JP6690964B2 - Decelerator or speed-up device - Google Patents

Decelerator or speed-up device Download PDF

Info

Publication number
JP6690964B2
JP6690964B2 JP2016039523A JP2016039523A JP6690964B2 JP 6690964 B2 JP6690964 B2 JP 6690964B2 JP 2016039523 A JP2016039523 A JP 2016039523A JP 2016039523 A JP2016039523 A JP 2016039523A JP 6690964 B2 JP6690964 B2 JP 6690964B2
Authority
JP
Japan
Prior art keywords
crown gear
tooth
gear
crown
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016039523A
Other languages
Japanese (ja)
Other versions
JP2016166674A (en
Inventor
秀生 斉藤
秀生 斉藤
雄一 水谷
雄一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015039782 priority Critical
Priority to JP2015039782 priority
Application filed by THK Co Ltd filed Critical THK Co Ltd
Publication of JP2016166674A publication Critical patent/JP2016166674A/en
Application granted granted Critical
Publication of JP6690964B2 publication Critical patent/JP6690964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、減速又は増速装置に関する。   The present invention relates to a speed reducer or speed increasing device.

この種の減速装置として、例えば特許文献1には、第一冠ギヤと、第二冠ギヤと、傾斜カムと、を備える減速装置が開示されている。第一冠ギヤと第二冠ギヤとは、歯数が異なり互いに対向する。第一冠ギヤは、入力軸と一体の傾斜カムによって傾斜させられる。第一冠ギヤを傾けると、第一冠ギヤと第二冠ギヤとが一箇所で噛み合う。第二冠ギヤは、ハウジングに固定される。第一冠ギヤは、その半径方向の内側に配置される球形のスプラインジョイントに波動運動可能に支持される。   As a reduction gear of this type, for example, Patent Literature 1 discloses a reduction gear including a first crown gear, a second crown gear, and an inclined cam. The first crown gear and the second crown gear have different numbers of teeth and face each other. The first crown gear is tilted by a tilt cam integrated with the input shaft. When the first crown gear is tilted, the first crown gear and the second crown gear mesh with each other at one place. The second crown gear is fixed to the housing. The first crown gear is wave-movably supported by a spherical spline joint arranged radially inward of the first crown gear.

入力軸を回転させると、入力軸と一体の傾斜カムによって、第一冠ギヤが第二冠ギヤとの噛み合い箇所を移動させながら波動運動する。第一冠ギヤの波動運動によって、第一冠ギヤが第二冠ギヤに対して歯数差の分だけ回転する。第一冠ギヤの回転は、球形のスプラインジョイントを介して出力軸に伝達される。   When the input shaft is rotated, the first crown gear moves in a wave motion while moving the meshing portion with the second crown gear by the inclined cam integrated with the input shaft. The wave motion of the first crown gear causes the first crown gear to rotate relative to the second crown gear by the difference in the number of teeth. The rotation of the first crown gear is transmitted to the output shaft via the spherical spline joint.

特開昭51−126467号公報JP-A-51-126467

従来の減速装置にあっては、第一冠ギヤを波動運動可能に支持する球形のスプラインジョイントが第一冠ギヤの半径方向の内側に配置される。そして、第一冠ギヤの回転運動をスプラインジョイントを介して出力軸に伝達する。しかし、スプラインジョイントの直径は、スプラインジョイントの回転剛性、ひいては減速装置の回転剛性に大きな影響を及ぼす。従来の減速装置にあっては、スプラインジョイントの直径が小さいので、スプラインジョイントの回転剛性を高くすることができず、ひいては減速装置の回転剛性を高くできないという課題がある。   In the conventional speed reducer, a spherical spline joint that supports the first crown gear in a wave motion manner is arranged inside the first crown gear in the radial direction. Then, the rotational movement of the first crown gear is transmitted to the output shaft via the spline joint. However, the diameter of the spline joint has a great influence on the rotational rigidity of the spline joint and thus on the rotational rigidity of the reduction gear transmission. In the conventional speed reducer, since the diameter of the spline joint is small, there is a problem that the rotational rigidity of the spline joint cannot be increased, and thus the rotational rigidity of the speed reducer cannot be increased.

そこで本発明は、回転剛性を高くすることができる減速又は増速装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a deceleration or speed increasing device capable of increasing rotational rigidity.

上記課題を解決するために、本発明の一態様は、ハウジングと、第一冠ギヤと、前記第一冠ギヤの半径方向の外側に配置され、前記第一冠ギヤを前記ハウジングに対して波動運動可能にかつ回転不可能に支持する支持部と、前記ハウジングに対して回転可能であり、前記第一冠ギヤと歯数が異なり前記第一冠ギヤに対向する第二冠ギヤと、前記第一冠ギヤが前記第二冠ギヤに噛み合うように前記第一冠ギヤを前記第二冠ギヤに対して傾斜させ、かつ噛み合う箇所が移動するように前記第一冠ギヤを波動運動させるカム部と、を備え、前記支持部は、外輪スプライン溝を有する外輪部と、前記外輪部の内側に配置され、前記外輪スプライン溝に対向する内輪スプライン溝を有する内輪部と、前記外輪スプライン溝と前記内輪スプライン溝との間に転がり運動可能に介在する転動体と、を備え、前記第一冠ギヤは、前記支持部のみによって波動運動可能にかつ回転不可能に支持される減速又は増速装置である。 In order to solve the above-mentioned problems, one aspect of the present invention is a housing, a first crown gear, and a first crown gear arranged radially outside of the first crown gear. A support portion movably and non-rotatably supported, a second crown gear rotatable with respect to the housing, having a number of teeth different from that of the first crown gear, and facing the first crown gear; A cam portion for inclining the first crown gear with respect to the second crown gear so that a single crown gear meshes with the second crown gear, and for causing a wave motion of the first crown gear so that the meshing position moves. The support portion includes an outer ring portion having an outer ring spline groove, an inner ring portion disposed inside the outer ring portion and having an inner ring spline groove facing the outer ring spline groove, the outer ring spline groove, and the inner ring. Between spline groove Comprising rolling elements which roll movably interposed, the said first crown gear is wave movably and deceleration or speed increasing system is non-rotatably supported by only the support portion.

本発明によれば、第一冠ギヤを波動運動可能にかつ回転不可能にする支持部が第一冠ギヤの半径方向の外側に配置されるので、支持部の直径を大きくすることができ、支持部の回転剛性、ひいては減速又は増速装置の回転剛性を高くすることができる。   According to the present invention, since the support portion that makes the first crown gear wave-movable and non-rotatable is arranged on the outer side in the radial direction of the first crown gear, the diameter of the support portion can be increased, It is possible to increase the rotational rigidity of the support portion and thus the rotational rigidity of the deceleration or speed increasing device.

本発明の第一の実施形態の減速装置の入力軸側外観斜視図である。It is an input shaft side appearance perspective view of the reduction gear transmission of a first embodiment of the present invention. 上記実施形態の減速装置の出力部側外観斜視図である。It is an output part side external perspective view of the reduction gear transmission of the said embodiment. 上記実施形態の減速装置の断面斜視図である。It is a cross-sectional perspective view of the reduction gear transmission of the said embodiment. 上記実施形態の減速装置の分解斜視図である。It is an exploded perspective view of the reduction gear transmission of the above-mentioned embodiment. 第一冠ギヤ及び第二冠ギヤを示す斜視図である(図5(a)は第二冠ギヤ、及び第二冠ギヤに傾斜して噛み合う第一冠ギヤを示し、図5(b)は第二冠ギヤを示し、図5(c)は第一冠ギヤを示す)。FIG. 5 is a perspective view showing a first crown gear and a second crown gear (FIG. 5 (a) shows a second crown gear and a first crown gear that is inclined and meshed with the second crown gear, and FIG. 2nd crown gear, FIG.5 (c) shows a 1st crown gear). 第一冠ギヤ及び第二冠ギヤの歯の展開図である。It is a development view of the teeth of the first crown gear and the second crown gear. 第一冠ギヤ及び第二冠ギヤの歯の模式図を示す斜視図である(図7(a)は第一冠ギヤ及び第二冠ギヤを示し、図7(b)は第二冠ギヤを示す)。It is a perspective view which shows the schematic diagram of the tooth | gear of a 1st crown gear and a 2nd crown gear (FIG. 7 (a) shows a 1st crown gear and a 2nd crown gear, FIG. 7 (b) shows a 2nd crown gear. Shown). 第一冠ギヤ及び第二冠ギヤの歯の展開図である。It is a development view of the teeth of the first crown gear and the second crown gear. 第一冠ギヤ及び第二冠ギヤの基準円r上の歯形曲線を示す斜視図である。Is a perspective view showing a tooth profile on the reference circle r c of the first crown gear and the second crown gear. 図10(a)は動円錐(第一冠ギヤの母体)と定円錐(第二冠ギヤの母体)の頂点と母線が接触した状態を示す斜視図であり、図10(b)は動円錐の歳差運動を示す斜視図である。FIG. 10A is a perspective view showing a state where the vertices of the moving cone (the mother body of the first crown gear) and the constant cone (the mother body of the second crown gear) are in contact with the generatrix, and FIG. 10B is the moving cone. It is a perspective view which shows the precession exercise of. 動円錐上の点とベクトルの関係を示す図である。It is a figure which shows the relationship between the point on a moving cone, and a vector. θとψの関係を示すグラフである。It is a graph which shows the relationship of (theta) and (psi). ベクトルpが描くトロコイド曲線を示す斜視図である。It is a perspective view showing a trochoid curve vector p 2 draws. 歯底曲線pの形成過程を示す斜視図である。Is a perspective view showing a formation process of a tooth bottom curved p 3. 歯底曲線pの求め方を示すグラフである。It is a graph showing how to determine the tooth bottom curve p 3. 図16(a)は第一冠ギヤの歯底曲線を示し、図16(b)は第二冠ギヤの歯底曲線を示す。FIG. 16A shows a root curve of the first crown gear, and FIG. 16B shows a root curve of the second crown gear. 第一冠ギヤと第二冠ギヤとの歯形曲線上での噛み合いを示す図である。It is a figure which shows the meshing on the tooth profile curve of a 1st crown gear and a 2nd crown gear. 歯すじがヘリカル状である場合の第二冠ギヤの斜視図である。It is a perspective view of the 2nd crown gear in case a tooth line is helical. 対数らせんを示す斜視図である。It is a perspective view which shows a logarithmic helix. 本発明の第二の実施形態の減速装置の軸線に沿った断面図である。It is sectional drawing along the axis line of the reduction gear transmission of 2nd embodiment of this invention. 本発明の第三の実施形態の減速装置の軸線に沿った断面図である。It is sectional drawing along the axis line of the reduction gear transmission of 3rd embodiment of this invention. 図22(a)は動円錐(第一冠ギヤの母体)と定円錐(第二冠ギヤの母体)の頂点と母線が接触した状態を示す斜視図であり、図22(b)は動円錐の歳差運動を示す斜視図である。22A is a perspective view showing a state where the apex of the moving cone (the mother body of the first crown gear) and the apex of the constant cone (the mother body of the second crown gear) are in contact with the generatrix, and FIG. 22B is the moving cone. It is a perspective view which shows the precession exercise of. ベクトルpが描くトロコイド曲線を示す斜視図である。It is a perspective view showing a trochoid curve vector p 2 draws.

以下、添付図面を参照して、本発明の一実施形態の減速装置を詳細に説明する。ただし、本発明の減速装置は種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。この実施形態は、明細書の開示を十分にすることによって、当業者が発明の範囲を十分に理解できるようにする意図をもって提供されるものである。
<第一の実施形態の減速装置の全体構成>
Hereinafter, a speed reducer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the speed reducer of the present invention can be embodied in various forms, and is not limited to the embodiments described herein. This embodiment is provided with the intention of providing those of ordinary skill in the art with a sufficient understanding of the scope of the invention by having the full disclosure of the specification.
<Overall Configuration of Reduction Gear According to First Embodiment>

図1は本発明の第一の実施形態の減速装置の入力軸側の外観斜視図を示し、図2は減速装置の出力部側の外観斜視図を示す。なお、添付の図面及び以下の明細書を通して、同一の構成には同一の符号を附す。   FIG. 1 is an external perspective view of an input shaft side of a reduction gear transmission according to a first embodiment of the present invention, and FIG. 2 is an external perspective view of an output portion side of the reduction gear transmission. The same reference numerals are given to the same components throughout the attached drawings and the following specification.

ハウジング1には、入力軸2、出力部3が回転可能に収容される。入力軸2の軸線2aと出力部3の軸線3a1とは一致する。入力軸2を軸線2aの回りを回転させると、出力部3が減速されて軸線3a1の回りを回転する。入力軸2に対する出力部3の減速比は、ハウジング1に収容される第一冠ギヤ11及び第二冠ギヤ12(図3参照)の歯数によって決定される。   The input shaft 2 and the output unit 3 are rotatably accommodated in the housing 1. The axis 2a of the input shaft 2 and the axis 3a1 of the output unit 3 coincide. When the input shaft 2 is rotated around the axis 2a, the output unit 3 is decelerated to rotate around the axis 3a1. The reduction ratio of the output unit 3 with respect to the input shaft 2 is determined by the number of teeth of the first crown gear 11 and the second crown gear 12 (see FIG. 3) housed in the housing 1.

ハウジング1は、フランジ1a1を有する筒形のハウジング本体1aと、ハウジング本体1aの軸方向の両端部に取り付けられる円盤形の蓋部材1b,1cと、を備える。ハウジング本体1aのフランジ1a1には、相手部品に取り付けるための通し孔が開けられる。蓋部材1b,1cは、ボルト等の締結部材によってハウジング本体1aに固定される。   The housing 1 includes a cylindrical housing body 1a having a flange 1a1, and disk-shaped lid members 1b and 1c attached to both ends of the housing body 1a in the axial direction. The flange 1a1 of the housing body 1a is provided with a through hole for attaching to a counterpart component. The lid members 1b and 1c are fixed to the housing body 1a by fastening members such as bolts.

図3は本実施形態の減速装置の断面斜視図を示し、図4は本実施形態の減速装置の分解斜視図を示す。図3に示すように、減速装置は、ハウジング1と、傾斜カム4が入力軸2に一体に設けられるカム部5と、第一冠ギヤ11と、第一冠ギヤ11を波動運動可能にかつ回転不可能に支持する支持部(球面スプライン)14と、第二冠ギヤ12と、第二冠ギヤ12に連結される出力部3と、を備える。なお、以下においては、説明の便宜上、入力軸2及び出力部3の軸線2aをX方向に配置したときの方向、すなわち図3に示すX,Y,Z方向を用いて減速装置の構成を説明する。   FIG. 3 shows a sectional perspective view of the speed reducer of the present embodiment, and FIG. 4 shows an exploded perspective view of the speed reducer of the present embodiment. As shown in FIG. 3, the reduction gear transmission includes a housing 1, a cam portion 5 in which an inclined cam 4 is integrally provided on the input shaft 2, a first crown gear 11, and a first crown gear 11 so that they can be waved. A support portion (spherical spline) 14 that non-rotatably supports, a second crown gear 12, and an output portion 3 that is connected to the second crown gear 12 are provided. In the following, for convenience of description, the configuration of the speed reducer will be described using the directions when the axes 2a of the input shaft 2 and the output unit 3 are arranged in the X direction, that is, the X, Y, and Z directions shown in FIG. To do.

図4に示すように、第一冠ギヤ11及び第二冠ギヤ12は円盤形である。第一冠ギヤ11の対向面11a及び第二冠ギヤ12の対向面12aには、放射状に複数の歯が形成される。第一冠ギヤ11及び第二冠ギヤ12の歯数は特に限定されるものではない。例えば第一冠ギヤ11の歯数は49、第二冠ギヤ12の歯数は50である。第一冠ギヤ11の歯数と第二冠ギヤ12の歯数とは異なる。歯数が異なるので、第一冠ギヤ11の軸線と第二冠ギヤ12の軸線とを一致させた状態で噛み合わせることはできない。このため、第一冠ギヤ11を第二冠ギヤ12に対して傾斜させて、第一冠ギヤ11の一部を第二冠ギヤ12の一部に噛み合わせる。第二冠ギヤ12の対向面12aは、図3のYZ平面内に配置される。第一冠ギヤ11の対向面11aは、図3のYZ平面に対してZ軸の回りに角度αだけ傾いている。   As shown in FIG. 4, the first crown gear 11 and the second crown gear 12 are disc-shaped. A plurality of teeth are radially formed on the facing surface 11 a of the first crown gear 11 and the facing surface 12 a of the second crown gear 12. The number of teeth of the first crown gear 11 and the second crown gear 12 is not particularly limited. For example, the number of teeth of the first crown gear 11 is 49, and the number of teeth of the second crown gear 12 is 50. The number of teeth of the first crown gear 11 and the number of teeth of the second crown gear 12 are different. Since the number of teeth is different, the axes of the first crown gear 11 and the second crown gear 12 cannot be meshed with each other in an aligned state. Therefore, the first crown gear 11 is inclined with respect to the second crown gear 12, and a part of the first crown gear 11 meshes with a part of the second crown gear 12. The facing surface 12a of the second crown gear 12 is arranged in the YZ plane of FIG. The facing surface 11a of the first crown gear 11 is inclined around the Z axis by an angle α with respect to the YZ plane of FIG.

図3に示すように、カム部5は、ハウジング1に軸線の回りを回転可能に支持される入力軸2と、入力軸2に一体に設けられる円盤形の傾斜カム4と、傾斜カム4と第一冠ギヤ11(正確にいえば、第一冠ギヤ11に一体に固定される内輪部)との間に転がり運動可能に介在する転動体としてのボール6と、を備える(図4も参照)。傾斜カム4は、第一冠ギヤ11を傾けるために設けられる。傾斜カム4のカム面4aは、第一冠ギヤ11と同様にYZ平面に対してZ軸の回りに角度αだけ傾いていて、第一冠ギヤ11に対向する。傾斜カム4のカム面4aには、円形のボール転走溝4bが形成される。支持部14の内輪部7にも、傾斜カム4のボール転走溝4bに対向する円形のボール転走溝7bが形成される。ボール転走溝4bとボール転走溝7bとの間には、周方向に転がり運動可能に複数のボール6が配列される。第一冠ギヤ11を第二冠ギヤ12に押し付け、これらの間のバックラッシを無くすために、ボール6には予圧が付与される。ボール転走溝4bとボール転走溝7bとの間の隙間はボール6の直径よりも小さく、ボール6はこれらの間で圧縮される。ボール6はリング形の保持器16に保持される。   As shown in FIG. 3, the cam portion 5 includes an input shaft 2 rotatably supported by the housing 1 about an axis, a disc-shaped inclined cam 4 integrally provided on the input shaft 2, and an inclined cam 4. A first crown gear 11 (to be exact, an inner ring portion integrally fixed to the first crown gear 11) and a ball 6 as a rolling element interposed so as to be capable of rolling motion (see also FIG. 4). ). The tilt cam 4 is provided to tilt the first crown gear 11. The cam surface 4a of the inclined cam 4 is inclined with respect to the YZ plane about the Z axis by an angle α and faces the first crown gear 11 as in the first crown gear 11. A circular ball rolling groove 4b is formed on the cam surface 4a of the inclined cam 4. A circular ball rolling groove 7b facing the ball rolling groove 4b of the inclined cam 4 is also formed in the inner ring portion 7 of the support portion 14. A plurality of balls 6 are arranged between the ball rolling groove 4b and the ball rolling groove 7b so that they can roll in the circumferential direction. A preload is applied to the ball 6 in order to press the first crown gear 11 against the second crown gear 12 and eliminate backlash between them. The gap between the ball rolling groove 4b and the ball rolling groove 7b is smaller than the diameter of the ball 6, and the ball 6 is compressed between them. The ball 6 is held by a ring-shaped cage 16.

入力軸2は、第一冠ギヤ11及び第二冠ギヤ12を貫通する。入力軸2は中空である。入力軸2の軸方向の両端部は、軸受21,22によって回転可能に支持される。軸受21,22は、第一冠ギヤ11及び第二冠ギヤ12の軸方向の外側に配置される。   The input shaft 2 passes through the first crown gear 11 and the second crown gear 12. The input shaft 2 is hollow. Both ends of the input shaft 2 in the axial direction are rotatably supported by bearings 21 and 22. The bearings 21 and 22 are arranged outside the first crown gear 11 and the second crown gear 12 in the axial direction.

図3に示すように、支持部14は、第一冠ギヤ11の半径方向の外側に配置され、第一冠ギヤ11をハウジング1に対して波動運動可能に(言い換えれば、図3に示すように、第一冠ギヤ11の軸線11bが点P1を頂点にした円錐の軌跡を描くように回転可能に)かつ軸線の回りを回転不可能に支持する。第一冠ギヤ11の波動運動は歳差運動とも呼ばれる。   As shown in FIG. 3, the support portion 14 is arranged on the outer side in the radial direction of the first crown gear 11 so that the first crown gear 11 can be waved with respect to the housing 1 (in other words, as shown in FIG. In addition, the axis 11b of the first crown gear 11 is rotatably supported so as to draw a conical locus having the point P1 as its apex) and non-rotatably supported around the axis. The wave motion of the first crown gear 11 is also called precession motion.

図3に示すように、支持部14は、球形の内周面に外輪スプライン溝10a(図4参照)を有する外輪部10と、外輪部10の内側に配置され、球形の外周面に外輪スプライン溝10aに対向する内輪スプライン溝7a(図4参照)を有する内輪部7と、外輪スプライン溝10aと内輪スプライン溝7aとの間に軸方向の円弧の軌道に沿って転がり運動可能に介在する転動体としてのボール9と、を備える。外輪部10は、ハウジング1と一体である。内輪部7は、ボルト等の締結部材によって第一冠ギヤ11に固定される。ボール9は、保持器8に保持される。支持部14によって、第一冠ギヤ11は、軸線2a上の点P1を中心にしてZ軸の回り及びY軸の回りを揺動可能になる。第一冠ギヤ11の軸線2aの回りの回転運動は、支持部14のスプライン機構によって制限される。内輪部7にカム部5のボール転走溝7bを形成することで、回転を制限した第一冠ギヤ11の波動運動が円滑になる。   As shown in FIG. 3, the support portion 14 has an outer ring portion 10 having an outer ring spline groove 10a (see FIG. 4) on a spherical inner peripheral surface, and is arranged inside the outer ring portion 10, and has an outer ring spline on the spherical outer peripheral surface. An inner ring portion 7 having an inner ring spline groove 7a (see FIG. 4) facing the groove 10a, and a rolling member interposed between the outer ring spline groove 10a and the inner ring spline groove 7a so as to be rollable along an arcuate path in the axial direction. And a ball 9 as a moving body. The outer ring portion 10 is integral with the housing 1. The inner ring portion 7 is fixed to the first crown gear 11 by a fastening member such as a bolt. The ball 9 is held by the cage 8. The support portion 14 allows the first crown gear 11 to swing about the point P1 on the axis 2a about the Z axis and about the Y axis. The rotational movement of the first crown gear 11 around the axis 2a is limited by the spline mechanism of the support portion 14. By forming the ball rolling groove 7b of the cam portion 5 in the inner ring portion 7, the wave motion of the first crown gear 11 whose rotation is restricted becomes smooth.

出力部3の内輪3aは、ボルト等の締結部材によって第二冠ギヤ12に固定される。出力部3は、クロスローラ23によってハウジング1に回転可能に支持される。クロスローラ23は、周方向に隣接するローラの軸線が周方向から見て直交するローラ列である(図4参照)。第二冠ギヤ12は、出力部3を介してハウジング1に回転可能に支持される。ハウジング1の蓋部材1cの内周面には、円形のレースウェイ1c1が形成される。出力部3の内輪3aの外周面には、レースウェイ1c1に対向する円形のレースウェイ3bが形成される。レースウェイ1c1とレースウェイ3bとの間に転動体としてクロスローラ23が配置される。出力部3には、第一冠ギヤ11と第二冠ギヤ12との噛み合い箇所の反力に起因したモーメントが作用する。クロスローラ23を用いることで、出力部3のモーメント剛性を向上させることができる。なお、入力軸2の一端部を回転可能に支持する軸受22は、出力部3と入力軸2との間に配置される。   The inner ring 3a of the output unit 3 is fixed to the second crown gear 12 by a fastening member such as a bolt. The output unit 3 is rotatably supported by the housing 1 by the cross roller 23. The cross roller 23 is a roller row in which the axes of the rollers adjacent in the circumferential direction are orthogonal to each other when viewed in the circumferential direction (see FIG. 4). The second crown gear 12 is rotatably supported by the housing 1 via the output unit 3. A circular raceway 1c1 is formed on the inner peripheral surface of the lid member 1c of the housing 1. A circular raceway 3b facing the raceway 1c1 is formed on the outer peripheral surface of the inner ring 3a of the output unit 3. The cross roller 23 is arranged as a rolling element between the raceway 1c1 and the raceway 3b. A moment resulting from the reaction force at the meshing portion of the first crown gear 11 and the second crown gear 12 acts on the output unit 3. By using the cross roller 23, the moment rigidity of the output unit 3 can be improved. The bearing 22 that rotatably supports one end of the input shaft 2 is arranged between the output unit 3 and the input shaft 2.

図示しないモータ等の駆動源を用いて、カム部5を軸線の回りに回転させると、カム部5の傾斜カム4によって第一冠ギヤ11が第二冠ギヤ12との噛み合い箇所を移動させながら波動運動する。第一冠ギヤ11の波動運動に伴って、第二冠ギヤ12が第一冠ギヤ11に対して歯数差の分だけ相対的に回転する。この実施形態では、例えば、第一冠ギヤ11の歯数を49、第二冠ギヤ12の歯数を50とする。そして、ハウジング1に対する第一冠ギヤ11の回転は支持部14によって制限され、ハウジング1に対する出力部3の回転は許容される。このため、出力部3が1歯分だけ減速して回転し、1/50の減速比が得られる。ここで、第一冠ギヤ11及び第二冠ギヤ12の歯数は限定されない。
<第一冠ギヤ及び第二冠ギヤの歯の形状(歯先部及び歯底部が円錐の側面から構成される例)>
When the cam portion 5 is rotated around the axis by using a drive source such as a motor (not shown), the inclined cam 4 of the cam portion 5 causes the first crown gear 11 to move a meshing portion with the second crown gear 12. Wave motion. With the wave motion of the first crown gear 11, the second crown gear 12 rotates relative to the first crown gear 11 by the difference in the number of teeth. In this embodiment, for example, the number of teeth of the first crown gear 11 is 49, and the number of teeth of the second crown gear 12 is 50. The rotation of the first crown gear 11 with respect to the housing 1 is limited by the support portion 14, and the rotation of the output portion 3 with respect to the housing 1 is allowed. Therefore, the output unit 3 decelerates by one tooth and rotates, and a reduction ratio of 1/50 is obtained. Here, the number of teeth of the first crown gear 11 and the second crown gear 12 is not limited.
<Tooth shape of the first crown gear and the second crown gear (example in which the tooth tip and the tooth bottom are composed of conical side surfaces)>

第一冠ギヤ11及び第二冠ギヤ12の歯の形状は、以下のとおりである。図5(a)は、第二冠ギヤ12、及び第二冠ギヤ12に傾斜して噛み合う第一冠ギヤ11を示す。図5(a)に示すように、第一冠ギヤ11と第二冠ギヤ12とは1カ所(図5(a)の左端の位置A)で噛み合う。ただし、第一冠ギヤ11にはカム部5から予圧がかかるので、第一冠ギヤ11と第二冠ギヤ12の接触箇所は、噛み合い箇所を中心に周方向に複数の歯に広がる。第一冠ギヤ11が傾斜しているので、図5(a)の右側に向かって第一冠ギヤ11と第二冠ギヤ12との間の隙間δが徐々に大きくなる。   The tooth shapes of the first crown gear 11 and the second crown gear 12 are as follows. FIG. 5A shows a second crown gear 12 and a first crown gear 11 that is inclined and meshes with the second crown gear 12. As shown in FIG. 5A, the first crown gear 11 and the second crown gear 12 mesh with each other at one location (position A at the left end in FIG. 5A). However, since the first crown gear 11 is preloaded from the cam portion 5, the contact point between the first crown gear 11 and the second crown gear 12 spreads to a plurality of teeth in the circumferential direction around the meshing point. Since the first crown gear 11 is inclined, the gap δ between the first crown gear 11 and the second crown gear 12 gradually increases toward the right side of FIG. 5A.

図5(a)に示すように、第一冠ギヤ11の直径と第二冠ギヤ12との直径とは等しい。第一冠ギヤ11の歯数と第二冠ギヤ12の歯数が異なっているので、第一冠ギヤ11の歯のピッチと第一冠ギヤ11の歯のピッチとが異なる。   As shown in FIG. 5A, the diameter of the first crown gear 11 and the diameter of the second crown gear 12 are equal. Since the number of teeth of the first crown gear 11 and the number of teeth of the second crown gear 12 are different, the tooth pitch of the first crown gear 11 and the tooth pitch of the first crown gear 11 are different.

図5(b)は第二冠ギヤ12を示す。第二冠ギヤ12は、傘歯車状であり、円錐形の母体を持つ。第二冠ギヤ12の表面には、波形の歯30が円周方向に連続して形成される。第二冠ギヤ12は、放射状に配置される複数の歯先部31と、放射状に配置される複数の歯底部32と、を円周方向に交互に有する。第二冠ギヤ12の歯先部31は、円錐の側面から構成される凸形状である。第二冠ギヤ12の歯底部32は、円錐の側面から構成される凹形状である。   FIG. 5B shows the second crown gear 12. The second crown gear 12 has a bevel gear shape and has a conical base body. On the surface of the second crown gear 12, wavy teeth 30 are continuously formed in the circumferential direction. The second crown gear 12 has a plurality of tooth tips 31 radially arranged and a plurality of tooth bottom portions 32 radially arranged alternately in the circumferential direction. The addendum portion 31 of the second crown gear 12 has a convex shape composed of a side surface of a cone. The tooth bottom portion 32 of the second crown gear 12 has a concave shape composed of a side surface of a cone.

図5(c)は第一冠ギヤ11を示す。第一冠ギヤ11も、傘歯車状であり、円錐形の母体を持つ。第一冠ギヤ11の表面にも、波形の歯35が円周方向に連続して形成される。第一冠ギヤ11も、放射状に配置される複数の歯先部33と放射状に配置される複数の歯底部34とを円周方向に交互に有する。第一冠ギヤ11の歯先部33は、円錐の側面から構成される凸形状である。第一冠ギヤ11の歯底部34は、円錐の側面から構成される凹形状である。   FIG. 5C shows the first crown gear 11. The first crown gear 11 also has a bevel gear shape and has a conical mother body. Corrugated teeth 35 are continuously formed on the surface of the first crown gear 11 in the circumferential direction. The first crown gear 11 also has a plurality of tooth tips 33 radially arranged and a plurality of tooth bottom portions 34 radially arranged alternately in the circumferential direction. The addendum portion 33 of the first crown gear 11 has a convex shape formed by a side surface of a cone. The tooth bottom portion 34 of the first crown gear 11 has a concave shape formed by the side surface of a cone.

図6の展開図に示すように、第二冠ギヤ12の歯底部32の半径は、第一冠ギヤ11の歯先部33の半径よりも大きく、第一冠ギヤ11の歯先部33が第二冠ギヤ12の歯底部32に嵌まる。そして、第一冠ギヤ11の歯先部33の頂点と第二冠ギヤ12の歯底部32とが噛み合い位置Aで接触する。第一冠ギヤ11の歯底部34の半径は、第二冠ギヤ12の歯先部31の半径よりも大きく、第二冠ギヤ12の歯先部31が第一冠ギヤ11の歯底部34に嵌まる。第一冠ギヤ11の波動運動に伴い、噛み合い位置Aが移動し、第二冠ギヤ12の歯先部31の頂点と第一冠ギヤ11の歯底部34とが接触するようになる。   As shown in the development view of FIG. 6, the radius of the tooth bottom portion 32 of the second crown gear 12 is larger than the radius of the tooth tip portion 33 of the first crown gear 11, and the tooth tip portion 33 of the first crown gear 11 is It fits in the tooth bottom portion 32 of the second crown gear 12. Then, the apex of the tooth top portion 33 of the first crown gear 11 and the tooth bottom portion 32 of the second crown gear 12 contact at the meshing position A. The radius of the tooth bottom portion 34 of the first crown gear 11 is larger than the radius of the tooth top portion 31 of the second crown gear 12, and the tooth top portion 31 of the second crown gear 12 is aligned with the tooth bottom portion 34 of the first crown gear 11. Fit in. The meshing position A moves with the wave motion of the first crown gear 11, and the apex of the tooth top portion 31 of the second crown gear 12 comes into contact with the tooth bottom portion 34 of the first crown gear 11.

図7(a)及び図7(b)は、第二冠ギヤ12及び第一冠ギヤ11の歯に円錐を付記した斜視図を示す。ここでは、歯の形状を分かり易くするために円錐を付記している。図7(b)に示すように、第二冠ギヤ12の歯先部31は、中心に向かって幅が狭くなるテーパに形成されていて、具体的には円錐C1の側面の一部から構成される。第二冠ギヤ12の歯底部32も、中心に向かって幅が狭くなるテーパに形成されていて、具体的には円錐C2の側面の一部から構成される。同一の円周上において、歯底部32の円錐C2の半径は、歯先部31の円錐C1の半径よりも大きい。複数の歯先部31の円錐C1の頂点は噛み合い中心P2で交わる。複数の歯底部32の円錐C2の頂点も噛み合い中心P2で交わる。なお、図3に示すように、この噛み合い中心P2は入力軸2の軸線2a上に位置し、第一冠ギヤ11の波動運動の中心P1と一致する。これにより第一冠ギヤ11と第二冠ギヤ12との線接触が可能となる。   7 (a) and 7 (b) show perspective views in which the teeth of the second crown gear 12 and the first crown gear 11 are added with cones. Here, a cone is added to make the shape of the tooth easy to understand. As shown in FIG. 7B, the addendum portion 31 of the second crown gear 12 is formed in a taper whose width becomes narrower toward the center, and specifically, is formed from a part of the side surface of the cone C1. To be done. The tooth bottom portion 32 of the second crown gear 12 is also formed in a taper whose width becomes narrower toward the center, and is specifically configured by a part of the side surface of the cone C2. On the same circumference, the radius of the cone C2 of the tooth bottom portion 32 is larger than the radius of the cone C1 of the tooth tip portion 31. The vertices of the cone C1 of the tooth tips 31 intersect at the meshing center P2. The vertices of the cones C2 of the plurality of tooth bottom portions 32 also intersect at the meshing center P2. As shown in FIG. 3, the meshing center P2 is located on the axis 2a of the input shaft 2 and coincides with the center P1 of the wave motion of the first crown gear 11. Thereby, the line contact between the first crown gear 11 and the second crown gear 12 becomes possible.

図7(a)に示すように、第一冠ギヤ11の歯先部33は、中心に向かって幅が狭くなる円錐C3の側面の一部から構成される。第一冠ギヤ11の歯底部34は、中心に向かって幅が狭くなる円錐C4の側面の一部から構成される。歯底部34の円錐C4の半径は、歯先部33の円錐C3の半径よりも大きい。第一冠ギヤ11の歯のピッチと第二冠ギヤ12の歯のピッチとを異ならせるため、第一冠ギヤ11の歯先部33の円錐C3の半径は、第二冠ギヤ12の歯先部31の円錐C1の半径に等しく、第一冠ギヤ11の歯底部34の円錐C4の半径は、第二冠ギヤ12の歯底部32の円錐C2の半径よりも小さい。第一冠ギヤ11の複数の歯先部33の円錐C3の頂点は、第二冠ギヤ12の噛み合い中心P2に一致し、第一冠ギヤ11の複数の歯底部34の円錐C4の頂点は、第二冠ギヤ12の噛み合い中心P2に一致する。   As shown in FIG. 7A, the addendum portion 33 of the first crown gear 11 is composed of a part of the side surface of the cone C3 whose width becomes narrower toward the center. The tooth bottom portion 34 of the first crown gear 11 is composed of a part of the side surface of the cone C4 whose width decreases toward the center. The radius of the cone C4 of the tooth bottom portion 34 is larger than the radius of the cone C3 of the tooth tip portion 33. In order to make the tooth pitch of the first crown gear 11 and the tooth pitch of the second crown gear 12 different, the radius of the cone C3 of the tooth tip portion 33 of the first crown gear 11 is the tooth tip of the second crown gear 12. The radius of the cone C4 of the first crown gear 11 is equal to the radius of the cone C1 of the part 31, and the radius of the cone C2 of the root 32 of the second crown gear 12 is smaller than the radius of the cone C2. The vertices of the cone C3 of the tooth tops 33 of the first crown gear 11 coincide with the meshing center P2 of the second crown gear 12, and the vertices of the cone C4 of the tooth bottoms 34 of the first crown gear 11 are: It coincides with the meshing center P2 of the second crown gear 12.

図6の展開図に示すように、第一冠ギヤ11の歯先部33は円弧に形成され、歯底部34も円弧に形成される。第二冠ギヤ12の歯先部31は円弧に形成され、歯底部32も円弧に形成される。厳密にいえば、円錐形の第一冠ギヤ11及び第二冠ギヤ12の歯30,35を展開すると楕円になるが、円弧とみなすことができる。上記のように、第一冠ギヤ11の歯先部33の円弧の半径は、第二冠ギヤ12の歯先部31の円弧の半径に等しい。第一冠ギヤ11の歯35のピッチと第二冠ギヤ12の歯30のピッチとを異ならせるために、第一冠ギヤ11の歯底部34の半径は第二冠ギヤ12の歯底部32の半径よりも小さい。   As shown in the development view of FIG. 6, the tooth top portion 33 of the first crown gear 11 is formed in an arc, and the tooth bottom portion 34 is also formed in an arc. The tooth top portion 31 of the second crown gear 12 is formed in an arc, and the tooth bottom portion 32 is also formed in an arc. Strictly speaking, when the teeth 30 and 35 of the conical first crown gear 11 and the second crown gear 12 are expanded into ellipses, they can be regarded as arcs. As described above, the radius of the arc of the addendum 33 of the first crown gear 11 is equal to the radius of the arc of the addendum 31 of the second crown gear 12. In order to make the pitch of the teeth 35 of the first crown gear 11 and the pitch of the teeth 30 of the second crown gear 12 different, the radius of the tooth bottom portion 34 of the first crown gear 11 is equal to that of the tooth bottom portion 32 of the second crown gear 12. Less than radius.

第一冠ギヤ11に予圧をかけない状態では、第一冠ギヤ11の歯先部33が1カ所Aでのみ第二冠ギヤ12に接触する。第一冠ギヤ11に予圧をかけると、第一冠ギヤ11の複数の歯35と第二冠ギヤ12の複数の歯30が接触する。第一冠ギヤ11を波動運動させると、噛み合い位置Aが第一冠ギヤ11及び第二冠ギヤ12の円周方向に移動し、第二冠ギヤ12が第一冠ギヤ11に対して歯数差の分だけ相対的に回転する。
<第一冠ギヤ及び第二冠ギヤの歯の形状の他の例(歯先部が円錐の側面から構成され、歯底部がトロコイド曲線を用いて生成される例)>
In the state in which the first crown gear 11 is not preloaded, the tooth top 33 of the first crown gear 11 contacts the second crown gear 12 only at one position A. When the preload is applied to the first crown gear 11, the plurality of teeth 35 of the first crown gear 11 and the plurality of teeth 30 of the second crown gear 12 come into contact with each other. When the first crown gear 11 is waved, the meshing position A moves in the circumferential direction of the first crown gear 11 and the second crown gear 12, and the second crown gear 12 has the number of teeth with respect to the first crown gear 11. It rotates relative to the difference.
<Another example of the tooth shape of the first crown gear and the second crown gear (an example in which the tip part is composed of a conical side surface and the tooth bottom part is generated using a trochoidal curve)>

第一冠ギヤ11及び第二冠ギヤ12の歯先部33,31及び歯底部34,32が円錐の側面から構成される形状であると、第一冠ギヤ11及び第二冠ギヤ12の製作が容易である。しかし、図8の第一冠ギヤ11及び第二冠ギヤ12の歯の展開図に示すように、第一冠ギヤ11の歯先部33(円形で示す)の軌跡を描くと、第一冠ギヤ11と第二冠ギヤ12との間に僅かな隙間gが空く。この隙間gは、角度伝達誤差や駆動音の増大を招くおそれがある。この隙間gを埋めて、歯先部33と歯底部32が完全に転がるようにし、角度伝達精度と静音性とを向上させたのがこの例である。ただし、この隙間gは極めて僅かなものであり、隙間gを埋めなくても、インボリュート歯形と同等の角度伝達精度は得られる。
(設計の概要)
If the tooth tops 33, 31 and the tooth bottoms 34, 32 of the first crown gear 11 and the second crown gear 12 have a shape constituted by conical side surfaces, the manufacture of the first crown gear 11 and the second crown gear 12 is performed. Is easy. However, as shown in the development view of the teeth of the first crown gear 11 and the second crown gear 12 in FIG. 8, when the locus of the tooth tip portion 33 (shown by a circle) of the first crown gear 11 is drawn, There is a slight gap g between the gear 11 and the second crown gear 12. This gap g may cause an error in angle transmission and an increase in driving sound. In this example, the gap g is filled so that the addendum portion 33 and the tooth bottom portion 32 are completely rolled to improve the accuracy of angle transmission and the quietness. However, the gap g is extremely small, and the angle transmission accuracy equivalent to that of the involute tooth profile can be obtained without filling the gap g.
(Outline of design)

第一冠ギヤ11及び第二冠ギヤ12の歯形曲面の設計は、図9に示すように、まず、第一冠ギヤ11及び第二冠ギヤ12の基準円r上の歯形曲線を作成することから始まる。作成した歯形曲線は一本の曲線であり、面ではない。第一冠ギヤ11及び第二冠ギヤ12の歯形曲面を得るために、基準円の半径rを変化させて得られる歯形曲線を第一冠ギヤ11及び第二冠ギヤ12の円錐形の母体に沿って並べる。これにより、第一冠ギヤ11及び第二冠ギヤ12の歯形曲面が得られる。
(歯形曲線の設計指針)
Tooth profile curved design of the first crown gear 11 and the second crown gear 12, as shown in FIG. 9, first, creating a tooth profile on the reference circle r c of the first crown gear 11 and the second crown gear 12 It starts with that. The created tooth profile curve is a single curve, not a surface. In order to obtain the tooth-shaped curved surfaces of the first crown gear 11 and the second crown gear 12, the tooth profile curve obtained by changing the radius r c of the reference circle is used as the conical matrix of the first crown gear 11 and the second crown gear 12. Line up alongside. Thereby, the tooth profile curved surfaces of the first crown gear 11 and the second crown gear 12 are obtained.
(Design guidelines for tooth profile)

第一冠ギヤ11及び第二冠ギヤ12の歯先部33,31が円錐の側面から構成されるとし、基準円r上の第一冠ギヤ11及び第二冠ギヤ12の歯先部33,31の曲線を単一Rの円弧とする。このとき、歯先部33,31と歯底部34,32が互いに転がり運動を行うためには、歯底部34,32の歯底曲線は、歯先部33,31が描く軌跡となる。歯先部33,31の単一Rの円弧と歯底部34,32の歯底曲線を滑らかに接続することで、図9に示すように、第一冠ギヤ11及び第二冠ギヤ12の基準円r上の歯形曲線が得られる。歯形曲線の作成は、下記の順序で行われる。 It is assumed that the tooth tops 33, 31 of the first crown gear 11 and the second crown gear 12 are composed of conical side surfaces, and the tooth tops 33 of the first crown gear 11 and the second crown gear 12 on the reference circle r c are formed. , 31 is a single R arc. At this time, since the tooth tops 33, 31 and the tooth bottoms 34, 32 perform rolling motions with respect to each other, the tooth root curves of the tooth bottoms 34, 32 are loci drawn by the tooth tips 33, 31. As shown in FIG. 9, by smoothly connecting the single R arcs of the tooth tops 33 and 31 and the tooth bottom curves of the tooth bottoms 34 and 32, the reference of the first crown gear 11 and the second crown gear 12 can be obtained. A tooth profile curve on the circle r c is obtained. The tooth profile curve is created in the following order.

(i)波動運動(以下、歳差運動という)によって歯先部33,31が通るべき曲線(トロコイド曲線)を求める。
(ii)歯先部33,31の半径を仮定し、歯先部33,31が(i)で求めたトロコイド曲線上を通ったときに描く曲線を求め、これを歯底部34,32の歯底曲線とする。
(iii)歯先部33,31の歯先曲線(円弧)と歯底部34,32の歯底曲線とを互いになめらかに接続するように歯先部33,31の半径を決定する。
(歯先部が通るべきトロコイド曲線の計算)
(I) A curve (trochoidal curve) through which the tooth tips 33 and 31 should pass is obtained by a wave motion (hereinafter referred to as a precession motion).
(Ii) Assuming the radii of the tooth tops 33, 31, a curve drawn when the tooth tops 33, 31 pass on the trochoidal curve obtained in (i) is obtained, and this is used as the tooth of the tooth bottoms 34, 32. Set to the bottom curve.
(Iii) The radii of the tooth tops 33, 31 are determined so that the tooth top curves (arcs) of the tooth tops 33, 31 and the tooth bottom curves of the tooth bottoms 34, 32 are smoothly connected to each other.
(Calculation of the trochoidal curve that the tooth tip should pass through)

第一冠ギヤ11は、歳差運動をしながら第二冠ギヤ12に噛み合う。第一冠ギヤ11及び第二冠ギヤ12は、円錐形の母体を持ち、これらの歯面は円錐形の母体上にある。したがって、周方向には合同な歯形曲線が並ぶが、半径方向では歯形曲線は相似ではあるが合同ではない。このため、ある基準円rを定め、この基準円r上での歯形曲線を求める。 The first crown gear 11 meshes with the second crown gear 12 while performing a precession movement. The first crown gear 11 and the second crown gear 12 have a conical base body, and their tooth surfaces are on the conical base body. Therefore, congruent tooth profile curves are arranged in the circumferential direction, but tooth profile curves in the radial direction are similar but not congruent. Therefore, a certain reference circle r c is determined and the tooth profile curve on this reference circle r c is obtained.

まず、この基準円rを底面にもつ2つの円錐があり、図10(a)に示すように互いの頂点と母線が接触している状態を仮定し、歳差運動を行う円錐を動円錐、固定された円錐を定円錐とする。ここで、円錐頂点を原点O、底面同士の接触点を点P、動円錐の底面上の定点を点P、定円錐の頂点から底面へ下ろした垂線の足をH、動円錐の頂点から底面へ下ろした垂線の足をHとする。このとき、動円錐を歳差運動させたときの点Pの描く軌跡が歯の通るべき曲線(トロコイド曲線)となる。いま、図10(b)に示すように、動円錐が定円錐から離れることなく歳差運動を行った場合を考える。この歳差運動が、動円錐が自身の軸OH回りに−ψだけ回転し、かつ定円錐回りをθ回転するものだとすれば、点PがOH回りにθ、点PがOH回りに−ψ回転したものとみなせる。ここで、図11に示すように、線分OHに平行で正規化したベクトルをn、点Oから点Pまでのベクトルをp、点Oから点Pまでのベクトルをpとすれば、pはpをn回りにψだけ回転したベクトルとみなせるため、 First, assuming that there are two cones having the reference circle r c on the bottom surface, and the apexes of the two cones are in contact with each other as shown in FIG. , Let the fixed cone be a constant cone. Here, the cone vertex is the origin O, the contact point between the bottoms is the point P 1 , the fixed point on the bottom of the moving cone is the point P 2 , the foot of the perpendicular line drawn from the vertex of the constant cone to the bottom is H 1 , the moving cone is Let H 2 be the leg of the perpendicular line that is dropped from the top to the bottom. At this time, the locus drawn by the point P 2 when the moving cone is precessed becomes a curve through which the tooth should pass (trochoidal curve). Now, let us consider a case where the moving cone performs the precession movement without being separated from the constant cone as shown in FIG. If this precession motion is such that the moving cone rotates about its own axis OH 2 by −ψ and rotates about the constant cone by θ, the point P 1 is θ around OH 1 and the point P 2 is It can be regarded as a rotation of −ψ around OH 2 . Here, as shown in FIG. 11, the vector normalized in parallel to the line segment OH 2 is n, the vector from the point O to the point P 1 is p 1 , and the vector from the point O to the point P 2 is p 2 . Then, p 2 can be regarded as a vector obtained by rotating p 1 around n by ψ.

と表すことができる。ここで、動円錐と定円錐がともに底面半径r、底角Φであれば、nとpはそれぞれ、 It can be expressed as. Here, if both the moving cone and the constant cone have a base radius r c and a base angle Φ c , n and p 1 are respectively

と表すことができる。 It can be expressed as.

ここまで求めてきたpは、ψの値を変えることで第一冠ギヤ11と第二冠ギヤ12それぞれの歯先部33,31の中心が通るべき曲線を表すベクトルを表すことができる。まず、第一冠ギヤ11の歯先部33の中心が通るべき曲線を求める。動円錐が第一冠ギヤ11、定円錐が第二冠ギヤ12とみなし、歯数をそれぞれz,zとする。また、動円錐の歳差運動のパラメータはθ=θ,ψ=ψとする。このとき、正転ギヤであれば、図12に示すようにθが1回転する間にψは反対方向に1歯分だけ多く回転し、逆転ギヤであれば、θが1回転する間にψは反対方向に1歯分だけ少なく回転するため、数3が成り立つ。 The p 2 thus obtained can represent a vector representing a curve through which the centers of the tooth tips 33, 31 of the first crown gear 11 and the second crown gear 12 should pass by changing the value of ψ. First, a curve through which the center of the tooth tip portion 33 of the first crown gear 11 should pass is obtained. It is assumed that the moving cone is the first crown gear 11 and the constant cone is the second crown gear 12, and the numbers of teeth are z i and z 0 , respectively. Further, the parameters of the precession movement of the moving cone are θ = θ i and ψ = ψ i . At this time, in the case of the forward rotation gear, as shown in FIG. 12, ψ rotates by one tooth in the opposite direction during one rotation of θ, and in the case of the reverse rotation gear, ψ rotates during one rotation of θ. Rotates less by one tooth in the opposite direction, so that the equation 3 holds.

これを整理して、 Organize this,

第二冠ギヤ12の歯先部31の中心が通るべき曲線を求める場合、動円錐を第二冠ギヤ12、定円錐を第一冠ギヤ11とみなし、歳差運動のパラメータはθ=θ,ψ=ψとすれば、同様にして数5が成り立つ。 When obtaining a curve through which the center of the tooth tip 31 of the second crown gear 12 passes, the moving cone is regarded as the second crown gear 12, and the constant cone is regarded as the first crown gear 11, and the parameter of the precession motion is θ = θ o. , Ψ = ψ o , the same applies to Equation 5.

このように、組み合わせるギヤの特性によって、数4、数5を選択し、ψについて数1に代入することで、歯先部の中心が通るべき曲線を求められる。このとき、求めた曲線の例を図13に示す。図13において、ベクトルpが描く軌跡がトロコイド曲線である。p1とp2の回転角と方向は図12と同じである。
(歯底曲線の計算)
As described above, by selecting the equations 4 and 5 according to the characteristics of the gears to be combined and substituting the equation 1 for ψ, the curve through which the center of the tooth tip portion should pass can be obtained. An example of the curve obtained at this time is shown in FIG. In FIG. 13, the locus drawn by the vector p 2 is a trochoidal curve. The rotation angles and directions of p1 and p2 are the same as in FIG.
(Calculation of root curve)

次に、歯底曲線を求める。図14に示すように相手側ギヤの歯先部33が描く軌跡が歯底曲線pとなる。すなわち、相手側ギヤの歯先部33の中心が通るべきトロコイド曲線pを求め、相手側ギヤの歯先部33の半径をもつ円をこのトロコイド曲線p上で動かしたときに得られる軌跡を計算すればよい。ここで、相手側ギヤの歯先半径をh、この円をCとする。このとき、図15に示すように、歯底曲線を表すベクトルpは、p上に円Cを描いたときの点のうち、pとpの方向ベクトルΔpのどちらにも直交する点Pまでのベクトルとなる。したがって、数6と数7の関係が成り立つ。 Next, the root curve is obtained. As shown in FIG. 14, the locus drawn by the tooth tip 33 of the mating gear is the tooth bottom curve p 3 . That is, a trochoidal curve p 2 through which the center of the tooth tip 33 of the mating gear should pass is obtained, and a locus obtained when a circle having the radius of the tooth tip 33 of the mating gear is moved on this trochoidal curve p 2. Should be calculated. Here, the tip radius of the mating gear is h k , and this circle is C. At this time, as shown in FIG. 15, a vector p 3 representing the tooth bottom curve, among the points when a circle C on p 2, also orthogonal to both p 2 and p 2 of the direction vector Delta] p 2 It becomes a vector up to the point P 3 . Therefore, the relationship of the equations 6 and 7 is established.

以上の結果から、 From the above results,

が成り立つ。なお、式中の正負は、方向ベクトルの向きによって決定される。
(歯先曲線と歯底曲線の接続)
Holds. The positive / negative in the formula is determined by the direction of the direction vector.
(Connecting the tip curve and the root curve)

図16(a)は、上記に従って計算した第一冠ギヤ11の歯形曲線(歯先曲線と歯底曲線)を示し、図16(b)は、上記に従って計算した第二冠ギヤ12の歯形曲線(歯先曲線と歯底曲線)を示す。ここでは、歯先曲線と歯底曲線が滑らかに繋がるように歯先曲線の半径を決定する。歯先曲線の半径は、「歯先曲線と歯底曲線が接点をただ一つ持つとき」を条件にして決定する。(歯先曲線の方程式)=(歯底曲線の方程式)を立式し、これが重解を持つときの歯先半径の値を探せばよい。以上により、第一冠ギヤ11及び第二冠ギヤ12の歯形曲線を生成することができる。   FIG. 16A shows the tooth profile curve (the tip curve and the tooth bottom curve) of the first crown gear 11 calculated as described above, and FIG. 16B shows the tooth profile curve of the second crown gear 12 calculated as described above. (Tooth tip curve and root curve) is shown. Here, the radius of the tip curve is determined so that the tip curve and the root curve are smoothly connected. The radius of the addendum curve is determined under the condition "when the addendum curve and the addendum curve have only one contact point". (Equation of tip curve) = (Equation of root curve) is established, and the value of the tip radius when this has multiple solutions may be searched. As described above, the tooth profile curves of the first crown gear 11 and the second crown gear 12 can be generated.

図17は、上記に従って得られた第一冠ギヤ11及び第二冠ギヤ12の歯形曲線を示す。図中の黒丸が接触点を示す。(S1)の接触開始時から(S5)の接触終了時に至るまで、第一冠ギヤ11と第二冠ギヤ12とが常に接触し、接触点が移動することがわかる。接触点が移動することから、第一冠ギヤ11と第二冠ギヤ12とが互いに転がることがわかる。   FIG. 17 shows tooth profile curves of the first crown gear 11 and the second crown gear 12 obtained according to the above. The black circles in the figure indicate the contact points. It can be seen that the first crown gear 11 and the second crown gear 12 are constantly in contact with each other and the contact point is moved from the start of contact in (S1) to the end of contact in (S5). Since the contact point moves, it can be seen that the first crown gear 11 and the second crown gear 12 roll with each other.

なお、第一冠ギヤ11及び第二冠ギヤ12の歯底部34,32を円錐の側面から構成し、第一冠ギヤ11及び第二冠ギヤ12の歯先部33,31をトロコイド曲線を用いて生成することもできる。この場合、基準円r上の第一冠ギヤ11及び第二冠ギヤ12の歯底部34,32の曲線を単一Rの円弧とし、トロコイド曲線を用いて歯先部33,31の歯先曲線を計算すればよい。
<第一冠ギヤ及び第二冠ギヤの歯の形状のさらに他の例(歯すじがヘリカル状である例)>
In addition, the tooth bottom portions 34 and 32 of the first crown gear 11 and the second crown gear 12 are configured from the side surfaces of the cone, and the tooth top portions 33 and 31 of the first crown gear 11 and the second crown gear 12 are formed by using trochoidal curves. It can also be generated. In this case, the curve of the tooth bottom portion 34, 32 of the reference circle first crown gear 11 and the second crown gear 12 on the r c an arc of a single R, addendum of the tooth tip 33 and 31 using a trochoidal curve Calculate the curve.
<Still another example of the tooth shape of the first crown gear and the second crown gear (example where the tooth trace is helical)>

図18に示すように、第二冠ギヤ12の基準円上の歯形曲線の位相を、基準円の半径を変化させる毎に円周方向にずらすことで、歯すじをヘリカル状にすることができる。図18に示すように、第二冠ギヤ12の外側と内側とでは、歯形曲線の位相が異なる。同様に、第一冠ギヤ11の歯すじも同様にヘリカル状にすることができる。   As shown in FIG. 18, by shifting the phase of the tooth profile curve on the reference circle of the second crown gear 12 in the circumferential direction each time the radius of the reference circle is changed, the tooth trace can be made helical. . As shown in FIG. 18, the phase of the tooth profile curve is different between the outside and the inside of the second crown gear 12. Similarly, the tooth traces of the first crown gear 11 can be similarly helical.

ヘリカル状の歯すじには、図19に示す対数らせんを採用することができる。対数らせんは、円錐形の母体の母線とのなす角βが常に一定のらせんであり、数9で表すことができる。   A logarithmic spiral shown in FIG. 19 can be adopted for the helical tooth trace. The logarithmic helix has a constant helix with respect to the generatrix of the conical mother body, and can be expressed by Equation 9.

ここで、a,bはらせんの巻き方のパラメータである。
<本実施形態の減速装置の効果>
Here, a and b are parameters of the spiral winding method.
<Effects of Reduction Gear of this Embodiment>

以上に本実施形態の減速装置の構成を説明した。本実施形態の減速装置によれば、以下の効果を奏する。第一冠ギヤ11を波動運動可能にかつ回転不可能に支持する支持部14を第一冠ギヤ11の半径方向の外側に配置するので、支持部14のスプライン機構を構成するボール9のP.C.D.(Pitch Circle Diameter)を大きくすることができ、支持部14の回転剛性、ひいては減速装置の回転剛性を高くすることができる。また、支持部14にボール9を備えるスプライン機構を用いることで、第一冠ギヤ11を円滑に波動運動させることができる。   The configuration of the speed reducer of this embodiment has been described above. The speed reducer of the present embodiment has the following effects. Since the support portion 14 that supports the first crown gear 11 in a wave-movable and non-rotatable manner is arranged on the outer side in the radial direction of the first crown gear 11, the P. C. D. (Pitch Circle Diameter) can be increased, and the rotational rigidity of the support portion 14, and thus the rotational rigidity of the speed reducer, can be increased. Further, by using the spline mechanism including the ball 9 in the support portion 14, the first crown gear 11 can be smoothly waved.

入力軸2が第一冠ギヤ11及び第二冠ギヤ12を貫通するので、入力軸2の両端部を軸受21,22で回転可能に支持することができる。第一冠ギヤ11と第二冠ギヤ12との噛み合い箇所の反力に起因したモーメントが入力軸2に作用しても、入力軸2のモーメント剛性を向上させることができる。また、入力軸2が第一冠ギヤ11及び第二冠ギヤ12を貫通しない場合に比べて、減速装置の軸線方向の長さをコンパクトにすることもできる。   Since the input shaft 2 penetrates the first crown gear 11 and the second crown gear 12, both ends of the input shaft 2 can be rotatably supported by the bearings 21 and 22. Even if the moment resulting from the reaction force at the meshing portion of the first crown gear 11 and the second crown gear 12 acts on the input shaft 2, the moment rigidity of the input shaft 2 can be improved. Moreover, the axial length of the reduction gear transmission can be made smaller than in the case where the input shaft 2 does not pass through the first crown gear 11 and the second crown gear 12.

カム部5の傾斜カム4と第一冠ギヤ11との間に転がり運動可能にボール6が介在するので、第一冠ギヤ11を円滑に波動運動させることができる。   Since the ball 6 is rotatably movable between the inclined cam 4 of the cam portion 5 and the first crown gear 11, the first crown gear 11 can be smoothly waved.

支持部14の外輪部をハウジング1に一体にすることで、減速装置の部品点数の削減、半径方向のコンパクト化が図れる。   By integrating the outer ring portion of the support portion 14 with the housing 1, the number of parts of the reduction gear transmission can be reduced and the radial direction can be made compact.

支持部14の内輪部7を締結部材によって第一冠ギヤ11に固定することで、第一冠ギヤ11及び内輪部7の製造が容易になる。   By fixing the inner ring portion 7 of the support portion 14 to the first crown gear 11 with the fastening member, the manufacturing of the first crown gear 11 and the inner ring portion 7 becomes easy.

第一冠ギヤ11及び第二冠ギヤ12の歯先部33,31が円錐の側面を基礎とした凸形状であり、第一冠ギヤ11及び第二冠ギヤ12の歯底部34,32が円錐の側面を基礎とした凹形状であるので、歯先部33,31と歯底部34,32との噛み合いのほとんどが転がりになり、歯車の効率を向上させることができる。   The tooth tops 33 and 31 of the first crown gear 11 and the second crown gear 12 are convex shapes based on the side surfaces of the cone, and the tooth bottoms 34 and 32 of the first crown gear 11 and the second crown gear 12 are cones. Since it has a concave shape based on the side surface of the tooth, most of the meshing between the tooth tips 33 and 31 and the tooth bottoms 34 and 32 is rolling, and the efficiency of the gear can be improved.

第一冠ギヤ11及び第二冠ギヤ12の歯先部33,31及び歯底部34,32の円錐の頂点P2が、第一冠ギヤ11の歳差運動の中心P1に一致するので、歯先部33,31と歯底部34,32とを線接触させることができる。歯当たり面積を大きく、噛み合い率を大きくすることができるので、高剛性化、高効率、静音化が実現できる。   Since the apexes P2 of the cones of the tooth tips 33, 31 and the tooth bottoms 34, 32 of the first crown gear 11 and the second crown gear 12 coincide with the center P1 of the precession movement of the first crown gear 11, The portions 33, 31 and the tooth bottom portions 34, 32 can be in line contact with each other. Since the tooth contact area can be increased and the meshing ratio can be increased, high rigidity, high efficiency, and low noise can be realized.

なお、本発明において、「円錐の側面を基礎とした凸形状及び凹形状」は、円錐C1〜C4の側面から構成される凸形状及び凹形状、並びに第一冠ギヤ11の円錐形の母体を第二冠ギヤ12の円錐形の母体に沿って転がしたときに描かれるトロコイド曲線を用いて生成された凸形状及び凹形状を含む。また、このような凸形状及び凹形状を持つ歯先部33,31及び歯底部34,32の歯すじがヘリカル状である場合を含む。
<第二の実施形態の減速装置>
In the present invention, the “convex shape and concave shape based on the side surface of the cone” means the convex shape and concave shape formed from the side surfaces of the cones C1 to C4, and the conical base body of the first crown gear 11. It includes a convex shape and a concave shape generated by using a trochoid curve drawn when the second crown gear 12 is rolled along the conical body. In addition, the case where the tooth traces of the tooth tips 33 and 31 and the tooth bottoms 34 and 32 having such a convex shape and a concave shape are helical shapes is included.
<Reduction device of the second embodiment>

図20は、本発明の第二の実施形態の減速装置の断面図を示す。この実施形態の減速装置は、第一の実施形態の減速装置と同様に、ハウジング1、入力軸2、入力軸2と一体の傾斜カム4、第一冠ギヤ11、第二冠ギヤ12、支持部(球面スプライン)14、出力部3を備える。これらの構成は、第一の実施形態の減速装置と略同一であるので、同一の符号を附してその説明を省略する。   FIG. 20 is a sectional view of a speed reducer according to the second embodiment of the present invention. Like the speed reducer of the first embodiment, the speed reducer of this embodiment includes a housing 1, an input shaft 2, an inclined cam 4 integrated with the input shaft 2, a first crown gear 11, a second crown gear 12, and a support. A section (spherical spline) 14 and an output section 3 are provided. Since these configurations are substantially the same as those of the speed reducer of the first embodiment, the same reference numerals are given and the description thereof is omitted.

第二の実施形態の減速装置では、ハウジング1と傾斜カム4との間に、転動体としてのボール41が転がり運動可能に介在する点が、第一の実施形態の減速装置と異なる。入力軸2と一体の傾斜カム4には、ハウジング1との対向面4c(すなわちカム面4aの背面)に円形のボール転走溝4dが形成される。ハウジング1には、リング42が固定される。リング42には、ボール転走溝4dに対向する円形のボール転走溝42aが形成される。ボール転走溝4dとボール転走溝42aとの間には、周方向に転がり運動可能に複数のボール41が配列される。   The speed reducer of the second embodiment is different from the speed reducer of the first embodiment in that a ball 41 as a rolling element is rotatably interposed between the housing 1 and the inclined cam 4. A circular ball rolling groove 4d is formed on the inclined cam 4 integral with the input shaft 2 on the surface 4c facing the housing 1 (that is, the back surface of the cam surface 4a). A ring 42 is fixed to the housing 1. A circular ball rolling groove 42a facing the ball rolling groove 4d is formed in the ring 42. A plurality of balls 41 are arranged between the ball rolling groove 4d and the ball rolling groove 42a so as to be rollable in the circumferential direction.

第一冠ギヤ11と第二冠ギヤ12との噛み合い箇所には反力が発生し、この反力によって傾斜カム4には軸方向の分力が働く。ハウジング1と傾斜カム4との間にボール41を介在させることで、この分力を支持することができ、減速装置の剛性を向上させることができる。
<第三の実施形態の減速装置>
A reaction force is generated at a meshing portion between the first crown gear 11 and the second crown gear 12, and the reaction force causes a component force in the axial direction on the inclined cam 4. By interposing the ball 41 between the housing 1 and the inclined cam 4, this component force can be supported and the rigidity of the reduction gear transmission can be improved.
<Reduction device of the third embodiment>

図21は、本発明の第三の実施形態の減速装置の断面図を示す。この実施形態の減速装置も、ハウジング51、入力軸52、入力軸52と一体の傾斜カム54、第一冠ギヤ61、第二冠ギヤ62、支持部(球面スプライン)64、出力部63を備える。第三の実施形態の減速装置の基本的な動きは、第一及び第二の実施形態の減速装置と同一である。すなわち、入力軸52を回転させると、入力軸52と一体の傾斜カム54によって第一冠ギヤ61が波動運動し、第一冠ギヤ61の波動運動に伴って第二冠ギヤ62が両者の歯数差の分だけ回転する。   FIG. 21 shows a sectional view of a speed reducer according to a third embodiment of the present invention. The speed reducer of this embodiment also includes a housing 51, an input shaft 52, an inclined cam 54 integrated with the input shaft 52, a first crown gear 61, a second crown gear 62, a support portion (spherical spline) 64, and an output portion 63. . The basic operation of the speed reducer of the third embodiment is the same as that of the speed reducer of the first and second embodiments. That is, when the input shaft 52 is rotated, the first crown gear 61 undulates due to the inclined cam 54 integrated with the input shaft 52, and the second crown gear 62 causes both teeth to move in accordance with the undulating motion of the first crown gear 61. It rotates by the difference.

第三の実施形態の減速装置では、第二冠ギヤ62が傘歯車状であり、第一冠ギヤ61が逆傘歯車状である点が、第一及び第二の実施形態の減速装置と異なる。すなわち、第二冠ギヤ62は、第一冠ギヤ61との対向面が第一冠ギヤ61に向かって凸の円錐形に形成される。この円錐の頂角は、第一及び第二の実施形態の減速装置の第二冠ギヤ12の円錐の頂角よりも小さい。第一冠ギヤ61は、第二冠ギヤ62との対向面がすり鉢状にくぼんだ円錐形に形成される。ただし、第一冠ギヤ61と第二冠ギヤ62の噛み合い中心P2(第一冠ギヤ61及び第二冠ギヤ62の歯先部及び歯底部の円錐の頂点)は、第一冠ギヤ61の波動運動の中心P1に一致したままである。この点は第一及び第二の実施形態の減速装置と同一である(図20参照)。   The speed reducer of the third embodiment differs from the speed reducers of the first and second embodiments in that the second crown gear 62 has a bevel gear shape and the first crown gear 61 has an inverted bevel gear shape. . That is, the surface of the second crown gear 62 facing the first crown gear 61 is formed in a conical shape that is convex toward the first crown gear 61. The apex angle of this cone is smaller than the apex angle of the cone of the second crown gear 12 of the reduction gears of the first and second embodiments. The first crown gear 61 is formed in a conical shape in which the surface facing the second crown gear 62 is recessed like a mortar. However, the meshing center P2 of the first crown gear 61 and the second crown gear 62 (the apex of the cone of the tooth top and the tooth bottom of the first crown gear 61 and the second crown gear 62) is the wave motion of the first crown gear 61. It remains consistent with the center of motion P1. This point is the same as the reduction gear transmissions of the first and second embodiments (see FIG. 20).

第二冠ギヤ62の外径は、出力部63を回転可能に支持するリング形の転動体列(クロスローラリング65)の内径よりも小さい。第二冠ギヤ62は、出力部63に埋め込まれる。第三の実施形態の減速装置では、第二冠ギヤ62を傘歯車状、第一冠ギヤ61を逆傘歯車状に形成するので、噛み合い中心P2を波動運動の中心P1に一致させたまま、噛み合い部e(図21の破線の内側領域)を支持部(球面スプライン)64の中心線clから出力部63側にオフセットすることができ、したがって第一冠ギヤ61及び第二冠ギヤ62を中心線clから出力部63側にするオフセットすることができる。このため、第二冠ギヤ62を出力部63に埋め込むことが可能になる。なお、図20に示すように、第二冠ギヤ12及び第一冠ギヤ11を共に傘歯車状に形成した場合、噛み合い部e´(図20の破線の内側領域)は支持部(球面スプライン)14の中心線cl´上に位置する。   The outer diameter of the second crown gear 62 is smaller than the inner diameter of the ring-shaped rolling element row (cross roller ring 65) that rotatably supports the output portion 63. The second crown gear 62 is embedded in the output unit 63. In the speed reducer of the third embodiment, since the second crown gear 62 is formed in the bevel gear shape and the first crown gear 61 is formed in the reverse bevel gear shape, the meshing center P2 is made to coincide with the center P1 of the wave motion, It is possible to offset the meshing portion e (the area inside the broken line in FIG. 21) from the center line cl of the support portion (spherical spline) 64 to the output portion 63 side, and therefore center the first crown gear 61 and the second crown gear 62. It can be offset from the line cl to the output section 63 side. Therefore, the second crown gear 62 can be embedded in the output section 63. Note that, as shown in FIG. 20, when both the second crown gear 12 and the first crown gear 11 are formed in a bevel gear shape, the meshing portion e ′ (the area inside the broken line in FIG. 20) is a supporting portion (spherical spline). It is located on the center line cl ′ of 14.

第一冠ギヤ61及び第二冠ギヤ62を中心線clから出力部63側にするオフセットし、出力部63に第二冠ギヤ62を埋め込むことで、クロスローラリング65の径を拡大することなく、軸線方向の寸法を大幅に小さくすることができる。また、ハウジング51の軸線方向の寸法を小さくすることで、ハウジング51のばね定数が上がるので、出力部63の回転剛性を上げることができる。
<第三の実施形態の減速装置の歯の設計>
By offsetting the first crown gear 61 and the second crown gear 62 from the center line cl toward the output portion 63 side and embedding the second crown gear 62 in the output portion 63, the diameter of the cross roller ring 65 is not increased. , The axial dimension can be significantly reduced. Further, by reducing the dimension of the housing 51 in the axial direction, the spring constant of the housing 51 increases, so that the rotational rigidity of the output portion 63 can be increased.
<Design of Teeth of Reduction Gear of Third Embodiment>

第三の実施形態の減速装置の歯の設計は、第一の実施形態の減速装置の歯の設計と略同一である。ただし、第一冠ギヤ61は、第二冠ギヤ62に向かってすり鉢状の円錐形の母体を持ち、第二冠ギヤ62は、第一冠ギヤ61に向かって凸の円錐形の母体を持つ。このため、図22(a)に示すように、定円錐である第二冠ギヤ62に動円錐である第一冠ギヤ61が覆い被さるような形となる。トロコイド曲線を求めるにあたって、上記の数2を、   The design of the teeth of the speed reducer of the third embodiment is substantially the same as the design of the teeth of the speed reducer of the first embodiment. However, the first crown gear 61 has a mortar-shaped conical body toward the second crown gear 62, and the second crown gear 62 has a convex conical body toward the first crown gear 61. . Therefore, as shown in FIG. 22A, the second crown gear 62, which is a constant cone, is covered with the first crown gear 61, which is a moving cone. In determining the trochoidal curve, the above equation 2 is

に変更する必要がある。ここで、動円錐の底面半径がrcr、底角がΦcr、定円錐の底面半径がrcf、底角がΦcfである。他の数3〜数7は、変更する必要がない。 Need to change to. Here, the bottom radius of the moving cone is r cr , the base angle is Φ cr , the bottom radius of the constant cone is r cf , and the base angle is Φ cf. The other numbers 3 to 7 do not need to be changed.

図23は、求めたトロコイド曲線を示す。図23において、ベクトルpが描く軌跡がトロコイド曲線である。 FIG. 23 shows the obtained trochoid curve. In FIG. 23, the locus drawn by the vector p 2 is a trochoidal curve.

なお、本発明は上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲でさまざまな実施形態に具現化可能である。   The present invention is not limited to being embodied in the above-described embodiments, and can be embodied in various embodiments without changing the gist of the present invention.

上記実施形態では、減速機を中心に説明したが、入力側と出力側を逆にすることで、軸方向にコンパクトな増速機としても利用できる。例えば、水力発電機のような入力側のパワーの大きい発電機に対して本発明を増速機として利用することで、軸方向のコンパクト化が図れる。   In the above-described embodiment, the description is centered on the speed reducer, but the input side and the output side are reversed, so that the speed reducer can be used as a compact speed increaser in the axial direction. For example, by utilizing the present invention as a speed-increasing gear for a generator having a large input-side power, such as a hydraulic power generator, axial compactification can be achieved.

1…ハウジング、1a…ハウジング本体、1b,1c…蓋部材、2…入力軸、2a…軸線、3…出力部、4…傾斜カム、5…カム部、6…ボール(カム部の転動体)、7…内輪部、7a…内輪スプライン溝、9…ボール(支持部の転動体)、10…外輪部、10a…外輪スプライン溝、11…第一冠ギヤ、12…第二冠ギヤ、14…支持部 DESCRIPTION OF SYMBOLS 1 ... Housing, 1a ... Housing body, 1b, 1c ... Lid member, 2 ... Input shaft, 2a ... Axis line, 3 ... Output part, 4 ... Inclined cam, 5 ... Cam part, 6 ... Ball (rolling member of cam part) , 7 ... Inner ring part, 7a ... Inner ring spline groove, 9 ... Ball (rolling member of support part), 10 ... Outer ring part, 10a ... Outer ring spline groove, 11 ... First crown gear, 12 ... Second crown gear, 14 ... Support section

Claims (7)

ハウジングと、
第一冠ギヤと、
前記第一冠ギヤの半径方向の外側に配置され、前記第一冠ギヤを前記ハウジングに対して波動運動可能にかつ回転不可能に支持する支持部と、
前記ハウジングに対して回転可能であり、前記第一冠ギヤと歯数が異なり前記第一冠ギヤに対向する第二冠ギヤと、
前記第一冠ギヤが前記第二冠ギヤに噛み合うように前記第一冠ギヤを前記第二冠ギヤに対して傾斜させ、かつ噛み合う箇所が移動するように前記第一冠ギヤを波動運動させるカム部と、を備え
前記支持部は、
外輪スプライン溝を有する外輪部と、
前記外輪部の内側に配置され、前記外輪スプライン溝に対向する内輪スプライン溝を有する内輪部と、
前記外輪スプライン溝と前記内輪スプライン溝との間に転がり運動可能に介在する転動体と、を備え、
前記第一冠ギヤは、前記支持部のみによって波動運動可能にかつ回転不可能に支持される減速又は増速装置。
Housing,
First crown gear,
A support portion that is disposed on the outer side in the radial direction of the first crown gear and that supports the first crown gear in a wave motionable and non-rotatable manner with respect to the housing;
A second crown gear that is rotatable with respect to the housing, has a different number of teeth from the first crown gear, and faces the first crown gear,
A cam for inclining the first crown gear with respect to the second crown gear so that the first crown gear meshes with the second crown gear, and for undulating the first crown gear so that the meshing position moves. And a section ,
The support portion is
An outer ring portion having an outer ring spline groove,
An inner ring portion that is disposed inside the outer ring portion and that has an inner ring spline groove that faces the outer ring spline groove;
A rolling element interposed between the outer ring spline groove and the inner ring spline groove so as to allow rolling movement,
The deceleration or speed-up device in which the first crown gear is supported only by the support portion so as to be wave-movable and non-rotatable .
前記カム部は、
力軸と一体の傾斜カムと、
前記傾斜カムと前記第一冠ギヤとの間に転がり運動可能に介在する転動体と、を備えることを特徴とする請求項1に記載の減速又は増速装置。
The cam portion is
Input shaft and integral with the inclined cam,
The speed reducing or speed increasing device according to claim 1, further comprising: a rolling element interposed between the inclined cam and the first crown gear so as to be capable of rolling motion.
前記外輪部が前記ハウジングと一体であることを特徴とする請求項1又は2に記載の減速又は増速装置。 Decelerating or accelerating apparatus according to claim 1 or 2, wherein the outer ring portion is integral with the housing. 前記内輪部が前記第一冠ギヤに締結部材によって固定され
前記内輪部には、前記カム部の転動体が転走する転走溝が形成されることを特徴とする請求項1ないし3のいずれか1項に記載の減速又は増速装置。
The inner ring portion is fixed to the first crown gear by a fastening member ,
Wherein the inner ring portion, deceleration or speed increasing device according to any one of claims 1 to 3, characterized in that rolling groove rolling of the cam portion is rolling is formed.
前記第一冠ギヤ及び前記第二冠ギヤは、歯先部と歯底部とを円周方向に交互に有し、
前記歯先部が、円錐の側面を基礎とした凸形状であり、
前記歯底部が、円錐の側面を基礎とした凹形状であり、
前記円錐の頂点が前記第一冠ギヤの前記波動運動の中心に一致することを特徴とする請求項1ないしのいずれか1項に記載の減速又は増速装置。
The first crown gear and the second crown gear have tooth tips and tooth bottoms alternately in the circumferential direction,
The tooth tip is a convex shape based on the side surface of a cone,
The tooth bottom portion is a concave shape based on the side surface of the cone,
The deceleration or acceleration device according to any one of claims 1 to 4 , wherein the apex of the cone coincides with the center of the wave motion of the first crown gear.
前記ハウジングと前記傾斜カムとの間に、前記第一冠ギヤと前記第二冠ギヤとの噛み合い箇所に発生する反力を受ける転動体が転がり運動可能に介在することを特徴とする請求項2に記載の減速又は増速装置。   3. A rolling element, which receives a reaction force generated at a meshing portion of the first crown gear and the second crown gear, is movably interposed between the housing and the inclined cam so as to be capable of rolling motion. The deceleration or speed-up device according to. 前記第二冠ギヤが傘歯車状であり、前記第一冠ギヤが逆傘歯車状であり、
前記第二冠ギヤの外径が、前記ハウジングに出力部を回転可能に支持するリング形の転動体列の内径よりも小さく、
前記第二冠ギヤが、前記出力部に埋め込まれることを特徴とする請求項1ないし6のいずれか1項に記載の減速又は増速装置。
The second crown gear is a bevel gear shape, the first crown gear is a reverse bevel gear shape,
The outer diameter of the second crown gear is smaller than the inner diameter of the ring-shaped rolling element row that rotatably supports the output portion in the housing,
It said second crown gear, speed increasing or decreasing apparatus according to any one of claims 1 to 6, characterized in that embedded in the output section.
JP2016039523A 2015-03-02 2016-03-02 Decelerator or speed-up device Active JP6690964B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015039782 2015-03-02
JP2015039782 2015-03-02

Publications (2)

Publication Number Publication Date
JP2016166674A JP2016166674A (en) 2016-09-15
JP6690964B2 true JP6690964B2 (en) 2020-04-28

Family

ID=56897537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039523A Active JP6690964B2 (en) 2015-03-02 2016-03-02 Decelerator or speed-up device

Country Status (1)

Country Link
JP (1) JP6690964B2 (en)

Also Published As

Publication number Publication date
JP2016166674A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6010243B1 (en) Deceleration or speed increase device
KR100988215B1 (en) Harmonic drive using profile shifted gear
JP6789689B2 (en) Decelerator
WO2016140234A1 (en) Speed reducer or speed increaser
JP5256249B2 (en) Bending gear system
JP5335152B1 (en) Wave generator of wave gear device
JPH1061739A (en) Continuously variable transmission
JP5970650B2 (en) Cycloid gear and gear mechanism
JP7081878B2 (en) Wave gear device
JPH0926011A (en) Rolling ball type transmission
KR101724659B1 (en) Reverse cycloid reducer
KR101491679B1 (en) Planetary gear deceleration apparatus and method for manufacturing it
JP2006077833A (en) Rolling ball type differential reduction gear
JP6690964B2 (en) Decelerator or speed-up device
JP6770873B2 (en) Deceleration or acceleration device and actuator
JP2008025687A (en) Bearing for wave gear device
JP6777404B2 (en) Deceleration or acceleration device
JP6890563B2 (en) Eccentric swing type speed reducer
JP3186812U (en) Variable speed transmission bearing
JP2008133861A (en) Rocking gear device
TWI763689B (en) gear unit
KR102336717B1 (en) Reducer having dual eccentric rotating shaft
JP2022018732A (en) Reduction or step-up gear
JP4947770B2 (en) Decelerator
JP2018040381A (en) Hypocycloid gear speed reduction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200409

R150 Certificate of patent or registration of utility model

Ref document number: 6690964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150