JP6690485B2 - Chemical reactor and method for producing particles using the chemical reactor - Google Patents

Chemical reactor and method for producing particles using the chemical reactor Download PDF

Info

Publication number
JP6690485B2
JP6690485B2 JP2016183162A JP2016183162A JP6690485B2 JP 6690485 B2 JP6690485 B2 JP 6690485B2 JP 2016183162 A JP2016183162 A JP 2016183162A JP 2016183162 A JP2016183162 A JP 2016183162A JP 6690485 B2 JP6690485 B2 JP 6690485B2
Authority
JP
Japan
Prior art keywords
flow
solution
aqueous solution
raw material
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016183162A
Other languages
Japanese (ja)
Other versions
JP2018047408A (en
Inventor
和彦 土岡
和彦 土岡
修平 中倉
修平 中倉
槙 孝一郎
孝一郎 槙
一臣 漁師
一臣 漁師
元彬 猿渡
元彬 猿渡
慶彦 中尾
慶彦 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016183162A priority Critical patent/JP6690485B2/en
Publication of JP2018047408A publication Critical patent/JP2018047408A/en
Application granted granted Critical
Publication of JP6690485B2 publication Critical patent/JP6690485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、化学反応装置、および、化学反応装置を用いた粒子の製造方法に関する。   The present invention relates to a chemical reaction device and a method for producing particles using the chemical reaction device.

近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が要求されている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。   2. Description of the Related Art In recent years, with the spread of portable electronic devices such as mobile phones and notebook personal computers, it has been required to develop a small and lightweight secondary battery having a high energy density. Further, as a battery for an electric vehicle such as a hybrid vehicle, development of a high output secondary battery is required. There is a lithium ion secondary battery as a non-aqueous electrolyte secondary battery that satisfies such requirements. A lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, etc., and a material capable of desorbing and inserting lithium is used as an active material of the negative electrode and the positive electrode.

リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。   A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide that is relatively easy to synthesize as a positive electrode material, is expected to have a high energy density because a high voltage of 4 V class can be obtained. Practical application is progressing. Many developments have been made so far in order to obtain excellent initial capacity characteristics and cycle characteristics of batteries using lithium cobalt composite oxides, and various results have already been obtained.

しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高くなり、適用可能な用途はかなり限定されている。したがって、携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、正極材料のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。   However, since the lithium cobalt composite oxide uses an expensive cobalt compound as a raw material, the unit price per capacity of the battery using this lithium cobalt composite oxide is significantly higher than that of the nickel hydrogen battery, and the applicable applications are considerably large. Limited. Therefore, not only for small secondary batteries for mobile devices, but also for large secondary batteries for power storage and electric vehicles, the cost of the positive electrode material can be reduced and a cheaper lithium-ion secondary battery can be manufactured. There are great expectations for this, and it can be said that its realization has great industrial significance.

リチウムイオン二次電池用活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物を挙げることができる、このリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物を正極材料としてリチウムイオン二次電池を作製した場合、コバルト系に比ベサイクル特性が劣り、また、高温環境下で使用や保存により比較的電池性能を損ないやすいという欠点を有しているため、ニッケルの一部をコバルトやアルミニウムで置換したリチウムニッケル複合酸化物が一般的に知られている。   As a new material for the active material for a lithium ion secondary battery, a lithium nickel composite oxide using nickel, which is cheaper than cobalt, can be cited. Since it has a low electrochemical potential, decomposition due to oxidation of the electrolytic solution is unlikely to be a problem, a higher capacity can be expected, and a battery voltage as high as that of a cobalt system is exhibited, so that development is actively carried out. However, when a lithium-ion secondary battery was manufactured using a lithium-nickel composite oxide synthesized purely with nickel as the positive electrode material, it had inferior cycle characteristics compared to cobalt-based batteries, and it was relatively battery-friendly due to its use and storage in high-temperature environments. A lithium nickel composite oxide in which a part of nickel is replaced with cobalt or aluminum is generally known because it has a drawback that performance is easily impaired.

正極活物質の一般的な製造方法は、(1)まず、中和晶析法によりリチウムニッケル複合酸化物の前駆体であるニッケル複合水酸化物を作製し、(2)その前駆体をリチウム化合物と混合して焼成する方法が知られている。このうち、(1)の中和晶析法によって粒子を製造する方法として、代表的な実施の形態は、撹拌槽を用いたプロセスである。   A general method for producing a positive electrode active material is as follows: (1) First, a nickel composite hydroxide that is a precursor of a lithium nickel composite oxide is prepared by a neutralization crystallization method, and (2) the precursor is a lithium compound. A method of mixing with and firing is known. Among these, as a method for producing particles by the neutralization crystallization method of (1), a typical embodiment is a process using a stirring tank.

特許文献1では、撹拌槽内に、ニッケル塩およびコバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを供給して反応させ、ニッケルコバルト複合水酸化物の粒子を析出させている。混合水溶液の供給口当たりの反応水溶液量に対する供給量の割合を0.04体積%/分以下とすることで、粒径が大きく、結晶性が高く、形状が略球状の粒子が得られると記載されている。   In Patent Document 1, a mixed aqueous solution containing a nickel salt and a cobalt salt, an aqueous solution containing an ammonium ion supplier, and an aqueous caustic alkali solution are supplied into a stirring tank to react with each other to form particles of nickel-cobalt composite hydroxide. Have been deposited. It is described that when the ratio of the supply amount of the mixed aqueous solution to the reaction aqueous solution amount per supply port is 0.04% by volume / min or less, particles having a large particle size, high crystallinity, and a substantially spherical shape can be obtained. ing.

特開2011−201764号公報JP, 2011-201764, A

従来から、撹拌槽を用いて所望の特性の粒子を得るため、様々な検討がなされている。   Conventionally, various studies have been made in order to obtain particles having desired characteristics using a stirring tank.

しかしながら、撹拌翼のタイプや翼径、撹拌槽の容積などの装置構造が変わると、その都度、条件出しが必要であった。   However, if the apparatus structure such as the type of the stirring blade, the diameter of the stirring blade, and the volume of the stirring tank changes, it is necessary to set the conditions each time.

本発明者は、様々な構造の化学反応装置で普遍的に、粒子の品質を向上できる条件を検討し、撹拌槽内の溶液に占める高過飽和領域の体積割合に着目した。   The present inventor universally studied the conditions capable of improving the quality of particles in chemical reactors of various structures and focused on the volume ratio of the highly supersaturated region in the solution in the stirring tank.

ここで、高過飽和領域とは、溶液中に溶けている粒子成分の濃度が所定値以上の領域を意味する。高過飽和領域では、粒子成分の濃度が溶解度よりも十分に高いので、粒子成分の析出が有意な速さで進む。   Here, the high supersaturation region means a region in which the concentration of the particle component dissolved in the solution is equal to or higher than a predetermined value. In the high supersaturation region, the concentration of the particle component is sufficiently higher than the solubility, so that the precipitation of the particle component proceeds at a significant speed.

本発明者は、撹拌槽内の溶液に占める高過飽和領域の体積割合が小さいほど、粒子成分の析出が緩やかに進むので、粒子の品質を向上できることを見出した。   The present inventor has found that the smaller the volume ratio of the highly supersaturated region in the solution in the stirring tank, the more slowly the precipitation of the particle component proceeds, so that the quality of the particles can be improved.

ところで、高過飽和領域は、溶液中に原料液を吐出する吐出口付近に形成される。高過飽和領域の体積の低減には、粒子成分の速やかな分散が求められ、撹拌翼の回転数の増加が有効である。   By the way, the highly supersaturated region is formed near the discharge port for discharging the raw material liquid into the solution. In order to reduce the volume in the high supersaturation region, prompt dispersion of the particle component is required, and increasing the rotation speed of the stirring blade is effective.

しかしながら、撹拌翼の回転数を増大させると、消費エネルギーが大きくなってしまう。   However, if the rotation speed of the stirring blade is increased, the energy consumption will increase.

本発明は、上記課題に鑑みてなされたものであって、効率的に粒子の品質を向上できる、化学反応装置の提供を主な目的とする。   The present invention has been made in view of the above problems, and its main object is to provide a chemical reaction device capable of efficiently improving the quality of particles.

上記課題を解決するため、本発明の一態様によれば、
溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
前記溶液を収容する撹拌槽と、
前記溶液の流れの中で前記原料液を吐出する吐出部を有する原料液供給管と、
前記吐出部の上流側における前記溶液の流れを調整する流れ調整部材とを備え、
前記流れ調整部材は、前記吐出部に向けて前記溶液の流れを受け流す壁面と、前記壁面から突出する突起とを有する、化学反応装置が提供される。
To solve the above problems, according to one embodiment of the present invention,
A chemical reaction device for precipitating particles in the solution while supplying a raw material liquid into the solution,
A stirring tank containing the solution,
A raw material liquid supply pipe having a discharge part for discharging the raw material liquid in the flow of the solution,
A flow adjusting member for adjusting the flow of the solution on the upstream side of the discharge part,
There is provided a chemical reaction device, wherein the flow control member has a wall surface that receives the flow of the solution toward the discharge portion, and a protrusion that projects from the wall surface.

本発明の一態様によれば、効率的に粒子の品質を向上できる、化学反応装置が提供される。   According to one aspect of the present invention, there is provided a chemical reaction device capable of efficiently improving the quality of particles.

一実施形態による化学反応装置を示す上面図である。1 is a top view showing a chemical reaction device according to an embodiment. 図1のII−II線に沿った断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 1. 一実施形態による化学反応装置の要部を示す斜視図である。It is a perspective view showing the important section of the chemical reaction device by one embodiment. 第1変形例による化学反応装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the chemical reaction device by a 1st modification. 第2変形例による化学反応装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the chemical reaction device by a 2nd modification. 第3変形例による化学反応装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the chemical reaction device by a 3rd modification. 一実施形態によるニッケル含有水酸化物の製造方法のフローチャートである。3 is a flowchart of a method for producing a nickel-containing hydroxide according to one embodiment. 一実施形態による粒子成長工程の前半で形成される凝集体を模式化した断面図である。FIG. 6 is a schematic cross-sectional view of an aggregate formed in the first half of the particle growth step according to the embodiment. 一実施形態による粒子成長工程の後半で形成される外殻を模式化した断面図である。FIG. 6B is a schematic cross-sectional view of the outer shell formed in the latter half of the particle growth step according to the embodiment. 一実施形態による核生成工程における反応水溶液中の第1高過飽和領域を示す図である。It is a figure which shows the 1st high supersaturation area | region in reaction aqueous solution in the nucleation process by one Embodiment. 連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.025%である場合に得られた粒子の一例のSEM写真である。It is an SEM photograph of an example of particles obtained when the volume ratio of the first highly supersaturated region in the reaction aqueous solution in the continuous stirring tank is 0.025%. 連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.100%である場合に得られた粒子の一例のSEM写真である。It is an SEM photograph of an example of particles obtained when the volume ratio of the first highly supersaturated region in the reaction aqueous solution in the continuous stirring tank is 0.100%. 一実施形態による粒子成長工程における反応水溶液中の第2高過飽和領域を示す図である。It is a figure which shows the 2nd highly supersaturated area | region in reaction aqueous solution in the particle growth process by one Embodiment. 連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.379%である場合に得られた粒子の断面の一例のSEM写真である。It is an SEM photograph of an example of the section of a particle obtained when the volume ratio of the 2nd highly supersaturated field to the reaction aqueous solution in a continuous type stirring tank is 0.379%. 連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.624%である場合に得られた粒子の断面の一例のSEM写真である。It is an SEM photograph of an example of the section of a particle obtained when the volume ratio of the 2nd highly supersaturated field to the reaction aqueous solution in a continuous type stirring tank is 0.624%.

以下、本発明を実施するための形態について図面を参照して説明するが、各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In each of the drawings, the same or corresponding components will be denoted by the same or corresponding reference numerals and description thereof will be omitted.

図1は、一実施形態による化学反応装置を示す上面図である。図2は、図1のII−II線に沿った断面図である。   FIG. 1 is a top view showing a chemical reaction device according to one embodiment. FIG. 2 is a sectional view taken along line II-II of FIG.

化学反応装置10は、溶液の中に原料液を供給しながら、溶液の中で粒子を析出させる。例えば、溶液は金属塩と塩基とを含み、原料液は金属塩を含み、粒子は中和晶析によって析出する。金属塩がニッケル塩を含む場合、粒子はニッケル含有水酸化物である。尚、粒子の種類は、ニッケル含有水酸化物には限定されない。   The chemical reaction device 10 deposits particles in the solution while supplying the raw material liquid into the solution. For example, the solution contains a metal salt and a base, the raw material solution contains a metal salt, and the particles are precipitated by neutralization crystallization. If the metal salt comprises a nickel salt, the particles are nickel containing hydroxides. The type of particles is not limited to nickel-containing hydroxide.

化学反応装置10は、例えば、撹拌槽20と、撹拌翼30と、撹拌軸40と、バッフル50とを有する。撹拌槽20は、円柱状の内部空間に溶液を収容する。撹拌翼30は、撹拌槽20内の溶液を撹拌させる。撹拌翼30は、撹拌軸40の下端に取付けられる。モータなどが撹拌軸40を回転させることで、撹拌翼30が回転される。撹拌槽20の中心線、撹拌翼30の中心線、および撹拌軸40の中心線は、一致してよく、鉛直とされてよい。バッフル50は、邪魔板とも呼ばれる。バッフル50は、撹拌槽20の内周面から突出しており、回転流を邪魔することで上昇流や下降流を生じさせ、溶液の撹拌効率を向上させる。   The chemical reaction device 10 includes, for example, a stirring tank 20, a stirring blade 30, a stirring shaft 40, and a baffle 50. The stirring tank 20 stores the solution in a cylindrical internal space. The stirring blade 30 stirs the solution in the stirring tank 20. The stirring blade 30 is attached to the lower end of the stirring shaft 40. When the motor or the like rotates the stirring shaft 40, the stirring blade 30 is rotated. The center line of the stirring tank 20, the center line of the stirring blade 30, and the center line of the stirring shaft 40 may coincide with each other or may be vertical. The baffle 50 is also called a baffle plate. The baffle 50 projects from the inner peripheral surface of the stirring tank 20, and interferes with the rotating flow to generate an ascending flow or a descending flow, thereby improving the stirring efficiency of the solution.

本発明者は、様々な構造の化学反応装置で普遍的に、粒子の品質を向上できる条件を検討し、撹拌槽20内の溶液に占める高過飽和領域の体積割合に着目した。   The present inventor universally studied conditions capable of improving the quality of particles in chemical reactors of various structures, and paid attention to the volume ratio of the highly supersaturated region in the solution in the stirring tank 20.

高過飽和領域とは、溶液中に溶けている粒子成分の濃度が所定値以上の領域を意味する。高過飽和領域では、粒子成分の濃度が溶解度よりも十分に高いので、粒子成分の析出が有意な速さで進む。   The high supersaturation region means a region in which the concentration of the particle component dissolved in the solution is equal to or higher than a predetermined value. In the high supersaturation region, the concentration of the particle component is sufficiently higher than the solubility, so that the precipitation of the particle component proceeds at a significant speed.

撹拌槽20内の溶液に占める高過飽和領域の体積割合が小さいほど、粒子成分の析出が緩やかに進むので、粒子の品質を向上できる。ここで、高過飽和領域の数が複数の場合、高過飽和領域の体積とは合計の体積を意味する。   The smaller the volume ratio of the highly supersaturated region in the solution in the stirring tank 20, the more slowly the precipitation of the particle component proceeds, so that the quality of the particles can be improved. Here, when the number of high supersaturation regions is plural, the volume of the high supersaturation region means the total volume.

高過飽和領域は、原料液の吐出口付近に形成される。その吐出口は溶液の流れ場に設置されているため、高過飽和領域の体積などは流れ場の影響を受ける。流れ場は、撹拌翼30の回転数の他、撹拌翼30のタイプや翼径、撹拌槽20の容積などの条件により変化する。以下、撹拌槽20内の流れ場に影響を与える条件を撹拌条件と呼ぶ。   The high supersaturation region is formed near the discharge port of the raw material liquid. Since the discharge port is installed in the flow field of the solution, the volume of the highly supersaturated region is affected by the flow field. The flow field changes depending on the type of the stirring blade 30, the blade diameter, the volume of the stirring tank 20, and the like in addition to the rotation speed of the stirring blade 30. Hereinafter, the conditions that affect the flow field in the stirring tank 20 are referred to as stirring conditions.

撹拌槽20内の流れ場や高過飽和領域の体積は、シミュレーションにより確認できる。以下、連続式の撹拌槽内で、硫酸ニッケルと水酸化ナトリウムとを反応させて、水酸化ニッケルを製造する場合の定常状態の流体解析について主に説明する。流体解析ソフトとしては、ANSYS社製のANSYS CFX Ver15.0(商品名)を用いる。解析条件などを以下に示す。   The flow field in the stirring tank 20 and the volume of the highly supersaturated region can be confirmed by simulation. Hereinafter, the steady-state fluid analysis in the case of producing nickel hydroxide by reacting nickel sulfate and sodium hydroxide in a continuous stirring tank will be mainly described. ANSYS CFX Ver15.0 (trade name) manufactured by ANSYS is used as the fluid analysis software. The analysis conditions are shown below.

<座標系>
・流体解析を行う領域(以下、「解析領域」とも呼ぶ。)のうち、撹拌軸や撹拌翼の周りは、撹拌軸や撹拌翼と共に回転する回転座標系で扱う。回転座標系で扱う領域は、円柱状であって、その中心線を撹拌軸や撹拌翼の中心線に重ね、その直径を撹拌翼の翼径の115%に設定し、上下方向の範囲を撹拌槽の内底面から液面までとする。
・解析領域のうち、その他の領域は、静止座標系で扱う。
・回転座標系と静止座標系とは、流体解析ソフトのインターフェース機能を使用して接続する。インターフェース機能としては、オプションの「Frozen Rotor」を用いる。
<Coordinate system>
-In the area for fluid analysis (hereinafter, also referred to as "analysis area"), the area around the stirring shaft and the stirring blade is handled by a rotating coordinate system that rotates together with the stirring shaft and stirring blade. The area handled by the rotating coordinate system is cylindrical, and its center line is overlapped with the center line of the stirring shaft or stirring blade, and its diameter is set to 115% of the blade diameter of the stirring blade, and the vertical range is stirred. From the inner bottom surface of the tank to the liquid surface.
-The rest of the analysis area is handled in the static coordinate system.
-The rotating coordinate system and the stationary coordinate system are connected using the interface function of the fluid analysis software. An optional "Frozen Rotor" is used as the interface function.

<乱流モデル>
・撹拌槽内の流れは、層流ではなく、乱流である。その乱流モデルとしては、SST(Shear Stress Transport)モデルを用いる。
<Turbulence model>
・ The flow in the stirring tank is not laminar but turbulent. The SST (Shear Stress Transport) model is used as the turbulent flow model.

<化学反応>
・撹拌槽内で生じる化学反応の式を下記に示す。
NiSO+2NaOH→Ni(OH)+NaSO
・流体解析では、以下の5成分が含まれる単相多成分の流体を扱う。
1)反応成分A:NiSO
2)反応成分B:NaOH
3)生成成分C:Ni(OH)
4)生成成分D:NaSO
5)水
・化学反応の速度の大きさは、渦消散モデルにより計算する。渦消散モデルは、乱流分散によって反応成分Aと反応成分Bとが分子レベルまで混合すると、上記化学反応が生じると仮定した反応モデルである。渦消散モデルの設定は、流体解析ソフトのデフォルトの設定のままとする。
<Chemical reaction>
-The formula of the chemical reaction that occurs in the stirring tank is shown below.
NiSO 4 +2 NaOH → Ni (OH) 2 + Na 2 SO 4 .
-In fluid analysis, single-phase multi-component fluids including the following five components are handled.
1) Reaction component A: NiSO 4
2) Reaction component B: NaOH
3) Product component C: Ni (OH) 2
4) Product component D: Na 2 SO 4
5) The magnitude of water / chemical reaction rate is calculated by the eddy dissipation model. The eddy dissipation model is a reaction model assuming that the above chemical reaction occurs when the reaction components A and B are mixed to the molecular level by turbulent dispersion. The settings of the eddy dissipation model are left as the default settings of the fluid analysis software.

<各成分の質量分率の計算方法>
・解析領域内の任意の位置および任意の時点で、上記5成分の合計の質量分率は1である。そこで、上記5成分のうち水を除く4成分のそれぞれの質量分率は、CFXによって輸送方程式を解いて求める値とし、水の質量分率は、1から、上記4成分の合計の質量分率を引いて得られる値とする。
<Calculation method of mass fraction of each component>
The total mass fraction of the above 5 components is 1 at any position and at any time within the analysis region. Therefore, the mass fraction of each of the four components excluding water among the above five components is a value obtained by solving a transport equation by CFX, and the mass fraction of water is from 1 to the total mass fraction of the above four components. The value obtained by subtracting.

<境界条件>
・壁境界(流体の出入りのない境界)
撹拌槽や撹拌軸、撹拌翼、バッフルなどの固体との境界では、滑り無しとする。一方、外気との境界(液面)では、滑り有りとする。尚、液面は、撹拌によって変形しないものとし、高さが一定の平面とする。
・流入境界(流体が入ってくる境界)
撹拌槽内の流体中に、反応成分Aを含む水溶液(以下、「水溶液A」と呼ぶ。)が流入する流入境界と、反応成分Bを含む水溶液(以下、「水溶液B」と呼ぶ。)が流入する流入境界とを別々に設ける。
水溶液Aの流入流量や水溶液Aに占める反応成分Aの割合、水溶液Bの流入流量や水溶液Bに占める反応成分Bの割合は一定とする。水溶液Bの流入流量は、撹拌槽内の水溶液のpHが所定値(例えば12.0)に維持されるように、設定する。
・流出境界(流体が出ていく境界)
撹拌槽の内周面の一部に、撹拌槽内の流体が出ていく流出境界を設ける。流出する液体は、生成成分CおよびD、未反応の反応成分AおよびB、並びに水を含むものである。その流出量は、解析領域と系外との圧力差がゼロになるように設定する。
尚、オーバーフロー型の連続式の場合、液面が流出境界である。
<Boundary condition>
・ Wall boundary (boundary where no fluid flows in or out)
No slippage occurs at boundaries with solids such as stirring tanks, stirring shafts, stirring blades, and baffles. On the other hand, there is slippage at the boundary (liquid level) with the outside air. The liquid surface shall not be deformed by stirring and shall be a flat surface with a constant height.
・ Inflow boundary (boundary where fluid enters)
An inflow boundary into which the aqueous solution containing the reaction component A (hereinafter referred to as “aqueous solution A”) flows into the fluid in the stirring tank, and an aqueous solution containing the reaction component B (hereinafter referred to as “aqueous solution B”). Separate the inflow boundary and inflow.
The inflow rate of the aqueous solution A, the proportion of the reaction component A in the aqueous solution A, and the inflow rate of the aqueous solution B and the proportion of the reaction component B in the aqueous solution B are constant. The inflow rate of the aqueous solution B is set so that the pH of the aqueous solution in the stirring tank is maintained at a predetermined value (for example, 12.0).
・ Outflow boundary (boundary where fluid exits)
An outflow boundary through which the fluid in the stirring tank exits is provided on a part of the inner peripheral surface of the stirring tank. The liquid flowing out contains the product components C and D, the unreacted reaction components A and B, and water. The outflow amount is set so that the pressure difference between the analysis region and the outside of the system becomes zero.
In the case of the overflow type continuous type, the liquid surface is the outflow boundary.

<熱条件>
・撹拌槽内の流体の温度は、25℃一定とする。化学反応による熱の生成、流入境界や流出境界での熱の出入りは、無いものと仮定する。
<Thermal conditions>
-The temperature of the fluid in the stirring tank is constant at 25 ° C. It is assumed that there is no heat generation by the chemical reaction and heat input and output at the inflow boundary and the outflow boundary.

<初期条件>
・撹拌槽内の流体は、初期状態において、均質なものとし、上記5成分のうち反応成分Bと水の2成分のみを含むものとする。具体的には、撹拌槽内の流体のうち、反応成分Aの初期質量分率や生成成分Cの初期質量分率、生成成分Dの初期質量分率はゼロ、反応成分Bの初期質量分率は撹拌槽内の水溶液のpHが上記所定値になるように設定する。
尚、生成成分Cの初期質量分率や生成成分Dの初期質量分率は、ここではゼロに設定するが、定常解を求めるための反復計算の回数(つまり、計算時間)を減らすため、定常状態において到達すると予測される、解析領域全体での平均値に設定してもよい。解析領域全体での平均値は、水溶液Aの流入流量や水溶液Aに占める反応成分Aの割合、水溶液Bの流入流量や水溶液Bに占める反応成分Bの割合、化学反応式で表される量的関係などを基に算出できる。
<Initial conditions>
The fluid in the stirring tank is homogeneous in the initial state and contains only the reaction component B and two components of water among the above five components. Specifically, of the fluid in the stirring tank, the initial mass fraction of the reaction component A, the initial mass fraction of the production component C, the initial mass fraction of the production component D is zero, and the initial mass fraction of the reaction component B is zero. Is set so that the pH of the aqueous solution in the stirring tank becomes the above predetermined value.
The initial mass fraction of the product component C and the initial mass fraction of the product component D are set to zero here, but in order to reduce the number of iterations (that is, the calculation time) for obtaining the steady solution, You may set to the average value in the whole analysis area estimated to reach in a state. The average value in the entire analysis region is the inflow rate of the aqueous solution A, the proportion of the reaction component A in the aqueous solution A, the inflow rate of the aqueous solution B, the proportion of the reaction component B in the aqueous solution B, and the quantitative value represented by the chemical reaction formula It can be calculated based on the relationship.

<収束判定>
・定常解を求めるための反復計算は、解析領域内の任意の位置で、流れの流速成分(m/s)や圧力(Pa)、上記4成分のそれぞれの質量分率の、それぞれの二乗平均平方根の残差が10−4以下となるまで行う。
<Convergence judgment>
The iterative calculation for obtaining a steady solution is performed at any position in the analysis region, and the root mean square of the flow velocity component (m / s), the pressure (Pa), and the mass fraction of each of the above four components is calculated. The process is repeated until the square root residual becomes 10 −4 or less.

<高過飽和領域の体積の計算方法>
・高過飽和領域とは、撹拌槽内の水溶液中に溶けている生成成分Cの濃度が所定値以上の領域である。上記所定値は、詳しくは後述するが、核生成工程では5.0mol/m、粒子成長工程では1.7mol/mとする。以下、核生成工程で設定する高過飽和領域を「第1高過飽和領域」、粒子成長工程で設定する高過飽和領域を「第2高過飽和領域」とも呼ぶ。第1高過飽和領域の濃度の下限値が第2高過飽和領域の濃度の下限値よりも高い理由は、核生成が生じる下限濃度は粒子成長が生じる下限濃度よりも高いためである。高過飽和領域は、水溶液Aの流入境界の周囲に形成される。
・ところで、流体解析では、上述の如く、上記5成分を単相多成分の流体として扱うため、生成成分Cの全てを液体として扱う。一方、実際には、生成成分Cの大部分は析出して固体となり、生成成分Cの残りの一部のみが液体として水溶液中に溶けている。
・そこで、高過飽和領域の体積は、上記流体解析により得た生成成分Cの濃度分布を補正することで算出する。その補正では、水溶液Aの流入境界から十分に離れた流出境界において生成成分Cの濃度が溶解度相当になるように、撹拌槽内の流体の全体において一律に生成成分Cの濃度を所定値下げる。
・尚、撹拌槽が連続式ではなくバッチ式の場合、流出境界が存在しない。この場合、濃度分布の補正では、撹拌槽内の水溶液の液面において生成成分Cの濃度が溶解度相当になるように、撹拌槽内の流体の全体において一律に生成成分Cの濃度を所定値下げればよい。ちなみに、オーバーフロー型の連続式の場合、液面が流出境界である。
<Calculation method of volume in high supersaturation region>
The high supersaturation region is a region where the concentration of the product component C dissolved in the aqueous solution in the stirring tank is equal to or higher than a predetermined value. The predetermined value is, as will be described later in detail, in the nucleation step 5.0 mol / m 3, in the particle growth step to 1.7 mol / m 3. Hereinafter, the high supersaturation region set in the nucleation step is also referred to as “first high supersaturation region”, and the high supersaturation region set in the particle growth process is also referred to as “second high supersaturation region”. The lower limit of the concentration of the first high supersaturation region is higher than the lower limit of the concentration of the second high supersaturation region, because the lower limit concentration of nucleation is higher than the lower limit concentration of particle growth. The highly supersaturated region is formed around the inflow boundary of the aqueous solution A.
By the way, in the fluid analysis, since the above five components are treated as a single-phase / multi-component fluid as described above, all of the generated components C are treated as liquids. On the other hand, in reality, most of the product component C is precipitated and becomes a solid, and only the remaining part of the product component C is dissolved as a liquid in the aqueous solution.
Therefore, the volume of the high supersaturation region is calculated by correcting the concentration distribution of the product component C obtained by the fluid analysis. In the correction, the concentration of the product component C is uniformly lowered in the entire fluid in the stirring tank by a predetermined value so that the concentration of the product component C becomes equivalent to the solubility at the outflow boundary sufficiently distant from the inflow boundary of the aqueous solution A.
・ In addition, if the stirring tank is a batch type instead of a continuous type, there is no outflow boundary. In this case, in the concentration distribution correction, the concentration of the product component C can be uniformly lowered by a predetermined value in the whole fluid in the stirring tank so that the concentration of the product component C becomes equivalent to the solubility at the liquid surface of the aqueous solution in the stirring tank. Good. By the way, in the case of continuous overflow type, the liquid level is the outflow boundary.

尚、上記説明では、水酸化ニッケルを得る場合の解析条件を示したが、ニッケル複合水酸化物を得る場合の解析条件も同様に設定できる。例えば、硫酸ニッケルや硫酸マンガンと水酸化ナトリウムとを反応させてニッケルマンガン複合水酸化物を得る場合、流体解析では、以下の7成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:MnSO
3)反応成分B:NaOH
4)生成成分C1:Ni(OH)
5)生成成分C2:Mn(OH)
6)生成成分D:NaSO
7)水
ここでは、撹拌槽内で「A1+2B→C1+D」および「A2+2B→C2+D」の2つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1と反応成分A2とは、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1と反応成分A2の両方を含む水溶液Aが流入境界から供給される。水溶液Aの流入境界の周囲に、高過飽和領域が形成される。高過飽和領域とは、撹拌槽内の水溶液中に溶けている生成成分のうち全ての金属水酸化物(ここでは生成成分C1と生成成分C2)の合計のモル濃度が上記所定値以上の領域のことである。
In the above description, the analysis conditions for obtaining nickel hydroxide are shown, but the analysis conditions for obtaining nickel composite hydroxide can be similarly set. For example, when nickel nickel manganese or manganese sulfate is reacted with sodium hydroxide to obtain a nickel manganese composite hydroxide, the fluid analysis handles a single-phase multi-component fluid containing the following seven components.
1) Reaction component A1: NiSO 4
2) Reaction component A2: MnSO 4
3) Reaction component B: NaOH
4) Product component C1: Ni (OH) 2
5) Product component C2: Mn (OH) 2
6) Product component D: Na 2 SO 4
7) Water Here, two chemical reactions “A1 + 2B → C1 + D” and “A2 + 2B → C2 + D” occur in the stirring tank, and the eddy dissipation model corresponding to each chemical reaction is used as the reaction model. The reaction component A1 and the reaction component A2 are uniformly dissolved in water and supplied from the same inflow boundary. That is, the aqueous solution A containing both the reaction component A1 and the reaction component A2 is supplied from the inflow boundary. A high supersaturation region is formed around the inflow boundary of the aqueous solution A. The high supersaturation region is a region where the total molar concentration of all metal hydroxides (here, the production components C1 and C2) among the production components dissolved in the aqueous solution in the stirring tank is equal to or more than the predetermined value. That is.

ここで、生成成分のうち全ての金属水酸化物のモル濃度を合計する理由について説明する。先ず、上述の如く、反応成分A1と反応成分A2とは、均一に水に溶けた状態で、同一の流入境界から流入する。このとき、反応成分A1および反応成分A2は、反応成分Bと速やかに反応して、生成成分C1および生成成分C2を生じる。よって、生成成分C1と生成成分C2とは、生成した時点で、充分に混ざった状態で存在する。その結果、生成成分C1と生成成分C2とは、個別の水酸化物として析出するのではなく、それぞれの成分が複合した水酸化物の固溶体として析出する。   Here, the reason for summing the molar concentrations of all metal hydroxides among the produced components will be described. First, as described above, the reaction component A1 and the reaction component A2 are uniformly dissolved in water and flow from the same inflow boundary. At this time, the reaction component A1 and the reaction component A2 rapidly react with the reaction component B to generate a product component C1 and a product component C2. Therefore, the production component C1 and the production component C2 exist in a sufficiently mixed state at the time of production. As a result, the produced component C1 and the produced component C2 do not deposit as individual hydroxides but as a solid solution of a hydroxide in which the respective components are combined.

水溶液Aの流入境界の数は複数でもよく、高過飽和領域の数は複数でもよい。高過飽和領域の数が複数である場合、高過飽和領域の体積とは合計の体積を意味する。   The number of inflow boundaries of the aqueous solution A may be plural, and the number of high supersaturation regions may be plural. When the number of high supersaturation regions is plural, the volume of high supersaturation region means the total volume.

ニッケル含有水酸化物の製造方法は、撹拌槽内の水溶液に占める高過飽和領域の体積割合を、シミュレーションにより確認する工程を有してよい。この確認は、製造条件の変更の度に行われてよい。例えば、バッチ式の場合、製造条件が同じ間、確認は一度行われればよく、毎回の確認は不要である。   The method for producing the nickel-containing hydroxide may have a step of confirming the volume ratio of the highly supersaturated region in the aqueous solution in the stirring tank by simulation. This confirmation may be performed every time the manufacturing conditions are changed. For example, in the case of the batch type, it is only necessary to confirm once while the manufacturing conditions are the same, and it is not necessary to confirm each time.

本発明者は、撹拌条件が同一であって且つ撹拌槽20内への原料液の供給流量が同一である場合に高過飽和領域の体積を小さくできる手段を、シミュレーションによって検討した。その結果、高過飽和領域の体積は、主に(1)原料液の吐出口の数N、および(2)原料液の吐出口付近でのUやK(詳しくは後述する。)に依存することを見出した。Uは流れの速さ(m/s)のことであり、Kは乱流拡散係数(m/s)のことである。 The present inventor has studied, by simulation, means for reducing the volume of the high supersaturation region when the stirring conditions are the same and the supply flow rates of the raw material liquids into the stirring tank 20 are the same. As a result, the volume of the high supersaturation region mainly depends on (1) the number N of the discharge ports of the raw material liquid, and (2) U and K near the discharge ports of the raw material liquid (details will be described later). Found. U is the velocity of the flow (m / s) and K is the turbulent diffusion coefficient (m 2 / s).

表1は、撹拌条件が同一であって且つ撹拌槽20内への原料液の供給流量が同一である場合の、原料液の吐出口の数Nと、高過飽和領域の体積V1、V2との関係を示す。Nが複数の場合の各吐出口からの供給流量は、Nが1の場合の吐出口からの供給流量の1/Nとした。供給流量とは、単位時間当たりの供給量のことである。また、Nが複数の場合の各吐出口付近でのUやKは、Nが1の場合の吐出口付近でのUやKと略同一とした。また、Nが複数の場合の吐出口同士の間隔は、高過飽和領域同士が重ならないように設定した。
表1において、V1は第1高過飽和領域の体積を、V2は第2高過飽和領域の体積をそれぞれ表す。また、V1はNが1の場合のV1の値を、V2はNが1の場合のV2の値をそれぞれ表す。Nが複数の場合、V1はN個の第1高過飽和領域の合計の体積を意味し、V2はN個の第2高過飽和領域の合計の体積を意味する。
Table 1 shows the number N of discharge ports of the raw material liquid and the volumes V1 and V2 of the high supersaturation region when the stirring conditions are the same and the supply flow rates of the raw material liquid into the stirring tank 20 are the same. Show the relationship. The supply flow rate from each discharge port when N is plural is 1 / N of the supply flow rate from the discharge port when N is 1. The supply flow rate is the supply amount per unit time. In addition, U and K near each discharge port when N is plural are approximately the same as U and K near the discharge port when N is 1. Further, when N is plural, the intervals between the ejection ports are set so that the high supersaturated regions do not overlap each other.
In Table 1, V1 represents the volume of the first high supersaturation region, and V2 represents the volume of the second high supersaturation region. V1 0 represents the value of V1 when N is 1, and V2 0 represents the value of V2 when N is 1. When N is plural, V1 means the total volume of the N first high supersaturation regions, and V2 means the total volume of the N second high supersaturation regions.

表1から明らかなように、原料液の吐出口の数Nが多いほど、高過飽和領域の体積V1、V2が小さくなる傾向が見られた。この傾向は、撹拌条件を変更しても同様に見られた。また、この傾向は、撹拌槽内への原料液の供給流量を変更しても同様に見られた。本発明者は、原料液を分けて複数の吐出口から撹拌槽内に供給することで、高過飽和領域の体積V1、V2を小さくできることを見出した。 As is clear from Table 1, as the number N of discharge ports of the raw material liquid increases, the volumes V1 and V2 in the high supersaturation region tend to decrease. This tendency was also observed when the stirring conditions were changed. Further, this tendency was similarly observed even when the flow rate of the raw material liquid supplied to the stirring tank was changed. The present inventor has found that the volumes V1 and V2 in the highly supersaturated region can be reduced by separately supplying the raw material liquid into the stirring tank from a plurality of discharge ports.

本実施形態の化学反応装置は、撹拌槽20内の溶液中に原料液を吐出する吐出部61(図3参照)を1つ有するが、複数有してもよい。この場合、各吐出部61には吐出口が1つずつ形成される。原料液を分けて複数の吐出部61から撹拌槽20内に供給することで、撹拌槽20内の溶液に占める高過飽和領域の体積V1、V2を小さくでき、得られる粒子の品質を向上できる。   The chemical reaction device of the present embodiment has one discharge part 61 (see FIG. 3) for discharging the raw material liquid into the solution in the stirring tank 20, but may have a plurality of discharge parts 61. In this case, each ejection part 61 is provided with one ejection port. By separately supplying the raw material liquid into the stirring tank 20 from the plurality of discharge portions 61, the volumes V1 and V2 of the highly supersaturated region in the solution in the stirring tank 20 can be reduced, and the quality of the obtained particles can be improved.

この効果を十分に得るためには、高過飽和領域同士が重ならないように吐出部61同士の間隔が設定されることが好ましい。高過飽和領域同士が重なる程度に吐出部61同士が近いと、吐出部61の数を複数にする意義が薄れる。高過飽和領域同士が重なるか否かは、上記シミュレーションによって判定できる。   In order to sufficiently obtain this effect, it is preferable to set the interval between the ejection parts 61 so that the high supersaturated regions do not overlap each other. If the ejection portions 61 are close to each other to the extent that the high supersaturation regions overlap each other, the significance of using a plurality of ejection portions 61 is diminished. Whether the high supersaturation regions overlap with each other can be determined by the above simulation.

核生成工程において第1高過飽和領域同士が重ならないためには、吐出部61の中心同士の間隔は例えば75mm以上である。また、粒子成長工程において第2高過飽和領域同士が重ならないためには、吐出部61の中心同士の間隔は例えば120mm以上である。   In order to prevent the first highly supersaturated regions from overlapping with each other in the nucleation step, the distance between the centers of the ejection portions 61 is, for example, 75 mm or more. Further, in order to prevent the second highly supersaturated regions from overlapping with each other in the particle growth step, the distance between the centers of the ejection portions 61 is, for example, 120 mm or more.

(A)核生成工程において第1高過飽和領域同士が重ならないこと、および、(B)粒子成長工程において第2高過飽和領域同士が重ならないことの一方のみが成立してもよいが、両方が成立するように、吐出部61同士の間隔が設定されてよい。   Only one of (A) the first highly supersaturated regions do not overlap each other in the nucleation step and (B) the second highly supersaturated regions do not overlap each other in the grain growth step may be established, but both of them may be established. The interval between the ejection units 61 may be set so that the conditions are satisfied.

吐出部61同士の間隔は、核生成工程と粒子成長工程とで同じでもよいが、核生成工程と粒子成長工程とが別々に行われる場合、工程に合わせて変更されてもよい。   The interval between the ejection parts 61 may be the same in the nucleation step and the particle growth step, but may be changed according to the step when the nucleation step and the particle growth step are performed separately.

また、本発明者は、原料液の吐出口を撹拌槽内のUやKが大きい位置に設置することで、高過飽和領域の体積を小さくできることを見出した。Kが大きいほど、原料液が拡散しやすいので、高過飽和領域の体積が小さくなる。また、Uが大きいほど、原料液と溶液との合流地点で溶液の量が相対的に増えるので、原料液が分散しやすく、高過飽和領域の体積が小さくなる。   The present inventor has also found that the volume of the high supersaturation region can be reduced by installing the discharge port of the raw material liquid in a position where U and K are large in the stirring tank. The larger K is, the more easily the raw material liquid is diffused, and the smaller the volume in the high supersaturation region is. Further, as U is larger, the amount of the solution is relatively increased at the confluence point of the raw material liquid and the solution, so that the raw material liquid is easily dispersed and the volume of the high supersaturation region is reduced.

図3は、一実施形態による化学反応装置の要部を示す斜視図である。図3において、矢印は溶液の流れの向きを表す。図3に示すように、化学反応装置は、溶液の流れの中で原料液を吐出する吐出部61を含む原料液供給管60と、吐出部61の上流側における溶液の流れを調整する流れ調整部材70とを有する。   FIG. 3 is a perspective view showing a main part of the chemical reaction device according to the embodiment. In FIG. 3, the arrow represents the direction of the flow of the solution. As shown in FIG. 3, the chemical reaction apparatus includes a raw material liquid supply pipe 60 including a discharge portion 61 for discharging the raw material liquid in the flow of the solution, and a flow adjustment for adjusting the flow of the solution on the upstream side of the discharge portion 61. And a member 70.

原料液供給管60は、溶液の流れの中で原料液を吐出する吐出部61を含む。吐出部61には吐出口が形成されており、その吐出口から原料液が吐出される。原料液供給管60は、例えば、溶液の液面から下方に差し込まれ、下端部に吐出部61を有し、吐出部61から下向きに原料液を吐出する。   The raw material liquid supply pipe 60 includes a discharge part 61 for discharging the raw material liquid in the flow of the solution. A discharge port is formed in the discharge part 61, and the raw material liquid is discharged from the discharge port. The raw material liquid supply pipe 60 is, for example, inserted downward from the liquid surface of the solution, has a discharge portion 61 at the lower end portion, and discharges the raw material liquid downward from the discharge portion 61.

尚、原料液供給管60は、撹拌槽20の底部から上方に突出し、上端部に吐出部61を有し、吐出部61から上向きに原料液を吐出してもよい。また、原料液供給管60は、上下方向中央部に吐出部61を有し、吐出部61から水平向きに原料液を吐出してもよい。吐出部61の位置や吐出方向などは、特に限定されない。   The raw material liquid supply pipe 60 may project upward from the bottom of the stirring tank 20, have a discharge portion 61 at the upper end, and discharge the raw material liquid upward from the discharge portion 61. Further, the raw material liquid supply pipe 60 may have a discharge portion 61 at the central portion in the vertical direction, and may discharge the raw material liquid horizontally from the discharge portion 61. The position and the discharging direction of the discharging unit 61 are not particularly limited.

流れ調整部材70は、例えば板状の部材である。流れ調整部材70は、図3では原料液供給管60に対する姿勢を固定するため原料液供給管60に接続されているが、原料液供給管60から離間して設けられてもよい。流れ調整部材70の位置や向きは、吐出部61の位置や吐出方向などに応じて変更されてよい。   The flow adjusting member 70 is, for example, a plate-shaped member. The flow adjusting member 70 is connected to the raw material liquid supply pipe 60 in order to fix the posture with respect to the raw material liquid supply pipe 60 in FIG. 3, but may be provided separately from the raw material liquid supply pipe 60. The position and orientation of the flow adjusting member 70 may be changed according to the position and the ejection direction of the ejection portion 61.

流れ調整部材70は、吐出部61に向けて溶液の流れを受け流す壁面71を有する。壁面71は、壁面71に衝突する流れF1の主方向に対し傾斜しており、その流れF1を方向転換させ、壁面71に沿って吐出部61に向かう流れF11を形成する。壁面71に衝突して吐出部61に向けて方向転換した流れF11と、壁面71に衝突せずに吐出部61に向かう流れF2とが、吐出部61付近で合流する。よって、吐出部61の近傍での流れの速さUを大きくすることができ、効率的に高過飽和領域の体積を小さくすることができる。   The flow adjusting member 70 has a wall surface 71 that receives the flow of the solution toward the discharge portion 61. The wall surface 71 is inclined with respect to the main direction of the flow F1 that collides with the wall surface 71, and redirects the flow F1 to form a flow F11 toward the discharge portion 61 along the wall surface 71. The flow F11 that collides with the wall surface 71 and changes its direction toward the discharge portion 61 and the flow F2 that does not collide with the wall surface 71 and flows toward the discharge portion 61 join together near the discharge portion 61. Therefore, the flow velocity U in the vicinity of the discharge portion 61 can be increased, and the volume of the high supersaturation region can be efficiently reduced.

流れ調整部材70は、壁面71から突出する突起72を有する。突起72は、図3に示すように間隔をおいて複数設けられてよい。突起72の形状は、図3では円柱状であるが、楕円柱状や角柱状などでもよい。壁面71に沿って吐出部61に向かう流れF11は突起72の裏側に完全には回り込めないので、流れの剥離と呼ばれる現象が生じ、突起72の裏側に渦流が形成され、この渦流が吐出部61の近傍に伝搬する。よって、吐出部61の近傍での乱流拡散係数Kを大きくすることができ、より効率的に高過飽和領域の体積を小さくすることができる。   The flow adjusting member 70 has a protrusion 72 protruding from the wall surface 71. A plurality of protrusions 72 may be provided at intervals as shown in FIG. The shape of the protrusion 72 is cylindrical in FIG. 3, but may be elliptic or prismatic. The flow F11 toward the discharge part 61 along the wall surface 71 cannot completely wrap around the back side of the protrusion 72, so a phenomenon called flow separation occurs, and a vortex is formed on the back side of the protrusion 72, and this vortex flow is generated. Propagate to the vicinity of 61. Therefore, the turbulent diffusion coefficient K in the vicinity of the ejection portion 61 can be increased, and the volume of the high supersaturation region can be reduced more efficiently.

図4は、第1変形例による化学反応装置の要部を示す図である。上記実施形態では、吐出部61よりも上方の流れF1が流れ調整部材70に衝突する。これに対し、本変形例では、吐出部61よりも下方の流れF3が流れ調整部材70Aに衝突する。以下、相違点について主に説明する。   FIG. 4 is a diagram showing a main part of the chemical reaction device according to the first modification. In the above embodiment, the flow F1 above the discharge part 61 collides with the flow adjustment member 70. On the other hand, in this modification, the flow F3 below the discharge part 61 collides with the flow adjusting member 70A. The differences will be mainly described below.

流れ調整部材70Aは、図4に示すように、吐出部61の上流側で、吐出部61よりも下方の流れF3を吐出部61に向けて受け流す壁面71Aを有する。壁面71Aは、壁面71Aに衝突する流れF3の主方向に対し傾斜しており、その流れF3を方向転換させ、壁面71Aに沿って吐出部61に向かう流れF31を形成する。壁面71Aに衝突して吐出部61に向けて方向転換した流れF31と、壁面71Aに衝突せずに吐出部61に向かう流れF2とが、吐出部61付近で合流する。よって、吐出部61の近傍での流れの速さUを大きくすることができ、効率的に高過飽和領域の体積を小さくすることができる。   As shown in FIG. 4, the flow adjusting member 70A has a wall surface 71A that receives the flow F3 below the discharge portion 61 toward the discharge portion 61 on the upstream side of the discharge portion 61. The wall surface 71A is inclined with respect to the main direction of the flow F3 that collides with the wall surface 71A, changes the direction of the flow F3, and forms a flow F31 toward the discharge portion 61 along the wall surface 71A. The flow F31 that collides with the wall surface 71A and changes its direction toward the discharge portion 61 and the flow F2 that travels toward the discharge portion 61 without colliding with the wall surface 71A join together near the discharge portion 61. Therefore, the flow velocity U in the vicinity of the discharge portion 61 can be increased, and the volume of the high supersaturation region can be efficiently reduced.

流れ調整部材70Aは、壁面71Aから突出する突起72Aを有する。突起72Aは、図4に示すように間隔をおいて複数設けられてよい。突起72Aの形状は、図4では円柱状であるが、楕円柱状や角柱状などでもよい。壁面71Aに沿って吐出部61に向かう流れF31は突起72Aの裏側に完全には回り込めないので、流れの剥離と呼ばれる現象が生じ、突起72Aの裏側に渦流が形成され、この渦流が吐出部61の近傍に伝搬する。よって、吐出部61の近傍での乱流拡散係数Kを大きくすることができ、より効率的に高過飽和領域の体積を小さくすることができる。   The flow adjusting member 70A has a protrusion 72A protruding from the wall surface 71A. A plurality of protrusions 72A may be provided at intervals as shown in FIG. The shape of the protrusion 72A is cylindrical in FIG. 4, but may be elliptic or prismatic. The flow F31 toward the discharge portion 61 along the wall surface 71A cannot completely wrap around the back side of the projection 72A, so a phenomenon called flow separation occurs, and a vortex is formed on the back side of the projection 72A. Propagate to the vicinity of 61. Therefore, the turbulent diffusion coefficient K in the vicinity of the ejection portion 61 can be increased, and the volume of the high supersaturation region can be reduced more efficiently.

図5は、第2変形例による化学反応装置の要部を示す斜視図である。上記実施形態では、流れ調整部材70の壁面71が単一の平面で構成される。これに対し、本変形例では、流れ調整部材70Bの壁面71Bが扇形の湾曲面で構成される。以下、相違点について主に説明する。   FIG. 5 is a perspective view showing a main part of the chemical reaction device according to the second modification. In the above embodiment, the wall surface 71 of the flow adjusting member 70 is configured by a single plane. On the other hand, in this modified example, the wall surface 71B of the flow adjusting member 70B is configured by a fan-shaped curved surface. The differences will be mainly described below.

本変形例の流れ調整部材70Bは、上記実施形態の流れ調整部材70と同様に、吐出部61に向けて溶液の流れを受け流す壁面71Bと、壁面71Bから突出する突起72Bとを有する。よって、吐出部61の近傍でのUやKを大きくすることができ、効率的に高過飽和領域の体積を小さくすることができる。   The flow adjusting member 70B of the present modified example has a wall surface 71B that receives the flow of the solution toward the discharge portion 61 and a protrusion 72B that projects from the wall surface 71B, as with the flow adjusting member 70 of the above-described embodiment. Therefore, U and K in the vicinity of the ejection portion 61 can be increased, and the volume of the high supersaturation region can be efficiently reduced.

流れ調整部材70Bの壁面71Bは、例えば扇形の湾曲面である。壁面71Bは、吐出部61に向かうほど互いに近づく2つの直線状の側縁71Ba、71Bbを有し、且つ、両側縁71Ba、71Bbを結ぶ平面を基準として下流側に凹む。これにより、壁面71Bに沿う流れF11〜F13(壁面71Bの突起72Bによって形成される渦流を含む)を吐出部61に向けて集めることができる。よって、吐出部61の近傍でのUやKをより大きくすることができ、より効率的に高過飽和領域の体積を小さくすることができる。   The wall surface 71B of the flow adjusting member 70B is, for example, a fan-shaped curved surface. The wall surface 71B has two linear side edges 71Ba and 71Bb that are closer to each other toward the ejection portion 61, and is recessed downstream with respect to the plane connecting the side edges 71Ba and 71Bb. Thereby, the flows F11 to F13 (including the vortex formed by the protrusions 72B of the wall surface 71B) along the wall surface 71B can be collected toward the discharge portion 61. Therefore, U and K in the vicinity of the discharge part 61 can be increased, and the volume of the high supersaturation region can be decreased more efficiently.

尚、本変形例の流れ調整部材70Bは、壁面71Bから突出する突起72Bを有するが、突起72Bを有しなくてもよい。この場合、壁面71Bに沿う流れF11〜F13を吐出部61に向けて集めることで、吐出部61の近傍でのUを大きくすることができ、効率的に高過飽和領域の体積を小さくすることができる。また、本変形例の流れ調整部材70Bは、吐出部61よりも上方の流れF1を受け流すが、上記第1変形例の流れ調整部材70Aと同様に吐出部61よりも下方の流れF3(図4参照)を受け流してもよい。   The flow adjusting member 70B of this modification has the protrusion 72B protruding from the wall surface 71B, but the protrusion 72B may not be provided. In this case, by collecting the flows F11 to F13 along the wall surface 71B toward the discharge part 61, U in the vicinity of the discharge part 61 can be increased, and the volume of the high supersaturation region can be efficiently reduced. it can. Further, the flow adjusting member 70B of this modification receives the flow F1 above the discharge portion 61, but like the flow adjusting member 70A of the first modification described above, the flow F3 below the discharge portion 61 (see FIG. 4). See) may be parried.

図6は、第3変形例による化学反応装置の要部を示す斜視図である。上記実施形態では、流れ調整部材70の壁面71が単一の平面で構成される。これに対し、本変形例では、流れ調整部材70Cの壁面71Cが複数の平面で構成されV字状の断面形状を有する。以下、相違点について主に説明する。   FIG. 6 is a perspective view showing a main part of a chemical reaction device according to a third modification. In the above embodiment, the wall surface 71 of the flow adjusting member 70 is configured by a single plane. On the other hand, in this modified example, the wall surface 71C of the flow control member 70C has a V-shaped cross section formed of a plurality of flat surfaces. The differences will be mainly described below.

本変形例の流れ調整部材70Cは、上記実施形態の流れ調整部材70と同様に、吐出部61に向けて溶液の流れを受け流す壁面71Cと、壁面71Cから突出する突起72Cとを有する。よって、吐出部61の近傍でのUやKを大きくすることができ、効率的に高過飽和領域の体積を小さくすることができる。   70 C of flow adjustment members of this modification have the wall surface 71C which receives the flow of the solution toward the discharge part 61 similarly to the flow adjustment member 70 of the said embodiment, and the protrusion 72C which protrudes from the wall surface 71C. Therefore, U and K in the vicinity of the ejection portion 61 can be increased, and the volume of the high supersaturation region can be efficiently reduced.

流れ調整部材70Cの壁面71Cは、例えば複数の平面で構成される。壁面71Cは、吐出部61に向かうほど互いに近づく2つの直線状の側縁71Ca、71Cbを有し、且つ、両側縁71Ca、71Cbを結ぶ平面を基準として下流側に凹む。これにより、壁面71Cに沿う流れF11〜F13(壁面71Cの突起72Cによって形成される渦流を含む)を吐出部61に向けて集めることができる。よって、吐出部61の近傍でのUやKをより大きくすることができ、より効率的に高過飽和領域の体積を小さくすることができる。   The wall surface 71C of the flow control member 70C is composed of, for example, a plurality of planes. The wall surface 71C has two linear side edges 71Ca and 71Cb that are closer to each other toward the ejection portion 61, and is recessed on the downstream side with respect to a plane connecting the both side edges 71Ca and 71Cb. As a result, the flows F11 to F13 (including the vortex formed by the protrusions 72C of the wall surface 71C) along the wall surface 71C can be collected toward the discharge portion 61. Therefore, U and K in the vicinity of the discharge part 61 can be increased, and the volume of the high supersaturation region can be decreased more efficiently.

尚、本変形例の流れ調整部材70Cは、壁面71Cから突出する突起72Cを有するが、突起72Cを有しなくてもよい。この場合、壁面71Cに沿う流れF11〜F13を吐出部61に向けて集めることで、吐出部61の近傍でのUを大きくすることができ、効率的に高過飽和領域の体積を小さくすることができる。また、本変形例の流れ調整部材70Cは、吐出部61よりも上方の流れF1を受け流すが、上記第1変形例の流れ調整部材70Aと同様に吐出部61よりも下方の流れF3(図4参照)を受け流してもよい。   The flow adjusting member 70C of this modification has the projection 72C protruding from the wall surface 71C, but the projection 72C may not be provided. In this case, by collecting the flows F11 to F13 along the wall surface 71C toward the discharge part 61, U in the vicinity of the discharge part 61 can be increased, and the volume of the high supersaturation region can be efficiently reduced. it can. Further, the flow adjusting member 70C of the present modification receives the flow F1 above the discharge part 61, but like the flow adjusting member 70A of the first modification, the flow F3 below the discharge part 61 (FIG. 4). See) may be parried.

図7は、一実施形態による化学反応装置を用いたニッケル含有水酸化物の製造方法のフローチャートである。図7に示すように、ニッケル含有水酸化物の製造方法は、中和晶析によりニッケル含有水酸化物の粒子を得るものであって、粒子の核を生成させる核生成工程S11と、粒子を成長させる粒子成長工程S12とを有する。以下、各工程について説明するが、その前に、得られるニッケル含有水酸化物について説明する。   FIG. 7 is a flowchart of a method for producing a nickel-containing hydroxide using the chemical reaction device according to the embodiment. As shown in FIG. 7, the method for producing a nickel-containing hydroxide is a method for obtaining particles of a nickel-containing hydroxide by neutralization crystallization. And a grain growth step S12 of growing. Hereinafter, each step will be described, but before that, the nickel-containing hydroxide obtained will be described.

(ニッケル含有水酸化物)
ニッケル含有水酸化物は、リチウムイオン二次電池の正極活物質の前駆体として用いられるものである。ニッケル含有水酸化物は、例えば、(1)一般式:Ni1−x−yCoAl(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、0≦α≦0.5)で表されるニッケル複合水酸化物であるか、または、(2)一般式:NiCoMn(OH)2+α(x+y+z+t=1、0.1≦x≦0.7、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、Mは、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWから選択される1種以上の添加元素)で表されるニッケルコバルトマンガン複合水酸化物である。
(Nickel-containing hydroxide)
The nickel-containing hydroxide is used as a precursor of a positive electrode active material of a lithium ion secondary battery. Nickel-containing hydroxide is, for example, (1) the general formula: Ni 1-x-y Co x Al y (OH) 2 + α (0 ≦ x ≦ 0.3,0.005 ≦ y ≦ 0.15,0 ≦ α ≦ 0.5), or (2) a general formula: Ni x Co y Mn z M t (OH) 2 + α (x + y + z + t = 1, 0.1 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.5, 0.1 ≦ z ≦ 0.8, 0 ≦ t ≦ 0.02, 0 ≦ α ≦ 0.5, M is Ti, V, Cr , Zr, Nb, Mo, Hf, Ta, and W).

ニッケル含有水酸化物は、ニッケルを含有し、好ましくはニッケル以外の金属をさらに含有する。ニッケル以外の金属をさらに含有する水酸化物を、ニッケル複合水酸化物と呼ぶ。ニッケル複合水酸化物の金属の組成比(例えば、Ni:Mn:Co:M)は、得られる正極活物質においても維持されるので、正極活物質に要求される金属の組成比と一致するように調整される。   The nickel-containing hydroxide contains nickel, and preferably further contains a metal other than nickel. A hydroxide that further contains a metal other than nickel is called a nickel composite hydroxide. Since the metal composition ratio of the nickel composite hydroxide (for example, Ni: Mn: Co: M) is maintained in the obtained positive electrode active material, it should be the same as the metal composition ratio required for the positive electrode active material. Adjusted to.

(ニッケル含有水酸化物の製造方法)
ニッケル含有水酸化物の製造方法は、上述の如く、核生成工程S11と、粒子成長工程S12とを有する。本実施形態では、バッチ式の撹拌槽を用いて、撹拌槽内の水溶液のpH値などを制御することで、核生成工程S11と、粒子成長工程S12とを分けて実施する。
(Method for producing nickel-containing hydroxide)
As described above, the method for producing the nickel-containing hydroxide has the nucleation step S11 and the particle growth step S12. In this embodiment, the nucleation step S11 and the particle growth step S12 are performed separately by controlling the pH value of the aqueous solution in the stirring tank using a batch stirring tank.

核生成工程S11では、核生成が粒子成長よりも優先して起こり、粒子成長はほとんど生じない。一方、粒子成長工程S12では、粒子成長が核生成よりも優先して起こり新しい核はほとんど生成されない。核生成工程S11と粒子成長工程S12とを分けて実施することで、粒度分布の範囲が狭く均質な核が形成でき、その後に、核を均質に成長させることができる。   In the nucleation step S11, nucleation takes precedence over grain growth, and grain growth hardly occurs. On the other hand, in the grain growth step S12, grain growth takes precedence over nucleation, and new nuclei are scarcely generated. By performing the nucleation step S11 and the grain growth step S12 separately, it is possible to form homogeneous nuclei with a narrow particle size distribution range, and then to grow nuclei homogeneously.

以下、核生成工程S11および粒子成長工程S12について説明する。核生成工程S11における撹拌槽内の水溶液と、粒子成長工程S12における撹拌槽内の水溶液とでは、pH値の範囲が異なるが、アンモニア濃度の範囲や温度の範囲は実質的に同じであってよい。   The nucleation step S11 and the particle growth step S12 will be described below. Although the pH value range differs between the aqueous solution in the stirring tank in the nucleation step S11 and the aqueous solution in the stirring tank in the particle growth step S12, the ammonia concentration range and the temperature range may be substantially the same. .

尚、本実施形態では、バッチ式の撹拌槽を用いるが、連続式の撹拌槽を用いてもよい。後者の場合、核生成工程S11と粒子成長工程S12とは、同時に実施される。この場合、撹拌槽内の水溶液のpH値の範囲は当然に同じになり、例えば12.0の近傍に設定されてよい。   Although a batch type stirring tank is used in the present embodiment, a continuous stirring tank may be used. In the latter case, the nucleation step S11 and the particle growth step S12 are carried out simultaneously. In this case, the pH range of the aqueous solution in the stirring tank is naturally the same, and may be set, for example, in the vicinity of 12.0.

(核生成工程)
先ず、原料液を調製しておく。原料液は、少なくともニッケル塩を含み、好ましくはニッケル塩以外の金属塩をさらに含有する。金属塩としては、硝酸塩、硫酸塩、塩酸塩などが用いられる。より具体的には、例えば、硫酸ニッケル、硫酸マンガン、硫酸コバルト、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどが用いられる。
(Nucleation process)
First, the raw material liquid is prepared. The raw material liquid contains at least a nickel salt, and preferably further contains a metal salt other than the nickel salt. As the metal salt, nitrates, sulfates, hydrochlorides and the like are used. More specifically, for example, nickel sulfate, manganese sulfate, cobalt sulfate, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, Niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, etc. are used.

原料液の金属の組成比(例えば、Ni:Mn:Co:M)は、得られるニッケル複合水酸化物においても維持されるので、ニッケル複合水酸化物に要求される組成比と一致するように調整される。   Since the metal composition ratio of the raw material liquid (for example, Ni: Mn: Co: M) is maintained even in the obtained nickel composite hydroxide, the composition ratio should be the same as that required for the nickel composite hydroxide. Adjusted.

また、撹拌槽内に、アルカリ水溶液、アンモニア水溶液、および水を供給して混合した水溶液を貯める。混合した水溶液を、以下、「反応前水溶液」と呼ぶ。反応前水溶液のpH値は、液温25℃基準で、12.0〜14.0、好ましくは12.3〜13.5の範囲内に調節しておく。また、反応前水溶液中のアンモニアの濃度は、好ましくは3〜25g/L、より好ましくは5〜20g/L、さらに好ましくは5〜15g/Lの範囲内に調節しておく。さらに、反応前水溶液の温度は、好ましくは20〜60℃、より好ましくは35〜60℃の範囲内に調節しておく。   Further, an aqueous alkaline solution, an aqueous ammonia solution, and a mixed aqueous solution are stored in the stirring tank. Hereinafter, the mixed aqueous solution is referred to as “pre-reaction aqueous solution”. The pH value of the pre-reaction aqueous solution is adjusted within the range of 12.0 to 14.0, preferably 12.3 to 13.5 on the basis of the liquid temperature of 25 ° C. Further, the concentration of ammonia in the pre-reaction aqueous solution is preferably adjusted within the range of 3 to 25 g / L, more preferably 5 to 20 g / L, and further preferably 5 to 15 g / L. Further, the temperature of the pre-reaction aqueous solution is preferably adjusted to 20 to 60 ° C, more preferably 35 to 60 ° C.

アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を含むものが用いられる。アルカリ金属水酸化物は、固体として供給してもよいが、水溶液として供給することが好ましい。   As the alkaline aqueous solution, for example, one containing an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used. The alkali metal hydroxide may be supplied as a solid, but is preferably supplied as an aqueous solution.

アンモニア水溶液としては、アンモニア供給体を含むものが用いられる。アンモニア供給体としては、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどが使用できる。   As the aqueous ammonia solution, one containing an ammonia supplier is used. As the ammonia supplier, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride or the like can be used.

尚、本実施形態では、非還元性錯化剤として、アンモニア供給体が用いられるが、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸、グリシンなどが用いられてもよい。非還元性錯化剤は、撹拌槽内の水溶液中でニッケルイオンなど結合して錯体を形成可能なものであればよい。   In the present embodiment, the ammonia supplier is used as the non-reducing complexing agent, but ethylenediaminetetraacetic acid, nitritotriacetic acid, uracildiacetic acid, glycine or the like may be used. The non-reducing complexing agent may be any one that can form a complex by binding with nickel ions or the like in the aqueous solution in the stirring tank.

反応前水溶液のpH、アンモニア濃度、温度などの調節後、反応前水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、撹拌槽内には、反応前水溶液と原料液とが混合した反応水溶液が形成され、中和晶析によって核が生成され、核生成工程S11が開始される。   After adjusting the pH, ammonia concentration, temperature and the like of the pre-reaction aqueous solution, the raw material liquid is supplied into the stirring tank while stirring the pre-reaction aqueous solution. As a result, a reaction aqueous solution in which the pre-reaction aqueous solution and the raw material liquid are mixed is formed in the stirring tank, the nuclei are generated by neutralization crystallization, and the nucleation step S11 is started.

核生成工程S11において、反応水溶液のpH値が12.0以上であれば、核生成が粒子成長よりも支配的になる。また、核生成工程S11において、反応水溶液のpH値が14.0以下であれば、核が微細化し過ぎることを防止でき、反応水溶液のゲル化を防止できる。核生成工程S11において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、好ましくは0.4以下である。   In the nucleation step S11, if the pH value of the reaction aqueous solution is 12.0 or more, nucleation becomes dominant over grain growth. Further, in the nucleation step S11, if the pH value of the reaction aqueous solution is 14.0 or less, it is possible to prevent the nucleus from becoming too fine and prevent the reaction aqueous solution from gelling. In the nucleation step S11, the fluctuation range of the pH value of the reaction aqueous solution (the range between the maximum value and the minimum value) is preferably 0.4 or less.

また、核生成工程S11において、反応水溶液中のアンモニア濃度が3g/L以上であると、金属イオンの溶解度を一定に保持でき、形状および粒径が整った核が生成しやすい。また、核生成工程S11において、反応水溶液中のアンモニア濃度が25g/L以下であると、析出せずに液中に残る金属イオンが減り、生産効率が向上する。核生成工程S11において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、好ましくは5g/L以下である。   Further, in the nucleation step S11, when the ammonia concentration in the reaction aqueous solution is 3 g / L or more, the solubility of metal ions can be kept constant, and nuclei having a regular shape and particle size are easily generated. Further, in the nucleation step S11, when the ammonia concentration in the reaction aqueous solution is 25 g / L or less, the metal ions remaining in the liquid without being precipitated are reduced, and the production efficiency is improved. In the nucleation step S11, the fluctuation range (between the maximum value and the minimum value) of the pH value of the reaction aqueous solution is preferably 5 g / L or less.

また、核生成工程S11において、反応水溶液の温度が20℃以上であれば、ニッケル含有水酸化物の溶解度が大きいため、核発生が緩やかに生じ、核発生の制御が容易である。一方、反応水溶液の温度が60℃以下であれば、アンモニアの揮発が抑制できるため、アンモニア水の使用量が削減でき、製造コストが低減できる。   Further, in the nucleation step S11, when the temperature of the reaction aqueous solution is 20 ° C. or higher, the nickel-containing hydroxide has a high solubility, so that the nucleation occurs slowly and the nucleation is easily controlled. On the other hand, when the temperature of the reaction aqueous solution is 60 ° C. or lower, volatilization of ammonia can be suppressed, so that the amount of ammonia water used can be reduced and the manufacturing cost can be reduced.

核生成工程S11では、反応水溶液のpH値やアンモニア濃度、温度が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、アルカリ水溶液、アンモニア水溶液を供給する。これにより、反応水溶液中で、核の生成が継続される。そして、所定の量の核が生成されると、核生成工程S11を終了する。所定量の核が生成したか否かは、金属塩の供給量によって推定できる。   In the nucleation step S11, in addition to the raw material liquid, an alkaline aqueous solution and an ammonia aqueous solution are supplied into the stirring tank so that the pH value, the ammonia concentration, and the temperature of the reaction aqueous solution are maintained within the above ranges. As a result, nucleation is continued in the reaction aqueous solution. Then, when a predetermined amount of nuclei are generated, the nucleation step S11 is ended. Whether or not a predetermined amount of nuclei have been generated can be estimated by the amount of metal salt supplied.

(粒子成長工程)
核生成工程S11の終了後、粒子成長工程S12の開始前に、撹拌槽内の反応水溶液のpH値を、液温25℃基準で、10.5〜12.0、好ましくは11.0〜12.0、かつ、核生成工程S11におけるpH値よりも低く調整する。このpH値の調整は、撹拌槽内へのアルカリ水溶液の供給を停止すること、金属塩の金属を水素と置換した無機酸(例えば硫酸塩の場合、硫酸)を撹拌槽内へ供給することなどで調整できる。
(Particle growth process)
After the completion of the nucleation step S11 and before the start of the particle growth step S12, the pH value of the reaction aqueous solution in the stirring tank is set to 10.5 to 12.0, preferably 11.0 to 12 based on the liquid temperature of 25 ° C. It is adjusted to 0.0 and lower than the pH value in the nucleation step S11. To adjust the pH value, stop the supply of the alkaline aqueous solution into the stirring tank, supply an inorganic acid in which the metal of the metal salt is replaced with hydrogen (for example, sulfuric acid in the case of sulfate) to the stirring tank, etc. Can be adjusted with.

反応水溶液のpH、アンモニア濃度、温度などの調節後、反応水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、中和晶析によって核の成長(粒子成長)が始まり、粒子成長工程S12が開始される。尚、本実施形態では、核生成工程S11と粒子成長工程S12とを、同一の撹拌槽で行うが、異なる撹拌槽で行ってもよい。   After adjusting the pH, ammonia concentration, temperature, etc. of the reaction aqueous solution, the raw material liquid is supplied into the stirring tank while stirring the reaction aqueous solution. As a result, nucleus growth (particle growth) is started by neutralization crystallization, and the particle growth step S12 is started. Although the nucleation step S11 and the particle growth step S12 are performed in the same stirring tank in this embodiment, they may be performed in different stirring tanks.

粒子成長工程S12において、反応水溶液のpH値が12.0以下であってかつ核生成工程S11におけるpH値よりも低ければ、新たな核はほとんど生成せず、核生成よりも粒子成長の方が優先して生じる。   In the particle growth step S12, if the pH value of the reaction aqueous solution is 12.0 or less and lower than the pH value in the nucleation step S11, almost no new nuclei are generated, and the particle growth is more preferable than the nucleation. It occurs with priority.

尚、pH値が12.0の場合は、核生成と粒子成長の境界条件であるため、反応水溶液中に存在する核の有無により、優先順位が変わる。例えば、核生成工程S11のpH値を12.0より高くして多量に核生成させた後、粒子成長工程S12でpH値を12.0とすると、反応水溶液中に多量の核が存在するため、粒子成長が優先する。一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程S11においてpH値を12.0とした場合、成長する核が存在しないため、核生成が優先する。その後、粒子成長工程S12においてpH値を12.0より小さくすれば、生成した核が成長する。核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。   When the pH value is 12.0, it is a boundary condition between nucleation and particle growth, so the priority order changes depending on the presence or absence of nuclei in the reaction aqueous solution. For example, if the pH value in the nucleation step S11 is made higher than 12.0 to generate a large amount of nuclei and then the pH value is set to 12.0 in the particle growth step S12, a large amount of nuclei exist in the reaction aqueous solution. , Particle growth has priority. On the other hand, when there is no nucleus in the reaction aqueous solution, that is, when the pH value is set to 12.0 in the nucleation step S11, there is no nucleus that grows, so nucleation is prioritized. After that, if the pH value is made smaller than 12.0 in the particle growth step S12, the generated nuclei grow. In order to clearly separate nucleation and grain growth, the pH value in the grain growth step is preferably 0.5 or more, more preferably 1.0 or more lower than the pH value in the nucleation step.

また、粒子成長工程S12において、反応水溶液のpH値が10.5以上であれば、アンモニアによる溶解度が低いため、析出せずに液中に残る金属イオンが減り、生産効率が向上する。   Further, in the particle growth step S12, if the pH value of the reaction aqueous solution is 10.5 or more, the solubility in ammonia is low, and thus the metal ions remaining in the liquid without being precipitated are reduced, and the production efficiency is improved.

粒子成長工程S12では、反応水溶液のpH値やアンモニア濃度、温度が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、アルカリ水溶液、アンモニア水溶液を供給する。これにより、反応水溶液中で、粒子成長が継続される。   In the particle growth step S12, in addition to the raw material liquid, an alkaline aqueous solution and an ammonia aqueous solution are supplied into the stirring tank so that the pH value, the ammonia concentration, and the temperature of the reaction aqueous solution are maintained within the above ranges. Thereby, particle growth is continued in the reaction aqueous solution.

粒子成長工程S12は、撹拌槽内の雰囲気を切り換えることで前半と後半とに分けることができる。前半の雰囲気は、核生成工程S11と同様に酸化性雰囲気とされる。酸化性雰囲気の酸素濃度は、1容量%以上、好ましくは2容量%以上、より好ましくは10容量%以上である。酸化性雰囲気は、制御が容易な大気雰囲気(酸素濃度:21容量%)であってよい。酸化性雰囲気の酸素濃度の上限は、特に限定されるものではないが、30容量%以下である。一方、後半の雰囲気は、非酸化性雰囲気とされる。非酸化性雰囲気の酸素濃度は、1容量%以下、好ましくは0.5容量%以下、より好ましくは0.3容量%以下である。非酸化性雰囲気の酸素濃度は、酸素ガスまたは大気と、不活性ガスとを混合することにより制御する。   The particle growth step S12 can be divided into the first half and the second half by switching the atmosphere in the stirring tank. The atmosphere in the first half is an oxidizing atmosphere as in the nucleation step S11. The oxygen concentration in the oxidizing atmosphere is 1% by volume or more, preferably 2% by volume or more, more preferably 10% by volume or more. The oxidizing atmosphere may be an air atmosphere (oxygen concentration: 21% by volume) that is easy to control. The upper limit of the oxygen concentration in the oxidizing atmosphere is not particularly limited, but is 30% by volume or less. On the other hand, the latter half atmosphere is a non-oxidizing atmosphere. The oxygen concentration of the non-oxidizing atmosphere is 1% by volume or less, preferably 0.5% by volume or less, more preferably 0.3% by volume or less. The oxygen concentration in the non-oxidizing atmosphere is controlled by mixing oxygen gas or the atmosphere with an inert gas.

図8は、一実施形態による粒子成長工程の前半で形成される凝集体を模式化した断面図である。図9は、一実施形態による粒子成長工程の後半で形成される外殻を模式化した断面図である。   FIG. 8 is a schematic cross-sectional view of an aggregate formed in the first half of the particle growth step according to the embodiment. FIG. 9 is a schematic cross-sectional view of an outer shell formed in the latter half of the grain growth step according to the embodiment.

粒子成長工程S12の前半では、核が成長することで種晶粒子2が形成され、種晶粒子2がある程度大きくなると、種晶粒子2同士が衝突するようになり、複数の種晶粒子2からなる凝集体4が形成される。一方、粒子成長工程S12の後半では、凝集体4の周りに緻密な外殻6が形成される。その結果、凝集体4と外殻6とで構成される粒子が得られる。   In the first half of the particle growth step S12, the seed crystal particles 2 are formed by the growth of the nuclei, and when the seed crystal particles 2 become large to some extent, the seed crystal particles 2 collide with each other, and the seed crystal particles 2 are separated from each other. Aggregates 4 are formed. On the other hand, in the latter half of the particle growth step S12, the dense outer shell 6 is formed around the aggregate 4. As a result, particles composed of the aggregate 4 and the outer shell 6 are obtained.

尚、ニッケル含有水酸化物の粒子の構造は、図9に示す構造に限定されない。例えば、核生成工程S11と粒子成長工程S12とが同時に実施される場合、中和晶析の完了時に得られる粒子の構造は、図9に示す構造とは別の構造である。その構造は、例えば種晶粒子2に相当するものと外殻6に相当するものとが混じり合い、容易にその境界が分からない一様な構造となる。   The structure of the nickel-containing hydroxide particles is not limited to the structure shown in FIG. For example, when the nucleation step S11 and the particle growth step S12 are carried out simultaneously, the structure of the particles obtained at the completion of the neutralization crystallization is a structure different from the structure shown in FIG. Its structure is a uniform structure in which, for example, those corresponding to the seed crystal particles 2 and those corresponding to the outer shell 6 are mixed, and the boundaries thereof are not easily recognized.

ニッケル含有水酸化物の粒子が所定の粒径まで成長した時点で、粒子成長工程S12を終了させる。その粒径は、核生成工程S11と粒子成長工程S12のそれぞれにおける金属塩の供給量から推測できる。   When the nickel-containing hydroxide particles have grown to a predetermined particle size, the particle growth step S12 is ended. The particle size can be estimated from the supply amount of the metal salt in each of the nucleation step S11 and the particle growth step S12.

尚、核生成工程S11の終了後、粒子成長工程S12の途中で、原料液などの供給を停止すると共に反応水溶液の撹拌を停止し、粒子を沈降させ、上澄み液を排出してもよい。これにより、中和晶析によって減少した反応水溶液中の金属イオン濃度を、高めることができる。   Incidentally, after the completion of the nucleation step S11, the supply of the raw material liquid and the like may be stopped and the stirring of the reaction aqueous solution may be stopped so that the particles are allowed to settle and the supernatant liquid may be discharged during the particle growth step S12. As a result, the concentration of metal ions in the reaction aqueous solution, which has been reduced by neutralization crystallization, can be increased.

図10は、一実施形態による核生成工程における反応水溶液中の第1高過飽和領域を示す図である。尚、図10では、図3の流れ調整部材70が用いられるが、図4の流れ調整部材70Aや、図5の流れ調整部材70B、図6の流れ調整部材70Cなどが用いられてもよい。   FIG. 10 is a diagram showing the first highly supersaturated region in the reaction aqueous solution in the nucleation step according to one embodiment. Although the flow adjusting member 70 of FIG. 3 is used in FIG. 10, the flow adjusting member 70A of FIG. 4, the flow adjusting member 70B of FIG. 5, the flow adjusting member 70C of FIG. 6 and the like may be used.

第1高過飽和領域12Aとは、反応水溶液中に溶けているニッケル含有水酸化物のモル濃度が5.0mol/m以上である領域を意味する。第1高過飽和領域12Aでは、ニッケル含有水酸化物のモル濃度が溶解度よりも十分に高いので、核生成が有意な速さで生じる。 The first high supersaturation region 12A means a region in which the molar concentration of the nickel-containing hydroxide dissolved in the reaction aqueous solution is 5.0 mol / m 3 or more. In the first high supersaturation region 12A, since the molar concentration of the nickel-containing hydroxide is sufficiently higher than the solubility, nucleation occurs at a significant speed.

ここで、溶解度とは、水100gに溶けるニッケル含有水酸化物の限界量(g/100g−HO)を意味する。水酸化ニッケル(Ni(OH))の溶解度は、例えば10−7(g/100g−HO)である。このようにニッケル含有水酸化物の溶解度は、ゼロに近いので、第1高過飽和領域12Aのモル濃度の下限値5.0mol/mに比べ無視できるほど小さい。 Here, the solubility means the limit amount (g / 100 g-H 2 O) of nickel-containing hydroxide that is soluble in 100 g of water. The solubility of nickel hydroxide (Ni (OH) 2 ) is, for example, 10 −7 (g / 100 g-H 2 O). Thus, the solubility of the nickel-containing hydroxide is close to zero, and is negligibly smaller than the lower limit of 5.0 mol / m 3 of the molar concentration of the first high supersaturation region 12A.

図11は、連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.025%である場合に得られた粒子の一例のSEM写真である。図11に示す粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。一方、図12は、連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.100%である場合に得られた粒子の一例のSEM写真である。図12に示す粒子の外表面には顕著な凹凸が認められた。   FIG. 11 is an SEM photograph of an example of particles obtained when the volume ratio of the first highly supersaturated region in the reaction aqueous solution in the continuous stirring tank is 0.025%. The outer surface of the particles shown in FIG. 11 was smooth, and unevenness was hardly recognized. On the other hand, FIG. 12 is a SEM photograph of an example of particles obtained when the volume ratio of the first highly supersaturated region in the reaction aqueous solution in the continuous stirring tank is 0.100%. Remarkable irregularities were recognized on the outer surface of the particles shown in FIG.

図11および図12から明らかなように、中和晶析の完了時に得られる粒子の外表面の凸凹の発生を抑制する観点から、核生成工程S11における反応水溶液に占める第1高過飽和領域の体積割合(以下、第1体積割合と呼ぶ)が0.100%未満であることが好ましい。第1体積割合が0.100%未満であれば、中和晶析の完了時に得られる粒子の外表面の凹凸の発生を抑制できる理由は下記のように推定される。   As is clear from FIGS. 11 and 12, from the viewpoint of suppressing the generation of irregularities on the outer surface of the particles obtained at the completion of the neutralization crystallization, the volume of the first highly supersaturated region in the reaction aqueous solution in the nucleation step S11. The ratio (hereinafter referred to as the first volume ratio) is preferably less than 0.100%. If the first volume ratio is less than 0.100%, the reason why it is possible to suppress the occurrence of irregularities on the outer surface of the particles obtained at the completion of neutralization crystallization is presumed as follows.

核生成工程S11において、核は、主に第1高過飽和領域12Aにおいて生成され、その後、反応水溶液全体に分散する。第1体積割合が0.100%未満であれば、反応水溶液の単位体積当たりの核の発生数が少ない。そのため、粒子成長工程S12の前半において、反応水溶液の単位体積当たりの種晶粒子2の数も相対的に少なく、複数の種晶粒子2からなる凝集体4の数も相対的に少ない。その結果、粒子成長工程S12の後半において、凝集体4の周りに形成される外殻6の厚さが厚くなる。よって、凝集体4の外表面の凸凹を厚い外殻6で被覆でき、最終的に得られる粒子の外表面の凸凹を低減できる。尚、この効果は、核生成工程S11と粒子成長工程S12とが同時に行われる場合にも得られる。   In the nucleation step S11, nuclei are mainly generated in the first high supersaturation region 12A and then dispersed in the entire reaction aqueous solution. When the first volume ratio is less than 0.100%, the number of nuclei generated per unit volume of the reaction aqueous solution is small. Therefore, in the first half of the particle growth step S12, the number of seed crystal particles 2 per unit volume of the reaction aqueous solution is relatively small, and the number of aggregates 4 composed of a plurality of seed crystal particles 2 is also relatively small. As a result, in the latter half of the particle growth step S12, the outer shell 6 formed around the aggregate 4 becomes thicker. Therefore, the irregularities on the outer surface of the aggregate 4 can be covered with the thick outer shell 6, and the irregularities on the outer surface of the finally obtained particles can be reduced. Note that this effect can be obtained even when the nucleation step S11 and the particle growth step S12 are performed at the same time.

中和晶析の完了時に得られる粒子の外表面の凸凹を低減する観点からは、第1体積割合が小さいほど好ましい。第1体積割合は、吐出部61付近の流れ場のUやKなどに依存する。UやKが大きいほど、第1体積割合が小さい。第1体積割合は、好ましくは0.070%以下、より好ましくは0.050%以下、さらに好ましくは0.030%以下である。但し、UやKは撹拌軸40を回転させるモータの容量などの制約を受けるので、第1体積割合は好ましくは0.004%以上である。   From the viewpoint of reducing the unevenness of the outer surface of the particles obtained at the completion of the neutralization crystallization, the smaller the first volume ratio is, the more preferable. The first volume ratio depends on U and K of the flow field near the discharge part 61. The larger U or K, the smaller the first volume ratio. The first volume ratio is preferably 0.070% or less, more preferably 0.050% or less, still more preferably 0.030% or less. However, since U and K are subject to restrictions such as the capacity of the motor that rotates the stirring shaft 40, the first volume ratio is preferably 0.004% or more.

核生成工程S11では、原料液を分けて複数の吐出部61から反応水溶液中に吐出してよい。これにより、効率的に第1体積割合を小さくできる。このとき、複数の吐出部61から吐出される複数の第1高過飽和領域12Aが重ならないように、複数の吐出部61の間隔が設定されることが好ましい。   In the nucleation step S11, the raw material liquid may be divided and discharged from the plurality of discharging portions 61 into the reaction aqueous solution. Thereby, the first volume ratio can be efficiently reduced. At this time, it is preferable that the intervals between the plurality of ejection units 61 are set so that the plurality of first highly supersaturated regions 12A ejected from the plurality of ejection units 61 do not overlap.

図13は、一実施形態による粒子成長工程における反応水溶液中の第2高過飽和領域を示す図である。尚、図13では、図3の流れ調整部材70が用いられるが、図4の流れ調整部材70Aや、図5の流れ調整部材70B、図6の流れ調整部材70Cなどが用いられてもよい。   FIG. 13 is a diagram showing a second highly supersaturated region in the reaction aqueous solution in the particle growth step according to the embodiment. Although the flow adjusting member 70 of FIG. 3 is used in FIG. 13, the flow adjusting member 70A of FIG. 4, the flow adjusting member 70B of FIG. 5, the flow adjusting member 70C of FIG. 6 and the like may be used.

第2高過飽和領域12Bとは、反応水溶液中に溶けているニッケル含有水酸化物のモル濃度が1.7mol/m以上である領域を意味する。第2高過飽和領域12Bでは、ニッケル含有水酸化物のモル濃度が溶解度よりも十分に高いので、粒子成長が有意な速さで生じる。 The second highly supersaturated region 12B means a region in which the molar concentration of the nickel-containing hydroxide dissolved in the reaction aqueous solution is 1.7 mol / m 3 or more. In the second high supersaturation region 12B, since the molar concentration of the nickel-containing hydroxide is sufficiently higher than the solubility, the particle growth occurs at a significant speed.

尚、上述の如くニッケル含有水酸化物の溶解度は、ゼロに近いので、第2高過飽和領域12Bのモル濃度の下限値1.7mol/mに比べ無視できるほど小さい。 Since the solubility of the nickel-containing hydroxide is close to zero as described above, it is negligibly smaller than the lower limit of the molar concentration of 1.7 mol / m 3 in the second high supersaturation region 12B.

図14は、連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.379%である場合に得られた粒子の断面の一例のSEM写真である。図14に示す粒子の断面には年輪状の構造は認められなかった。一方、図15は、連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.624%である場合に得られた粒子の断面の一例のSEM写真である。図15に示す粒子の断面には矢印で示す箇所に年輪状の構造が認められた。   FIG. 14 is an SEM photograph of an example of a cross section of particles obtained when the volume ratio of the second highly supersaturated region in the reaction aqueous solution in the continuous stirring tank is 0.379%. No annual ring structure was observed in the cross section of the particles shown in FIG. On the other hand, FIG. 15 is an SEM photograph of an example of a cross section of particles obtained when the volume ratio of the second highly supersaturated region in the reaction aqueous solution in the continuous stirring tank is 0.624%. In the cross section of the particle shown in FIG. 15, a ring-shaped structure was recognized at the location indicated by the arrow.

図14および図15から明らかなように、年輪状の構造の発生を抑制する観点から、反応水溶液に占める第2高過飽和領域12Bの体積割合(以下、第2体積割合と呼ぶ)が0.624%未満であることが好ましい。第2体積割合が0.624%未満であれば、年輪状の構造の発生を抑制できる理由は下記のように推定される。   As is clear from FIGS. 14 and 15, from the viewpoint of suppressing the formation of annual ring-shaped structures, the volume ratio of the second highly supersaturated region 12B in the reaction aqueous solution (hereinafter referred to as the second volume ratio) is 0.624. It is preferably less than%. If the second volume ratio is less than 0.624%, the reason why the generation of annual ring-shaped structure can be suppressed is estimated as follows.

粒子成長工程S12において、粒子は、反応水溶液全体に分散しており、主に第2高過飽和領域12Bを通過する際に成長する。反応水溶液全体に占める第2高過飽和領域12Bの体積割合が0.624%未満であれば、粒子成長が緩やかに生じ、密度の異なる複数の層からなる年輪状の構造の発生が抑制できる。粒子成長を緩やかに生じさせることで、結晶成長方位の変化やその変化に伴う空隙の発生などを抑制できるためと推定される。   In the particle growing step S12, the particles are dispersed in the entire reaction aqueous solution and grow mainly when passing through the second highly supersaturated region 12B. When the volume ratio of the second highly supersaturated region 12B in the entire reaction aqueous solution is less than 0.624%, the particle growth occurs gently, and it is possible to suppress the generation of an annual ring-shaped structure composed of a plurality of layers having different densities. It is presumed that it is possible to suppress the change in the crystal growth orientation and the generation of voids due to the change by causing the grain growth to occur gently.

年輪状の構造の発生を抑制する観点からは、反応水溶液に占める第2高過飽和領域12Bの体積割合(以下、第2体積割合と呼ぶ)は小さいほど好ましい。第2体積割合は、吐出部61付近の流れ場のUやKなどに依存する。UやKが大きいほど、第2体積割合が小さい。第2体積割合は、好ましくは0.600%以下、より好ましくは0.500%以下、さらに好ましくは0.400%以下である。但し、UやKは撹拌軸40を回転させるモータの容量などの制約を受けるので、第2体積割合は好ましくは0.019%以上である。   From the viewpoint of suppressing the formation of a ring-shaped structure, the smaller the volume ratio of the second highly supersaturated region 12B in the reaction aqueous solution (hereinafter, referred to as the second volume ratio), the more preferable. The second volume ratio depends on U and K of the flow field near the discharge part 61. The larger U or K, the smaller the second volume ratio. The second volume ratio is preferably 0.600% or less, more preferably 0.500% or less, still more preferably 0.400% or less. However, since U and K are restricted by the capacity of the motor that rotates the stirring shaft 40 and the like, the second volume ratio is preferably 0.019% or more.

粒子成長工程S12では、原料液を分けて複数の吐出部61から反応水溶液中に吐出してよい。これにより、効率的に第2体積割合を小さくできる。このとき、複数の吐出部61から吐出される複数の第2高過飽和領域12Bが重ならないように複数の吐出部61の間隔が設定されることが好ましい。   In the particle growth step S12, the raw material liquid may be divided and discharged from the plurality of discharging portions 61 into the reaction aqueous solution. Thereby, the second volume ratio can be efficiently reduced. At this time, it is preferable that the intervals of the plurality of ejection units 61 are set so that the plurality of second highly supersaturated regions 12B ejected from the plurality of ejection units 61 do not overlap.

以上、化学反応装置の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。   Although the embodiments of the chemical reaction device and the like have been described above, the present invention is not limited to the above embodiments and the like, and various modifications within the scope of the gist of the present invention described in the claims, It can be improved.

吐出部61の数は、図3〜図6では1つであるが、複数でもよい。その場合、少なくとも1つの吐出部61の近傍に、流れ調整部材が設けられていればよい。好ましくは、各吐出部61の近傍に、流れ調整部材が設けられてよい。   Although the number of the ejection portions 61 is one in FIGS. 3 to 6, it may be plural. In that case, a flow adjusting member may be provided in the vicinity of at least one discharging unit 61. Preferably, a flow adjusting member may be provided near each discharge part 61.

一の吐出部61の近傍に、図3〜図6では一の流れ調整部材が設けられるが、複数の流れ調整部材が設けられてもよい。例えば、一の吐出部61の近傍に、図3に示す流れ調整部材70と、図4に示す流れ調整部材70Aとが両方設けられてもよい。   Although one flow adjusting member is provided in the vicinity of one discharge portion 61 in FIGS. 3 to 6, a plurality of flow adjusting members may be provided. For example, both the flow adjusting member 70 shown in FIG. 3 and the flow adjusting member 70A shown in FIG. 4 may be provided in the vicinity of the one discharge part 61.

流れ調整部材に衝突し向きを変える流れは、図3〜図6では流れ調整部材に衝突せずに吐出部61に向かう流れF2を基準として上方の流れF1または下方の流れF3であるが、流れ調整部材に衝突せずに吐出部61に向かう流れF2を基準として横の流れでもよい。   The flow that collides with the flow adjusting member and changes its direction is the upper flow F1 or the lower flow F3 with reference to the flow F2 toward the discharge portion 61 without colliding with the flow adjusting member in FIGS. The lateral flow may be based on the flow F2 toward the discharge portion 61 without colliding with the adjusting member.

2 種晶粒子
4 凝集体
6 外殻
10 化学反応装置
12 高過飽和領域
20 撹拌槽
30 撹拌翼
40 撹拌軸
50 バッフル
60 原料液供給管
61 吐出部
70 流れ調整部材
71 壁面
72 突起
2 Seed crystal particles 4 Aggregate 6 Outer shell 10 Chemical reaction device 12 Highly supersaturated region 20 Stirring tank 30 Stirring blade 40 Stirring shaft 50 Baffle 60 Raw material liquid supply pipe 61 Discharge part 70 Flow adjusting member 71 Wall surface 72 Protrusion

Claims (5)

溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
前記溶液を収容する撹拌槽と、
前記溶液の流れの中で前記原料液を吐出する吐出部を有する原料液供給管と、
前記吐出部の上流側における前記溶液の流れを調整する流れ調整部材とを備え、
前記流れ調整部材は、前記吐出部に向けて前記溶液の流れを受け流す壁面と、前記壁面から突出する突起とを有する、化学反応装置。
A chemical reaction device for precipitating particles in the solution while supplying a raw material liquid into the solution,
A stirring tank containing the solution,
A raw material liquid supply pipe having a discharge part for discharging the raw material liquid in the flow of the solution,
A flow adjusting member for adjusting the flow of the solution on the upstream side of the discharge part,
The chemical reaction device, wherein the flow adjusting member has a wall surface that receives the flow of the solution toward the discharge portion, and a protrusion that projects from the wall surface.
前記壁面は、前記吐出部に向かうほど互いに近づく2つの直線状の側縁を有し、前記2つの直線状の側縁を結ぶ平面を基準として下流側に凹むことで、前記壁面に沿う流れを前記吐出部に向けて集める、請求項1に記載の化学反応装置。   The wall surface has two linear side edges that are closer to each other toward the discharge portion, and is recessed on the downstream side with respect to a plane connecting the two linear side edges to allow a flow along the wall surface to flow. The chemical reaction device according to claim 1, wherein the chemical reaction device is collected toward the discharge part. 溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
前記溶液を収容する撹拌槽と、
前記溶液の流れの中で前記原料液を吐出する吐出部を有する原料液供給管と、
前記吐出部の上流側における前記溶液の流れを調整する流れ調整部材とを備え、
前記流れ調整部材は、前記吐出部に向けて前記溶液の流れを受け流す壁面を有し、
前記壁面は、前記吐出部に向かうほど互いに近づく2つの直線状の側縁を有し、前記2つの直線状の側縁を結ぶ平面を基準として下流側に凹むことで、前記壁面に沿う流れを前記吐出部に向けて集める、化学反応装置。
A chemical reaction device for precipitating particles in the solution while supplying a raw material liquid into the solution,
A stirring tank containing the solution,
A raw material liquid supply pipe having a discharge part for discharging the raw material liquid in the flow of the solution,
A flow adjusting member for adjusting the flow of the solution on the upstream side of the discharge part,
The flow adjusting member has a wall surface that receives the flow of the solution toward the discharge unit,
The wall surface has two linear side edges that are closer to each other toward the discharge portion, and is recessed on the downstream side with respect to a plane connecting the two linear side edges to allow a flow along the wall surface to flow. A chemical reaction device that collects toward the discharge part.
請求項1〜3のいずれか1項に記載の化学反応装置を用いて、前記溶液の中に前記原料液を供給しながら、前記溶液の中で粒子を析出させる、粒子の製造方法。   A method for producing particles, which comprises using the chemical reaction device according to claim 1 to deposit particles in the solution while supplying the raw material solution into the solution. 前記溶液は水溶液であって、前記原料液はニッケル塩を含み、前記粒子はニッケル含有水酸化物である、請求項4に記載の粒子の製造方法。   The method for producing particles according to claim 4, wherein the solution is an aqueous solution, the raw material liquid contains a nickel salt, and the particles are nickel-containing hydroxides.
JP2016183162A 2016-09-20 2016-09-20 Chemical reactor and method for producing particles using the chemical reactor Active JP6690485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016183162A JP6690485B2 (en) 2016-09-20 2016-09-20 Chemical reactor and method for producing particles using the chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183162A JP6690485B2 (en) 2016-09-20 2016-09-20 Chemical reactor and method for producing particles using the chemical reactor

Publications (2)

Publication Number Publication Date
JP2018047408A JP2018047408A (en) 2018-03-29
JP6690485B2 true JP6690485B2 (en) 2020-04-28

Family

ID=61766965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183162A Active JP6690485B2 (en) 2016-09-20 2016-09-20 Chemical reactor and method for producing particles using the chemical reactor

Country Status (1)

Country Link
JP (1) JP6690485B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK161743C (en) * 1989-07-03 1992-02-17 Niro Atomizer As PROCEDURE AND APPARATUS FOR AGGLOMERATION OF A POWDER-SHAPED MATERIAL
JPH0427423A (en) * 1990-05-21 1992-01-30 Hitachi Ltd Agitation tank
JPH07178330A (en) * 1993-11-09 1995-07-18 Kansai Kagaku Kikai Seisaku Kk Baffle plate and agitation tank
JPH10183734A (en) * 1996-12-24 1998-07-14 Kubota Corp Sewage conveying pipe
JP3644186B2 (en) * 1997-03-24 2005-04-27 松下電器産業株式会社 Metal hydroxide production equipment for battery components
CN1105595C (en) * 1998-08-28 2003-04-16 金伯利-克拉克环球有限公司 Arrangement for combining dissimilar streams
KR100807762B1 (en) * 2003-08-05 2008-02-28 미쓰이 가가쿠 가부시키가이샤 Method for producing terephthalic acid
FR2900845B1 (en) * 2006-05-15 2009-03-06 Commissariat Energie Atomique PROCESS AND DEVICE FOR SYNTHESIS OF ORGANIC OR INORGANIC COATED PARTICLES
JP2011251202A (en) * 2009-02-17 2011-12-15 Koide Heiichi Stirring mixer
JP5614334B2 (en) * 2010-03-02 2014-10-29 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide

Also Published As

Publication number Publication date
JP2018047408A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6911853B2 (en) A chemical reaction device and a method for producing particles using the chemical reaction device.
JP2018034137A (en) Chemical reaction apparatus, and production method of particle using chemical reaction apparatus
JP7088006B2 (en) Method for producing nickel-containing hydroxide
CN109311699B (en) Method for producing nickel-containing hydroxide
JP6690485B2 (en) Chemical reactor and method for producing particles using the chemical reactor
JP6965719B2 (en) Method for producing nickel-containing hydroxide
JP6852316B2 (en) A chemical reaction device and a method for producing particles using the chemical reaction device.
JP7024710B2 (en) Method for producing nickel-containing hydroxide
JP6965718B2 (en) Method for producing nickel-containing hydroxide
JP7035497B2 (en) Method for producing nickel-containing hydroxide
JP6958315B2 (en) Method for producing nickel-containing hydroxide
JP6939499B2 (en) Method for producing nickel-containing hydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150