偏波の受信電力差を正確に反映させた伝送路行列H’を推定する。 The transmission path estimation unit 12 calculates the transmission path characteristics h HH , h VV , h HV , and h VH , and with respect to the transmission path matrix H having these as elements, accurately calculates the received power difference between the horizontal polarization and the vertical polarization. Estimate the transmission path matrix H'reflected in the above.

図2は、伝送路推定部12の構成例を示すブロック図である。この伝送路推定部12は、周波数変換部20−1,20−2、A/D変換部21−1,21−2、FFT部22−1,22−2、パイロット抽出部23−1,23−2、既知信号生成部24、伝送路特性算出部25−1,25−2及び伝送路行列算出部26を備えている。   FIG. 2 is a block diagram showing a configuration example of the transmission path estimation unit 12. The transmission path estimation unit 12 includes frequency conversion units 20-1 and 20-2, A / D conversion units 21-1 and 21-2, FFT units 22-1 and 22-2, and pilot extraction units 23-1 and 23. -2, a known signal generation unit 24, transmission line characteristic calculation units 25-1, 25-2, and a transmission line matrix calculation unit 26.

周波数変換部20−1は、受信信号YHを入力し、受信信号YHの周波数を後段のA/D変換部21−1にてA/D変換を行うための周波数に変換し、周波数変換後の受信信号YHをA/D変換部21−1に出力する。 Frequency conversion unit 20-1 receives the received signal Y H, and converted into a frequency for A / D conversion the frequency of the received signal Y H at a subsequent stage of the A / D conversion unit 21-1, a frequency converter The subsequent reception signal Y H is output to the A / D conversion unit 21-1.

A/D変換部21−1は、周波数変換部20−1から周波数変換後の受信信号YHを入力し、受信信号YHのアナログ信号をデジタル信号にA/D変換し、デジタルの受信信号YHをFFT部22−1に出力する。 The A / D conversion unit 21-1 receives the frequency-converted reception signal Y H from the frequency conversion unit 20-1, A / D converts an analog signal of the reception signal Y H into a digital signal, and receives the digital reception signal. and it outputs the Y H to the FFT unit 22-1.

FFT部22−1は、A/D変換部21−1からデジタルの受信信号YHを入力し、デジタルの受信信号YHの時間領域信号を周波数領域信号に変換し、周波数領域信号をパイロット抽出部23−1に出力する。 The FFT unit 22-1 inputs the digital reception signal Y H from the A / D conversion unit 21-1, converts the time domain signal of the digital reception signal Y H into a frequency domain signal, and extracts the frequency domain signal as a pilot. It is output to the unit 23-1.

パイロット抽出部23−1は、FFT部22−1から周波数領域信号を入力し、周波数領域信号のうち既知信号が送信された位置のパイロット信号(SP信号及びヌル信号)を抽出し、受信パイロット信号として伝送路特性算出部25−1に出力する。   The pilot extraction unit 23-1 receives the frequency domain signal from the FFT unit 22-1, extracts the pilot signal (SP signal and null signal) at the position where the known signal is transmitted from the frequency domain signal, and receives the received pilot signal. To the transmission path characteristic calculation unit 25-1.

既知信号生成部24は、予め設定された既知信号(図6に示したSP信号及びヌル信号)を生成し、既知信号XH,XVを伝送路特性算出部25−1,25−2に出力する。 The known signal generation unit 24 generates a preset known signal (SP signal and null signal shown in FIG. 6), and outputs the known signals X H and X V to the transmission path characteristic calculation units 25-1 and 25-2. Output.

伝送路特性算出部25−1は、パイロット抽出部23−1から受信パイロット信号を入力すると共に、既知信号生成部24から既知信号XH,XV(送信パイロット信号)を入力する。そして、伝送路特性算出部25−1は、受信パイロット信号を送信パイロット信号で除算し、MIMO伝送路の周波数特性である伝送路特性hHH,hHVを算出し、伝送路特性hHH,hHVを伝送路行列算出部26に出力する。 The transmission path characteristic calculation unit 25-1 inputs the received pilot signal from the pilot extraction unit 23-1 and the known signals X H and X V (transmission pilot signals) from the known signal generation unit 24. Then, the transmission path characteristic calculation unit 25-1 divides the received pilot signal by the transmission pilot signal to calculate the transmission path characteristics h HH and h HV which are the frequency characteristics of the MIMO transmission path, and the transmission path characteristics h HH and h The HV is output to the transmission path matrix calculation unit 26.

送信側から送信される既知信号は、水平偏波及び垂直偏波の間で直交性が保たれているから、前記数式(5)の第1項及び第2項における伝送路特性hHH,hHVを分離することができる。これにより、受信信号YHから、伝送路行列Hを構成する要素のうち、伝送路特性hHH,hHVが個別に算出される。 Since the known signal transmitted from the transmitting side maintains the orthogonality between the horizontal polarization and the vertical polarization, the transmission path characteristics h HH and h in the first and second terms of the equation (5). HV can be isolated. Thereby, the transmission path characteristics h HH and h HV among the elements forming the transmission path matrix H are individually calculated from the received signal Y H.

周波数変換部20−2、A/D変換部21−2、FFT部22−2及びパイロット抽出部23−2は、受信信号YVについて、前述の周波数変換部20−1、A/D変換部21−1、FFT部22−1及びパイロット抽出部23−1と同様の処理をそれぞれ行う。 The frequency conversion unit 20-2, the A / D conversion unit 21-2, the FFT unit 22-2, and the pilot extraction unit 23-2 use the above-described frequency conversion unit 20-1 and A / D conversion unit for the reception signal Y V. 21-1, the FFT unit 22-1, and the pilot extraction unit 23-1, respectively, perform the same processing.

伝送路特性算出部25−2も、前述の伝送路特性算出部25−1と同様の処理を行う。伝送路特性算出部25−2は、パイロット抽出部23−2から受信パイロット信号を入力すると共に、既知信号生成部24から既知信号XH,XV(送信パイロット信号)を入力し、伝送路特性hVV,hVHを算出する。そして、伝送路特性算出部25−2は、伝送路特性hVV,hVHを伝送路行列算出部26に出力する。 The transmission line characteristic calculation unit 25-2 also performs the same processing as the above-described transmission line characteristic calculation unit 25-1. Transmission channel characteristic calculation unit 25-2 receives inputs the received pilot signal from the pilot extraction unit 23-2, a known signal from known signal generating unit 24 X H, X V (transmission pilot signal), channel characteristics Calculate h VV and h VH . Then, the transmission line characteristic calculation unit 25-2 outputs the transmission line characteristics h VV and h VH to the transmission line matrix calculation unit 26.

送信側から送信される既知信号は、水平偏波及び垂直偏波の間で直交性が保たれているから、前記数式(6)の第1項及び第2項における伝送路特性hVH,hVVを分離することができる。これにより、受信信号YVから、伝送路行列Hを構成する要素のうち、伝送路特性hVV,hVHが個別に算出される。 Since the known signal transmitted from the transmission side maintains the orthogonality between the horizontal polarization and the vertical polarization, the transmission line characteristics h VH and h in the first and second terms of the mathematical expression (6). VV can be separated. Thereby, the transmission path characteristics h VV and h VH among the elements forming the transmission path matrix H are individually calculated from the received signal Y V.

伝送路行列算出部26は、伝送路特性算出部25−1から伝送路特性hHH,hHVを入力すると共に、伝送路特性算出部25−2から伝送路特性hVV,hVHを入力し、さらに、受信電力測定部10−1,10−2から受信電力PH,PVを入力する。そして、伝送路行列算出部26は、伝送路特性hHH,hVVに基づいて、伝送路特性hHH,hVVの電力P’H,P’Vをそれぞれ算出する。 The transmission line matrix calculation unit 26 inputs the transmission line characteristics h HH and h HV from the transmission line characteristic calculation unit 25-1, and inputs the transmission line characteristics h VV and h VH from the transmission line characteristic calculation unit 25-2. Further, the received powers P H and P V are input from the received power measuring units 10-1 and 10-2. Then, the transmission path matrix calculation unit 26 calculates the powers P ′ H and P ′ V of the transmission path characteristics h HH and h VV based on the transmission path characteristics h HH and h VV , respectively.

伝送路行列算出部26は、伝送路特性hHH,hHV,hVV,hVH、受信電力PH,PV及び電力P’H,P’Vに基づいて、以下の数式により、伝送路行列H’を算出する。そして、伝送路行列算出部26は、伝送路行列H’を条件数算出部13に出力する

Figure 0006694321
The transmission line matrix calculation unit 26 calculates the transmission line characteristics h HH , h HV , h VV , h VH , the received powers P H , P V, and the powers P ′ H , P ′ V by the following mathematical formulas. The matrix H'is calculated. Then, the transmission path matrix calculation unit 26 outputs the transmission path matrix H ′ to the condition number calculation unit 13.
Figure 0006694321

これにより、水平偏波及び垂直偏波の受信電力差を正確に反映させた電力補正後の伝送路行列H’が算出される。この伝送路行列H’は、全帯域においてキャリア毎に得られる。   As a result, the power-corrected transmission line matrix H'that accurately reflects the received power difference between the horizontal polarization and the vertical polarization is calculated. This transmission line matrix H'is obtained for each carrier in the entire band.

図1に戻って、条件数算出部13は、伝送路推定部12からキャリア毎の伝送路行列H’を入力し、伝送路行列H’に基づいて条件数K(H’)を算出する。この条件数K(H’)は、全帯域においてキャリア毎に得られる。そして、条件数算出部13は、キャリア毎の条件数K(H’)を所要C/N算出部15に出力する。   Returning to FIG. 1, the condition number calculation unit 13 inputs the transmission line matrix H ′ for each carrier from the transmission line estimation unit 12, and calculates the condition number K (H ′) based on the transmission line matrix H ′. This condition number K (H ') is obtained for each carrier in the entire band. Then, the condition number calculation unit 13 outputs the condition number K (H ′) for each carrier to the required C / N calculation unit 15.

条件数K(H’)の算出手法は、特異値分解、固有値分解による手法等、複数の手法がある。例えば、エルミート行列の固有値分解手法については、以下の文献を参照されたい。
“エルミート行列の固有値分解アルゴリズム”、[online]、[平成28年2月15日検索]、 インターネット<http://kosugitti.sakura.ne.jp/wp/wp-content/uploads/2013/08/qr.pdf>
There are a plurality of methods for calculating the condition number K (H ′), such as singular value decomposition and eigenvalue decomposition. For example, refer to the following documents for the eigenvalue decomposition method of the Hermitian matrix.
"Hermitian matrix eigenvalue decomposition algorithm", [online], [February 15, 2016 search], Internet <http://kosugitti.sakura.ne.jp/wp/wp-content/uploads/2013/08/ qr.pdf>

テーブル14には、条件数及び所要C/N劣化量が格納されている。図3は、テーブル14のデータ構成例を示す図である。テーブル14には、条件数と、当該条件数に対応する所要C/N劣化量とが格納されている。これらのデータは、図8に示した、帯域内で条件数が一定の場合の曲線αをテーブル化したものであり、所要C/N劣化量は、条件数に対する理想値を表している。このテーブル14は予め設定される。   The table 14 stores the number of conditions and the required C / N deterioration amount. FIG. 3 is a diagram showing a data configuration example of the table 14. The table 14 stores the number of conditions and the required C / N deterioration amount corresponding to the number of conditions. These data are a table of the curve α shown in FIG. 8 when the condition number is constant in the band, and the required C / N deterioration amount represents an ideal value for the condition number. This table 14 is preset.

図1に戻って、所要C/N算出部15は、条件数算出部13からキャリア毎の条件数K(H’)を入力し、キャリア毎に、条件数K(H’)をキーとしてテーブル14を検索し、条件数K(H’)に対応する所要C/N劣化量を読み出す。   Returning to FIG. 1, the required C / N calculation unit 15 inputs the condition number K (H ′) for each carrier from the condition number calculation unit 13 and creates a table using the condition number K (H ′) as a key for each carrier. 14 is searched, and the required C / N deterioration amount corresponding to the condition number K (H ′) is read.

所要C/N算出部15は、帯域内で、所要C/N劣化量の平均値(帯域内平均所要C/N劣化量)Dを算出し、帯域内平均所要C/N劣化量Dを余裕度算出部16に出力する。   The required C / N calculation unit 15 calculates the average value of the required C / N deterioration amount (in-band average required C / N deterioration amount) D within the band, and reserves the in-band average required C / N deterioration amount D. It is output to the degree calculation unit 16.

キャリア番号nにおける条件数K(H’)に対応する所要C/N劣化量をdeg(n)、帯域内のキャリア数をN、帯域内平均所要C/N劣化量Dをdegとした場合、以下の数式により、帯域内平均所要C/N劣化量Dであるdegが算出される。

Figure 0006694321
When the required C / N deterioration amount corresponding to the condition number K (H ′) in the carrier number n is deg (n), the number of carriers in the band is N, and the average required C / N deterioration amount in the band D is deg, The deg, which is the in-band average required C / N deterioration amount D, is calculated by the following mathematical expression.
Figure 0006694321

余裕度算出部16は、所要C/N算出部15から帯域内平均所要C/N劣化量Dを入力すると共に、C/N計算部11−1,11−2から受信C/NH及び受信C/NVを入力し、受信C/NH及び受信C/NVの平均値を算出し、これを受信C/Nとする。 The margin calculation unit 16 inputs the in-band average required C / N deterioration amount D from the required C / N calculation unit 15, and receives C / N H and reception from the C / N calculation units 11-1 and 11-2. C / N V is input, the average value of the received C / N H and the received C / N V is calculated, and this is set as the received C / N.

余裕度算出部16は、以下の数式により、当該MIMO伝送システムにおいて予め設定された本来の所要C/Nに、帯域内平均所要C/N劣化量Dを加算することで、実際の所要C/Nを求める。これにより、当該受信品質測定装置1の地点における実際の所要C/Nを精度高く算出することができる。
[数9]
実際の所要C/N = 本来の所要C/N + 帯域内平均所要C/N劣化量D
・・・(9)
The margin calculating unit 16 adds the in-band average required C / N deterioration amount D to the actual required C / N by using the following mathematical expression, and adds to the original required C / N preset in the MIMO transmission system. Find N. As a result, the actual required C / N at the point of the reception quality measuring device 1 can be calculated with high accuracy.
[Equation 9]
Actual required C / N = Original required C / N + In-band average required C / N Deterioration amount D
... (9)

余裕度算出部16は、以下の数式により、受信C/Nから、前記数式(9)にて算出した実際の所要C/Nを減算することで、余裕度Fを算出し、余裕度Fを測定結果出力部17に出力する。これにより、当該受信品質測定装置1の地点における余裕度Fを精度高く算出することができる。
[数10]
余裕度F = 受信C/N − 実際の所要C/N ・・・(10)
The margin calculating unit 16 calculates the margin F by subtracting the actual required C / N calculated by the above equation (9) from the received C / N by the following mathematical expression, and calculates the margin F. It is output to the measurement result output unit 17. Thereby, the margin F at the point of the reception quality measuring device 1 can be calculated with high accuracy.
[Equation 10]
Margin F = reception C / N−actual required C / N (10)

測定結果出力部17は、受信電力測定部10−1,10−2から受信信号YHの受信電力PH及び受信信号YVの受信電力PVを入力すると共に、C/N計算部11−1,11−2から受信信号YHの受信C/NH及び受信信号YVの受信C/NVを入力する。また、測定結果出力部17は、余裕度算出部16から余裕度Fを入力する。 Measurement result output unit 17 inputs the received power P V of the received power P H and the received signal Y V of the received signal Y H from the received power measurement section 10-1 and 10-2, C / N calculation section 11 inputs the received C / N V of the receiving C / N H and the received signal Y V of the received signal Y H from 1,11-2. Further, the measurement result output unit 17 inputs the allowance F from the allowance calculator 16.

測定結果出力部17は、受信信号YHの受信電力PH、受信信号YVの受信電力PV、受信信号YHの受信C/NH、受信信号YVの受信C/NV、及び余裕度Fを、当該受信品質測定装置1の地点における受信品質の測定結果として出力する。 Measurement result output unit 17, the received power P H of the received signal Y H, the received power P V of the received signal Y V, reception C / N H of the received signal Y H, the reception C / N V of the received signal Y V, and The margin F is output as the measurement result of the reception quality at the point of the reception quality measuring device 1.

図4は、フィールドの各地点における、伝送実験にて取得した所要C/N劣化量(真値)、従来技術及び本発明の実施形態にて取得した所要C/N劣化量を示す図である。横軸は、各地点のサンプル1〜8を示し、縦軸は所要C/N劣化量を示す。   FIG. 4 is a diagram showing the required C / N deterioration amount (true value) acquired in the transmission experiment, and the required C / N deterioration amount acquired in the prior art and the embodiment of the present invention at each point in the field. .. The horizontal axis indicates samples 1 to 8 at each point, and the vertical axis indicates the required C / N deterioration amount.

サンプル1〜8のそれぞれにおいて、左側のバーは、伝送実験にて取得した所要C/N劣化量(真値)を示し、図8に示した所要C/N劣化量に相当する。また、中央のバーは、従来技術にて取得した所要C/N劣化量を示し、従来の受信品質測定装置により得られた特性であって、図8に示した曲線αの所要C/N劣化量に相当する。前述のとおり、従来の受信品質測定装置は、MIMO伝送路の伝送路行列から、帯域内のキャリア毎に条件数を算出し、帯域内で条件数を平均した平均値(帯域内の平均条件数)を算出し、当該平均条件数に対する所要C/N劣化量を求める。右側のバーは、本発明の実施形態にて取得した所要C/N劣化量を示す。   In each of Samples 1 to 8, the bar on the left side shows the required C / N deterioration amount (true value) acquired in the transmission experiment, and corresponds to the required C / N deterioration amount shown in FIG. The center bar indicates the required C / N deterioration amount obtained by the conventional technique, which is the characteristic obtained by the conventional reception quality measuring apparatus, and is the required C / N deterioration of the curve α shown in FIG. Equivalent to the amount. As described above, the conventional reception quality measuring apparatus calculates the condition number for each carrier in the band from the transmission line matrix of the MIMO transmission line, and averages the condition numbers in the band (average condition number in the band). ) Is calculated, and the required C / N deterioration amount for the average condition number is calculated. The bar on the right side shows the required C / N deterioration amount acquired in the embodiment of the present invention.

図4のサンプル1〜8から、本発明の実施形態にて取得した所要C/N劣化量(右側のバー)は、従来技術にて取得した所要C/N劣化量(中央のバー)に比べ、伝送実験にて取得した所要C/N劣化量(真値、左側のバー)に近いことがわかる。これにより、本発明の実施形態では、従来技術よりも、所要C/N劣化量を正確に求めることができる。   The required C / N deterioration amount (the bar on the right side) acquired in the embodiment of the present invention from the samples 1 to 8 in FIG. 4 is higher than the required C / N deterioration amount (the center bar) acquired by the conventional technique. It can be seen that it is close to the required C / N deterioration amount (true value, left bar) acquired in the transmission experiment. As a result, in the embodiment of the present invention, the required C / N deterioration amount can be obtained more accurately than in the related art.

以上のように、本発明の実施形態の受信品質測定装置1によれば、受信品質を測定する特定の地点において、送信側から送信された既知信号を含む水平偏波及び垂直偏波の変調信号を、受信アンテナを介して受信する。   As described above, according to the reception quality measuring device 1 of the embodiment of the present invention, at the specific point where the reception quality is measured, the horizontal polarization and vertical polarization modulation signals including the known signal transmitted from the transmission side. Is received via the receiving antenna.

伝送路推定部12は、受信信号YH,YV、受信電力PH,PV及び既知信号XH,XVに基づいて、水平偏波及び垂直偏波の受信電力差を反映させた伝送路行列H’を推定する。これにより、当該受信品質測定装置1の地点におけるキャリア毎の伝送路行列H’が得られる。 The transmission path estimation unit 12 reflects the received power difference between the horizontal polarized wave and the vertical polarized wave based on the received signals Y H and Y V , the received powers P H and P V, and the known signals X H and X V. Estimate the road matrix H '. As a result, the transmission path matrix H ′ for each carrier at the point of the reception quality measuring apparatus 1 is obtained.

条件数算出部13は、伝送路行列H’に基づいて条件数K(H’)を算出する。これにより、当該受信品質測定装置1の地点におけるキャリア毎の条件数K(H’)が得られる。   The condition number calculation unit 13 calculates the condition number K (H ') based on the transmission line matrix H'. As a result, the condition number K (H ') for each carrier at the point of the reception quality measuring apparatus 1 is obtained.

所要C/N算出部15は、キャリア毎に、条件数K(H’)に対応する所要C/N劣化量を、条件数と当該条件数に対応する所要C/N劣化量が格納されたテーブル14から読み出す。そして、所要C/N算出部15は、帯域内で、所要C/N劣化量の平均値を帯域内平均所要C/N劣化量Dとして算出する。これにより、当該受信品質測定装置1の地点における帯域内平均所要C/N劣化量Dが得られる。   The required C / N calculation unit 15 stores, for each carrier, the required C / N deterioration amount corresponding to the condition number K (H ′), the condition number, and the required C / N deterioration amount corresponding to the condition number. Read from table 14. Then, the required C / N calculation unit 15 calculates the average value of the required C / N deterioration amount within the band as the in-band average required C / N deterioration amount D. As a result, the in-band average required C / N deterioration amount D at the point of the reception quality measuring apparatus 1 is obtained.

余裕度算出部16は、本来の所要C/Nに帯域内平均所要C/N劣化量Dを加算することで、実際の所要C/Nを求め、受信C/N(受信C/NH及び受信C/NVの平均値)から実際の所要C/Nを減算することで、余裕度Fを算出する。これにより、当該受信品質測定装置1の地点における余裕度Fが得られる。 The margin calculating unit 16 calculates the actual required C / N by adding the in-band average required C / N deterioration amount D to the original required C / N, and determines the received C / N (received C / N H and The margin F is calculated by subtracting the actual required C / N from the average value of the received C / N V ). Thereby, the margin F at the point of the reception quality measuring device 1 is obtained.

このように、受信品質測定装置1は、当該受信品質測定装置1の地点において、帯域内のキャリア毎に条件数K(H’)を求め、これに対応する所要C/N劣化量を特定し、帯域内で所要C/N劣化量を平均化するようにした。これにより、帯域内で条件数が一定でなく変動が大きい場合であっても、より正確な帯域内平均所要C/N劣化量Dが算出される。したがって、当該受信品質測定装置1の地点における余裕度Fは、より正確な帯域内平均所要C/N劣化量Dに基づいて算出されるから、MIMO伝送システムにおいて、特定の地点の受信品質を正確に測定することが可能となる。   As described above, the reception quality measuring apparatus 1 obtains the condition number K (H ′) for each carrier in the band at the point of the reception quality measuring apparatus 1 and specifies the required C / N deterioration amount corresponding to this. The required C / N deterioration amount is averaged within the band. As a result, a more accurate in-band average required C / N deterioration amount D is calculated even when the number of conditions is not constant and changes greatly within the band. Therefore, since the margin F at the point of the reception quality measuring apparatus 1 is calculated based on the more accurate in-band average required C / N deterioration amount D, the reception quality at the specific point is accurately calculated in the MIMO transmission system. It becomes possible to measure.

また、地上デジタル放送の放送エリア内において、受信品質の余裕度Fを正確に測定することができるから、結果として、安定した受信を実現する機器を選定することができ、安定した受信が可能となるように改善指導を行うことができる。   In addition, since the margin F of the reception quality can be accurately measured in the terrestrial digital broadcasting area, as a result, a device that realizes stable reception can be selected and stable reception is possible. You can give improvement guidance so that

図5は、本発明の実施形態による受信品質測定装置1の使用例を説明する図である。受信アンテナを設置する作業者は、受信品質測定装置1を所持し、当該受信品質測定装置1の地点である特定の地点の受信品質を得るために、当該受信品質測定装置1に設けられた受信アンテナを所定方向へ向ける。   FIG. 5 is a diagram illustrating a usage example of the reception quality measuring device 1 according to the embodiment of the present invention. The operator who installs the reception antenna has the reception quality measuring apparatus 1, and in order to obtain the reception quality at a specific point which is the point of the reception quality measuring apparatus 1, the reception quality measuring apparatus 1 is installed. Aim the antenna in the specified direction.

受信品質測定装置1は、測定結果出力部17にて測定した測定結果を表示する表示部を備えている。表示部は、受信アンテナの方向A,B,Cのそれぞれの場合について、図5の下部に示すように、受信レベル(受信電力PH,PVの平均値)、受信C/N、余裕度F及び受信可否を表示する。表示部は、余裕度と所定値とを比較し、余裕度Fが所定値以上の場合に、受信可否の判断結果として受信可を示すマーク◎を表示し、余裕度Fが所定値よりも小さい場合に、受信不可を示すマーク×を表示する。 The reception quality measuring device 1 includes a display unit that displays the measurement result measured by the measurement result output unit 17. As shown in the lower part of FIG. 5, the display section displays the reception level (average value of the reception powers P H and P V ), the reception C / N, and the margin for each of the directions A, B, and C of the reception antennas. Display F and acceptability. The display unit compares the allowance with a predetermined value, and when the allowance F is equal to or larger than the predetermined value, displays a mark ◎ indicating that the reception is possible as a result of the reception availability determination, and the allowance F is smaller than the predetermined value. In this case, a mark x indicating that reception is impossible is displayed.

図5において、表示部は、受信アンテナの方向Aの場合、受信可否の箇所に受信可を表示し、受信アンテナの方向B,Cの場合、受信可否の箇所に受信不可を表示している。これにより、作業者は、受信アンテナの方向Aとした当該受信品質測定装置1の地点における受信品質が、受信アンテナの方向B,Cとした当該受信品質測定装置1の地点よりも良いことを判断することができる。   In FIG. 5, the display unit displays reception enable / disable in the reception enable / disable position when the reception antenna is in the direction A, and displays reception disable / use in the reception enable / disable position in the reception antenna directions B and C. Thereby, the operator determines that the reception quality at the point of the reception quality measuring apparatus 1 in the direction A of the receiving antenna is better than that at the point of the reception quality measuring apparatus 1 in the directions B and C of the receiving antenna. can do.

このように、受信品質測定装置1が連続的に余裕度Fを測定することで、作業者は、余裕度Fが最大となるアンテナの方向を判断することができる。そして、アンテナの方向調整等の受信改善、設備の交換に向けた検討を行うことができ、MIMO伝送システムの安定受信に貢献できる。特に、偏波MIMO伝送システムでは、受信レベル及び受信C/Nは、水平偏波及び垂直偏波の2信号分測定されるため、受信品質を判断するための値が増加してしまう。しかし、本発明の実施形態では、余裕度Fを測定するようにしたから、余裕度Fによって、受信品質を明確に判断することが可能となる。   Thus, the reception quality measuring device 1 continuously measures the margin F, so that the operator can determine the direction of the antenna in which the margin F is maximum. Then, it is possible to improve the reception such as the adjustment of the direction of the antenna and to examine the replacement of the equipment, which can contribute to the stable reception of the MIMO transmission system. Particularly, in the polarization MIMO transmission system, the reception level and the reception C / N are measured for two signals of the horizontal polarization and the vertical polarization, so that the value for judging the reception quality increases. However, in the embodiment of the present invention, since the margin F is measured, it is possible to clearly judge the reception quality by the margin F.

以上、実施形態を挙げて本発明を説明したが、本発明は前記実施形態に限定されるものではなく、その技術思想を逸脱しない範囲で種々変形可能である。例えば、実施形態では、水平偏波及び垂直偏波を用いた2×2のMIMO伝送システムについて説明した。本発明は、送信アンテナの本数を2に限定するものではなく、受信アンテナの本数も2に限定するものでもなく、他の本数にも適用がある。また、本発明は、水平偏波及び垂直偏波に限定するものではなく、他の種類の偏波にも適用があり、偏波以外の電波にも適用がある。   Although the present invention has been described above with reference to the exemplary embodiments, the present invention is not limited to the above-described exemplary embodiments, and various modifications can be made without departing from the technical idea thereof. For example, the embodiment has described the 2 × 2 MIMO transmission system using the horizontal polarization and the vertical polarization. The present invention does not limit the number of transmitting antennas to two and the number of receiving antennas to two, and is applicable to other numbers. Further, the present invention is not limited to horizontal polarized waves and vertical polarized waves, but may be applied to other types of polarized waves and also to radio waves other than polarized waves.

また、本発明の実施形態では、図6に示した送信信号のフォーマットを用いるようにしたが、本発明は、図6に示した送信信号のフォーマットに限定するものではなく、これとは異なる配置のフォーマットを用いるようにしてもよい。また、他のパイロット信号を用いるようにしてもよいし、周波数軸及び時間軸方向に連続して挿入される既知信号を用いるようにしてもよい。また、直交化の手法として、ヌル信号の代わりに、アダマール符号、Alamouti符号を用いるようにしてもよい。   Further, in the embodiment of the present invention, the format of the transmission signal shown in FIG. 6 is used, but the present invention is not limited to the format of the transmission signal shown in FIG. 6, and an arrangement different from this is used. You may make it use the format of. Further, another pilot signal may be used, or a known signal continuously inserted in the frequency axis and time axis directions may be used. Further, as an orthogonalization method, a Hadamard code or an Alamouti code may be used instead of the null signal.

また、本発明の実施形態では、受信品質測定装置1の所要C/N算出部15は、条件数K(H’)に対応する所要C/N劣化量を、テーブル14から読み出すようにした。これに対し、所要C/N算出部15は、予め設定された関数の数式に従い、条件数K(H’)に対応する所要C/N劣化量を特定するようにしてもよい。   Further, in the embodiment of the present invention, the required C / N calculation unit 15 of the reception quality measuring device 1 reads out the required C / N deterioration amount corresponding to the condition number K (H ′) from the table 14. On the other hand, the required C / N calculation unit 15 may specify the required C / N deterioration amount corresponding to the condition number K (H ′) according to a mathematical expression of a preset function.

また、本発明の実施形態では、受信品質測定装置1の測定結果出力部17は、受信信号YHの受信電力PH、受信信号YVの受信電力PV、受信信号YHの受信C/NH、受信信号YVの受信C/NV、及び余裕度Fを、受信品質の測定結果として出力するようにした。これに対し、測定結果出力部17は、さらに、所要C/N算出部15により算出された帯域内平均所要C/N劣化量D、及び条件数算出部13により算出された条件数K(H’)を、受信品質の測定結果として出力するようにしてもよい。 In the embodiments of the present invention, the measurement result output section 17 of the reception quality measuring apparatus 1, the received power P H of the received signal Y H, the received power P V of the received signal Y V, the received signal Y H of the received C / N H, the reception C / N V of the received signal Y V, and the margin F, and output as the measurement result of the reception quality. On the other hand, the measurement result output unit 17 further includes the in-band average required C / N deterioration amount D calculated by the required C / N calculation unit 15 and the condition number K (H) calculated by the condition number calculation unit 13. ') May be output as the measurement result of the reception quality.

また、本発明の実施形態では、受信品質測定装置1について説明したが、MIMO受信装置が、図1に示した受信品質測定装置1の各構成部を備えるようにしてもよい。この場合、MIMO受信装置は、余裕度F等の測定結果を表示する機能を有する。   Further, although the reception quality measuring apparatus 1 has been described in the embodiment of the present invention, the MIMO receiving apparatus may include each component of the reception quality measuring apparatus 1 shown in FIG. In this case, the MIMO receiving apparatus has a function of displaying the measurement result of the margin F and the like.

尚、本発明の実施形態による受信品質測定装置1のハードウェア構成としては、通常のコンピュータを使用することができる。受信品質測定装置1は、CPU、RAM等の揮発性の記憶媒体、ROM等の不揮発性の記憶媒体、及びインターフェース等を備えたコンピュータによって構成される。受信品質測定装置1に備えた受信電力測定部10−1,10−2、C/N計算部11−1,11−2、伝送路推定部12、条件数算出部13、テーブル14、所要C/N算出部15、余裕度算出部16及び測定結果出力部17の各機能は、これらの機能を記述したプログラムをCPUに実行させることによりそれぞれ実現される。また、これらのプログラム(受信品質測定プログラム)は、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスク等)、光ディスク(CD−ROM、DVD等)、半導体メモリ等の記憶媒体に格納して頒布することもでき、ネットワークを介して送受信することもできる。   A normal computer can be used as the hardware configuration of the reception quality measuring device 1 according to the embodiment of the present invention. The reception quality measuring device 1 is configured by a computer including a CPU, a volatile storage medium such as a RAM, a non-volatile storage medium such as a ROM, and an interface. Received power measurement units 10-1 and 10-2, C / N calculation units 11-1 and 11-2, a transmission path estimation unit 12, a condition number calculation unit 13, a table 14, a required C included in the reception quality measurement device 1. Each function of the / N calculation unit 15, the margin calculation unit 16, and the measurement result output unit 17 is realized by causing the CPU to execute a program that describes these functions. Also, these programs (reception quality measurement programs) should be stored and distributed in storage media such as magnetic disks (floppy (registered trademark) disks, hard disks, etc.), optical disks (CD-ROM, DVD, etc.), semiconductor memories, etc. It can also be sent and received via a network.

1 受信品質測定装置
10 受信電力測定部
11 C/N計算部
12 伝送路推定部
13 条件数算出部
14 テーブル
15 所要C/N算出部
16 余裕度算出部
17 測定結果出力部
20 周波数変換部
21 A/D変換部
22 FFT部
23 パイロット抽出部
24 既知信号生成部
25 伝送路特性算出部
26 伝送路行列算出部
1 reception quality measuring device 10 reception power measuring unit 11 C / N calculating unit 12 transmission path estimating unit 13 condition number calculating unit 14 table 15 required C / N calculating unit 16 margin calculation unit 17 measurement result output unit 20 frequency converting unit 21 A / D conversion unit 22 FFT unit 23 Pilot extraction unit 24 Known signal generation unit 25 Transmission line characteristic calculation unit 26 Transmission line matrix calculation unit

Claims (4)

複数のアンテナからなる送信アンテナを介して送信された信号を、MIMO伝送路及び複数のアンテナからなる受信アンテナを介して受信し、受信信号に基づいて、所定地点の受信品質を測定する受信品質測定装置において、
前記受信信号に基づいて、帯域内のキャリア毎に、前記MIMO伝送路の伝送路行列を推定する伝送路推定部と、
前記伝送路推定部により推定された前記伝送路行列に基づいて、前記帯域内のキャリア毎に、条件数を算出する条件数算出部と、
前記条件数算出部により算出された前記条件数に対応する所要C/N劣化量を、条件数及び当該条件数に対応する所要C/N劣化量が格納されたテーブル、または、条件数及び当該条件数に対応する所要C/N劣化量の関係が定義された数式を用いて、前記帯域内のキャリア毎に特定し、前記帯域内のキャリア毎の所要C/N劣化量を前記帯域内で平均化し、帯域内平均所要C/N劣化量を求める所要C/N算出部と、
を備えたことを特徴とする受信品質測定装置。
Reception quality measurement in which a signal transmitted via a transmission antenna including a plurality of antennas is received via a MIMO transmission path and a reception antenna including a plurality of antennas, and the reception quality at a predetermined point is measured based on the reception signals. In the device,
A transmission path estimation unit that estimates a transmission path matrix of the MIMO transmission path for each carrier in the band based on the received signal,
A condition number calculation unit that calculates a condition number for each carrier in the band based on the transmission line matrix estimated by the transmission line estimation unit;
The required C / N deterioration amount corresponding to the condition number calculated by the condition number calculation unit is stored in the table in which the condition number and the required C / N deterioration amount corresponding to the condition number are stored, or Using a mathematical expression in which the relationship of the required C / N deterioration amount corresponding to the number of conditions is defined, it is specified for each carrier within the band, and the required C / N deterioration amount for each carrier within the band is determined within the band. A required C / N calculator for averaging and obtaining an average required C / N deterioration amount in the band;
A reception quality measuring device comprising:
請求項1に記載の受信品質測定装置において、
さらに、前記受信信号に基づいて、受信C/Nを計算するC/N計算部と、
前記所要C/N算出部により求めた帯域内平均所要C/N劣化量を、予め設定された本来の所要C/Nに加算し、実際の所要C/Nを求め、前記C/N計算部により計算された前記受信C/Nから前記実際の所要C/Nを減算することで、余裕度を算出する余裕度算出部と、
を備えたことを特徴とする受信品質測定装置。
In the reception quality measuring device according to claim 1,
Furthermore, a C / N calculator for calculating a received C / N based on the received signal,
The in-band average required C / N deterioration amount obtained by the required C / N calculation unit is added to a preset original required C / N to obtain an actual required C / N, and the C / N calculation unit A margin calculating section for calculating a margin by subtracting the actual required C / N from the received C / N calculated by
A reception quality measuring device comprising:
複数のアンテナからなる送信アンテナを介して送信された水平偏波の変調信号及び垂直偏波の変調信号を、MIMO伝送路及び複数のアンテナからなる受信アンテナを介して受信し、水平偏波の受信信号及び垂直偏波の受信信号に基づいて、所定地点の受信品質を測定する受信品質測定装置において、
前記水平偏波の受信信号に基づいて、前記水平偏波の受信信号の受信電力を測定し、前記垂直偏波の受信信号に基づいて、前記垂直偏波の受信信号の受信電力を測定する受信電力測定部と、
前記水平偏波の受信信号に基づいて、前記水平偏波の受信信号の受信C/Nを計算し、前記垂直偏波の受信信号に基づいて、前記垂直偏波の受信信号の受信C/Nを計算するC/N計算部と、
前記水平偏波の受信信号及び前記垂直偏波の受信信号、前記受信電力測定部により測定された前記水平偏波の受信信号の受信電力及び前記垂直偏波の受信信号の受信電力、並びに、前記送信アンテナを介して送信された前記水平偏波の変調信号及び前記垂直偏波の変調信号に含まれる既知信号に基づいて、帯域内のキャリア毎に、前記MIMO伝送路の伝送路行列を推定する伝送路推定部と、
前記伝送路推定部により推定された前記伝送路行列に基づいて、前記帯域内のキャリア毎に、条件数を算出する条件数算出部と、
前記条件数算出部により算出された前記条件数に対応する所要C/N劣化量を、条件数及び当該条件数に対応する所要C/N劣化量が格納されたテーブル、または、条件数及び当該条件数に対応する所要C/N劣化量の関係が定義された数式を用いて、前記帯域内のキャリア毎に特定し、前記帯域内のキャリア毎の所要C/N劣化量を前記帯域内で平均化し、帯域内平均所要C/N劣化量を求める所要C/N算出部と、
前記所要C/N算出部により求めた帯域内平均所要C/N劣化量を、予め設定された本来の所要C/Nに加算し、実際の所要C/Nを求め、前記C/N計算部により計算された前記受信C/Nから前記実際の所要C/Nを減算することで、余裕度を算出する余裕度算出部と、
を備えたことを特徴とする受信品質測定装置。
The horizontally polarized wave modulated signal and the vertically polarized wave modulated signal transmitted through the transmitting antenna including the plurality of antennas are received through the MIMO transmission path and the receiving antenna including the plurality of antennas, and the horizontally polarized wave is received. In the reception quality measuring device for measuring the reception quality at a predetermined point, based on the signal and the received signal of vertical polarization,
Reception for measuring the reception power of the reception signal of the horizontal polarization based on the reception signal of the horizontal polarization and measuring the reception power of the reception signal of the vertical polarization based on the reception signal of the vertical polarization An electric power measurement unit,
The reception C / N of the reception signal of the horizontal polarization is calculated based on the reception signal of the horizontal polarization, and the reception C / N of the reception signal of the vertical polarization is calculated based on the reception signal of the vertical polarization. A C / N calculator for calculating
The reception signal of the horizontal polarization and the reception signal of the vertical polarization, the reception power of the reception signal of the horizontal polarization and the reception power of the reception signal of the vertical polarization measured by the reception power measuring unit, and A transmission path matrix of the MIMO transmission path is estimated for each carrier in a band based on known signals included in the horizontal polarization modulation signal and the vertical polarization modulation signal transmitted via a transmission antenna. A transmission line estimation unit,
A condition number calculation unit that calculates a condition number for each carrier in the band based on the transmission line matrix estimated by the transmission line estimation unit;
The required C / N deterioration amount corresponding to the condition number calculated by the condition number calculation unit is stored in the table in which the condition number and the required C / N deterioration amount corresponding to the condition number are stored, or Using a mathematical expression in which the relationship of the required C / N deterioration amount corresponding to the number of conditions is defined, it is specified for each carrier within the band, and the required C / N deterioration amount for each carrier within the band is determined within the band. A required C / N calculator for averaging and obtaining an average required C / N deterioration amount in the band;
The in-band average required C / N deterioration amount obtained by the required C / N calculation unit is added to a preset original required C / N to obtain an actual required C / N, and the C / N calculation unit A margin calculation unit that calculates a margin by subtracting the actual required C / N from the received C / N calculated by
A reception quality measuring device comprising:
コンピュータを、請求項1から3までのいずれか一項に記載の受信品質測定装置として機能させるための受信品質測定プログラム。   A reception quality measurement program for causing a computer to function as the reception quality measurement device according to any one of claims 1 to 3.
JP2016094102A 2016-05-09 2016-05-09 Reception quality measuring device and program Active JP6694321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016094102A JP6694321B2 (en) 2016-05-09 2016-05-09 Reception quality measuring device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094102A JP6694321B2 (en) 2016-05-09 2016-05-09 Reception quality measuring device and program

Publications (2)

Publication Number Publication Date
JP2017204677A JP2017204677A (en) 2017-11-16
JP6694321B2 true JP6694321B2 (en) 2020-05-13

Family

ID=60322909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094102A Active JP6694321B2 (en) 2016-05-09 2016-05-09 Reception quality measuring device and program

Country Status (1)

Country Link
JP (1) JP6694321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240205B2 (en) * 2019-03-01 2023-03-15 日本放送協会 Measuring device and program
WO2023012950A1 (en) * 2021-08-04 2023-02-09 日本電信電話株式会社 Antenna positioning direction presentation device, antenna positioning direction presentation method, and antenna positioning direction presentation program
WO2023162104A1 (en) * 2022-02-24 2023-08-31 日本電信電話株式会社 Radio wave direction-of-arrival estimation device and radio wave direction-of-arrival estimation method

Also Published As

Publication number Publication date
JP2017204677A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
EP2549812B1 (en) RF Fingerprinting for Location Estimate
RU2492573C2 (en) Method for calibration and beam formation in radio communication system
JP5691613B2 (en) Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method
US8095185B2 (en) Estimation of angular parameters of a signal at an antenna array
JP6694321B2 (en) Reception quality measuring device and program
US20170131335A1 (en) Coherent signal analyzer
EP2670063B1 (en) Information processing device and information processing method, as well as nontemporary computer readable medium wherein information processing has been stored
US20120218141A1 (en) Method for iterative estimation of global parameters
EP2594100A2 (en) A method for calibrating antenna reciprocity in a base station of wireless network and a device thereof
US11018749B2 (en) OAM multiplexing communication system and inter-mode interference compensation method
EP3574593B1 (en) Method for calibration of a mimo array based on an opportunistic signal
Chen et al. Multiplexing efficiency for MIMO antenna‐channel impairment characterisation in realistic multipath environments
JP2017204855A (en) Receiver circuit
KR20190043080A (en) Estimation method and compensation method for rf chain imbalance in uca oam radio system
US8537928B2 (en) Channel estimation methods and systems based on power measurement at receivers
JP2017204676A (en) Antenna characteristics measuring device and program
US8040982B1 (en) Phase-adjusted channel estimation for frequency division multiplexed channels
US10756831B2 (en) Characterizing transmit channels from an antenna array to a transceiver
EP2398111B1 (en) Calibration device
Cloudt Bluetooth low energy direction finding on embedded hardware by mitigating carrier frequency offset and multipath fading
JP4555656B2 (en) Radio wave arrival direction estimation device
US20220065972A1 (en) Fast Convergence Method for Cross-Correlation Based Modulation Quality Measurements
KR101007350B1 (en) Method of detecting and cancelling multipath interference signal and apparatus thereof
US8659989B2 (en) Method and apparatus for waveform independent ranging
US8121225B1 (en) Estimating the angle of arrival of a signal received by an array of commutated antenna elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200417

R150 Certificate of patent or registration of utility model

Ref document number: 6694321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250