JP6693385B2 - DC-DC converter and electronic control device - Google Patents

DC-DC converter and electronic control device Download PDF

Info

Publication number
JP6693385B2
JP6693385B2 JP2016215124A JP2016215124A JP6693385B2 JP 6693385 B2 JP6693385 B2 JP 6693385B2 JP 2016215124 A JP2016215124 A JP 2016215124A JP 2016215124 A JP2016215124 A JP 2016215124A JP 6693385 B2 JP6693385 B2 JP 6693385B2
Authority
JP
Japan
Prior art keywords
converter
vin
maximum value
input voltage
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016215124A
Other languages
Japanese (ja)
Other versions
JP2018074850A (en
Inventor
雄治 山田
雄治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016215124A priority Critical patent/JP6693385B2/en
Priority to DE102017218185.0A priority patent/DE102017218185A1/en
Publication of JP2018074850A publication Critical patent/JP2018074850A/en
Application granted granted Critical
Publication of JP6693385B2 publication Critical patent/JP6693385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、少なくとも昇圧機能を備えるDC−DCコンバータ,及び当該コンバータを備える電子制御装置に関する。   The present invention relates to a DC-DC converter having at least a boosting function, and an electronic control device including the converter.

昇圧型のDC−DCコンバータにおいては、PWM制御におけるDutyと負荷電流との関係を示す曲線は上方に凸となる2次特性を示す。つまり、Dutyには負荷電流を最大にする極値が存在し、Dutyがその極値を超えるとDC−DCコンバータの効率が低下する。このため、Dutyの最大値を制限してスイッチング動作を行うDC−DCコンバータが提案されている。   In the step-up DC-DC converter, the curve showing the relationship between the duty and the load current in the PWM control shows a secondary characteristic that is convex upward. That is, the duty has an extreme value that maximizes the load current, and when the duty exceeds the extreme value, the efficiency of the DC-DC converter decreases. Therefore, a DC-DC converter that limits the maximum value of Duty and performs a switching operation has been proposed.

尚、特許文献1は、上述のように効率の低下を防止するためではないが、起動時にソフトスタートを行う目的でDutyの最大値を制限する構成が開示されている。   It should be noted that Patent Document 1 discloses a configuration in which the maximum value of Duty is limited for the purpose of performing a soft start at the time of startup, although this is not for the purpose of preventing a decrease in efficiency as described above.

特開2010−279128号公報JP, 2010-279128, A

しかしながら、上記の特性はDC−DCコンバータに入力される電圧に依存しているため、広範囲な入力電圧に対応する場合には最適な最大値からの乖離が大きくなることがあり、効率の低下防止が十分であるとは言えなかった。   However, since the above characteristics depend on the voltage input to the DC-DC converter, the deviation from the optimum maximum value may be large when a wide range of input voltage is supported, and the efficiency can be prevented from decreasing. Wasn't enough.

本発明は上記事情に鑑みてなされたものであり、その目的は、広範囲な入力電圧に対して効率の低下を適切に防止できるDC−DCコンバータ,及び当該コンバータを備える電子制御装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a DC-DC converter capable of appropriately preventing a decrease in efficiency over a wide range of input voltages, and an electronic control device including the converter. It is in.

請求項1記載のDC−DCコンバータによれば、制御部は、導通端子の一端が、入力電源の通電経路に配置されるコイルの何れか一端に接続される1つ以上のスイッチング素子を、PWM制御によりスイッチング動作させる。そして制御部は、出力電圧が目標電圧となるように昇圧動作を行う際に、PWM制御におけるDutyの最大値を入力電圧に応じて設定する。このように構成すれば、入力電圧が変動した場合でも、Dutyの最大値を適宜変化させてDC−DCコンバータの効率が低下することを防止できる。   According to the DC-DC converter of claim 1, the control unit controls one or more switching elements in which one end of the conduction terminal is connected to any one end of the coil arranged in the energization path of the input power source by PWM. Switching operation is performed by control. Then, the control unit sets the maximum value of the Duty in the PWM control according to the input voltage when performing the boosting operation so that the output voltage becomes the target voltage. According to this structure, even if the input voltage varies, it is possible to prevent the efficiency of the DC-DC converter from being lowered by appropriately changing the maximum value of Duty.

具体的には、制御部は、入力電圧が高くなるのに応じて最大値を減少させることで、入力電圧の変動に応じて出力電流が最大となるようにDutyの最大値を設定し、入力電圧の上昇に伴う効率の低下を防止する。 Specifically, control section, by reducing the maximum value according to the input voltage increases, the output current in accordance with a variation in the input voltage to set the maximum value of the Duty to maximize, It prevents the decrease of efficiency due to the increase of input voltage.

第1実施形態であり、DC−DCコンバータの構成を示す図It is 1st Embodiment and is a figure which shows the structure of a DC-DC converter. 電源制御部のフローチャートFlow chart of power supply control unit 入力電圧Vinが異なる場合に、Dutyと出力電流Ioutとの関係を示す図The figure which shows the relationship between Duty and output current Iout, when input voltage Vin differs. 昇圧動作を行う場合の各MOSFETのスイッチング状態を示す図The figure which shows the switching state of each MOSFET at the time of performing a boost operation. 第2実施形態であり、DC−DCコンバータが昇降圧動作を行う場合の各MOSFETのスイッチング状態を示す図It is 2nd Embodiment and is a figure which shows the switching state of each MOSFET when a DC-DC converter performs a buck-boost operation. 入力電圧Vinが異なる場合に、Dutyと出力電流Ioutとの関係を示す図The figure which shows the relationship between Duty and output current Iout, when input voltage Vin differs. 第3実施形態であり、電子制御装置の構成を示す機能ブロック図It is 3rd Embodiment and is a functional block diagram which shows the structure of an electronic controller. マイクロコンピュータのフローチャートMicrocomputer flow chart

(第1実施形態)
図1に示すように、本実施形態のDC−DCコンバータ10は、電源入力端子とグランドとの間に2つのNチャネルMOSFETであるMOS1及びMOS2の直列回路が接続されている。MOS1及びMOS2の共通接続点と電源出力端子との間には、コイル5及びNチャネルMOSFETであるMOS4の直列回路が接続されている。電源出力端子とグランドとの間には、コンデンサ6が接続されている。MOS4のドレインとグランドとの間には、NチャネルMOSFETであるMOS3が接続されている。これらのMOS1〜MOS4のスイッチングは、電源制御部7によりPWM(Pulse Width Modulation)制御される。尚、MOS1〜MOS4はそれぞれ第1〜第4スイッチング素子に相当し、それらのソース及びドレインは導通端子に相当する。
(First embodiment)
As shown in FIG. 1, in the DC-DC converter 10 of the present embodiment, a series circuit of two N-channel MOSFETs MOS1 and MOS2 is connected between a power supply input terminal and a ground. A series circuit of the coil 5 and the MOS 4 which is an N-channel MOSFET is connected between the common connection point of the MOS 1 and the MOS 2 and the power supply output terminal. The capacitor 6 is connected between the power output terminal and the ground. The MOS3, which is an N-channel MOSFET, is connected between the drain of the MOS4 and the ground. Switching of these MOS1 to MOS4 is PWM (Pulse Width Modulation) controlled by the power supply controller 7. The MOS1 to MOS4 correspond to the first to fourth switching elements, respectively, and their sources and drains correspond to the conduction terminals.

電源制御部7は、Duty決定部11,MaxDuty算出部12,MaxDuty制限部13及びSW制御部14を備えている。Duty決定部11は、DC−DCコンバータ10の出力電圧Voutを参照し、当該電圧Voutが目標電圧となるようにPWM制御における要求Dutyを決定し(図2,S1)、MaxDuty制限部13に入力する。MaxDuty算出部12は、DC−DCコンバータ1の入力電圧Vinを参照して前記Dutyの最大値であるMaxDutyを算出し(図2,S2)、MaxDuty制限部13に入力する。   The power supply control unit 7 includes a duty determination unit 11, a MaxDuty calculation unit 12, a MaxDuty restriction unit 13, and a SW control unit 14. The duty determining unit 11 refers to the output voltage Vout of the DC-DC converter 10, determines the required duty in the PWM control so that the voltage Vout becomes the target voltage (FIG. 2, S1), and inputs it to the MaxDuty limiting unit 13. To do. The MaxDuty calculating unit 12 calculates MaxDuty which is the maximum value of the Duty by referring to the input voltage Vin of the DC-DC converter 1 (FIG. 2, S2) and inputs it to the MaxDuty limiting unit 13.

MaxDuty制限部13は、Duty決定部11により決定されたDutyが、MaxDuty算出部12より入力される最大値を超える際には(図2,S3で「YES」)、前記最大値に制限したDutyをSW制御部14に入力する(S4)。SW制御部14は、入力されたDutyに応じてMOS1〜4のスイッチング動作を行う(S5)。尚、Duty決定部11は出力電圧検出部に相当し、MaxDuty算出部12は入力電圧検出部に相当する。そして、MaxDuty制限部13及びSW制御部14が請求項1の「制御部」に相当する。   When the Duty determined by the Duty determination unit 11 exceeds the maximum value input from the MaxDuty calculation unit 12 (“YES” in S2 of FIG. 2), the MaxDuty restriction unit 13 restricts the Duty to the maximum value. Is input to the SW control unit 14 (S4). The SW control unit 14 performs the switching operation of the MOS1 to 4 according to the input duty (S5). The Duty determining unit 11 corresponds to the output voltage detecting unit, and the MaxDuty calculating unit 12 corresponds to the input voltage detecting unit. Then, the MaxDuty limiting unit 13 and the SW control unit 14 correspond to the “control unit” in claim 1.

次に、本実施形態の作用について説明する。図2のステップS2におけるMaxDutyの算出は、図3に実線で示すように、入力電圧Vinのレベルに応じて、DC−DCコンバータ1の出力電流Ioutが最大値を下回らないように行う。図中に破線で示すのは従来のDuty制限値であり、例えばVin=3.5Vについて出力電流Ioutが最大となるDutyを、入力電圧Vinが変動する際にも一律に適用していた。   Next, the operation of this embodiment will be described. The calculation of MaxDuty in step S2 of FIG. 2 is performed so that the output current Iout of the DC-DC converter 1 does not fall below the maximum value according to the level of the input voltage Vin, as shown by the solid line in FIG. The dotted line in the figure indicates the conventional duty limit value, and for example, the duty that maximizes the output current Iout when Vin = 3.5V is uniformly applied even when the input voltage Vin changes.

図4に示すように、DC−DCコンバータ10が昇圧して出力電圧Voutを生成する際には、MOS1を連続ONに、つまりDutyを100%にすると共にMOS2を連続OFFに、つまりDutyを0%にする。そして、MOS3をDuty値DでON,Duty値(1−D)でOFFすると共に、MOS4をDuty値DでOFF,Duty値(1−D)でONする。   As shown in FIG. 4, when the DC-DC converter 10 steps up to generate the output voltage Vout, the MOS1 is continuously turned on, that is, the duty is set to 100%, and the MOS2 is continuously turned off, that is, the duty is 0. %. Then, the MOS3 is turned on at the duty value D and turned off at the duty value (1-D), and the MOS4 is turned off at the duty value D and turned on at the duty value (1-D).

この場合、図3に示す出力電流Ioutは、DC−DCコンバータ10の平均合成抵抗をRとすると、(1)式で表される。
Iout={(1−D)Vin−(1−D)Vout} …(1)
(1)式の分子をDuty値Dで微分し、解が「0」となる時のDuty値をDmaxとすると、(2)式で表される。
Dmax=1−{Vin/(2Vout)} …(2)
したがって、DC−DCコンバータ10が昇圧動作を行う際には、(2)式に従いMaxDutyを算出することで、入力電圧Vin,出力電圧Voutに応じて出力電流Ioutが最大となるように制御できる。
In this case, the output current Iout shown in FIG. 3 is expressed by equation (1), where R is the average combined resistance of the DC-DC converter 10.
Iout = {(1-D) Vin- (1-D) 2 Vout} ... (1)
When the numerator of the equation (1) is differentiated by the duty value D and the duty value when the solution becomes “0” is Dmax, it is expressed by the equation (2).
Dmax = 1- {Vin / (2Vout)} (2)
Therefore, when the DC-DC converter 10 performs the boosting operation, by calculating MaxDuty according to the equation (2), the output current Iout can be controlled to be maximum according to the input voltage Vin and the output voltage Vout.

以上のように本実施形態によれば、電源制御部7は、ドレイン又はソースの一方が、入力電源の通電経路に配置されるコイル5の何れか一端に接続されるMOS1〜MOS4をPWM制御によりスイッチング動作させる。そして電源制御部7は、出力電圧Voutが目標電圧となるように昇圧動作を行う際に、PWM制御におけるDutyの最大値Dmaxを入力電圧Vinに応じて設定する。このように構成すれば、入力電圧Vinが変動した場合でも、最大値Dmaxを適宜変化させて、DC−DCコンバータ10の効率が低下することを防止できる。   As described above, according to the present embodiment, the power supply control unit 7 controls the MOS1 to MOS4, one of the drain and the source of which is connected to any one end of the coil 5 arranged in the energization path of the input power supply, by the PWM control. Switch operation. Then, the power supply control unit 7 sets the maximum value Dmax of the duty in the PWM control according to the input voltage Vin when performing the boosting operation so that the output voltage Vout becomes the target voltage. With this configuration, even when the input voltage Vin fluctuates, the maximum value Dmax can be appropriately changed to prevent the efficiency of the DC-DC converter 10 from decreasing.

具体的には、電源入力端子とグランドとの間にMOS1及びMOS2の直列回路を接続し、コイル5の一端とグランドとの間にMOS3を接続し、前記一端と電源出力端子との間にMOS4を接続する。また、コイル5の他端をMOS1及びMOS2の共通接続点に接続する。そして電源制御部7は、MOS3及びMOS4をスイッチング動作させて昇圧動作を行う際の最大値Dmaxを(2)で算出することで、入力電圧Vinが高くなるのに応じて最大値Dmaxを減少させるようにした。したがって、入力電圧Vinの変動に応じて出力電流Ioutが最大となるように最大値Dmaxを設定し、入力電圧Vinの上昇に伴う効率の低下を防止できる。   Specifically, a series circuit of MOS1 and MOS2 is connected between the power input terminal and the ground, a MOS3 is connected between one end of the coil 5 and the ground, and a MOS4 is connected between the one end and the power output terminal. Connect. The other end of the coil 5 is connected to the common connection point of the MOS1 and the MOS2. Then, the power supply control unit 7 calculates the maximum value Dmax when performing the boosting operation by performing the switching operation of the MOS3 and MOS4 by (2), thereby decreasing the maximum value Dmax as the input voltage Vin increases. I did it. Therefore, it is possible to set the maximum value Dmax so that the output current Iout is maximized according to the variation of the input voltage Vin, and prevent the efficiency from being lowered due to the increase of the input voltage Vin.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。DC−DCコンバータ10が昇降圧動作により出力電圧Voutを生成する際には、図5に示すように、MOS1及びMOS3をDuty値DでON,Duty値(1−D)でOFFすると共に、MOS2及びMOS4をDuty値DでOFF,Duty値(1−D)でONする。
(Second embodiment)
Hereinafter, the same parts as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted. When the DC-DC converter 10 generates the output voltage Vout by the step-up / down operation, as shown in FIG. 5, the MOS1 and the MOS3 are turned on at the Duty value D and turned off at the Duty value (1-D), and the MOS2 is turned off. Further, the MOS 4 is turned off at the duty value D, and turned on at the duty value (1-D).

この場合、図6に示す出力電流Ioutは、(3)式で表される。
Iout={(1−D)Vout+D(1−D)Vin}/R …(3)
第1実施形態と同様に(3)式の分子をDuty値Dで微分し、解が「0」となる時のDuty値をDmaxとすると、(4)式で表される。
Dmax=Vin/{2(Vout+Vin)} …(4)
すなわち、第2実施形態のようにDC−DCコンバータ10が昇降圧動作を行う際には、(4)式によりDutyの最大値Dmaxを算出することで、第1実施形態と同様の効果が得られる。
In this case, the output current Iout shown in FIG. 6 is expressed by the equation (3).
Iout = {(1-D 2 ) Vout + D (1-D) Vin} / R ... (3)
As in the first embodiment, when the numerator of the equation (3) is differentiated by the duty value D and the duty value when the solution becomes “0” is Dmax, it is expressed by the equation (4).
Dmax = Vin / {2 (Vout + Vin)} (4)
That is, when the DC-DC converter 10 performs the step-up / down operation as in the second embodiment, the same effect as that of the first embodiment is obtained by calculating the maximum value Dmax of the duty by the equation (4). Be done.

(第3実施形態)
図7に示すように、第3実施形態では、電子制御装置21にDC−DCコンバータ10を備えている。DC−DCコンバータ10の出力電圧Voutは、図中に「LDO(Low Drop Out)1〜3」で示す3つのレギュレータ22(1),22(2)及び22(3)に入力されている。レギュレータ22(1)は、マイクロコンピュータ23用のコア電源を生成し、マイコン23に供給する。レギュレータ22(1)は、マイコン23が内蔵する例えばA/Dコンバータのような周辺回路用の電源を生成してマイコン23に供給する。レギュレータ22(3)は、センサ24の駆動電源を生成してセンサ24に供給する。
(Third Embodiment)
As shown in FIG. 7, in the third embodiment, the electronic control unit 21 includes the DC-DC converter 10. The output voltage Vout of the DC-DC converter 10 is input to three regulators 22 (1), 22 (2) and 22 (3) indicated by "LDO (Low Drop Out) 1 to 3" in the figure. The regulator 22 (1) generates a core power supply for the microcomputer 23 and supplies it to the microcomputer 23. The regulator 22 (1) generates a power source for a peripheral circuit such as an A / D converter built in the microcomputer 23 and supplies the power source to the microcomputer 23. The regulator 22 (3) generates driving power for the sensor 24 and supplies the driving power to the sensor 24.

また、マイコン23には、DC−DCコンバータ10においてレベルシフトされた入力電圧信号が入力されている。上記のレベルシフトは、DC−DCコンバータ10の外部で行われても良いし、マイコン23内の入力部で行われても良い。マイコン23は負荷電流制御部に相当する。   Further, the input voltage signal level-shifted in the DC-DC converter 10 is input to the microcomputer 23. The above level shift may be performed outside the DC-DC converter 10 or may be performed at the input unit in the microcomputer 23. The microcomputer 23 corresponds to the load current controller.

次に、第3実施形態の作用について説明する。マイコン23は、前記入力電圧信号を参照して閾値電圧Vthと比較する(S11)。入力電圧Vinが閾値電圧Vthを下回ると(YES)、入力電圧Vinに応じて出力電流Ioutの最大値Ioutmaxを算出する(S12)。そして、電子制御装置21の消費電流が最大値Ioutmaxを超えないように、マイコン23の動作モードを、低消費電力モードに移行させる(S13)。低消費電力モードにおいては、例えばシステムクロック信号の周波数を低下させたり、図示しない周辺回路の一部に対する電源の供給を遮断することで、消費電力を低減する。   Next, the operation of the third embodiment will be described. The microcomputer 23 refers to the input voltage signal and compares it with the threshold voltage Vth (S11). When the input voltage Vin falls below the threshold voltage Vth (YES), the maximum value Ioutmax of the output current Iout is calculated according to the input voltage Vin (S12). Then, the operation mode of the microcomputer 23 is shifted to the low power consumption mode so that the current consumption of the electronic control unit 21 does not exceed the maximum value Ioutmax (S13). In the low power consumption mode, the power consumption is reduced by, for example, lowering the frequency of the system clock signal or cutting off the power supply to a part of the peripheral circuit (not shown).

第1実施形態のように、DC−DCコンバータ10が昇圧動作を行う場合のDutyの最大値Dmaxは(2)式であるから、(1)式に最大値Dmaxを代入することで得られる最大値Ioutmaxは、(5)式となる。
Ioutmax=Vin・2/(4・Vout・R) …(5)
また、第2実施形態のように、DC−DCコンバータ10が昇降圧動作を行う場合のDutyの最大値Dmaxは(4)式であるから、(3)式に最大値Dmaxを代入することで得られる最大値Ioutmaxは、(6)式となる。
Ioutmax=[Vin・2/{4(Vout・+Vin)}+Vout]/R
…(6)
Since the maximum value Dmax of the duty when the DC-DC converter 10 performs the boosting operation as in the first embodiment is the expression (2), the maximum value obtained by substituting the maximum value Dmax in the expression (1). The value Ioutmax is given by equation (5).
Ioutmax = Vin · 2 // (4 · Vout · R) (5)
Further, as in the second embodiment, the maximum value Dmax of the duty when the DC-DC converter 10 performs the step-up / down operation is the expression (4), so by substituting the maximum value Dmax in the expression (3). The maximum value Ioutmax obtained is given by equation (6).
Ioutmax = [Vin · 2 / {4 (Vout · + Vin)} + Vout] / R
… (6)

以上のように第3実施形態によれば、電子制御装置21にDC−DCコンバータ10を備え、マイコン23が、電子制御装置21の消費電流が最大値Ioutmaxを超えないように制御する。具体的には、最大値Ioutmaxを、DC−DCコンバータ10が昇圧動作を行う際には(5)式で設定し、DC−DCコンバータ10が昇降圧動作を行う際には(6)式で設定するようにした。このように構成すれば、DC−DCコンバータ10の効率を維持した状態で電子制御装置21を動作させることができる。   As described above, according to the third embodiment, the electronic control unit 21 is provided with the DC-DC converter 10, and the microcomputer 23 controls so that the current consumption of the electronic control unit 21 does not exceed the maximum value Ioutmax. Specifically, the maximum value Ioutmax is set by the equation (5) when the DC-DC converter 10 performs the boost operation, and by the equation (6) when the DC-DC converter 10 performs the buck-boost operation. I set it. With this configuration, the electronic control unit 21 can be operated while maintaining the efficiency of the DC-DC converter 10.

(その他の実施形態)
スイッチング素子はNチャネルMOSFETに限ることなく、PチャネルMOSFETを用いたり、バイポーラトランジスタやIGBT等を用いても良い。
Dutyの最大値Dmaxは、必ずしも(2)式,(4)式で設定する必要はない。
昇圧動作又は昇降圧動作を行うためのスイッチング素子の具体的構成は、図1に示すものに限らない。導通端子の一端が、入力電源の通電経路に配置されるコイルの何れか一端に接続される1つ以上のスイッチング素子により構成されるものであれば良い。
(Other embodiments)
The switching element is not limited to the N-channel MOSFET and may be a P-channel MOSFET, a bipolar transistor, an IGBT or the like.
The maximum value Dmax of Duty does not necessarily have to be set by the expressions (2) and (4).
The specific configuration of the switching element for performing the boosting operation or the step-up / down operation is not limited to that shown in FIG. It suffices that one end of the conduction terminal is constituted by one or more switching elements connected to any one end of the coil arranged in the energization path of the input power supply.

電子制御装置の構成は図7に示すものに限ることなく、少なくとも実施形態のDC−DCコンバータを備えるものであれば良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
The configuration of the electronic control device is not limited to that shown in FIG. 7, and may be any configuration that includes at least the DC-DC converter of the embodiment.
Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than those, also fall within the scope and spirit of the present disclosure.

図面中、MOS1〜MOS4はNチャネルMOSFET、5はコイル、7は電源制御部、10はDC−DCコンバータ、11はDuty決定部、12はMaxDuty算出部、13はMaxDuty制限部、14はSW制御部を示す。   In the drawing, MOS1 to MOS4 are N-channel MOSFETs, 5 are coils, 7 is a power supply control unit, 10 is a DC-DC converter, 11 is a duty determination unit, 12 is a MaxDuty calculation unit, 13 is a MaxDuty restriction unit, and 14 is a SW control. Indicates a part.

Claims (7)

入力電圧を検出する入力電圧検出部(12)と、
出力電圧を検出する出力電圧検出部(11)と、
入力電源の通電経路に配置されるコイル(5)と、
導通端子の一端が、前記コイルの何れか一端に接続される1つ以上のスイッチング素子(MOS1〜MOS4)と、
前記スイッチング素子をPWM(Pulse Width Modulation)制御によりスイッチング動作させることで、前記出力電圧が目標電圧となるように昇圧動作を行う際に、前記PWM制御におけるDutyの最大値を前記入力電圧に応じて設定する制御部(7)とを備え
前記制御部は、前記入力電圧が高くなるのに応じて前記最大値を減少させるDC−DCコンバータ。
An input voltage detection unit (12) for detecting an input voltage,
An output voltage detection unit (11) for detecting the output voltage,
A coil (5) arranged in the energization path of the input power source,
One or more switching elements (MOS1 to MOS4), one end of which is connected to one end of the coil,
By performing a switching operation of the switching element by PWM (Pulse Width Modulation) control, when performing a boosting operation so that the output voltage becomes a target voltage, the maximum value of Duty in the PWM control is changed according to the input voltage. And a control unit (7) for setting ,
The controller is a DC-DC converter that reduces the maximum value as the input voltage increases .
電源入力端子とグランドとの間に接続される第1及び第2スイッチング素子(MOS1,MOS2)の直列回路と、
前記コイルの一端とグランドとの間に接続される第3スイッチング素子(MOS3)と、
前記コイルの一端と出力端子との間に接続される第4スイッチング素子(MOS4)とを備え、
前記コイルの他端は、前記第1及び第2スイッチング素子の共通接続点に接続されており、
前記制御部は、前記入力電圧をVin,前記出力電圧をVoutとすると、前記第3及び第4スイッチング素子をスイッチング動作させて昇圧動作を行う際の前記最大値Dmaxとすると、以下の式
Dmax=1−{Vin/(2Vout)}
で設定する請求項記載のDC−DCコンバータ。
A series circuit of first and second switching elements (MOS1, MOS2) connected between the power input terminal and the ground,
A third switching element (MOS3) connected between one end of the coil and the ground;
A fourth switching element (MOS4) connected between one end of the coil and the output terminal,
The other end of the coil is connected to a common connection point of the first and second switching elements,
Wherein the control unit, the input voltage Vin, when the output voltage is Vout, when the maximum value when performing the boost operation of the third and fourth switching elements by switching operation and Dmax, the following formula
Dmax = 1- {Vin / (2Vout)}
DC-DC converter of claim 1 wherein the set in.
前記制御部は、前記第1及び第2スイッチング素子も併せてスイッチング動作させることで、前記出力電圧が目標電圧となるように昇降圧動作を行い、
前記入力電圧をVin,前記出力電圧をVoutとすると、前記昇降圧動作を行う際の前記最大値Dmaxとすると、以下の式
Dmax=Vin/{2(Vout+Vin)}
で設定する請求項記載のDC−DCコンバータ。
The control unit performs a step-up / down operation so that the output voltage becomes a target voltage by performing a switching operation also on the first and second switching elements,
The input voltage Vin, when the output voltage Vout, the maximum value when performing the step-up and step-down operation when the Dmax, the following formula
Dmax = Vin / {2 (Vout + Vin)}
The DC-DC converter according to claim 2, wherein
請求項1からの何れか一項に記載のDC−DCコンバータを備える電子制御装置。 An electronic control unit comprising a DC-DC converter according to any one of claims 1 to 3. 荷電流を、前記入力電圧に応じて前記DC−DCコンバータの最大電流能力以下に設定する負荷電流制御部(23)を備える請求項記載の電子制御装置。 The load current, the electronic control device according to claim 4, further comprising a load current control unit (23) to be set below the maximum current capability of the DC-DC converter in accordance with the input voltage. 前記負荷電流制御部は、前記DC−DCコンバータの平均合成抵抗値をRとすると、前記DC−DCコンバータが昇圧動作を行う期間の負荷電流の最大値Ioutmaxを、以下の式
Ioutmax=Vin・2/(4・Vout・R)
で設定する請求項記載の電子制御装置。
When the average combined resistance value of the DC-DC converter is R, the load current control unit calculates the maximum value Ioutmax of the load current during the period in which the DC-DC converter performs the boosting operation by the following formula.
Ioutmax = Vin ・ 2 / (4 ・ Vout ・ R)
The electronic control device according to claim 5 , wherein the electronic control device is set by.
請求項記載のDC−DCコンバータと、
荷電流を、前記入力電圧に応じて前記DC−DCコンバータの最大電流能力以下に設定するため、前記DC−DCコンバータの平均合成抵抗値をRとすると、前記DC−DCコンバータが昇降圧動作を行う期間の負荷電流の最大値Ioutmaxを、以下の式
Ioutmax=[Vin・2/{4(Vout・+Vin)}+Vout]/R
で設定する負荷電流制御部とを備える電子制御装置。
A DC-DC converter according to claim 3 ,
The load current, for setting below the maximum current capability of the DC-DC converter in response to said input voltage, when the average combined resistance value of the DC-DC converter is R, the DC-DC converter step-up and step-down operations The maximum value Ioutmax of the load current during the period is calculated by the following equation: Ioutmax = [Vin · 2 / {4 (Vout · + Vin)} + Vout] / R
An electronic control unit comprising:
JP2016215124A 2016-11-02 2016-11-02 DC-DC converter and electronic control device Active JP6693385B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016215124A JP6693385B2 (en) 2016-11-02 2016-11-02 DC-DC converter and electronic control device
DE102017218185.0A DE102017218185A1 (en) 2016-11-02 2017-10-12 DC-DC converter and electronic control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215124A JP6693385B2 (en) 2016-11-02 2016-11-02 DC-DC converter and electronic control device

Publications (2)

Publication Number Publication Date
JP2018074850A JP2018074850A (en) 2018-05-10
JP6693385B2 true JP6693385B2 (en) 2020-05-13

Family

ID=61912602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215124A Active JP6693385B2 (en) 2016-11-02 2016-11-02 DC-DC converter and electronic control device

Country Status (2)

Country Link
JP (1) JP6693385B2 (en)
DE (1) DE102017218185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600387A (en) * 2020-10-14 2022-05-04 Nordic Semiconductor Asa DCDC converters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513494B2 (en) * 2004-10-15 2010-07-28 トヨタ自動車株式会社 Control device and control method for voltage converter
JP5217212B2 (en) * 2007-03-30 2013-06-19 富士電機株式会社 Boost chopper
JP5641555B2 (en) 2009-05-27 2014-12-17 レノボ・イノベーションズ・リミテッド(香港) DCDC converter and its startup control method
JP2012125048A (en) * 2010-12-08 2012-06-28 Denso Corp Motor drive apparatus and electric power steering system using the same
JP5642224B2 (en) * 2013-04-09 2014-12-17 三菱電機株式会社 Vehicle power supply
JP6274906B2 (en) * 2014-02-26 2018-02-07 京セラ株式会社 DC / DC converter and control method of DC / DC converter

Also Published As

Publication number Publication date
DE102017218185A1 (en) 2018-05-03
JP2018074850A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US7714546B2 (en) Step-up regulator with multiple power sources for the controller
US10008932B2 (en) Synchronous rectification DC/DC converter
JP5034399B2 (en) Switching regulator
US7528589B2 (en) Step-up DC/DC converter and electronic appliance therewith
WO2007010801A1 (en) Step-up/down switching regulator, its control circuit, and electronic apparatus using same
JP2014023272A (en) Switching power-supply circuit
CN110402534B (en) Power supply device for vehicle
US11121630B2 (en) In-vehicle DC-DC converter
JP2014050299A (en) Dc-dc converter and semiconductor device
JP6904283B2 (en) In-vehicle DCDC converter
JP5642349B2 (en) Pulse width modulation circuit, pulse width modulation method and regulator
JP2010154655A (en) Power system
JP6831713B2 (en) Bootstrap circuit
JP4548100B2 (en) DC-DC converter
JP4835064B2 (en) DC-DC converter
WO2019188166A1 (en) Dc-dc converter for vehicle
JP2014011841A (en) Switching regulator
JP6693385B2 (en) DC-DC converter and electronic control device
US9667141B2 (en) Switching power supply
JP2010081748A (en) Circuit and method for controlling step-up dc-dc converter and step-up dc-dc converter
WO2017073231A1 (en) Dc-dc converter
US9893615B2 (en) Switching power supply
US20150115908A1 (en) Phase Offset Compensation for Multiphase DC-DC Converter
JP2009219193A (en) Switching power supply device and electronic apparatus using the same
JP6248066B2 (en) Switching power supply circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6693385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250