JP6691456B2 - Fluid-filled cylindrical anti-vibration device - Google Patents

Fluid-filled cylindrical anti-vibration device Download PDF

Info

Publication number
JP6691456B2
JP6691456B2 JP2016162185A JP2016162185A JP6691456B2 JP 6691456 B2 JP6691456 B2 JP 6691456B2 JP 2016162185 A JP2016162185 A JP 2016162185A JP 2016162185 A JP2016162185 A JP 2016162185A JP 6691456 B2 JP6691456 B2 JP 6691456B2
Authority
JP
Japan
Prior art keywords
fluid
inner shaft
shaft member
liquid chamber
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016162185A
Other languages
Japanese (ja)
Other versions
JP2018031393A (en
Inventor
直基 古町
直基 古町
恭宣 安田
恭宣 安田
亮太 石川
亮太 石川
市川 浩幸
浩幸 市川
誠司 武藤
誠司 武藤
信也 吉田
信也 吉田
毅 美濃屋
毅 美濃屋
祐輔 杉田
祐輔 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Riko Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Toyota Motor Corp filed Critical Sumitomo Riko Co Ltd
Priority to JP2016162185A priority Critical patent/JP6691456B2/en
Publication of JP2018031393A publication Critical patent/JP2018031393A/en
Application granted granted Critical
Publication of JP6691456B2 publication Critical patent/JP6691456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、自動車のエンジンマウントなどに適用される筒形防振装置において、内部に封入された流体の流動作用を利用して防振効果が発揮されるようにした流体封入式筒形防振装置に関するものである。   The present invention relates to a cylindrical vibration damping device applied to an engine mount of an automobile, etc., in which a vibration damping effect is exhibited by utilizing a flow action of a fluid sealed inside. It relates to the device.

従来から、自動車のエンジンマウントなどに用いられる筒形防振装置が知られている。筒形防振装置は、インナ軸部材がアウタ筒部材に挿通されていると共に、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結された構造を有している。   BACKGROUND ART Conventionally, a cylindrical vibration damping device used for an engine mount of an automobile is known. The tubular vibration isolator has a structure in which the inner shaft member is inserted into the outer cylinder member, and the inner shaft member and the outer cylinder member are elastically connected to each other by a main rubber elastic body.

また、筒形防振装置の一種としては、内部に封入された流体の流動作用に基づく防振効果を利用する流体封入式筒形防振装置もある。この流体封入式筒形防振装置は、例えば特許第3736155号公報(特許文献1)に示されているように、インナ軸部材とアウタ筒部材の間に壁部の一部が本体ゴム弾性体としての弾性体で構成された一対の液室が形成されており、それら一対の液室に非圧縮性流体が封入されていると共に、それら一対の液室を相互に連通するオリフィス通路が形成された構造を有している。そして、一対の液室が配置された軸直角方向の振動入力に対して、オリフィス通路を通じてそれら一対の液室間で流体流動が生ぜしめられて、流体の流動作用に基づく防振効果が発揮されるようになっている。   Further, as one type of the tubular vibration damping device, there is also a fluid-filled tubular vibration damping device that utilizes a vibration damping effect based on a flow action of a fluid sealed inside. In this fluid-filled tubular vibration damping device, as shown in, for example, Japanese Patent No. 3736155 (Patent Document 1), a part of the wall portion between the inner shaft member and the outer tubular member is a main rubber elastic body. A pair of liquid chambers formed of an elastic body are formed, an incompressible fluid is enclosed in the pair of liquid chambers, and an orifice passage that connects the pair of liquid chambers to each other is formed. It has a different structure. Then, with respect to the vibration input in the direction perpendicular to the axis in which the pair of liquid chambers are arranged, fluid flow is generated between the pair of liquid chambers through the orifice passage, and the vibration damping effect based on the fluid flow action is exerted. It has become so.

ところで、振動伝達系を構成する部材間に介装される流体封入式筒形防振装置には、軸直角方向の振動のみならず軸方向の振動が入力される場合があり、軸方向の振動に対する防振性能が要求される場合もあり得る。   By the way, the fluid-filled tubular vibration damping device interposed between the members constituting the vibration transmission system may receive not only vibration in the direction perpendicular to the axis but also vibration in the axial direction. In some cases, anti-vibration performance is required.

しかしながら、特許文献1に記載の流体封入式筒形防振装置では、軸直角方向の振動に対して流体の流動作用に基づく防振効果が発揮される一方で、軸方向の振動に対しては、一対の液室において相対的な内圧変動が惹起され得ず、流体の流動作用に基づく防振効果を得ることができなかった。   However, in the fluid-filled cylindrical vibration damping device described in Patent Document 1, while vibration damping effect based on the fluid flow action is exerted against vibration in the direction perpendicular to the axis, vibration damping in the axial direction is achieved. However, relative internal pressure fluctuations cannot be induced in the pair of liquid chambers, and the vibration damping effect based on the fluid flow action cannot be obtained.

なお、インナ軸部材の両端部に振動伝達系の構成部材を取り付けられる流体封入式筒形防振装置では、インナ軸部材がアウタ筒部材に挿通されている必要があり、インナ軸部材の軸方向外側に液室を形成することが難しい。それ故、流体封入式筒形防振装置では、軸方向振動の入力によるインナ軸部材とアウタ筒部材の相対変位に対して相対的な内圧差を生じる液室がオリフィス通路で連通された構造を設けることが、所謂おわん形の流体封入式防振装置に比して構造上困難であった。すなわち、お椀形の流体封入式防振装置は、アウタ筒部材を軸方向に貫通せずにアウタ筒部材の軸方向一方の側に配されたインナ軸部材を採用することで、軸方向変位するインナ軸部材を液室に対してピストンのように作用させるようにしたものであり、本発明が対象とする筒形の流体封入式防振装置とは基本構造が異なる。   In addition, in the fluid filled tubular vibration damping device in which the constituent members of the vibration transmission system are attached to both ends of the inner shaft member, the inner shaft member needs to be inserted into the outer cylinder member, and the axial direction of the inner shaft member It is difficult to form a liquid chamber on the outside. Therefore, the fluid-filled tubular vibration damping device has a structure in which the liquid chamber that causes a relative internal pressure difference due to the relative displacement between the inner shaft member and the outer tubular member due to the input of the axial vibration is communicated with the orifice passage. It was structurally difficult to provide compared to a so-called bowl-shaped fluid filled type vibration damping device. That is, the bowl-shaped fluid filled type vibration damping device is axially displaced by adopting the inner shaft member arranged on one axial side of the outer tubular member without penetrating the outer tubular member in the axial direction. The inner shaft member is made to act on the liquid chamber like a piston, and its basic structure is different from that of the tubular fluid-filled type vibration damping device to which the present invention is directed.

特許第3736155号公報Japanese Patent No. 3736155

本発明は、上述の事情を背景に為されたものであって、その解決課題は、軸直角方向の振動に対する防振効果だけでなく、軸方向の振動に対する防振効果も有効に得ることができる、新規な構造の流体封入式筒形防振装置を提供することにある。   The present invention has been made in the background of the above circumstances, and the problem to be solved is not only the vibration isolation effect against the vibration in the axis-perpendicular direction but also the vibration isolation effect against the vibration in the axial direction. (EN) It is possible to provide a fluid-filled tubular vibration damping device having a novel structure that can be performed.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, embodiments of the present invention made to solve such problems will be described. The constituent elements used in each of the following aspects can be used in any combination as much as possible.

本発明の第一の態様は、インナ軸部材がアウタ筒部材に挿通されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結されていると共に、該インナ軸部材と該アウタ筒部材の間には壁部の一部が該本体ゴム弾性体で構成された一対の第一の液室が形成されて、それら一対の第一の液室が該インナ軸部材を挟んで径方向両側に配置されており、それら一対の第一の液室に非圧縮性流体が封入されていると共に、それら一対の第一の液室を外周部分で周方向に連通するオリフィス通路が形成されている流体封入式筒形防振装置において、前記本体ゴム弾性体の軸方向外方にゴム壁が配設されており、該本体ゴム弾性体と該ゴム壁の間に環状の第二の液室が形成されて、該第二の液室に非圧縮性流体が封入されていると共に、該第二の液室に封入された非圧縮性流体が前記一対の第一の液室に封入された非圧縮性流体よりも高粘性の流体とされており、更に該第二の液室内には少なくとも一方の端部が軸方向に開口する狭窄流路が形成されていることを、特徴とする。   According to a first aspect of the present invention, the inner shaft member is inserted into the outer tubular member, and the inner shaft member and the outer tubular member are elastically connected to each other by a main rubber elastic body, and the inner shaft member and the A pair of first liquid chambers, each of which is formed of the main body rubber elastic body, is formed between the outer tubular members, and the pair of first liquid chambers sandwiches the inner shaft member. Located on both sides in the radial direction, an incompressible fluid is enclosed in the pair of first liquid chambers, and an orifice passage is formed that connects the pair of first liquid chambers in the circumferential direction at the outer peripheral portion. In the fluid-filled tubular vibration-damping device, a rubber wall is arranged axially outward of the main body rubber elastic body, and a second annular ring is provided between the main body rubber elastic body and the rubber wall. When a liquid chamber is formed and an incompressible fluid is enclosed in the second liquid chamber, The incompressible fluid sealed in the second liquid chamber is a fluid having a higher viscosity than the incompressible fluids sealed in the pair of first liquid chambers, and the second liquid It is characterized in that at least one end of the chamber is formed with a constriction flow path that is open in the axial direction.

このような第一の態様に従う構造とされた流体封入式筒形防振装置によれば、軸直角方向の振動に対して一対の第一の液室に相対的な圧力差が生ぜしめられて、それら第一の液室を相互に連通するオリフィス通路を通じた流体流動が生ぜしめられることにより、流体の流動作用に基づく防振効果が発揮される。   According to the fluid-filled tubular vibration damping device having the structure according to the first aspect, a relative pressure difference is generated between the pair of first liquid chambers with respect to the vibration in the direction perpendicular to the axis. The fluid flow is generated through the orifice passages that connect the first liquid chambers to each other, so that the vibration damping effect based on the fluid flow action of the fluid is exhibited.

さらに、第二の液室内に第一の液室よりも高粘性の流体が封入されていることから、軸方向の振動に対しては、第二の液室内で流体の流動が生じることにより、粘性抵抗によるエネルギー減衰作用に基づいて、有効な防振効果を得ることができる。このような流動流体の粘性抵抗による防振効果は、複数の液室を通路で連通する構造を必要とすることなく、軸方向の入力に対して内部で流体流動が生ぜしめられ得る第二の液室を形成すると共に、粘性抵抗によるエネルギー減衰作用を効果的に生ぜしめる狭窄流路を第二の液室内に形成することで、有効に得ることができることから、構造の簡略化が図られ得る。   Furthermore, since the second liquid chamber is filled with a fluid having a higher viscosity than the first liquid chamber, the flow of the fluid occurs in the second liquid chamber with respect to the vibration in the axial direction. An effective anti-vibration effect can be obtained based on the energy damping effect of the viscous resistance. The anti-vibration effect due to the viscous resistance of such a flowing fluid does not require a structure in which a plurality of liquid chambers are communicated with each other by a passage, and a second fluid flow can be generated internally with respect to an axial input. The structure can be simplified because it can be effectively obtained by forming the constriction flow channel that forms the liquid chamber and the energy damping effect due to the viscous resistance in the second liquid chamber. .

加えて、このような流動流体の粘性抵抗を利用した防振構造は、複数の液室を通路で連通する構造に比して狭窄流路の流路断面積や流路長さを小さくすることができることから、インナ軸部材が軸方向に貫通して設けられる流体封入式筒形防振装置においても、流体の漏れや液室の短絡などの問題を生じることなく設けることが可能となる。   In addition, such a vibration isolation structure that uses the viscous resistance of the flowing fluid is to reduce the flow passage cross-sectional area and flow passage length of the narrowed flow passage compared to the structure that connects multiple liquid chambers with passages. Therefore, even in the fluid-filled tubular vibration damping device in which the inner shaft member is provided so as to penetrate therethrough in the axial direction, it is possible to provide the fluid-free tubular vibration-damping device without causing problems such as fluid leakage and liquid chamber short-circuiting.

また、第二の液室は、周方向に連続した環状とされていることから、軸直角方向の入力振動に対して、封入された高粘性流体が周方向へ容易に流動することで一対の第一の液室間の流体流動による防振作用に対する悪影響も回避される。   In addition, since the second liquid chamber is formed into an annular shape that is continuous in the circumferential direction, the enclosed high-viscosity fluid easily flows in the circumferential direction against the input vibration in the direction perpendicular to the axis, so that The adverse effect of the fluid flow between the first liquid chambers on the vibration isolation effect is also avoided.

本発明の第二の態様は、第一の態様に記載された流体封入式筒形防振装置において、前記第二の液室には軸方向に延びる筒状の狭窄部材が前記インナ軸部材に外挿された状態で配設されており、前記第二の液室が該狭窄部材によって仕切られることにより前記狭窄流路が画成されているものである。   A second aspect of the present invention is the fluid-filled tubular vibration damping device according to the first aspect, wherein a cylindrical narrowing member extending in the axial direction is provided in the inner shaft member in the second liquid chamber. The constriction flow path is defined by being arranged in an extrapolated state and by partitioning the second liquid chamber by the constriction member.

第二の態様によれば、第二の液室を狭窄部材で仕切って、狭窄部材の内周側と外周側の少なくとも一方に狭窄流路を形成することにより、簡単な構造の狭窄部材によって狭窄流路を形成することができる。更に、狭窄部材が筒状とされていることによって、狭窄流路を全周に亘って形成することも容易になって、狭窄流路を流動する流体の粘性抵抗に基づく防振効果をより効率的に得ることが可能になる。   According to the second aspect, the second liquid chamber is partitioned by the narrowing member, and the narrowing channel is formed on at least one of the inner peripheral side and the outer peripheral side of the narrowing member, whereby the narrowing member has a simple structure. A flow path can be formed. Further, since the narrowing member has a cylindrical shape, it is easy to form the narrowing channel over the entire circumference, and the vibration damping effect based on the viscous resistance of the fluid flowing in the narrowing channel can be more efficiently achieved. It becomes possible to obtain it.

本発明の第三の態様は、第二の態様に記載された流体封入式筒形防振装置において、前記狭窄部材が段付き筒状とされており、該狭窄部材の小径部分が前記インナ軸部材に外挿状態で固定されていると共に、該狭窄部材の大径部分を貫通する連通孔が形成されており、前記狭窄流路が該狭窄部材の大径部分と該インナ軸部材の間を軸方向に延びて形成されているものである。   A third aspect of the present invention is the fluid-filled tubular vibration damping device according to the second aspect, wherein the narrowing member has a stepped tubular shape, and a small diameter portion of the narrowing member is the inner shaft. The member is fixed to the member in an externally inserted state, and a communication hole penetrating the large diameter portion of the narrowing member is formed, and the narrowing flow path is provided between the large diameter portion of the narrowing member and the inner shaft member. It is formed so as to extend in the axial direction.

第三の態様によれば、狭窄部材の小径部分がインナ軸部材に外挿状態で固定されることによって、狭窄部材の大径部分が第二の液室内に容易に保持される。更に、狭窄部材がインナ軸部材に固定されていることにより、軸方向の振動入力によるインナ軸部材とアウタ筒部材の軸方向への相対変位時に、狭窄部材の大径部分とインナ軸部材の間に形成される狭窄流路で軸方向の流体流動が生じて、流体の粘性抵抗に基づく防振効果が発揮される。   According to the third aspect, the small diameter portion of the narrowing member is fixed to the inner shaft member in an externally inserted state, so that the large diameter portion of the narrowing member is easily held in the second liquid chamber. Further, since the narrowing member is fixed to the inner shaft member, when the inner shaft member and the outer tubular member are relatively displaced in the axial direction by the vibration input in the axial direction, the large diameter portion of the narrowing member and the inner shaft member are The fluid flow in the axial direction is generated in the narrowed flow path formed in the above, and the vibration damping effect based on the viscous resistance of the fluid is exhibited.

本発明の第四の態様は、第二又は第三の態様に記載された流体封入式筒形防振装置において、前記ゴム壁の内周端部が前記狭窄部材の外周面に固着されており、該狭窄部材が前記インナ軸部材に外挿状態で固定されることによって該ゴム壁の内周端部が該インナ軸部材に流体密に支持されているものである。   A fourth aspect of the present invention is the fluid filled tubular vibration damping device according to the second or third aspect, wherein the inner peripheral end of the rubber wall is fixed to the outer peripheral surface of the narrowing member. The inner peripheral end of the rubber wall is fluid-tightly supported by the inner shaft member by fixing the narrowing member to the inner shaft member in an externally inserted state.

第四の態様によれば、狭窄部材がゴム壁のインナ軸部材への取付構造を兼ねることにより、部品点数の削減や構造の簡略化が図られる。   According to the fourth aspect, the narrowing member also serves as a structure for attaching the rubber wall to the inner shaft member, so that the number of parts can be reduced and the structure can be simplified.

本発明の第五の態様は、第一〜第四の何れか1つの態様に記載された流体封入式筒形防振装置において、前記一対の第一の液室に封入された非圧縮性流体の動粘度が10cSt〜150cStの範囲とされていると共に、前記第二の液室に封入された非圧縮性流体の動粘度が5000cSt〜50000cStの範囲とされているものである。   A fifth aspect of the present invention is the fluid-filled tubular vibration damping device according to any one of the first to fourth aspects, wherein the incompressible fluid sealed in the pair of first liquid chambers. Has a kinematic viscosity in the range of 10 cSt to 150 cSt, and the incompressible fluid enclosed in the second liquid chamber has a kinematic viscosity in the range of 5000 cSt to 50,000 cSt.

第五の態様によれば、一対の第一の液室に封入される低粘性の流体の動粘度が10cSt〜150cStの範囲とされることにより、軸直角方向の振動入力時に、流体がオリフィス通路を効率的に流動して、流体の流動作用に基づく防振効果が有効に発揮される。一方、第二の液室に封入される高粘性の流体の動粘度が5000cSt〜50000cStの範囲とされることにより、軸方向の振動に対して狭窄流路における流体流動を有効に生ぜしめつつ、粘性抵抗によるエネルギー減衰作用を大きく得ることができる。   According to the fifth aspect, the kinematic viscosity of the low-viscosity fluid enclosed in the pair of first liquid chambers is set in the range of 10 cSt to 150 cSt, so that the fluid can flow through the orifice passage at the time of vibration input in the direction perpendicular to the axis. And the vibration damping effect based on the flow action of the fluid is effectively exhibited. On the other hand, by setting the kinematic viscosity of the highly viscous fluid enclosed in the second liquid chamber to be in the range of 5000 cSt to 50000 cSt, while effectively producing the fluid flow in the constriction flow channel against the axial vibration, A large energy damping action due to viscous resistance can be obtained.

本発明の第六の態様は、第一〜第五の何れか1つの態様に記載された流体封入式筒形防振装置において、前記一対の第一の液室に封入された非圧縮性流体がエチレングリコールとプロピレングリコールの少なくとも一方を含んでいると共に、前記第二の液室に封入された非圧縮性流体がシリコーン油を含んでいるものである。   A sixth aspect of the present invention is the fluid-filled tubular vibration damping device according to any one of the first to fifth aspects, wherein the incompressible fluid sealed in the pair of first liquid chambers. Contains at least one of ethylene glycol and propylene glycol, and the incompressible fluid enclosed in the second liquid chamber contains silicone oil.

第六の態様によれば、一対の第一の液室の封入流体として、エチレングリコールとプロピレングリコールの少なくとも一方を含む非圧縮性流体を採用することにより、低温環境下や高温環境下などにおいても所期の防振性能を安定して得ることができる。一方、第二の液室の封入流体として、温度による粘性の変化が小さいシリコーン油を含む非圧縮性流体を採用することにより、封入流体の粘性抵抗に基づく防振効果を安定して得ることができる。   According to the sixth aspect, by adopting an incompressible fluid containing at least one of ethylene glycol and propylene glycol as the sealed fluid of the pair of first liquid chambers, even in a low temperature environment or a high temperature environment. The desired vibration damping performance can be stably obtained. On the other hand, by adopting an incompressible fluid containing silicone oil whose viscosity changes little with temperature as the sealed fluid in the second liquid chamber, it is possible to obtain a stable vibration damping effect based on the viscous resistance of the sealed fluid. it can.

本発明の第七の態様は、第一〜第六の何れか1つの態様に記載された流体封入式筒形防振装置において、前記ゴム壁の外周側への変形量を制限する第一の拘束部材が設けられているものである。   A seventh aspect of the present invention is the fluid filled tubular vibration damping device according to any one of the first to sixth aspects, wherein the deformation amount of the rubber wall toward the outer peripheral side is limited. A restraint member is provided.

第七の態様によれば、ゴム壁の外周側への変形量が第一の拘束部材によって制限されることにより、軸方向振動の入力時に第二の液室内で流体の流動が効率的に生ぜしめられて、粘性抵抗に基づく防振効果が有利に発揮される。特に、ゴム壁の外周側への変形が第一の拘束部材によって制限されることで、ゴム壁自体の厚さを厚くするなどしてゴム壁の外周側への変形を制限する必要がなく、ゴム壁の設計自由度を高めることができる。   According to the seventh aspect, the amount of deformation of the rubber wall toward the outer peripheral side is limited by the first restraint member, so that the flow of the fluid efficiently occurs in the second liquid chamber when the axial vibration is input. Thus, the vibration damping effect based on the viscous resistance is advantageously exhibited. In particular, since the deformation of the rubber wall to the outer peripheral side is limited by the first restraint member, it is not necessary to limit the deformation of the rubber wall to the outer peripheral side by increasing the thickness of the rubber wall itself, The degree of freedom in designing the rubber wall can be increased.

本発明の第八の態様は、第一〜第七の何れか1つの態様に記載された流体封入式筒形防振装置において、前記ゴム壁の軸方向外方への変形量を制限する第二の拘束部材が設けられているものである。   An eighth aspect of the present invention is the fluid filled tubular vibration damping device according to any one of the first to seventh aspects, wherein the deformation amount of the rubber wall outward in the axial direction is limited. The second restraint member is provided.

第八の態様によれば、ゴム壁の軸方向外方への変形量が第二の拘束部材によって制限されることにより、軸方向振動の入力時に第二の液室内で流体の流動が効率的に生ぜしめられて、粘性抵抗に基づく防振効果が有利に発揮される。特に、ゴム壁の軸方向外方への変形が第二の拘束部材によって制限されることで、ゴム壁自体の厚さを厚くするなどしてゴム壁の軸方向外方への変形を制限する必要がなく、ゴム壁の設計自由度を高めることができる。   According to the eighth aspect, the amount of deformation of the rubber wall outward in the axial direction is limited by the second restraint member, so that the flow of the fluid in the second liquid chamber is efficient when the axial vibration is input. The anti-vibration effect based on the viscous resistance is exerted advantageously. In particular, the deformation of the rubber wall outward in the axial direction is limited by the second restraint member, so that the deformation of the rubber wall outward in the axial direction is limited by increasing the thickness of the rubber wall itself. There is no need, and the degree of freedom in designing the rubber wall can be increased.

本発明によれば、軸直角方向の振動に対して、一対の第一の液室を相互に連通するオリフィス通路を通じた流体流動が生ぜしめられるようになっており、流体の流動作用に基づく防振効果が発揮される。更に、軸方向の振動に対しては、第一の液室よりも高粘性の流体を封入された第二の液室内に形成された狭窄流路を流体が流動することにより、流動流体の粘性抵抗によるエネルギー減衰作用に基づいて、目的とする防振効果が発揮される。このように、本発明では、流体封入式筒形防振装置において、軸直角方向の振動に対する防振効果だけでなく、軸方向の振動に対する防振効果も有効に得ることが可能となる。   According to the present invention, the fluid flow is generated through the orifice passage that communicates the pair of first liquid chambers with respect to the vibration in the direction orthogonal to the axis, and the protection based on the flow action of the fluid is generated. The vibration effect is exhibited. Further, with respect to the vibration in the axial direction, the fluid flows through the constriction passage formed in the second liquid chamber in which the fluid having a higher viscosity than that of the first liquid chamber is sealed, so that the viscosity of the flowing fluid is increased. The intended vibration damping effect is exhibited based on the energy damping effect of the resistance. As described above, according to the present invention, in the fluid filled tubular vibration damping device, not only the vibration damping effect against the vibration in the direction perpendicular to the axis but also the vibration damping effect against the vibration in the axial direction can be effectively obtained.

本発明の第一の実施形態としてのエンジンマウントを示す断面図であって、図2のI−I断面に相当する図。It is sectional drawing which shows the engine mount as 1st embodiment of this invention, Comprising: It is a figure corresponded to the II cross section of FIG. 図1のII−II断面図。II-II sectional drawing of FIG. 図1に示すエンジンマウントの分解斜視図。The disassembled perspective view of the engine mount shown in FIG. 図1に示すエンジンマウントを別の方向から示す分解斜視図。The exploded perspective view which shows the engine mount shown in FIG. 1 from another direction. 図1のV−V断面図。1. VV sectional drawing of FIG. 本発明の第二の実施形態としてのエンジンマウントを示す断面図。Sectional drawing which shows the engine mount as 2nd embodiment of this invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1,2には、本発明に従う構造とされた流体封入式筒形防振装置の第一の実施形態として、自動車用のエンジンマウント10が示されている。エンジンマウント10は、インナ軸部材12とアウタ筒部材14が本体ゴム弾性体16によって相互に弾性連結された構造を有している。なお、以下の説明において、原則として、上下方向とは図1中の上下方向を、前後方向とはエンジンマウント10の軸方向となる図1中の左右方向を、左右方向とは図2中の左右方向を、それぞれ言う。   1 and 2 show an engine mount 10 for an automobile as a first embodiment of a fluid-filled tubular vibration damping device having a structure according to the present invention. The engine mount 10 has a structure in which an inner shaft member 12 and an outer cylinder member 14 are elastically connected to each other by a main rubber elastic body 16. In the following description, as a general rule, the up-down direction is the up-down direction in FIG. 1, the front-back direction is the left-right direction in FIG. 1, which is the axial direction of the engine mount 10, and the left-right direction is the left-right direction in FIG. Say left and right respectively.

より詳細には、インナ軸部材12は、鉄やアルミニウム合金などの金属や合成樹脂などで形成された高剛性の部材であって、全体として小径の略円筒形状を有している。また、本実施形態のインナ軸部材12は、軸方向中間部分において外周へ向けて突出する一対のストッパ突部18,18が一体形成されている。このストッパ突部18は、幅広の基端部20と狭幅の先端部22を備えており、一対が径方向上下両側へ向けて突出している。なお、ストッパ突部18は、例えば金属や合成樹脂で形成された別部品として形成されて、インナ軸部材12に後固定されるようにしても良い。   More specifically, the inner shaft member 12 is a high-rigidity member formed of metal such as iron or aluminum alloy, synthetic resin, or the like, and has a small-diameter, generally cylindrical shape as a whole. Further, the inner shaft member 12 of the present embodiment is integrally formed with a pair of stopper protrusions 18, 18 that protrude toward the outer periphery at the axially intermediate portion. The stopper protrusion 18 includes a wide base end portion 20 and a narrow width front end portion 22, and a pair of the stopper protrusion 18 protrudes upward and downward in the radial direction. The stopper protrusion 18 may be formed as a separate component made of, for example, metal or synthetic resin, and may be fixed to the inner shaft member 12 afterward.

また、インナ軸部材12には、中間スリーブ24が外周へ離れて外挿されている。中間スリーブ24は、インナ軸部材12と同様の材料で形成された高剛性の部材であって、薄肉大径の略円筒形状とされていると共に、径方向上下両側に一対の窓部26,26が形成されている。窓部26は、図1〜4に示すように、中間スリーブ24の軸方向中間部分を貫通して形成されており、周方向に半周よりも短い長さで延びている。更に、中間スリーブ24における一対の窓部26,26の周方向間には、それぞれ凹溝28が形成されている。凹溝28は、中間スリーブ24の軸方向中間部分において外周面に開口しながら周方向へ延びており、周方向両端が一対の窓部26,26の各一方に開放されている。なお、中間スリーブ24は、インナ軸部材12よりも軸方向長さが短くされている。   Further, an intermediate sleeve 24 is externally inserted into the inner shaft member 12 so as to be separated from the outer circumference. The intermediate sleeve 24 is a high-rigidity member made of the same material as the inner shaft member 12, has a thin-walled large-diameter substantially cylindrical shape, and has a pair of window portions 26, 26 on both upper and lower sides in the radial direction. Are formed. As shown in FIGS. 1 to 4, the window portion 26 is formed so as to penetrate the axially intermediate portion of the intermediate sleeve 24, and extends in the circumferential direction with a length shorter than a half circumference. Further, a groove 28 is formed between the pair of windows 26, 26 in the circumferential direction of the intermediate sleeve 24. The recessed groove 28 extends in the circumferential direction while opening to the outer peripheral surface in the axially intermediate portion of the intermediate sleeve 24, and both circumferential ends are open to each of the pair of windows 26, 26. The intermediate sleeve 24 has a shorter axial length than the inner shaft member 12.

そして、インナ軸部材12と中間スリーブ24が略同心的に配置されて、本体ゴム弾性体16によって相互に弾性連結されている。本体ゴム弾性体16は、厚肉の略円筒形状を有しており、内周面がインナ軸部材12の外周面に加硫接着されていると共に、外周面が中間スリーブ24の内周面に加硫接着されており、インナ軸部材12と中間スリーブ24を備えた一体加硫成形品として形成されている。なお、インナ軸部材12は、本体ゴム弾性体16を軸方向に貫通して設けられており、インナ軸部材12の軸方向両端部が、本体ゴム弾性体16の軸方向端部よりも軸方向外方へ突出して、本体ゴム弾性体16から露出している。また、本体ゴム弾性体16の軸方向前後両面が凹状湾曲面とされており、自由表面が大きく確保されている。   The inner shaft member 12 and the intermediate sleeve 24 are arranged substantially concentrically and are elastically connected to each other by the main rubber elastic body 16. The main rubber elastic body 16 has a thick and substantially cylindrical shape, and the inner peripheral surface thereof is vulcanized and adhered to the outer peripheral surface of the inner shaft member 12, and the outer peripheral surface thereof corresponds to the inner peripheral surface of the intermediate sleeve 24. It is vulcanized and bonded, and is formed as an integrally vulcanized molded product including the inner shaft member 12 and the intermediate sleeve 24. The inner shaft member 12 is provided so as to penetrate through the main rubber elastic body 16 in the axial direction, and both axial end portions of the inner shaft member 12 are positioned in the axial direction more than the axial end portions of the main rubber elastic body 16. It protrudes outward and is exposed from the main rubber elastic body 16. In addition, the front and rear surfaces in the axial direction of the main rubber elastic body 16 are concave curved surfaces, and a large free surface is secured.

さらに、本体ゴム弾性体16には、径方向上下両側に開口する一対のポケット部30,30が形成されている。ポケット部30は、本体ゴム弾性体16の外周面に開口する凹所であって、中間スリーブ24の窓部26と略対応する開口形状を有していると共に、内周底面にはストッパ突部18が突出している。そして、本体ゴム弾性体16の一対のポケット部30,30は、中間スリーブ24の一対の窓部26,26を通じて外周へ向けて開放されている。なお、本実施形態では、中間スリーブ24の窓部26の開口内面とストッパ突部18の表面が本体ゴム弾性体16によって覆われており、特にストッパ突部18の突出先端面が本体ゴム弾性体16と一体形成された緩衝ゴム32によって覆われている。   Further, the main rubber elastic body 16 is formed with a pair of pockets 30, 30 which are open on both upper and lower sides in the radial direction. The pocket portion 30 is a recess opening on the outer peripheral surface of the main rubber elastic body 16, has an opening shape substantially corresponding to the window portion 26 of the intermediate sleeve 24, and has a stopper protrusion on the inner peripheral bottom surface. 18 is protruding. The pair of pocket portions 30, 30 of the main rubber elastic body 16 are opened toward the outer periphery through the pair of window portions 26, 26 of the intermediate sleeve 24. In this embodiment, the inner surface of the opening of the window portion 26 of the intermediate sleeve 24 and the surface of the stopper protrusion 18 are covered with the main rubber elastic body 16, and in particular, the protruding tip surface of the stopper protrusion 18 is the main rubber elastic body. It is covered with a cushioning rubber 32 formed integrally with 16.

更にまた、インナ軸部材12の外周面が本体ゴム弾性体16と一体形成されたゴム層34によって覆われている。このゴム層34は、薄肉の略円筒形状を呈しており、本体ゴム弾性体16の内周端部から軸方向前後外側へ延び出している。   Furthermore, the outer peripheral surface of the inner shaft member 12 is covered with a rubber layer 34 integrally formed with the main rubber elastic body 16. The rubber layer 34 has a thin, substantially cylindrical shape, and extends from the inner peripheral end of the main rubber elastic body 16 toward the front and rear sides in the axial direction.

また、中間スリーブ24には、アウタ筒部材14が取り付けられている。アウタ筒部材14は、インナ軸部材12や中間スリーブ24と同様の材料で形成された高剛性の部材であって、薄肉大径の略円筒形状を有していると共に、内周面にはシールゴム層36が被着形成されている。また、アウタ筒部材14は、インナ軸部材12よりも軸方向長さが短くされており、中間スリーブ24と略同じ軸方向長さで形成されている。そして、アウタ筒部材14は、中間スリーブ24に外挿されて八方絞りなどの縮径加工を施されることにより、中間スリーブ24に対して流体密に固定されている。これにより、インナ軸部材12がアウタ筒部材14に対して挿通配置されており、インナ軸部材12がアウタ筒部材14よりも軸方向両側へ突出している。   The outer sleeve member 14 is attached to the intermediate sleeve 24. The outer tubular member 14 is a high-rigidity member formed of the same material as the inner shaft member 12 and the intermediate sleeve 24, has a thin-walled large-diameter substantially cylindrical shape, and has a seal rubber on the inner peripheral surface. Layer 36 has been deposited. The outer tubular member 14 has an axial length shorter than that of the inner shaft member 12, and is formed to have substantially the same axial length as the intermediate sleeve 24. The outer tubular member 14 is fluid-tightly fixed to the intermediate sleeve 24 by being externally inserted into the intermediate sleeve 24 and subjected to a diameter reduction process such as an eight-sided drawing. As a result, the inner shaft member 12 is disposed so as to be inserted into the outer tubular member 14, and the inner shaft member 12 projects axially both sides than the outer tubular member 14.

このようにアウタ筒部材14が中間スリーブ24に外嵌装着されることにより、中間スリーブ24の一対の窓部26,26がアウタ筒部材14によって覆蓋されており、一対のポケット部30,30の開口がアウタ筒部材14によって流体密に塞がれて一対の空間が画成されている。かかる一対の空間に非圧縮性流体が封入されることにより、インナ軸部材12とアウタ筒部材14の径方向間には、壁部の一部が本体ゴム弾性体16で構成された一対の第一の液室38,38が形成されている。一対の第一の液室38,38は、インナ軸部材12を挟んで径方向両側に配置されている。なお、一対の第一の液室38,38に対する非圧縮性流体の封入は、第一の液室38,38の形成後に非圧縮性流体を第一の液室38,38へ注入するなどの手段で実現可能であるが、例えば、本体ゴム弾性体16の一体加硫成形品とアウタ筒部材14の組付け作業を非圧縮性流体で満たされた水槽中で行うことによっても実現できる。   By fitting the outer tubular member 14 onto the intermediate sleeve 24 in this manner, the pair of window portions 26, 26 of the intermediate sleeve 24 are covered by the outer tubular member 14, and the pair of pocket portions 30, 30 are covered. The opening is fluid-tightly closed by the outer tubular member 14 to define a pair of spaces. By enclosing the incompressible fluid in the pair of spaces, between the inner shaft member 12 and the outer tubular member 14, a part of the wall portion is formed of the main rubber elastic body 16. One liquid chamber 38, 38 is formed. The pair of first liquid chambers 38, 38 are arranged on both sides in the radial direction with the inner shaft member 12 interposed therebetween. The incompressible fluid is sealed in the pair of first liquid chambers 38, 38 by injecting the incompressible fluid into the first liquid chambers 38, 38 after forming the first liquid chambers 38, 38. Although it can be realized by means, it can also be realized by, for example, assembling the integrally vulcanized molded product of the main rubber elastic body 16 and the outer tubular member 14 in a water tank filled with an incompressible fluid.

なお、第一の液室38,38に封入される非圧縮性流体は、特に限定されるものではないが、動粘度が10cSt〜150cStの流体が望ましく、例えば水やエチレングリコール、プロピレングリコール、アルキレングリコール、シリコーン油、或いはそれらの混合液などが好適に採用され得る。第一の液室38,38の封入流体としては、特にエチレングリコールとプロピレングリコールの少なくとも一方を含む混合液が望ましく、本実施形態では、エチレングリコールとプロピレングリコールの混合液が採用されている。   The incompressible fluid sealed in the first liquid chambers 38, 38 is not particularly limited, but a fluid having a kinematic viscosity of 10 cSt to 150 cSt is desirable, and for example, water, ethylene glycol, propylene glycol, alkylene. Glycol, silicone oil, a mixed solution thereof, or the like can be preferably used. A mixed liquid containing at least one of ethylene glycol and propylene glycol is particularly desirable as the sealed fluid in the first liquid chambers 38, 38. In the present embodiment, a mixed liquid of ethylene glycol and propylene glycol is used.

また、中間スリーブ24の凹溝28,28には、オリフィス部材40が取り付けられている。オリフィス部材40は、金属や合成樹脂などで形成されており、図1〜4に示すように、軸方向に所定の幅をもって周方向へ一周に満たない長さで延びていると共に、外周面に開口して周方向へ延びる周溝42が形成されている。この周溝42は、オリフィス部材40の周方向何れかの端部で折り返されていることにより、全体として周方向に一周を超える長さで延びている。また、オリフィス部材40の周方向の二箇所(左右両側部分)には、前後に狭幅の取付部分43が形成されており、かかる取付部分43,43が中間スリーブ24の凹溝28,28に嵌め付けられることによって、オリフィス部材40が中間スリーブ24に対して位置決めされた状態で支持されている。   An orifice member 40 is attached to the concave grooves 28, 28 of the intermediate sleeve 24. The orifice member 40 is made of metal, synthetic resin, or the like, and as shown in FIGS. 1 to 4, has a predetermined width in the axial direction and extends in the circumferential direction by less than one full turn, and also has an outer peripheral surface. A circumferential groove 42 that opens and extends in the circumferential direction is formed. The circumferential groove 42 is folded back at any one end of the orifice member 40 in the circumferential direction, so that the circumferential groove 42 as a whole extends in the circumferential direction by a length of more than one round. Further, narrow mounting portions 43 are formed in the front and rear at two locations (left and right side portions) in the circumferential direction of the orifice member 40, and the mounting portions 43, 43 are formed in the concave grooves 28, 28 of the intermediate sleeve 24. By being fitted, the orifice member 40 is supported while being positioned with respect to the intermediate sleeve 24.

このオリフィス部材40は、中間スリーブ24に対してアウタ筒部材14が外嵌されることにより、外周面がアウタ筒部材14に対してシールゴム層36を介して重ね合わされており、周溝42の外周開口がアウタ筒部材14によって流体密に覆われている。これにより、オリフィス部材40とアウタ筒部材14の間には、周方向に延びるトンネル状の流路が形成されている。   The outer peripheral surface of the orifice member 40 is superposed on the outer cylindrical member 14 via the seal rubber layer 36 by the outer cylindrical member 14 being fitted onto the intermediate sleeve 24. The opening is fluid-tightly covered by the outer tubular member 14. As a result, a tunnel-shaped channel extending in the circumferential direction is formed between the orifice member 40 and the outer tubular member 14.

さらに、周溝42によって形成されたトンネル状の流路は、一方の端部がオリフィス部材40を貫通する第一の連通孔44を通じて一方の第一の液室38に連通されていると共に、他方の端部がオリフィス部材40を貫通する第二の連通孔46を通じて他方の第一の液室38に連通されている。これにより、一対の第一の液室38,38を外周部分で相互に連通するオリフィス通路48が形成されている。オリフィス通路48は、流動流体の共振周波数として把握されるチューニング周波数が、第一の液室38,38の壁ばね剛性を考慮しながら通路断面積(A)と通路長さ(L)の比(A/L)を適宜に設定することにより調節される。オリフィス通路48のチューニング周波数は、特に限定されるものではないが、本実施形態では、例えばエンジンシェイクなどに相当する10Hz程度の低周波数に設定されている。   Further, the tunnel-shaped flow path formed by the circumferential groove 42 has one end communicated with one first liquid chamber 38 through the first communication hole 44 penetrating the orifice member 40, and the other end. Is connected to the other first liquid chamber 38 through a second communication hole 46 that penetrates the orifice member 40. As a result, an orifice passage 48 that connects the pair of first liquid chambers 38, 38 to each other at the outer peripheral portion is formed. In the orifice passage 48, the tuning frequency grasped as the resonance frequency of the flowing fluid is such that the ratio of the passage cross-sectional area (A) to the passage length (L) ( It is adjusted by setting A / L) appropriately. The tuning frequency of the orifice passage 48 is not particularly limited, but in the present embodiment, it is set to a low frequency of about 10 Hz, which corresponds to, for example, an engine shake.

また、本体ゴム弾性体16の軸方向後方には、ゴム壁としての弾性ゴム壁50が配設されている。弾性ゴム壁50は、全体として略円環形状のゴム弾性体であって、より具体的には、図1に示すように、内周端部が略円環板形状の内周固着部52とされていると共に、内周固着部52の外周側には外周へ行くに従って前方へ傾斜する湾曲部54が連続して一体形成されており、更に湾曲部54の外周端部には略軸方向前後に延びる筒状部56が連続して一体形成されていると共に、筒状部56の前端部には外周へ広がる略円環板形状の外周固着部58が連続して一体形成されている。   An elastic rubber wall 50 as a rubber wall is arranged axially rearward of the main rubber elastic body 16. The elastic rubber wall 50 is a rubber elastic body having a substantially annular shape as a whole, and more specifically, as shown in FIG. 1, an inner peripheral fixing portion 52 having an inner peripheral end portion having a substantially annular plate shape. In addition, a curved portion 54, which is inclined forward as it goes to the outer periphery, is integrally formed on the outer peripheral side of the inner peripheral fixed portion 52, and the outer peripheral end portion of the curved portion 54 is substantially axially front and rear. A tubular portion 56 extending continuously is integrally formed with the front end portion of the tubular portion 56, and a substantially annular plate-shaped outer peripheral fixing portion 58 extending to the outer periphery is continuously formed integrally with the front end portion of the tubular portion 56.

さらに、弾性ゴム壁50の内周固着部52には、狭窄部材60が固着されている。狭窄部材60は、軸方向の中間部分に段差62が設けられた薄肉小径の略段付き円筒形状とされて、段差62よりも前方が大径の狭窄筒部64とされていると共に、後方が小径の内周嵌合部66とされている。そして、弾性ゴム壁50の内周固着部52は、狭窄部材60の内周嵌合部66および段差62の外面に対して加硫接着されている。   Further, the narrowing member 60 is fixed to the inner peripheral fixing portion 52 of the elastic rubber wall 50. The narrowing member 60 has a thin-walled, small-diameter, generally stepped cylindrical shape in which a step 62 is provided at an intermediate portion in the axial direction, and a front side of the step 62 is a narrowing cylindrical portion 64 having a large diameter, and a rear side thereof is formed. The inner peripheral fitting portion 66 has a small diameter. The inner peripheral fixing portion 52 of the elastic rubber wall 50 is vulcanized and adhered to the inner peripheral fitting portion 66 of the narrowing member 60 and the outer surface of the step 62.

更にまた、弾性ゴム壁50の外周固着部58には、外周取付部材68が固着されている。外周取付部材68は、全体として大径の略環状とされており、アウタ筒部材14に外嵌される略円筒形状の外周嵌合部70と、外周嵌合部70の後端部から内周へ向けて突出する内フランジ状の固着フランジ部72とを、一体で備えている。そして、弾性ゴム壁50の外周固着部58が、外周取付部材68の固着フランジ部72に対して加硫接着されている。本実施形態の弾性ゴム壁50は、狭窄部材60と外周取付部材68を備える一体加硫成形品として形成されている。   Furthermore, an outer peripheral mounting member 68 is fixed to the outer peripheral fixing portion 58 of the elastic rubber wall 50. The outer peripheral mounting member 68 has a large-diameter, substantially annular shape as a whole, and has a substantially cylindrical outer peripheral fitting portion 70 which is externally fitted to the outer tubular member 14, and an inner peripheral surface from a rear end portion of the outer peripheral fitting portion 70. And a fixed flange portion 72 in the form of an inner flange that protrudes toward. The outer peripheral fixing portion 58 of the elastic rubber wall 50 is vulcanized and adhered to the fixing flange portion 72 of the outer peripheral mounting member 68. The elastic rubber wall 50 of the present embodiment is formed as an integrally vulcanized molded product including the narrowing member 60 and the outer peripheral mounting member 68.

そして、狭窄部材60の内周嵌合部66がインナ軸部材12に対して外嵌固定されて、弾性ゴム壁50の内周端部がインナ軸部材12に取り付けられていると共に、外周取付部材68の外周嵌合部70がアウタ筒部材14に対して外嵌固定されて、弾性ゴム壁50の外周端部がアウタ筒部材14に取り付けられている。   The inner peripheral fitting portion 66 of the narrowing member 60 is externally fitted and fixed to the inner shaft member 12, and the inner peripheral end portion of the elastic rubber wall 50 is mounted on the inner shaft member 12 and the outer peripheral mounting member. An outer peripheral fitting portion 70 of 68 is externally fitted and fixed to the outer tubular member 14, and an outer peripheral end portion of the elastic rubber wall 50 is attached to the outer tubular member 14.

なお、インナ軸部材12と狭窄部材60の内周嵌合部66との間にゴム層34が挟まれていることにより、インナ軸部材12と狭窄部材60の間が流体密に封止されている。本実施形態では、インナ軸部材12の表面にゴム層34が被着形成されているが、例えば狭窄部材60の内周嵌合部66の内周面にゴム層が形成されていても良い。更に、アウタ筒部材14および中間スリーブ24の軸方向端面と外周取付部材68の固着フランジ部72との間に弾性ゴム壁50の外周固着部58が挟まれていることにより、アウタ筒部材14および中間スリーブ24と外周取付部材68の間が流体密に封止されている。   Since the rubber layer 34 is sandwiched between the inner shaft member 12 and the inner peripheral fitting portion 66 of the narrowing member 60, the inner shaft member 12 and the narrowing member 60 are fluid-tightly sealed. There is. In the present embodiment, the rubber layer 34 is adhered and formed on the surface of the inner shaft member 12, but the rubber layer may be formed, for example, on the inner peripheral surface of the inner peripheral fitting portion 66 of the narrowing member 60. Further, since the outer peripheral fixing portion 58 of the elastic rubber wall 50 is sandwiched between the axial end surfaces of the outer cylindrical member 14 and the intermediate sleeve 24 and the fixing flange portion 72 of the outer peripheral mounting member 68, the outer cylindrical member 14 and A fluid-tight seal is provided between the intermediate sleeve 24 and the outer peripheral mounting member 68.

このように、弾性ゴム壁50が、インナ軸部材12とアウタ筒部材14に取り付けられた状態で、本体ゴム弾性体16の軸方向外方に配設されることにより、本体ゴム弾性体16と弾性ゴム壁50の間には、環状の第二の液室74が画成されている。この第二の液室74は、壁部の一部が本体ゴム弾性体16によって構成されていると共に、壁部の他の一部が弾性ゴム壁50によって構成されており、内部に非圧縮性流体が封入されている。なお、本実施形態の弾性ゴム壁50は、軸方向振動の入力時に、それ自体の弾性によるピストン作用によって第二の液室74内で流体流動を惹起し得る程度に厚肉とされている。また、本実施形態の第二の液室74は、インナ軸部材12の周囲を略一定の断面形状をもって全周に亘って環状に延びている。   In this manner, the elastic rubber wall 50 is attached to the inner shaft member 12 and the outer tubular member 14, and is disposed axially outward of the main rubber elastic body 16, so that the main rubber elastic body 16 and An annular second liquid chamber 74 is defined between the elastic rubber walls 50. In the second liquid chamber 74, a part of the wall portion is composed of the main rubber elastic body 16 and the other part of the wall portion is composed of the elastic rubber wall 50, and the second liquid chamber 74 is internally incompressible. The fluid is enclosed. The elastic rubber wall 50 of the present embodiment is thick enough to cause a fluid flow in the second liquid chamber 74 by the piston action due to its own elasticity when the axial vibration is input. Further, the second liquid chamber 74 of the present embodiment extends annularly around the inner shaft member 12 over the entire circumference with a substantially constant cross-sectional shape.

ここにおいて、第二の液室74には、第一の液室38,38に封入された非圧縮性流体とは異なる非圧縮性流体が封入されており、特に第一の液室38,38に封入された非圧縮性流体よりも動粘度の大きな高粘性流体が封入されている。第二の液室74に封入される高粘性流体は、特に限定されるものではないが、動粘度が5000cSt〜50000cStの範囲に設定された流体が望ましく、例えばシリコーン油やポリエチレングリコールを含む流体などが好適に採用され、本実施形態ではシリコーン油とされている。第二の液室74に封入される流体の動粘度は、液体に粉体を混合したり、複数種類の液体を混合したりすることにより、適宜に調節され得る。なお、例えば、同じ種類の液体を異なる比率で混合してなる2種類の混合液を、第一の液室38,38の封入流体と第二の液室74の封入流体の各一方として採用することもできる。   Here, the second liquid chamber 74 is filled with an incompressible fluid different from the incompressible fluid filled in the first liquid chambers 38, 38, and particularly the first liquid chambers 38, 38. A high-viscosity fluid having a higher kinematic viscosity than the non-compressible fluid sealed in is sealed. The high-viscosity fluid sealed in the second liquid chamber 74 is not particularly limited, but a fluid having a kinematic viscosity in the range of 5000 cSt to 50,000 cSt is desirable, such as a fluid containing silicone oil or polyethylene glycol. Is preferably used, and is silicone oil in the present embodiment. The kinematic viscosity of the fluid sealed in the second liquid chamber 74 can be appropriately adjusted by mixing powder with the liquid or mixing a plurality of types of liquid. Note that, for example, two types of mixed liquids obtained by mixing the same type of liquid at different ratios are used as one of the sealed fluids of the first liquid chambers 38 and 38 and the sealed fluid of the second liquid chamber 74. You can also

また、第二の液室74には、狭窄部材60の狭窄筒部64が差し入れられている。即ち、狭窄部材60の狭窄筒部64は、図1,5に示すように、インナ軸部材12の表面を覆うゴム層34に対して外周側に所定の距離で離れて配置されており、第二の液室74が狭窄筒部64によって内周側と外周側に仕切られている。そして、狭窄筒部64の内周側、換言すれば狭窄筒部64とゴム層34の間には、軸方向に延びて前方へ向けて開口する狭窄領域が形成されており、かかる狭窄領域の後端部分が狭窄筒部64に貫通形成された連通孔76に連通されていることによって、狭窄筒部64とゴム層34の間を軸方向に延びる筒状の狭窄流路78が形成されている。この狭窄流路78は、第二の液室74に封入された高粘性流体の流動時に粘性抵抗によるエネルギー減衰が有効に生じるように、流路形状(例えば、狭窄筒部64とゴム層34の対向面間距離や流路長さなど)が設定されている。なお、連通孔76は、狭窄部材60の段差62に形成することもできる。   Further, the narrowed tube portion 64 of the narrowed member 60 is inserted into the second liquid chamber 74. That is, the narrowed cylindrical portion 64 of the narrowed member 60 is arranged at a predetermined distance on the outer peripheral side with respect to the rubber layer 34 covering the surface of the inner shaft member 12, as shown in FIGS. The second liquid chamber 74 is divided into an inner peripheral side and an outer peripheral side by the narrowed cylindrical portion 64. A narrowed region that extends in the axial direction and opens forward is formed between the inner circumferential side of the narrowed cylindrical portion 64, in other words, between the narrowed cylindrical portion 64 and the rubber layer 34. Since the rear end portion is communicated with the communication hole 76 formed through the narrowed tube portion 64, a tubular narrowed flow path 78 that extends in the axial direction between the narrowed tube portion 64 and the rubber layer 34 is formed. There is. The constriction channel 78 has a channel shape (for example, the constriction cylinder portion 64 and the rubber layer 34) so that energy attenuation due to viscous resistance is effectively generated when the high-viscosity fluid enclosed in the second liquid chamber 74 flows. The distance between the facing surfaces, the flow path length, etc.) are set. The communication hole 76 can also be formed in the step 62 of the narrowing member 60.

図5に示すように、軸方向両側の開口部を含む狭窄流路78の流路断面積は、第二の液室74における狭窄流路78以外の領域の断面積よりも小さいことが望ましい。具体的には、例えば、狭窄流路78の流路断面積が、第二の液室74全体の同じ断面での断面積に対して、好適には40%以下とされており、より好適には30%以下とされている。なお、狭窄流路78の流路断面積は、流路長さ方向に一定である必要はないが、第二の液室74の断面積に対して狭窄流路78の全長において上記範囲に設定されていることがより望ましい。   As shown in FIG. 5, the cross-sectional area of the narrowed flow passage 78 including the openings on both sides in the axial direction is preferably smaller than the cross-sectional area of the region other than the narrowed flow passage 78 in the second liquid chamber 74. Specifically, for example, the flow passage cross-sectional area of the narrowed flow passage 78 is preferably 40% or less with respect to the cross-sectional area of the same cross section of the entire second liquid chamber 74, and more preferably. Is 30% or less. The cross-sectional area of the narrowed flow passage 78 does not need to be constant in the flow length direction, but is set within the above range in the entire length of the narrowed flow passage 78 with respect to the cross-sectional area of the second liquid chamber 74. Is more desirable.

かくの如き構造とされたエンジンマウント10は、例えば、インナ軸部材12が図示しないパワーユニットに取り付けられると共に、アウタ筒部材14が図示しない車両ボデーに取り付けられることにより、パワーユニットがエンジンマウント10を介して車両ボデーによって防振支持されるようになっている。そして、車両への装着状態において、エンジンマウント10は、インナ軸部材12とアウタ筒部材14の間へ振動が入力されるようになっており、振動源であるパワーユニットから入力された振動が防振対象である車両ボデーに伝達されるのを防ぐようになっている。   In the engine mount 10 having such a structure, for example, the inner shaft member 12 is attached to a power unit (not shown) and the outer cylinder member 14 is attached to a vehicle body (not shown), so that the power unit is mounted via the engine mount 10. Anti-vibration support is provided by the vehicle body. Further, in a state where the engine mount 10 is mounted on a vehicle, vibration is input between the inner shaft member 12 and the outer tubular member 14, and the vibration input from the power unit, which is a vibration source, is vibration-proof. It is designed to prevent transmission to the target vehicle body.

すなわち、インナ軸部材12とアウタ筒部材14の間に軸直角方向(上下方向)の振動が入力されると、上下に配置された一対の第一の液室38,38において相対的な圧力変動が惹起される。これにより、第一の液室38,38を相互に連通するオリフィス通路48を通じて両室38,38間での流体流動が生ぜしめられて、流体の共振作用などの流動作用に基づく防振効果が発揮されるようになっている。特に本実施形態では、エンジンマウント10に対して軸直角方向に入力されるエンジンシェイクなどの低周波振動に対して、流体の流動作用に基づく防振効果が効果的に発揮される。   That is, when vibration in the direction perpendicular to the axis (vertical direction) is input between the inner shaft member 12 and the outer tubular member 14, relative pressure fluctuations in the pair of first liquid chambers 38, 38 arranged vertically. Is triggered. As a result, a fluid flow between the two chambers 38, 38 is generated through the orifice passage 48 that connects the first liquid chambers 38, 38 to each other, and a vibration damping effect based on a fluid action such as a resonance action of the fluid is produced. It is designed to be demonstrated. Particularly, in the present embodiment, the vibration damping effect based on the fluid flow action is effectively exerted against low frequency vibration such as engine shake input in the direction perpendicular to the axis of the engine mount 10.

さらに、動粘度を10cSt〜150cSt程度とされた低粘性流体が第一の液室38,38に封入されていることにより、オリフィス通路48を通じた流体流動が効率的に生ぜしめられて、流体の流動作用に基づく防振効果が有効に発揮される。特に、第一の液室38,38の封入流体がエチレングリコールとプロピレングリコールの少なくとも一方を含んでいることにより、温度による防振性能の変化などが低減乃至は回避されて、目的とする防振効果を安定して得ることができる。   Further, since the low-viscosity fluid having a kinematic viscosity of about 10 cSt to 150 cSt is enclosed in the first liquid chambers 38, 38, the fluid flow through the orifice passage 48 is efficiently generated, and the fluid The anti-vibration effect based on the flow action is effectively exhibited. In particular, since the sealed fluid in the first liquid chambers 38, 38 contains at least one of ethylene glycol and propylene glycol, changes in vibration damping performance due to temperature are reduced or avoided, and the desired vibration damping is achieved. The effect can be stably obtained.

また、インナ軸部材12とアウタ筒部材14の間に軸方向(前後方向)の振動が入力されると、本体ゴム弾性体16および弾性ゴム壁50の弾性変形によって第二の液室74内で流体流動が生ぜしめられて、第二の液室74内に形成された狭窄流路78においても流体流動が生ぜしめられる。ここにおいて、第二の液室74の封入流体が高粘性流体とされていることにより、狭窄流路78において流体流動が生ぜしめられると、封入流体の粘性抵抗によるエネルギー減衰作用が発揮される。これにより、入力された振動のエネルギーが低減されて、振動の車両ボデーへの伝達が低減乃至は回避される。   Further, when vibration in the axial direction (front-back direction) is input between the inner shaft member 12 and the outer tubular member 14, elastic deformation of the main rubber elastic body 16 and the elastic rubber wall 50 causes the inside of the second liquid chamber 74. The fluid flow is generated, and the fluid flow is also generated in the narrowed channel 78 formed in the second liquid chamber 74. Here, when the fluid enclosed in the second liquid chamber 74 is a high-viscosity fluid, when fluid flow is generated in the narrowed flow passage 78, the energy damping action due to the viscous resistance of the enclosed fluid is exhibited. As a result, the energy of the input vibration is reduced, and the transmission of the vibration to the vehicle body is reduced or avoided.

このように、上下方向の入力振動に対して、二つの第一の液室38,38間におけるオリフィス通路48を通じた流体流動を共振状態で積極的に生ぜしめることにより、目的とする防振効果が発揮される一方で、前後方向の入力振動(軸方向振動)に対して、一つの第二の液室74内における高粘性流体の流動を利用して粘性抵抗による防振効果が発揮されるようになっている。   As described above, by positively causing the fluid flow through the orifice passage 48 between the two first liquid chambers 38 and 38 in the resonance state with respect to the input vibration in the vertical direction, the intended vibration damping effect is obtained. On the other hand, against the input vibration (axial vibration) in the front-back direction, the vibration isolation effect by viscous resistance is exerted by utilizing the flow of the highly viscous fluid in one second liquid chamber 74. It is like this.

しかも、第二の液室74の封入流体が高粘性流体とされて、一つの第二の液室74内の流体流動による粘性抵抗に基づいて防振効果が発揮されることから、環状の第二の液室74をインナ軸部材12の周囲に形成した簡単な構造によって、軸方向振動に対する防振効果を得ることができる。更に、比較的に大きな通路断面積と通路長さを要するオリフィス通路を形成することなく、小さな狭窄流路78を設けることで、軸方向の防振効果を有効に得ることができる。加えて、狭窄流路78が軸方向に開口して形成されていることにより、軸方向の振動の入力時に狭窄流路78内で流体流動が生じて、軸方向振動に対する防振効果が有効に発揮される。   Moreover, since the enclosed fluid in the second liquid chamber 74 is a highly viscous fluid and the vibration damping effect is exerted based on the viscous resistance due to the fluid flow in one second liquid chamber 74, the annular first With a simple structure in which the second liquid chamber 74 is formed around the inner shaft member 12, it is possible to obtain a vibration damping effect against axial vibration. Furthermore, by providing the small constriction flow passage 78 without forming an orifice passage that requires a relatively large passage cross-sectional area and passage length, it is possible to effectively obtain a vibration damping effect in the axial direction. In addition, since the narrowed channel 78 is formed so as to be opened in the axial direction, a fluid flow occurs in the narrowed channel 78 at the time of inputting the vibration in the axial direction, and the vibration damping effect against the axial vibration becomes effective. To be demonstrated.

さらに、動粘度を5000cSt〜50000cSt程度とされた高粘性流体が第二の液室74に封入されていることにより、軸方向入力に対して第二の液室74内での流体流動が十分に生ぜしめられると共に、狭窄流路78を流動する流体の粘性抵抗に基づいたエネルギー減衰作用が効果的に発揮されて、優れた防振性能を得ることができる。特に、第二の液室74に封入された非圧縮性流体がシリコーン油或いはそれを含む混合液とされていることにより、温度による粘性の変化が低減乃至は回避されて、軸方向振動に対する防振効果を安定して得ることができる。   Furthermore, the high-viscosity fluid having a kinematic viscosity of about 5000 cSt to 50,000 cSt is enclosed in the second liquid chamber 74, so that the fluid flow in the second liquid chamber 74 is sufficient with respect to the axial input. In addition to being generated, the energy damping action based on the viscous resistance of the fluid flowing in the narrowed channel 78 is effectively exhibited, and excellent vibration damping performance can be obtained. In particular, since the non-compressible fluid sealed in the second liquid chamber 74 is made of silicone oil or a mixed solution containing it, the change in viscosity due to temperature is reduced or avoided, and the vibration against axial vibration is prevented. The vibration effect can be stably obtained.

また、狭窄流路78を形成する狭窄部材60が、筒状とされており、小径部分である内周嵌合部66がインナ軸部材12に外嵌固定されることによって、大径部分である狭窄筒部64がインナ軸部材12の外周側に所定の距離を隔てて外挿されている。これにより、狭窄筒部64を備える狭窄部材60がインナ軸部材12に対して一体的に設けられて、インナ軸部材12とアウタ筒部材14の間への軸方向振動の入力時に、インナ軸部材12と狭窄部材60の間を軸方向に延びる狭窄流路78において流体流動を有効に生ぜしめることができる。   Further, the narrowing member 60 forming the narrowing flow path 78 has a cylindrical shape, and the inner peripheral fitting portion 66, which is a small diameter portion, is externally fitted and fixed to the inner shaft member 12, thereby forming a large diameter portion. The narrowed cylindrical portion 64 is externally inserted on the outer peripheral side of the inner shaft member 12 at a predetermined distance. As a result, the narrowing member 60 including the narrowing cylindrical portion 64 is provided integrally with the inner shaft member 12, and when the axial vibration is input between the inner shaft member 12 and the outer cylindrical member 14, the inner shaft member 12 is provided. Fluid flow can be effectively generated in the constriction flow path 78 that extends in the axial direction between the constriction member 12 and the constriction member 60.

しかも、軸方向に延びる筒状の狭窄流路78がインナ軸部材12と狭窄筒部64の間で全周に亘って形成されていることにより、インナ軸部材12に被着されたゴム層34の外周面と狭窄筒部64の内周面との間を通過する封入流体の粘性抵抗を大きく得ることができて、目的とする防振効果を有利に得ることができる。   Moreover, since the tubular constriction flow path 78 extending in the axial direction is formed over the entire circumference between the inner shaft member 12 and the constriction cylinder portion 64, the rubber layer 34 attached to the inner shaft member 12 is formed. It is possible to obtain a large viscous resistance of the enclosed fluid passing between the outer peripheral surface and the inner peripheral surface of the narrowed cylindrical portion 64, and to obtain the desired vibration damping effect.

加えて、本実施形態では、狭窄部材60が弾性ゴム壁50のインナ軸部材12への取付構造を兼ねていることから、部品点数の削減や構造の簡略化などが実現される。   In addition, in the present embodiment, the narrowing member 60 also serves as a mounting structure for the elastic rubber wall 50 to the inner shaft member 12, so that the number of parts is reduced and the structure is simplified.

図6には、本発明の第二の実施形態としてのエンジンマウント80が示されている。以下の説明において、第一の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことにより説明を省略する。   FIG. 6 shows an engine mount 80 as a second embodiment of the present invention. In the following description, members and parts that are substantially the same as those in the first embodiment will be denoted by the same reference numerals in the drawings, and description thereof will be omitted.

すなわち、本実施形態のエンジンマウント80は、ゴム壁82を備えている。ゴム壁82は、薄肉で厚さ方向の変形を容易に許容される可撓性膜部84を備えていると共に、可撓性膜部84の内周端部と外周端部には、厚肉の内周固着部86と外周固着部88が一体形成されている。そして、内周固着部86が狭窄部材60の内周嵌合部66に加硫接着されていると共に、外周固着部88が外周取付部材68の固着フランジ部72に加硫接着されている。本実施形態の外周取付部材68は、固着フランジ部72の内周端部から後方へ向けて突出する外周拘束部90を備えており、本実施形態の第一の拘束部材が外周拘束部90によって構成されている。   That is, the engine mount 80 of this embodiment includes the rubber wall 82. The rubber wall 82 is provided with a flexible film portion 84 that is thin and easily deformable in the thickness direction, and has a thick wall at the inner peripheral end and the outer peripheral end of the flexible film 84. The inner peripheral fixing portion 86 and the outer peripheral fixing portion 88 are integrally formed. The inner peripheral fixing portion 86 is vulcanized and bonded to the inner peripheral fitting portion 66 of the narrowing member 60, and the outer peripheral fixing portion 88 is vulcanized and bonded to the fixing flange portion 72 of the outer peripheral mounting member 68. The outer peripheral attachment member 68 of the present embodiment includes an outer peripheral restraint portion 90 that projects rearward from the inner peripheral end portion of the fixed flange portion 72, and the first restraint member of the present embodiment uses the outer peripheral restraint portion 90. It is configured.

そして、狭窄部材60がインナ軸部材12に流体密に取り付けられると共に、外周取付部材68がアウタ筒部材14に流体密に取り付けられることにより、ゴム壁82が本体ゴム弾性体16の軸方向後方に配設されて、本体ゴム弾性体16とゴム壁82の間に第二の液室74が形成されている。   The narrowing member 60 is fluid-tightly attached to the inner shaft member 12, and the outer peripheral mounting member 68 is fluid-tightly attached to the outer tubular member 14, so that the rubber wall 82 is axially rearward of the main rubber elastic body 16. The second liquid chamber 74 is formed between the main rubber elastic body 16 and the rubber wall 82.

また、本実施形態では、可撓性膜部84の軸方向後方に第二の拘束部材としてのストッパゴム92が配設されている。ストッパゴム92は、全体として浅底皿形状とされているとともに径方向中央部分に貫通孔が形成されて略円環状とされたゴム弾性体であって、可撓性膜部84よりも厚肉とされて曲げ剛性が大きくされている。また、ストッパゴム92は、内周部分が軸直角方向に広がる平板状とされていると共に、外周部分が外周へ行くに従って軸方向前方(図6中、左方)へ傾斜する湾曲板状とされており、可撓性膜部84の外面形状に沿って可撓性膜部84の外面を覆うように当接状態で配設されている。そして、ストッパゴム92が可撓性膜部84と軸方向の投影において重なり合って配されていることにより、可撓性膜部84の軸方向後方への変形がストッパゴム92によって制限されている。本実施形態では、ストッパゴム92が可撓性膜部84の略全体に対して予め当接して設けられており、ストッパゴム92が狭窄部材60の内周嵌合部66に外挿状態で固定されている。   Further, in the present embodiment, a stopper rubber 92 as a second restraint member is arranged axially rearward of the flexible film portion 84. The stopper rubber 92 is a rubber elastic body having a shallow dish shape as a whole, a through hole formed in a radial center portion thereof, and a substantially annular shape, and is thicker than the flexible film portion 84. Therefore, the bending rigidity is increased. The stopper rubber 92 has a flat plate shape whose inner peripheral portion extends in the direction perpendicular to the axis, and has a curved plate shape whose outer peripheral portion inclines forward (leftward in FIG. 6) in the axial direction as it goes to the outer periphery. The flexible film portion 84 is arranged in contact with the outer surface of the flexible film portion 84 so as to cover the outer surface of the flexible film portion 84. Since the stopper rubber 92 is arranged so as to overlap the flexible film portion 84 in the projection in the axial direction, the deformation of the flexible film portion 84 rearward in the axial direction is limited by the stopper rubber 92. In the present embodiment, the stopper rubber 92 is provided so as to come into contact with substantially the entire flexible film portion 84 in advance, and the stopper rubber 92 is fixed to the inner peripheral fitting portion 66 of the narrowing member 60 in an externally inserted state. Has been done.

もっとも、このようなストッパゴム92の形状は、あくまでも例示であって、適宜に変更され得る。具体的には、例えば、ストッパゴム92は、可撓性膜部84に対して全体が予め当接した状態で設けられている必要はなく、ストッパゴム92の少なくとも一部が可撓性膜部84に対して離れて設けられて、可撓性膜部84が変形によってストッパゴム92に当接するようにもできる。また、ストッパゴム92は、可撓性膜部84の外面に沿う形状とされていることが望ましいが、例えば円環平板形状などであっても良い。   However, such a shape of the stopper rubber 92 is merely an example, and can be changed appropriately. Specifically, for example, the stopper rubber 92 does not need to be provided in a state where the entire stopper rubber 92 is in contact with the flexible film portion 84 in advance, and at least a part of the stopper rubber 92 is flexible film portion. The flexible film portion 84 may be provided so as to be separated from the stopper 84 so as to come into contact with the stopper rubber 92 by deformation. The stopper rubber 92 preferably has a shape along the outer surface of the flexible film portion 84, but may have, for example, an annular flat plate shape.

このような本実施形態に従う構造とされたエンジンマウント80によれば、ゴム壁82の外周側への変形量が外周取付部材68の外周拘束部90で制限されていると共に、ゴム壁82の軸方向後方への変形量がストッパゴム92で制限されていることから、軸方向の振動入力時に、本体ゴム弾性体16の弾性変形によって第二の液室74内の流体流動が惹起されて、粘性抵抗による防振効果が有効に発揮される。特にゴム壁82が薄肉の可撓性膜部84を備える構造とされている場合にも、第二の液室74内の流体流動が惹起されて、粘性抵抗による防振効果が有効に発揮される。   According to the engine mount 80 having the structure according to the present embodiment, the amount of deformation of the rubber wall 82 toward the outer peripheral side is limited by the outer peripheral restraint 90 of the outer peripheral mounting member 68, and the shaft of the rubber wall 82 is reduced. Since the amount of deformation rearward in the direction is limited by the stopper rubber 92, when the vibration is input in the axial direction, the fluid flow in the second liquid chamber 74 is caused by the elastic deformation of the main rubber elastic body 16, and the viscosity is increased. Anti-vibration effect due to resistance is effectively exhibited. In particular, even when the rubber wall 82 has a structure including the thin flexible film portion 84, the fluid flow in the second liquid chamber 74 is induced, and the vibration damping effect by viscous resistance is effectively exhibited. It

このような本実施形態に係るエンジンマウント80のように、拡張ばね定数の小さい可撓性を有するゴム壁を採用すると共に、ゴム壁の外周側への変形量を制限する第一の拘束部材と、ゴム壁の軸方向外方への変形量を制限する第二の拘束部材とを設けた構造によって、軸方向振動に対して流体の粘性抵抗に基づく防振効果が発揮されることは、実験によって確認済みである。   Like the engine mount 80 according to the present embodiment, a flexible rubber wall having a small expansion spring constant is adopted, and a first restraint member that limits the amount of deformation of the rubber wall toward the outer peripheral side is used. Experiments show that the structure provided with the second restraint member that limits the amount of outward deformation of the rubber wall in the axial direction exhibits the vibration damping effect based on the viscous resistance of the fluid against axial vibration. Has been confirmed by.

なお、本実施形態では、ゴム壁82の外周側への変位量を制限する外周拘束部90が外周取付部材68に一体形成されているが、ゴム壁82の外周側への変位量を制限する第一の拘束部材は、外周取付部材68やゴム壁82とは別部材とされていても良い。具体的には、例えば、筒状の第一の拘束部材をゴム壁82の周囲を囲むように別体で配設することにより、ゴム壁82の外周側への変形量が第一の拘束部材への当接によって制限されるようにすることもできる。   In the present embodiment, the outer peripheral restraint portion 90 that limits the amount of displacement of the rubber wall 82 toward the outer peripheral side is integrally formed with the outer peripheral mounting member 68, but the amount of displacement of the rubber wall 82 toward the outer peripheral side is limited. The first restraint member may be a member separate from the outer peripheral mounting member 68 and the rubber wall 82. Specifically, for example, by disposing the cylindrical first restraint member as a separate body so as to surround the periphery of the rubber wall 82, the deformation amount of the rubber wall 82 toward the outer peripheral side is the first restraint member. It can also be restricted by abutting against.

さらに、第二の拘束部材が狭窄部材60などとは別体のストッパゴム92で構成されているが、例えば、狭窄部材60の軸方向後端部分が外周側へ折り曲げられており、ゴム壁82が当該折曲げ部分に当接することによって軸方向後方への変形量を制限されるようにしても良い。要するに、ゴム壁82の軸方向外方への変位量を制限する第二の拘束部材は、狭窄部材60などに一体形成することもできる。また、ストッパゴム92をゴム壁82と一体成形することも可能である。   Further, the second restraining member is composed of a stopper rubber 92 which is a separate body from the narrowing member 60 and the like. For example, the axial rear end portion of the narrowing member 60 is bent to the outer peripheral side, and the rubber wall 82. The amount of deformation in the axial rearward direction may be limited by contacting the bent portion. In short, the second restraint member that limits the amount of axial displacement of the rubber wall 82 may be formed integrally with the narrowing member 60 or the like. It is also possible to integrally form the stopper rubber 92 with the rubber wall 82.

また、第一の拘束部材と第二の拘束部材は、両方を設けることが望ましいが、何れか一方だけを設けても良い。   Further, although it is desirable to provide both the first restraint member and the second restraint member, only one of them may be provided.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態では筒状の狭窄部材を例示したが、狭窄部材は必ずしも筒状に限定されるものではなく、一周に満たない長さで周方向に延びる湾曲板状とされて、インナ軸部材の外周面に固着されるようにしても良い。また、狭窄部材は全体が筒状または板状とされている必要はなく、例えば、狭窄流路の形成部分が湾曲板状とされるとともにインナ軸部材への取付部分が筒状乃至は環状とされた構造なども採用され得る。   Although the embodiment of the present invention has been described in detail above, the present invention is not limited by the specific description thereof. For example, although the tubular narrowing member is exemplified in the above-described embodiment, the narrowing member is not necessarily limited to the tubular shape, and is a curved plate shape extending in the circumferential direction with a length less than one round, and the inner shaft is formed. It may be fixed to the outer peripheral surface of the member. Further, the constriction member does not need to be tubular or plate-shaped as a whole. For example, the constriction channel forming portion may be a curved plate and the mounting portion to the inner shaft member may be tubular or annular. A structured structure or the like can also be adopted.

さらに、狭窄流路は、必ずしも全周に亘って連続して設けられるものに限定されず、例えば、周方向の一部に或いは周方向の複数箇所で部分的に設けることもできる。   Further, the constriction flow channel is not necessarily limited to one that is continuously provided over the entire circumference, and may be provided, for example, at a part of the circumferential direction or at a plurality of positions in the circumferential direction.

また、前記実施形態では、狭窄流路が狭窄部材とインナ軸部材の間に形成されているが、例えば厚肉の狭窄部材に孔状の狭窄流路を貫通形成することもできる。   Further, in the above-described embodiment, the narrowed flow path is formed between the narrowed member and the inner shaft member, but it is also possible to form the hole-shaped narrowed flow path through the thickened narrowed member, for example.

また、狭窄部材は、アウタ筒部材や中間スリーブによって支持されていても良いし、本体ゴム弾性体やゴム壁に固着されることで第二の液室内に配設支持されていても良い。更に、前記実施形態の狭窄部材は、軸方向外側から突出して軸方向内側に開口する構造とされているが、軸方向内側から突出して軸方向外側に開口する構造とすることもできる。なお、狭窄流路の周壁部は、前記実施形態に示すように実質的に変形しない硬質の壁構造とされていることが望ましく、これにより狭窄流路の流路断面形状が安定することから、高粘性流体の流動によるずり剪断的な減衰効果が安定して効率的に発揮され得る。   Further, the narrowing member may be supported by the outer tubular member or the intermediate sleeve, or may be disposed and supported in the second liquid chamber by being fixed to the main rubber elastic body or the rubber wall. Further, although the narrowing member of the above-described embodiment has a structure that projects from the outside in the axial direction and opens to the inside in the axial direction, it may have a structure that projects from the inside in the axial direction and opens to the outside in the axial direction. Incidentally, the peripheral wall portion of the constriction channel is preferably a hard wall structure which is not substantially deformed as shown in the above embodiment, and thereby the channel cross-sectional shape of the constriction channel is stable, The shear-shearing damping effect due to the flow of the highly viscous fluid can be stably and efficiently exhibited.

また、第一の実施形態の弾性ゴム壁50は、内周固着部52と湾曲部54と筒状部56が略一定の厚さで形成されて、弾性ゴム壁50の変形による第二の液室74の拡張が弾性ゴム壁50の全体に亘って制限されているが、弾性ゴム壁50の厚さは必ずしも一定である必要はなく、例えば部分的に薄肉又は厚肉の部分を設けることもできる。   Further, in the elastic rubber wall 50 of the first embodiment, the inner peripheral fixing portion 52, the curved portion 54, and the tubular portion 56 are formed with a substantially constant thickness, and the second liquid due to the deformation of the elastic rubber wall 50 is formed. Although the expansion of the chamber 74 is limited over the entire elastic rubber wall 50, the thickness of the elastic rubber wall 50 does not necessarily have to be constant, and for example, a partially thin or thick portion may be provided. it can.

10,80:エンジンマウント(流体封入式筒形防振装置)、12:インナ軸部材、14:アウタ筒部材、16:本体ゴム弾性体、38:第一の液室、48:オリフィス通路、50:弾性ゴム壁(ゴム壁)、60:狭窄部材、64:狭窄筒部(狭窄部材の大径部分)、66:内周嵌合部(狭窄部材の小径部分)、74:第二の液室、76:連通孔、78:狭窄流路、82:ゴム壁、90:外周拘束部(第一の拘束部材)、92:ストッパゴム(第二の拘束部材) 10, 80: Engine mount (fluid-filled tubular vibration isolator), 12: Inner shaft member, 14: Outer tubular member, 16: Main rubber elastic body, 38: First liquid chamber, 48: Orifice passage, 50 : Elastic rubber wall (rubber wall), 60: narrowing member, 64: narrowing tubular portion (large diameter portion of narrowing member), 66: inner peripheral fitting portion (small diameter portion of narrowing member), 74: second liquid chamber , 76: communication hole, 78: narrowed flow path, 82: rubber wall, 90: outer peripheral restraint portion (first restraint member), 92: stopper rubber (second restraint member)

Claims (8)

インナ軸部材がアウタ筒部材に挿通されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結されていると共に、
該インナ軸部材と該アウタ筒部材の間には壁部の一部が該本体ゴム弾性体で構成された一対の第一の液室が形成されて、それら一対の第一の液室が該インナ軸部材を挟んで径方向両側に配置されており、それら一対の第一の液室に非圧縮性流体が封入されていると共に、それら一対の第一の液室を外周部分で周方向に連通するオリフィス通路が形成されている流体封入式筒形防振装置において、
前記本体ゴム弾性体の軸方向外方にゴム壁が配設されており、該本体ゴム弾性体と該ゴム壁の間に環状の第二の液室が形成されて、該第二の液室に非圧縮性流体が封入されていると共に、該第二の液室に封入された非圧縮性流体が前記一対の第一の液室に封入された非圧縮性流体よりも高粘性の流体とされており、
更に該第二の液室内には少なくとも一方の端部が軸方向に開口する狭窄流路が形成されていることを特徴とする流体封入式筒形防振装置。
The inner shaft member is inserted through the outer tubular member, and the inner shaft member and the outer tubular member are elastically connected to each other by the main rubber elastic body, and
Between the inner shaft member and the outer tubular member, a pair of first liquid chambers, a part of the wall of which is made of the main rubber elastic body, is formed. They are arranged on both sides in the radial direction with the inner shaft member sandwiched between them, and an incompressible fluid is enclosed in the pair of first liquid chambers, and the pair of first liquid chambers are circumferentially formed in the outer peripheral portion. In a fluid-filled tubular vibration-damping device in which a communicating orifice passage is formed,
A rubber wall is disposed axially outward of the main rubber elastic body, and an annular second liquid chamber is formed between the main rubber elastic body and the rubber wall. And a non-compressible fluid sealed in the second liquid chamber, the non-compressible fluid having a higher viscosity than the non-compressible fluid sealed in the pair of first liquid chambers. Has been done,
Further, in the second liquid chamber, a confined flow path having at least one end opening in the axial direction is formed.
前記第二の液室には軸方向に延びる筒状の狭窄部材が前記インナ軸部材に外挿された状態で配設されており、前記第二の液室が該狭窄部材によって仕切られることにより前記狭窄流路が画成されている請求項1に記載の流体封入式筒形防振装置。   A cylindrical narrowing member extending in the axial direction is disposed in the second liquid chamber in a state of being externally fitted to the inner shaft member, and the second liquid chamber is partitioned by the narrowing member. The fluid filled tubular vibration damping device according to claim 1, wherein the narrowed flow path is defined. 前記狭窄部材が段付き筒状とされており、該狭窄部材の小径部分が前記インナ軸部材に外挿状態で固定されていると共に、該狭窄部材の大径部分を貫通する連通孔が形成されており、前記狭窄流路が該狭窄部材の大径部分と該インナ軸部材の間を軸方向に延びて形成されている請求項2に記載の流体封入式筒形防振装置。   The narrowing member has a stepped cylindrical shape, a small diameter portion of the narrowing member is fixed to the inner shaft member in an externally inserted state, and a communication hole penetrating the large diameter portion of the narrowing member is formed. The fluid-filled tubular vibration damping device according to claim 2, wherein the narrowed flow path is formed so as to extend in an axial direction between a large-diameter portion of the narrowed member and the inner shaft member. 前記ゴム壁の内周端部が前記狭窄部材の外周面に固着されており、該狭窄部材が前記インナ軸部材に外挿状態で固定されることによって該ゴム壁の内周端部が該インナ軸部材に流体密に支持されている請求項2又は3に記載の流体封入式筒形防振装置。   An inner peripheral end portion of the rubber wall is fixed to an outer peripheral surface of the narrowing member, and the inner peripheral end portion of the rubber wall is fixed to the inner shaft member by being fixed to the inner shaft member. The fluid filled cylindrical vibration damping device according to claim 2 or 3, which is fluid-tightly supported by the shaft member. 前記一対の第一の液室に封入された非圧縮性流体の動粘度が10cSt〜150cStの範囲とされていると共に、前記第二の液室に封入された非圧縮性流体の動粘度が5000cSt〜50000cStの範囲とされている請求項1〜4の何れか一項に記載の流体封入式筒形防振装置。   The incompressible fluid enclosed in the pair of first liquid chambers has a kinematic viscosity in the range of 10 cSt to 150 cSt, and the incompressible fluid enclosed in the second liquid chamber has a kinematic viscosity of 5000 cSt. The fluid filled tubular vibration damping device according to any one of claims 1 to 4, wherein the range is -50000 cSt. 前記一対の第一の液室に封入された非圧縮性流体がエチレングリコールとプロピレングリコールの少なくとも一方を含んでいると共に、前記第二の液室に封入された非圧縮性流体がシリコーン油を含んでいる請求項1〜5の何れか一項に記載の流体封入式筒形防振装置。   The incompressible fluid enclosed in the pair of first liquid chambers contains at least one of ethylene glycol and propylene glycol, and the incompressible fluid enclosed in the second liquid chamber contains silicone oil. The fluid filled tubular vibration damping device according to any one of claims 1 to 5. 前記ゴム壁の外周側への変形量を制限する第一の拘束部材が設けられている請求項1〜6の何れか一項に記載の流体封入式筒形防振装置。   The fluid-filled tubular vibration damping device according to claim 1, further comprising a first restraint member that limits an amount of deformation of the rubber wall toward the outer peripheral side. 前記ゴム壁の軸方向外方への変形量を制限する第二の拘束部材が設けられている請求項1〜7の何れか一項に記載の流体封入式筒形防振装置。   The fluid-filled tubular vibration damping device according to claim 1, further comprising a second restraint member that limits an amount of deformation of the rubber wall outward in the axial direction.
JP2016162185A 2016-08-22 2016-08-22 Fluid-filled cylindrical anti-vibration device Active JP6691456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162185A JP6691456B2 (en) 2016-08-22 2016-08-22 Fluid-filled cylindrical anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162185A JP6691456B2 (en) 2016-08-22 2016-08-22 Fluid-filled cylindrical anti-vibration device

Publications (2)

Publication Number Publication Date
JP2018031393A JP2018031393A (en) 2018-03-01
JP6691456B2 true JP6691456B2 (en) 2020-04-28

Family

ID=61304911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162185A Active JP6691456B2 (en) 2016-08-22 2016-08-22 Fluid-filled cylindrical anti-vibration device

Country Status (1)

Country Link
JP (1) JP6691456B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185735A (en) * 2019-05-17 2019-08-30 株洲时代新材料科技股份有限公司 A kind of liquid composite bush
DE102019006047A1 (en) * 2019-08-27 2021-03-04 Sumitomo Riko Company Limited Hydraulic bearing and method of making a hydraulic bearing

Also Published As

Publication number Publication date
JP2018031393A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5014329B2 (en) Vibration isolator
JP4938248B2 (en) Vibration isolator
JP7159303B2 (en) Anti-vibration device
JP6265562B2 (en) Vibration isolator
JP4945162B2 (en) Vibration isolator
JP4939997B2 (en) Vibration isolator
JP2018169014A (en) Fluid-filled cylindrical anti-vibration device
JP6691456B2 (en) Fluid-filled cylindrical anti-vibration device
US10072725B2 (en) Fluid-filled tubular vibration-damping device
JP2002327788A (en) Vibrationproof device sealed with fluid
WO2016174800A1 (en) Antivibration device
JP5221442B2 (en) Vibration isolator
JP7350628B2 (en) Vibration isolator
JP7350627B2 (en) Vibration isolator
JP7326121B2 (en) Anti-vibration device
JP7349325B2 (en) Vibration isolator
JP7290550B2 (en) Anti-vibration device
JP7326122B2 (en) Anti-vibration device
JP7326120B2 (en) Anti-vibration device
JP4528661B2 (en) Vibration isolator
JP6739267B2 (en) Fluid-filled cylindrical anti-vibration device
JP2007255442A (en) Liquid filled vibration isolation device
JP6431738B2 (en) Fluid filled cylindrical vibration isolator
JP2002327787A (en) Vibrationproof device sealed with fluid
JP2017172744A (en) Fluid sealed type cylindrical vibration-proof device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200410

R150 Certificate of patent or registration of utility model

Ref document number: 6691456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150