JP6690436B2 - Discrimination device, discrimination method, and discrimination program - Google Patents

Discrimination device, discrimination method, and discrimination program Download PDF

Info

Publication number
JP6690436B2
JP6690436B2 JP2016130783A JP2016130783A JP6690436B2 JP 6690436 B2 JP6690436 B2 JP 6690436B2 JP 2016130783 A JP2016130783 A JP 2016130783A JP 2016130783 A JP2016130783 A JP 2016130783A JP 6690436 B2 JP6690436 B2 JP 6690436B2
Authority
JP
Japan
Prior art keywords
transient
value
region
amount
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016130783A
Other languages
Japanese (ja)
Other versions
JP2018001330A (en
Inventor
岡本 浩明
浩明 岡本
智 雨宮
智 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016130783A priority Critical patent/JP6690436B2/en
Publication of JP2018001330A publication Critical patent/JP2018001330A/en
Application granted granted Critical
Publication of JP6690436B2 publication Critical patent/JP6690436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本件は、弁別装置、弁別方法、および弁別プログラムに関する。   The present invention relates to a discrimination device, a discrimination method, and a discrimination program.

ロボットにセンサ類を取り付け、異常な作業を検知する技術の開発が進められている。センサ信号の異常を判断する場合に、センサ信号が一定の区間を定常域、動的に変化する区間を過渡域として弁別し、それぞれの区間の異常判断を行う技術が開示されている(例えば、特許文献1,2参照)。   Development of technology to attach sensors to robots and detect abnormal work is in progress. When determining an abnormality in the sensor signal, a technique is disclosed in which a section where the sensor signal is constant is discriminated as a steady area and a section where the sensor signal is dynamically changed as a transient area, and an abnormality is determined in each section (for example, See Patent Documents 1 and 2.

特開2015−85437号公報JP, 2005-85437, A 特開2015−217486号公報JP, 2005-217486, A

しかしながら、上記技術では、センサの検出結果の時系列データの統計的変化量(以下、過渡判別量と称する)の大小に基づいて定められている。この過渡判別量の大小に基づく区間弁別では、高い精度で区間弁別を行うことができないおそれがある。   However, in the above technique, it is determined based on the magnitude of the statistical change amount (hereinafter, referred to as the transient determination amount) of the time-series data of the detection result of the sensor. In the section discrimination based on the magnitude of the transient discrimination amount, there is a possibility that the section discrimination cannot be performed with high accuracy.

1つの側面では、本発明は、高い精度で作業区間の弁別を行うことができる弁別装置、弁別方法、および弁別プログラムを提供することを目的とする。   In one aspect, the present invention aims to provide a discriminating apparatus, a discriminating method, and a discriminating program capable of discriminating working sections with high accuracy.

1つの態様では、弁別装置は、対象物に対して作業を行う作業部の力または変位を検出するセンサの時系列出力値の統計的変化量を構成する複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方を算出する算出部と、前記複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方に基づいて、前記作業部が対象物に対して作業を行う過渡域と前記作業部が対象物に対して作業を行わない定常域とを弁別する弁別部と、を備える。   In one aspect, the discrimination device includes a ratio of a plurality of constituent elements that constitutes a statistical change amount of a time-series output value of a sensor that detects a force or a displacement of a working unit that works on an object, and the statistical value. Based on at least one of the calculation unit that calculates at least one of the increase and decrease values of the change amount, and the ratio of the plurality of components and the increase and decrease value of the statistical change amount, the working unit with respect to the object. And a discriminating section for discriminating between a transitional region where the work is performed and a steady region where the working unit does not perform work on the object.

高い精度で作業区間の弁別を行うことができる。   The work section can be discriminated with high accuracy.

実施例1に係る作業装置の全体構成を説明するための図である。FIG. 1 is a diagram for explaining an overall configuration of a work device according to a first embodiment. (a)〜(d)は作業ロボットの一連の動作の一例を例示する図である。(A)-(d) is a figure which illustrates an example of a series of operation | movement of a work robot. (a)〜(c)は作業ロボットの一連の動作の一例を例示する図である。(A)-(c) is a figure which illustrates an example of a series of operation | movement of a work robot. 統計的変化量の算出手法を例示する図である。It is a figure which illustrates the calculation method of a statistical variation. (a)〜(c)は複数の異なった作業が連続している場合を例示する図である。(A)-(c) is a figure which illustrates the case where several different work continues. 判定装置のブロック図である。It is a block diagram of a determination device. (a)〜(c)は統計的変化量の算出手法を例示する図である。(A)-(c) is a figure which illustrates the calculation method of a statistical variation. (a)〜(c)は構成要素の比率を用いた弁別を例示する図である。(A)-(c) is a figure which illustrates discrimination using the ratio of a component. 判定装置が実行する処理を例示するフローチャートである。It is a flow chart which illustrates processing which a judgment device performs. 実施例2に係る判定装置のブロック図である。FIG. 6 is a block diagram of a determination device according to a second embodiment. (a)〜(c)は過渡判別量の増減値を用いた弁別を例示する図である。(A)-(c) is a figure which illustrates the discrimination using the increase / decrease value of the transient discriminating amount. 判定装置が実行する処理を例示するフローチャートである。It is a flow chart which illustrates processing which a judgment device performs. 実施例3に係る判定装置のブロック図である。FIG. 7 is a block diagram of a determination device according to a third embodiment. (a)〜(g)は過渡判別量の大小も考慮して定常域と過渡域とを弁別する例である。(A) to (g) are examples in which the steady region and the transient region are discriminated in consideration of the magnitude of the transient determination amount. 判定装置が実行する処理を例示するフローチャートである。It is a flow chart which illustrates processing which a judgment device performs. (a)〜(d)は過渡域候補から過渡域を抽出する例である。(A)-(d) is an example which extracts a transition area from a transition area candidate. 処理を例示するフローチャートであるIt is a flow chart which illustrates processing. (a)〜(c)は窓幅を可変とする例である。(A) to (c) are examples in which the window width is variable. 窓幅を設定する場合に実行するフローチャートを例示する図である。It is a figure which illustrates the flowchart performed when setting a window width. (a)および(b)は窓幅を可変とする他の例である。(A) and (b) are other examples in which the window width is variable. 窓幅を設定する場合に実行する他のフローチャートを例示する図である。It is a figure which illustrates the other flowchart performed when setting a window width. 窓幅を可変として、過渡判別量に重み付けを行う場合に実行されるフローチャートを例示する図である。It is a figure which illustrates the flowchart performed when a window width is made variable and a transient discrimination amount is weighted. 実施例4に係る判定装置のブロック図である。FIG. 9 is a block diagram of a determination device according to a fourth embodiment. (a)および(b)は過渡判別量の閾値を設定する例である。(A) and (b) are examples of setting the threshold value of the transient discrimination amount. (a)および(b)は判定装置が実行するフローチャートを例示する図である。(A) And (b) is a figure which illustrates the flowchart which a determination device performs. (a)および(b)は判定装置が実行するフローチャートを例示する図である。(A) And (b) is a figure which illustrates the flowchart which a determination device performs. (a)は判定装置のハードウェア構成を説明するためのブロック図であり、(b)は作業システムについて例示する図である。(A) is a block diagram for explaining the hardware configuration of the determination device, and (b) is a diagram illustrating a work system.

図1は、実施例1に係る作業装置100の全体構成を説明するための図である。図1で例示するように、作業装置100は、作業ロボット10、コントローラ20、カメラ30、判定装置40などを備える。   FIG. 1 is a diagram for explaining the overall configuration of the work device 100 according to the first embodiment. As illustrated in FIG. 1, the work device 100 includes a work robot 10, a controller 20, a camera 30, a determination device 40, and the like.

作業ロボット10は、ロボットハンド11、センサ12などを備える。ロボットハンド11は、対象物に対して所定の作業を行う装置である。センサ12は、ロボットハンド11の力、変位等を検出するセンサであり、一例として、歪ゲージ、力覚センサ、加速度センサなどである。本実施例においては、複数のセンサ12が備わっている。コントローラ20は、所定のタイミングで作業ロボット10に作業指示を行う制御装置である。カメラ30は、作業ロボット10の作業を撮像する装置である。本実施例においては、複数のカメラ30が備わっている。   The work robot 10 includes a robot hand 11, a sensor 12, and the like. The robot hand 11 is a device that performs a predetermined work on an object. The sensor 12 is a sensor that detects the force, displacement, and the like of the robot hand 11, and is, for example, a strain gauge, a force sensor, an acceleration sensor, or the like. In this embodiment, a plurality of sensors 12 are provided. The controller 20 is a control device that gives a work instruction to the work robot 10 at a predetermined timing. The camera 30 is a device that images the work of the work robot 10. In this embodiment, a plurality of cameras 30 are provided.

図2(a)〜図2(d)および図3(a)〜図3(c)は、作業ロボット10の一連の動作の一例を例示する図である。図2(a)で例示するように、作業ロボット10は、ロボットハンド11として1組のロボットハンド11a,11bを備え、複数のセンサ12として歪ゲージ12a,12bを備えている。例えば、ロボットハンド11aの先端部分に歪ゲージ12aが設けられ、ロボットハンド11bの先端部分に歪ゲージ12bが設けられている。まず、ロボットハンド11a,11bは、コネクタ13に勘合するケーブルコネクタ14に向かって移動する(第1移動工程)。   2A to 2D and FIGS. 3A to 3C are diagrams illustrating an example of a series of operations of the work robot 10. As illustrated in FIG. 2A, the work robot 10 includes a pair of robot hands 11 a and 11 b as the robot hand 11, and strain gauges 12 a and 12 b as the plurality of sensors 12. For example, the strain gauge 12a is provided at the tip of the robot hand 11a, and the strain gauge 12b is provided at the tip of the robot hand 11b. First, the robot hands 11a and 11b move toward the cable connector 14 that fits into the connector 13 (first moving step).

次に、図2(b)で例示するように、ロボットハンド11a,11bは、ケーブルコネクタ14を把持する(把持工程)。次に、図2(c)で例示するように、ロボットハンド11a,11bは、ケーブルコネクタ14を持ち上げることによって、コネクタ13から離し、他のコネクタに向かってケーブルコネクタ14を移動させる(第2移動工程)。次に、図2(d)で例示するように、ロボットハンド11a,11bは、他のコネクタ15にケーブルコネクタ14を差し込む(差込工程)。   Next, as illustrated in FIG. 2B, the robot hands 11a and 11b grip the cable connector 14 (gripping step). Next, as illustrated in FIG. 2C, the robot hands 11a and 11b lift the cable connector 14 to separate it from the connector 13 and move the cable connector 14 toward another connector (second movement). Process). Next, as illustrated in FIG. 2D, the robot hands 11a and 11b insert the cable connector 14 into the other connector 15 (inserting step).

次に、図3(a)で例示するように、ロボットハンド11a,11bは、ケーブルコネクタ14の把持を解除する(解除工程)。次に、図3(b)で例示するように、ロボットハンド11a,11bは、ケーブルコネクタ14から離れる方向に移動する(第3移動工程)。最後に、図3(c)で例示するように、ロボットハンド11a,11bは、ケーブルコネクタ14をコネクタ15に差し込む(差込工程)。図3(c)の例では、ロボットハンド11bがケーブルコネクタ14をコネクタ15に差し込んでいる。以上の工程によって、作業が完了する。   Next, as illustrated in FIG. 3A, the robot hands 11a and 11b release the grip of the cable connector 14 (release step). Next, as illustrated in FIG. 3B, the robot hands 11a and 11b move in a direction away from the cable connector 14 (third moving step). Finally, as illustrated in FIG. 3C, the robot hands 11a and 11b insert the cable connector 14 into the connector 15 (inserting step). In the example of FIG. 3C, the robot hand 11 b inserts the cable connector 14 into the connector 15. The work is completed by the above steps.

ここで、センサ12の検出結果の時系列データの統計的変化量(以下、過渡判別量と称する)の算出手順の一例について説明する。例えば、図4で例示するように、時系列のセンサ信号上の所定のサンプリング周期の各データ点において、その前後の区間の「平均の差」と「標準偏差の差」とを合算することによって過渡判別量を求めることができる。この時の前後の区間(窓幅)は、固定されている。例えば、センサ12の測定データの過渡判別量の加算平均を取り、所定の閾値で切ることにより、過渡判別量が大きい部分は過渡域とし、小さい部分は定常域として弁別を行うことができる。過渡域とは、作業ロボット10が対象物に対して作業を行う時間区間のことである。定常域とは、作業ロボット10が対象物に対する作業を行わない時間区間のことである。ロボットハンド11の単純移動などは、定常域に含まれる。ロボットハンド11による組立作業などは、過渡域に含まれる。   Here, an example of a calculation procedure of a statistical variation amount (hereinafter, referred to as a transient determination amount) of time series data of the detection result of the sensor 12 will be described. For example, as illustrated in FIG. 4, at each data point of a predetermined sampling period on the time-series sensor signal, the “average difference” and the “standard deviation difference” of the sections before and after that are added up. The transient discrimination amount can be obtained. The front and rear sections (window width) at this time are fixed. For example, by taking an arithmetic mean of the transient discriminant amounts of the measurement data of the sensor 12 and cutting them at a predetermined threshold value, it is possible to discriminate the portion where the transient discriminant amount is large as the transient region and the portion where the transient discriminant amount is small as the steady region. The transient region is a time period in which the work robot 10 works on an object. The stationary region is a time period during which the work robot 10 does not work on an object. The simple movement of the robot hand 11 is included in the steady region. Assembly work and the like by the robot hand 11 are included in the transition area.

例えば、過渡判別量の大小に基づいて動作状態を定常域/過渡域に自動弁別することができる。しかしながら、この場合、センサ12の測定データ値やその変化が小さな動作(過渡判別量の小さな部分)を過渡域として検出することは困難である。一方、そのような過渡判別量の小さい部分まで単純に過渡域として検出しようとすると、過渡域が増えて識別処理の計算量が無駄に増大するおそれがある。過渡判別量あるいはその閾値を算出する際、算出パラメータが事前に固定されていると、最適な区間弁別を実行することは困難である。この点においても、事前に設定してある閾値では、動作全体の中で相対的に小さな動作が過渡域としての検出から漏れる場合がある。   For example, the operating state can be automatically discriminated into a steady region / transient region based on the magnitude of the transient determination amount. However, in this case, it is difficult to detect a measured data value of the sensor 12 or an operation with a small change (a portion with a small transient determination amount) as a transient region. On the other hand, if it is attempted to simply detect even such a portion having a small transient discrimination amount as a transient region, the transient region may increase, and the calculation amount of the identification processing may unnecessarily increase. If the calculation parameter is fixed in advance when calculating the transient discrimination amount or the threshold value thereof, it is difficult to execute the optimum section discrimination. In this respect as well, with the threshold value set in advance, a relatively small operation in the entire operation may be omitted from the detection as the transient region.

また、図5(a)で例示するように、複数の異なった作業が連続している場合、過渡判別量の大小だけでは各動作を正しく切り分けて弁別することは困難である。例えば、コネクタの差し込み作業において、(1)コネクタの接触、(2)接触しながらのコネクタ挿入、(3)差し込み完了の際の突き当てと言うように、細かい作業内容は変化して行く。一方で、過渡判別量には小さな変化しか現れない。なお、(1)〜(3)の作業は、図2(d)〜図3(c)の作業に対応する。   Further, as illustrated in FIG. 5A, when a plurality of different works are continuous, it is difficult to correctly separate and discriminate each operation only by the magnitude of the transient determination amount. For example, in the work of inserting the connector, the details of the work change such as (1) contact of the connector, (2) insertion of the connector while making contact, and (3) butting when the insertion is completed. On the other hand, only a small change appears in the transient discrimination amount. The work of (1) to (3) corresponds to the work of FIGS. 2 (d) to 3 (c).

したがって、図5(b)で例示するように、コネクタ差し込み作業全体が一つの過渡域として弁別される場合がある。異常判断システムでは、過渡域単位で異常スコアの累積を行っており、異種の動作を混合して異常判断するより、個々の動作ごとに判断を行った方が判断の精度が高くなる。従って、図5(c)で例示するように、個々の動作単位で過渡域の弁別を行うことが要求される。そこで、本実施例に係る作業装置100は、過渡判別量の大小以外の指標を用いて、高い精度で作業区間の弁別を行う。   Therefore, as illustrated in FIG. 5B, the entire connector insertion work may be discriminated as one transition area. In the abnormality determination system, the abnormality score is accumulated for each transient region, and the accuracy of the determination is higher when the determination is made for each individual operation than when the different types of operations are mixed and the abnormality is determined. Therefore, as illustrated in FIG. 5 (c), it is required to discriminate the transient region in each operation unit. Therefore, the work apparatus 100 according to the present embodiment discriminates the work section with high accuracy using an index other than the magnitude of the transient determination amount.

図6は、判定装置40のブロック図である。図6で例示するように、判定装置40は、データ格納部50、過渡判別量算出部60、弁別部70、良否判定部80および出力部90を備える。過渡判別量算出部60は、窓幅設定部61、構成要素算出部62、および構成比率算出部63を備える。弁別部70は、構成比率取得部71および区間算出部72を備える。良否判定部80は、識別器作成部81および状態判定部82を備える。   FIG. 6 is a block diagram of the determination device 40. As illustrated in FIG. 6, the determination device 40 includes a data storage unit 50, a transient determination amount calculation unit 60, a discrimination unit 70, a pass / fail determination unit 80, and an output unit 90. The transient determination amount calculation unit 60 includes a window width setting unit 61, a constituent element calculation unit 62, and a constituent ratio calculation unit 63. The discrimination unit 70 includes a composition ratio acquisition unit 71 and a section calculation unit 72. The quality determination unit 80 includes a discriminator creation unit 81 and a state determination unit 82.

データ格納部50は、データを一時的に格納する。定常域および過渡域の弁別時には、データ格納部50は、学習用OKデータを一時的に格納する。学習用OKデータとは、予め作業ロボット10に作業を行わせ、目視等で作業状況が「正常」と判定された場合の各センサ12の時系列の出力値波形(測定データ)である。作業ロボット10の作業の良否判定時には、データ格納部50は、センサ12の出力値の時系列の出力値波形(測定データ)を一時的に格納する。   The data storage unit 50 temporarily stores data. At the time of distinguishing between the steady region and the transient region, the data storage unit 50 temporarily stores the learning OK data. The learning OK data is a time-series output value waveform (measurement data) of each sensor 12 when the work robot 10 is caused to perform a work in advance and the work status is visually determined to be “normal”. When determining whether the work of the work robot 10 is good or bad, the data storage unit 50 temporarily stores the time-series output value waveform (measurement data) of the output value of the sensor 12.

窓幅設定部61は、データ格納部50に格納された測定データに対して所定のサンプリング周期で注目点を設定し、当該注目点に対して予め決定した窓幅を設定する。   The window width setting unit 61 sets an attention point for the measurement data stored in the data storage unit 50 at a predetermined sampling cycle, and sets a predetermined window width for the attention point.

構成要素算出部62は、設定された各窓において、測定データの時系列の統計的変化量の構成要素を算出する。図7(a)は、設定された窓を例示する図である。図7(b)で例示するように、例えば、構成要素算出部62は、設定された各窓において、注目点よりも前(過去)の出力値の平均値ei1および標準偏差σi1を算出し、注目点よりも後(未来)の出力値の平均値ei2および標準偏差σi2を算出する。「i」は、i番目の窓を意味する。次に、構成要素算出部62は、平均値ei1,ei2および標準偏差σi1,σi2から過渡判別量Eを算出する。過渡判別量Eは、一例として、下記式(1)で表すことができる。また、Δeは、平均の変化量であって、下記式(2)で表すことができる。Δσは、標準偏差の変化量であって、下記式(3)で表すことができる。
=(Δe +Δσ 0.5 (1)
Δe=|ei2−ei1| (2)
Δσ=|σi2−σi1| (3)
The component calculation unit 62 calculates the component of the time-series statistical change amount of the measurement data in each set window. FIG. 7A is a diagram illustrating the set window. As illustrated in FIG. 7B, for example, the component calculation unit 62 calculates the average value e i1 and the standard deviation σ i1 of the output values before (past) the attention point in each set window. Then, the average value e i2 and the standard deviation σ i2 of the output values after (in the future) the point of interest are calculated. "I" means i-th window. Next, the component calculation unit 62 calculates the transient discriminant amount E i from the average values e i1 , e i2 and the standard deviations σ i1 , σ i2 . The transient determination amount E i can be expressed by the following equation (1), for example. Further, Δe i is an average change amount and can be expressed by the following equation (2). Δσ i is the amount of change in standard deviation and can be expressed by the following equation (3).
E i = (Δe i 2 + Δσ i 2 ) 0.5 (1)
Δe i = | e i2 −e i1 | (2)
Δσ = | σ i2 −σ i1 | (3)

次に、構成要素算出部62は、図7(c)で例示するように、所定の時間間隔後の時刻を次の注目点に設定し、図7(a)および図7(b)で説明した手順で次の窓の各構成要素を算出する。図7(a)〜図7(c)の手順を繰り返すことにより、各構成要素の時系列データを得ることができる。   Next, as illustrated in FIG. 7C, the component calculation unit 62 sets the time after a predetermined time interval as the next point of interest, and will be described with reference to FIGS. 7A and 7B. The components of the next window are calculated by the procedure described above. By repeating the procedure of FIGS. 7A to 7C, time-series data of each component can be obtained.

次に、構成比率算出部63は、構成要素の比率を算出する。構成要素の比率として、過渡判別量に対する平均の変化量の比率または過渡判別量に対する標準偏差の変化量の比率を用いることができる。本実施例においては、一例として、構成比率算出部63は、過渡判別量に対する平均の変化量の比率を算出する。構成要素の比率mは、下記式(4)で表すことができる。
=(平均の変化量)/(過渡判別量) (4)
Next, the composition ratio calculator 63 calculates the ratio of the constituent elements. As the ratio of the constituent elements, the ratio of the average change amount to the transient discriminant amount or the ratio of the standard deviation change amount to the transient discriminant amount can be used. In the present embodiment, as an example, the configuration ratio calculation unit 63 calculates the ratio of the average change amount to the transient determination amount. The component ratio m i can be expressed by the following equation (4).
m i = (average change amount) i / (transient determination amount) i (4)

図8(a)は、過渡判別量Eの時系列データを例示する。ロボットハンド11が作業を行うと、過渡判別量Eが大きくなる。そこで、過渡判別量Eに閾値を設け、過渡判別量Eが当該閾値以上となる区間を過渡域として弁別する手法が考えられる。しかしながら、この場合、図8(a)の領域Aのように、過渡判別量Eの絶対値は小さいが過渡判別量Eに変化が表れている領域を過渡域として抽出することが困難となる。すなわち、過渡域の弁別漏れが生じ得る。   FIG. 8A illustrates time series data of the transient determination amount E. When the robot hand 11 works, the transient determination amount E increases. Therefore, a method may be considered in which a threshold value is set for the transient determination amount E and a section in which the transient determination amount E is equal to or greater than the threshold value is discriminated as a transient region. However, in this case, it becomes difficult to extract, as the transient region, a region in which the absolute value of the transient determination amount E is small, but a change in the transient determination amount E, such as the region A in FIG. 8A, is present. That is, discrimination leakage in the transient region may occur.

具体的には、「平均の変化」と「標準偏差の変化」とを足し合わせた合計値が一定であっても、その構成要素(「平均の変化」と「標準偏差の変化」)の比率は作業の推移に応じて変化しているケースもある。例えば、コネクタ差込作業において、最初の接触時には「平均の変化」が大きくなり、接触しながら差し込みを行う最中には「標準偏差の変化」が中心となり、最後に突き当たった際には再び「平均の変化」が大きくなると考えられる。このような比率の変化を基準にすれば、過渡域を作業内容ごとに更に細かく分割することが可能である。   Specifically, even if the total value of "change in average" and "change in standard deviation" is constant, the ratio of its constituent elements ("change in average" and "change in standard deviation") In some cases, changes depending on the progress of work. For example, in the connector insertion work, the "average change" becomes large at the first contact, the "standard deviation change" becomes the center during the insertion while making contact, and the "change in standard deviation" becomes again at the last contact. It is considered that the “change in average” will be large. If such a change in the ratio is used as a reference, it is possible to divide the transitional region into smaller pieces for each work content.

そこで、本実施例においては、構成要素の比率に着目する。構成比率取得部71は、構成比率算出部63から、各窓の構成要素の比率mを取得する。図8(b)は、比率mの時系列データを例示する。図8(b)で例示するように、過渡判別量Eに大きい変化が現れると、領域Bのように比率mに変化が現れる。また、領域Cのように、過渡判別量の絶対値が小さくても、「平均の変化」と「標準偏差の変化」との比率が変化した場合に比率mに大きい変化が現れる。   Therefore, in this embodiment, attention is paid to the ratio of the constituent elements. The composition ratio acquisition unit 71 acquires the composition ratio m of each window from the composition ratio calculation unit 63. FIG. 8B illustrates time-series data of the ratio m. As illustrated in FIG. 8B, when a large change appears in the transient determination amount E, a change appears in the ratio m as in the area B. Further, as in the region C, even if the absolute value of the transient determination amount is small, a large change appears in the ratio m when the ratio between the “change in average” and the “change in standard deviation” changes.

そこで、区間算出部72は、比率mの変化点を過渡域の境界として検出する。例えば、区間算出部72は、平均的な比率からの乖離度を利用する。具体的には、区間算出部72は、平均値や移動平均値からの比率mの乖離度が閾値以上となる区間を過渡域として抽出する。図8(b)では、点線で移動平均値が表されている。このように過渡域を抽出することで、図8(c)で例示するように、過渡判別量の大小だけでは1つの過渡域としてのみ抽出される区間が、複数の過渡域として抽出することができるようになる。すなわち、過渡域の弁別精度が向上する。   Therefore, the section calculation unit 72 detects the change point of the ratio m as the boundary of the transient range. For example, the section calculation unit 72 uses the degree of deviation from the average ratio. Specifically, the section calculation unit 72 extracts a section in which the deviation degree of the ratio m from the average value or the moving average value is equal to or more than a threshold value as a transient area. In FIG. 8B, the moving average value is represented by the dotted line. By extracting the transient range in this way, as illustrated in FIG. 8C, a section that is extracted as only one transient range by the magnitude of the transient determination amount can be extracted as a plurality of transient ranges. become able to. That is, the discrimination accuracy in the transient region is improved.

図9は、判定装置40が実行する処理を例示するフローチャートである。図9で例示するように、データ格納部50は、測定データとして、学習用OKデータを一時的に格納する(ステップS1)。次に、窓幅設定部61は、データ格納部50に格納された測定データに所定のサンプリング周期で注目点を設定し、各注目点に対して予め決定した窓幅の窓を設定する(ステップS2)。   FIG. 9 is a flowchart illustrating a process executed by the determination device 40. As illustrated in FIG. 9, the data storage unit 50 temporarily stores the learning OK data as the measurement data (step S1). Next, the window width setting unit 61 sets an attention point in the measurement data stored in the data storage unit 50 at a predetermined sampling cycle, and sets a window having a predetermined window width for each attention point (step S2).

次に、構成要素算出部62は、設定された各窓において、測定データの統計的変化量の構成要素を算出する(ステップS3)。一例として、構成要素算出部62は、各窓における平均値ei1i2、標準偏差σi1,σi2および過渡判別量Eを算出する。次に、構成比率算出部63は、比率mを算出する(ステップS4)。次に、構成比率取得部71は、構成比率算出部63から、各窓の構成要素の比率mを取得する(ステップS5)。次に、区間算出部72は、比率mの変化点を過渡域の境界として検出する(ステップS6)。一例として、区間算出部72は、比率mの移動平均値からの乖離度が閾値以上となる区間を過渡域として抽出し、それ以外を定常域として抽出する。以上の処理により、定常域と過渡域の弁別が完了する。 Next, the component calculation unit 62 calculates the component of the statistical variation amount of the measurement data in each set window (step S3). As an example, the component calculation unit 62 calculates the average value e i1 e i2 , the standard deviations σ i1 , σ i2, and the transient discriminant amount E i in each window. Next, the composition ratio calculation unit 63 calculates the ratio m i (step S4). Next, the composition ratio acquisition unit 71 acquires the composition ratio m of each window from the composition ratio calculation unit 63 (step S5). Next, the section calculation unit 72 detects the change point of the ratio m as the boundary of the transient area (step S6). As an example, the section calculation unit 72 extracts a section in which the deviation degree of the ratio m from the moving average value is equal to or more than a threshold value as a transient area, and extracts the other areas as a steady area. The above processing completes the discrimination between the steady region and the transient region.

識別器作成部81は、定常域については、ロボットハンド11によって複数回の正常作業が行われた場合の学習用OKデータの平均値±3σの範囲を基準範囲として算出する。また、識別器作成部81は、過渡域については、識別器を作成する。識別器とは、各過渡域の作業状況の良否を判定する個別の主体のことであり、例えば、SVM(Support Vector Machine)識別器である。識別器を設けることは、各過渡域の作業良否を判定するための個別の基準(基準範囲)を作成することと同義である。各識別器は、例えば、各過渡域におけるセンサ12の事前測定データから抽出される複数の特徴量の相関関係に対して個別の基準を有している。特徴量として、例えば、振幅値、微分波形、積分波形、周波数などが挙げられる。   The discriminator creating unit 81 calculates, for the steady region, the range of the average value ± 3σ of the learning OK data when the robot hand 11 performs a plurality of normal operations as a reference range. Further, the discriminator creating unit 81 creates a discriminator in the transient region. The discriminator is an individual subject that determines the quality of the work status in each transition region, and is, for example, an SVM (Support Vector Machine) discriminator. Providing a discriminator is synonymous with creating an individual standard (standard range) for determining the quality of work in each transient region. Each discriminator has an individual reference for the correlation of a plurality of feature quantities extracted from the pre-measurement data of the sensor 12 in each transient region, for example. Examples of the feature amount include an amplitude value, a differential waveform, an integral waveform, a frequency, and the like.

作業ロボット10の作業の良否判定時には、状態判定部82は、センサ12の出力値の時系列の出力値波形(測定データ)について、各定常域については3σ値に基づく良否判定を行う。すなわち、状態判定部82は、測定データの出力値が上述した±3σの範囲内にあれば正常と判定し、測定データの出力値が±3σの範囲外にあれば異常と判定する。また、状態判定部82は、良否判定の結果を異常スコアとして数値化する。また、状態判定部82は、各過渡域については識別器を用いた良否判定を行う。すなわち、状態判定部82は、測定データの出力値が識別器の基準範囲内にあれば正常と判定し、測定データの出力値が当該基準範囲外にあれば異常と判定する。また、状態判定部82は、良否判定の結果を異常スコアとして数値化する。例えば、状態判定部82は、これらの異常スコアの累積値が閾値を超えた場合に、作業ロボット10の作業が異常であると判定する。出力部90は、状態判定部82の判定結果を出力する。   When determining the quality of the work of the work robot 10, the state determination unit 82 determines the quality of the output value waveform (measurement data) of the output value of the sensor 12 in each steady region based on the 3σ value. That is, the state determination unit 82 determines normal if the output value of the measurement data is within the range of ± 3σ described above, and determines abnormal if the output value of the measurement data is outside the range of ± 3σ. The state determination unit 82 also digitizes the result of the quality determination as an abnormality score. In addition, the state determination unit 82 makes a pass / fail determination using a discriminator for each transition region. That is, the state determination unit 82 determines that the output value of the measurement data is normal if the output value of the measurement data is within the reference range of the discriminator, and determines the abnormality if the output value of the measurement data is outside the reference range. The state determination unit 82 also digitizes the result of the quality determination as an abnormality score. For example, the state determination unit 82 determines that the work of the work robot 10 is abnormal when the cumulative value of these abnormality scores exceeds the threshold value. The output unit 90 outputs the determination result of the state determination unit 82.

本実施例によれば、センサ12の検出結果の時系列データの統計的変化量の構成要素の比率を用いて、定常域および過渡域の弁別が行われる。この場合、当該統計的変化量の大小のみに基づく弁別と比較して、過渡域をより細かく設定することができる。例えば、コネクタ差し込み作業において、最初の接触、それに続く挿入、最後の突き当てを別々の過渡域として弁別することが可能になる。それにより、高い精度で作業区間の弁別を行うことができる。   According to the present embodiment, the steady region and the transient region are discriminated by using the ratio of the components of the statistical change amount of the time series data of the detection result of the sensor 12. In this case, it is possible to set the transition region more finely as compared with the discrimination based on only the magnitude of the statistical change amount. For example, in a connector insertion operation, it is possible to distinguish the first contact, the subsequent insertion, and the final butting as separate transient zones. Thereby, the work sections can be discriminated with high accuracy.

本実施例においては、構成要素算出部62が、対象物に対して作業を行う作業部の力または変位を検出するセンサの時系列出力値の統計的変化量を構成する複数の構成要素の比率を算出する算出部の一例として機能する。区間算出部72が、複数の構成要素の比率に基づいて、作業部が対象物に対して作業を行う過渡域と作業部が対象物に対して作業を行わない定常域とを弁別する弁別部の一例として機能する。   In the present embodiment, the component calculation unit 62 uses the ratio of a plurality of components that make up the statistical change amount of the time-series output value of the sensor that detects the force or displacement of the work unit that works on the object. And functions as an example of a calculation unit that calculates The discriminator that the section calculator 72 discriminates, based on the ratio of a plurality of constituent elements, a transient region in which the working unit works on the object and a steady region in which the working unit does not work on the object. Function as an example.

実施例1では、構成要素の比率に着目したが、他の指標に着目してもよい。実施例2では、過渡判別量Eに変化(増減)が生じている部分を過渡域の境界として検出する例について説明する。   Although the first embodiment focuses on the ratio of the constituent elements, other indexes may be focused on. In the second embodiment, an example will be described in which a portion in which the transient determination amount E has changed (increased or decreased) is detected as the boundary of the transient region.

図10は、実施例2に係る判定装置40aのブロック図である。図10で例示するように、判定装置40aが図6の判定装置40と異なる点は、過渡判別量算出部60の代わりに過渡判別量算出部60aが備わり、弁別部70の代わりに弁別部70aが備わっている点である。過渡判別量算出部60aが過渡判別量算出部60と異なる点は、構成比率算出部63の代わりに増減値算出部64が備わっている点である。弁別部70aが弁別部70と異なる点は、構成比率取得部71の代わりに増減値取得部73が備わっている点である。実施例1と同じ符号を付した構成要素は、実施例1と同様の機能を果たす。以下、実施例1と異なる点について説明する。   FIG. 10 is a block diagram of the determination device 40a according to the second embodiment. As illustrated in FIG. 10, the determination device 40 a is different from the determination device 40 in FIG. 6 in that the transient determination amount calculation unit 60 a is provided instead of the transient determination amount calculation unit 60, and the discrimination unit 70 a is provided instead of the discrimination unit 70. The point is that. The transient discriminant amount calculation unit 60a is different from the transient discriminant amount calculation unit 60 in that an increase / decrease value calculation unit 64 is provided instead of the component ratio calculation unit 63. The discriminator 70a is different from the discriminator 70 in that an increase / decrease value acquisition unit 73 is provided instead of the component ratio acquisition unit 71. The components denoted by the same reference numerals as those in the first embodiment have the same functions as those in the first embodiment. Hereinafter, differences from the first embodiment will be described.

増減値算出部64は、過渡判別量Eの増減値を算出する。本実施例においては、一例として、増減値算出部64は、過渡判別量Eの微分値、平滑化微分値等を算出する。図11(a)は、過渡判別量Eの時系列データを例示する。図8(a)で説明したように、領域Aのように、過渡判別量の絶対値は小さいが過渡判別量に変化が表れている領域を過渡域として抽出することが困難となる。すなわち、過渡域の弁別漏れが生じ得る。   The increase / decrease value calculation unit 64 calculates the increase / decrease value of the transient determination amount E. In the present embodiment, as an example, the increase / decrease value calculation unit 64 calculates the differential value of the transient determination amount E, the smoothing differential value, and the like. FIG. 11A illustrates time series data of the transient determination amount E. As described with reference to FIG. 8A, it is difficult to extract a region such as the region A in which the absolute value of the transient determination amount is small but the change in the transient determination amount appears as the transient region. That is, discrimination leakage in the transient region may occur.

そこで、本実施例においては、過渡判別量Eの増減値に着目する。増減値取得部73は、増減値算出部64から、過渡判別量Eの微分値Dを取得する。図11(b)は、微分値の時系列データを例示する。図11(b)で例示するように、過渡判別量Eに大きい変化が現れると、微分値Dに変化が現れる。また、図11(a)の領域Aのように、過渡判別量Eの絶対値が小さくても、増加度が大きければ微分値Dに変化が現れる。   Therefore, in this embodiment, attention is paid to the increase / decrease value of the transient determination amount E. The increase / decrease value acquisition unit 73 acquires the differential value D of the transient determination amount E from the increase / decrease value calculation unit 64. FIG. 11B illustrates the time series data of the differential value. As illustrated in FIG. 11B, when a large change appears in the transient determination amount E, a change appears in the differential value D. Further, as in the area A of FIG. 11A, even if the absolute value of the transient determination amount E is small, the differential value D changes if the increase degree is large.

そこで、区間算出部72は、微分値Dの変化点を過渡域の境界として検出する。例えば、区間算出部72は、正領域とそれに連なる負領域の面積が閾値を超える組み合わせを過渡域として抽出する。また、区間算出部72は、過渡判別量Eの谷の部分で過渡域の分割を行ってもよい。このように過渡域を抽出することで、図11(c)で例示するように、過渡判別量の大小だけでは1つの過渡域としてのみ抽出される区間が、複数の過渡域として抽出することができるようになる。すなわち、過渡域の弁別精度が向上する。   Therefore, the section calculation unit 72 detects the change point of the differential value D as the boundary of the transient region. For example, the section calculation unit 72 extracts a combination in which the areas of the positive region and the negative region continuous with the positive region exceed the threshold value as the transient region. In addition, the section calculation unit 72 may divide the transient region at the valley portion of the transient determination amount E. By extracting the transient range in this way, as illustrated in FIG. 11C, a section that is extracted as one transient range only by the magnitude of the transient determination amount can be extracted as a plurality of transient ranges. become able to. That is, the discrimination accuracy in the transient region is improved.

図12は、判定装置40aが実行する処理を例示するフローチャートである。図12で例示するように、データ格納部50は、測定データとして、学習用OKデータを一時的に格納する(ステップS11)。次に、窓幅設定部61は、データ格納部50に格納された測定データに所定のサンプリング周期で注目点を設定し、当該注目点に対して予め決定した窓幅の窓を設定する(ステップS12)。   FIG. 12 is a flowchart illustrating a process executed by the determination device 40a. As illustrated in FIG. 12, the data storage unit 50 temporarily stores the learning OK data as the measurement data (step S11). Next, the window width setting unit 61 sets a point of interest in the measurement data stored in the data storage unit 50 at a predetermined sampling period, and sets a window having a predetermined window width for the point of interest (step). S12).

次に、構成要素算出部62は、設定された各窓において、測定データの統計的変化量の構成要素を算出する(ステップS13)。一例として、構成要素算出部62は、各窓における平均値ei1i2、標準偏差σi1,σi2および過渡判別量Eを算出する。次に、増減値算出部64は、過渡判別量Eの増減値として微分値Dを算出する(ステップS14)。次に、増減値取得部73は、増減値算出部64から、各窓の微分値Dを取得する(ステップS15)。次に、区間算出部72は、微分値Dの変化点を過渡域の境界として検出する(ステップS16)。一例として、区間算出部72は、微分値の正領域とそれに連なる負領域の面積が閾値を超える組み合わせを過渡域として抽出する。以上の処理により、定常域と過渡域の弁別が完了する。 Next, the component calculation unit 62 calculates the component of the statistical variation amount of the measurement data in each set window (step S13). As an example, the component calculation unit 62 calculates the average value e i1 e i2 , the standard deviations σ i1 , σ i2, and the transient discriminant amount E i in each window. Next, the increase / decrease value calculation unit 64 calculates the differential value D as the increase / decrease value of the transient determination amount E (step S14). Next, the increase / decrease value acquisition unit 73 acquires the differential value D of each window from the increase / decrease value calculation unit 64 (step S15). Next, the section calculation unit 72 detects the change point of the differential value D as the boundary of the transient area (step S16). As an example, the section calculation unit 72 extracts a combination in which the area of the positive area of the differential value and the area of the negative area connected to the positive area exceed the threshold value as the transient area. The above processing completes the discrimination between the steady region and the transient region.

本実施例によれば、センサ12の検出結果の時系列データの統計的変化量の増減値を用いて、定常域および過渡域の弁別が行われる。この場合、当該統計的変化量の大小のみに基づく弁別と比較して、弁別の過渡域をより細かく設定することができる。例えば、コネクタ差し込み作業において、最初の接触、それに続く挿入、最後の突き当てを別々の過渡域として弁別することが可能になる。それにより、高い精度で作業区間の弁別を行うことができる。   According to the present embodiment, the steady range and the transient range are discriminated by using the increase / decrease value of the statistical change amount of the time series data of the detection result of the sensor 12. In this case, it is possible to set the transitional range of the discrimination more finely as compared with the discrimination based on only the magnitude of the statistical change amount. For example, in a connector insertion operation, it is possible to distinguish the first contact, the subsequent insertion, and the final butting as separate transient zones. Thereby, the work sections can be discriminated with high accuracy.

本実施例においては、増減値算出部64が、対象物に対して作業を行う作業部の力または変位を検出するセンサの時系列出力値の統計的変化量の増減値を算出する算出部の一例として機能する。区間算出部72が、統計的変化量の増減値に基づいて、作業部が対象物に対して作業を行う過渡域と作業部が対象物に対して作業を行わない定常域とを弁別する弁別部の一例として機能する。   In the present embodiment, the increase / decrease value calculation unit 64 is a calculation unit that calculates an increase / decrease value of the statistical change amount of the time-series output value of the sensor that detects the force or displacement of the working unit that works on the object. It serves as an example. The section calculation unit 72 discriminates, based on the increase / decrease value of the statistical change amount, a transitional region in which the working unit works on the object and a steady region in which the working unit does not work on the object. It functions as an example of a section.

過渡判別量の大小も考慮して定常域と過渡域とを弁別してもよい。図13は、実施例3に係る判定装置40bのブロック図である。図13で例示するように、判定装置40bが図6の判定装置40と異なる点は、過渡判別量算出部60の代わりに過渡判別量算出部60bが備わり、弁別部70の代わりに弁別部70bが備わっている点である。過渡判別量算出部60bが過渡判別量算出部60と異なる点は、増減値算出部64がさらに備わっている点である。弁別部70bが弁別部70と異なる点は、増減値取得部73、過渡判別量取得部74、重み設定部75がさらに備わっている点である。実施例1,2と同じ符号を付した構成要素は、実施例1,2と同様の機能を果たす。以下、実施例1,2と異なる点について説明する。   The steady range and the transient range may be discriminated in consideration of the magnitude of the transient determination amount. FIG. 13 is a block diagram of the determination device 40b according to the third embodiment. As illustrated in FIG. 13, the determination device 40b is different from the determination device 40 of FIG. 6 in that the transient discriminant amount calculation unit 60b is provided instead of the transient discriminant amount calculation unit 60, and the discriminator 70b is provided instead of the discriminator 70. The point is that. The transient discriminant amount calculation unit 60b differs from the transient discriminant amount calculation unit 60 in that an increase / decrease value calculation unit 64 is further provided. The discriminator 70b is different from the discriminator 70 in that an increase / decrease value acquisition unit 73, a transient determination amount acquisition unit 74, and a weight setting unit 75 are further provided. The components designated by the same reference numerals as those in the first and second embodiments fulfill the same functions as those in the first and second embodiments. Hereinafter, differences from the first and second embodiments will be described.

図14(a)は、構成要素算出部62が算出した過渡判別量Eを例示する図である。図14(b)は、構成比率算出部63が算出した比率mを例示する図である。図14(b)の点線は、比率mの移動平均値である。図14(c)は、増減値算出部64が算出した微分値Dを例示する図である。   FIG. 14A is a diagram illustrating the transient determination amount E calculated by the component calculation unit 62. FIG. 14B is a diagram illustrating the ratio m calculated by the composition ratio calculation unit 63. The dotted line in FIG. 14B is the moving average value of the ratio m. FIG. 14C is a diagram exemplifying the differential value D calculated by the increase / decrease value calculation unit 64.

区間算出部72は、過渡判別量Eの正規化値を算出する。図14(d)は、過渡判別量Eの正規化値である。区間算出部72は、比率mの、平均値からの乖離度を算出し、当該乖離度の正規化値を算出する。図14(e)は、移動平均値からの比率mの乖離度の正規化値を例示する図である。区間算出部72は、過渡判別量Eの微分値Dの積算量の正規化値を算出する。図14(f)は、過渡判別量Eの微分値Dの積算量の正規化値を例示する図である。次に、区間算出部72は、重み設定部75が設定する重みに従って、過渡判別量Eの正規化値と、移動平均値からの比率mの乖離度の正規化値と、微分値Dの積算量の正規化値とを重み付き加算する。図14(g)は、重み付き加算値を例示する。本実施例においては、この重み付き加算値を、合成判別量Cとして用いる。区間算出部72は、この合成判別量Cが閾値以上となる区間を過渡域として抽出する。   The section calculator 72 calculates a normalized value of the transient discriminant amount E. FIG. 14D is a normalized value of the transient determination amount E. The section calculator 72 calculates the deviation degree of the ratio m from the average value, and calculates the normalized value of the deviation degree. FIG.14 (e) is a figure which illustrates the normalization value of the deviation degree of the ratio m from a moving average value. The section calculation unit 72 calculates a normalized value of the integrated amount of the differential value D of the transient determination amount E. FIG. 14F is a diagram illustrating a normalized value of the integrated amount of the differential value D of the transient determination amount E. Next, the section calculation unit 72 integrates the normalized value of the transient determination amount E, the normalized value of the deviation degree of the ratio m from the moving average value, and the differential value D according to the weight set by the weight setting unit 75. Weighted addition with the normalized value of the quantity. FIG. 14G illustrates the weighted addition value. In the present embodiment, this weighted addition value is used as the composite discriminant amount C. The section calculation unit 72 extracts a section in which the combined determination amount C is equal to or more than a threshold value as a transitional area.

図15は、判定装置40bが実行する処理を例示するフローチャートである。図15で例示するように、データ格納部50は、測定データとして、学習用OKデータを一時的に格納する(ステップS21)。次に、窓幅設定部61は、データ格納部50に格納された測定データに所定のサンプリング周期で注目点を設定し、各注目点に対して予め決定した窓幅を設定する(ステップS22)。   FIG. 15 is a flowchart illustrating a process executed by the determination device 40b. As illustrated in FIG. 15, the data storage unit 50 temporarily stores the learning OK data as the measurement data (step S21). Next, the window width setting unit 61 sets an attention point in the measurement data stored in the data storage unit 50 at a predetermined sampling cycle, and sets a predetermined window width for each attention point (step S22). .

次に、構成要素算出部62は、設定された各窓において、測定データの統計的変化量の構成要素を算出する(ステップS23)。一例として、構成要素算出部62は、各窓における平均値ei1i2、標準偏差σi1,σi2および過渡判別量Eを算出する。次に、構成比率算出部63は、比率mを算出する(ステップS24)。次に、増減値算出部64は、過渡判別量Eの増減値として微分値Dを算出する(ステップS25) Next, the component calculation unit 62 calculates the component of the statistical variation amount of the measurement data in each set window (step S23). As an example, the component calculation unit 62 calculates the average value e i1 e i2 , the standard deviations σ i1 , σ i2, and the transient discriminant amount E i in each window. Next, the composition ratio calculation unit 63 calculates the ratio m i (step S24). Next, the increase / decrease value calculation unit 64 calculates the differential value D as the increase / decrease value of the transient determination amount E (step S25).

次に、区間算出部72は、過渡判別量Eの正規化値と、平均値からの比率mの乖離度の正規化値と、過渡判別量Eの微分値Dの積算量の正規化値とを算出する(ステップS26)。次に、区間算出部72は、重み設定部75が設定する重みに従って、過渡判別量Eの正規化値と、移動平均値からの比率mの乖離度の正規化値と、微分値Dの積算量の正規化値とを重み付き加算することで、合成判別量Cを算出する(ステップS27)。次に、区間算出部72は、合成判別量Cが閾値を超える区間を過渡域として抽出する(ステップS28)。以上の処理により、定常域と過渡域の弁別が完了する。   Next, the section calculation unit 72 sets the normalized value of the transient discriminant amount E, the normalized value of the deviation degree of the ratio m from the average value, and the normalized value of the integrated amount of the differential value D of the transient discriminant amount E. Is calculated (step S26). Next, the section calculation unit 72 integrates the normalized value of the transient determination amount E, the normalized value of the deviation degree of the ratio m from the moving average value, and the differential value D according to the weight set by the weight setting unit 75. The composite discriminant amount C is calculated by performing weighted addition with the normalized value of the amount (step S27). Next, the section calculation unit 72 extracts a section in which the combined determination amount C exceeds the threshold value as a transient area (step S28). The above processing completes the discrimination between the steady region and the transient region.

本実施例によれば、センサ12の検出結果の時系列データの統計的変化量の大小に加えて、当該統計的変化量の構成要素の比率および当該統計的変化量の増減値を用いて、定常域および過渡域の弁別が行われる。この場合、当該統計的変化量の大小のみに基づく弁別と比較して、弁別の過渡域をより細かく設定することができる。すなわち、高い精度で作業区間の弁別を行うことができる。なお、統計的変化量の構成要素の比率および当該統計的変化量の増減値のうち、いずれか一方だけを用いてもよい。例えば、統計的変化量の構成要素の比率だけを用いる場合、増減値算出部64および増減値取得部73は不要である。統計的変化量の増減値だけを用いる場合、構成比率算出部63および構成比率取得部71は不要である。   According to this embodiment, in addition to the magnitude of the statistical change amount of the time series data of the detection result of the sensor 12, the ratio of the components of the statistical change amount and the increase / decrease value of the statistical change amount are used. Discrimination between the steady region and the transient region is performed. In this case, it is possible to set the transitional range of the discrimination more finely as compared with the discrimination based on only the magnitude of the statistical change amount. That is, the work sections can be discriminated with high accuracy. Note that only one of the ratio of the components of the statistical change amount and the increase / decrease value of the statistical change amount may be used. For example, when only the ratio of the components of the statistical change amount is used, the increase / decrease value calculation unit 64 and the increase / decrease value acquisition unit 73 are unnecessary. When only the increase / decrease value of the statistical change amount is used, the composition ratio calculation unit 63 and the composition ratio acquisition unit 71 are unnecessary.

(変形例3−1)
過渡判別量E、比率mおよび微分値Dのそれぞれから過渡域候補を抽出し、過渡域候補から過渡域を抽出してもよい。区間算出部72は、過渡判別量Eが閾値を超える区間を過渡域候補として抽出する。図16(a)は、過渡判別量Eから抽出された過渡域候補を例示する図である。また、区間算出部72は、移動平均値からの比率mの乖離度が閾値を超える区間を過渡域候補として抽出する。図16(b)は、比率mから抽出された過渡域候補を例示する図である。また、区間算出部72は、微分値Dの正領域とそれに連なる負領域の面積が閾値を超える組み合わせを過渡域として抽出する。図16(c)は、微分値Dから抽出された過渡域候補を例示する図である。区間算出部72は、図16(d)で例示するように、これらの過渡域候補の論理和、論理積などを用いて、過渡域を抽出する。本変形例においては、重み設定部75は備わっていなくてもよい。
(Modification 3-1)
The transient range candidate may be extracted from each of the transient determination amount E, the ratio m, and the differential value D, and the transient range may be extracted from the transient range candidate. The section calculation unit 72 extracts a section in which the transient determination amount E exceeds a threshold value as a transient area candidate. FIG. 16A is a diagram exemplifying the transition region candidates extracted from the transition determination amount E. Further, the section calculation unit 72 extracts a section in which the deviation degree of the ratio m from the moving average value exceeds the threshold value as a transition area candidate. FIG. 16B is a diagram exemplifying the transition region candidates extracted from the ratio m. In addition, the section calculation unit 72 extracts a combination in which the area of the positive area of the differential value D and the area of the negative area connected to the positive area exceed the threshold value as the transient area. FIG. 16C is a diagram exemplifying the transition region candidates extracted from the differential value D. As illustrated in FIG. 16D, the section calculation unit 72 extracts the transient range by using the logical sum or logical product of these transient range candidates. In this modification, the weight setting unit 75 may not be provided.

図17は、本変形例に係る処理を例示するフローチャートである。図17で例示するように、データ格納部50は、測定データとして、学習用OKデータを一時的に格納する(ステップS31)。次に、窓幅設定部61は、データ格納部50に格納された測定データに所定のサンプリング周期で注目点を設定し、各注目点に対して予め決定した窓を設定する(ステップS32)。   FIG. 17 is a flowchart illustrating the process according to this modification. As illustrated in FIG. 17, the data storage unit 50 temporarily stores the learning OK data as the measurement data (step S31). Next, the window width setting unit 61 sets an attention point in the measurement data stored in the data storage unit 50 at a predetermined sampling cycle, and sets a predetermined window for each attention point (step S32).

次に、構成要素算出部62は、設定された各窓において、測定データの統計的変化量の構成要素を算出する(ステップS33)。一例として、構成要素算出部62は、各窓における平均値ei1i2、標準偏差σi1,σi2および過渡判別量Eを算出する。次に、構成比率算出部63は、比率mを算出する(ステップS34)。次に、増減値算出部64は、過渡判別量Eの増減値として微分値Dを算出する(ステップS35) Next, the component calculation unit 62 calculates the component of the statistical variation amount of the measurement data in each set window (step S33). As an example, the component calculation unit 62 calculates the average value e i1 e i2 , the standard deviations σ i1 , σ i2, and the transient discriminant amount E i in each window. Next, the configuration ratio calculation unit 63 calculates the ratio m i (step S34). Next, the increase / decrease value calculation unit 64 calculates the differential value D as the increase / decrease value of the transient determination amount E (step S35).

次に、区間算出部72は、過渡判別量Eが閾値を超える区間を過渡域候補として抽出し、移動平均値からの比率mの乖離度が閾値を超える区間を過渡域候補として抽出し、微分値Dの正領域とそれに連なる負領域の面積が閾値を超える組み合わせを過渡域として抽出する(ステップS36)。次に、区間算出部72は、これらの過渡域候補の論理和、論理積などを用いて、過渡域を抽出する(ステップS37)。   Next, the section calculation unit 72 extracts a section in which the transient determination amount E exceeds the threshold as a transient area candidate, extracts a section in which the deviation degree of the ratio m from the moving average exceeds the threshold as a transient area candidate, and differentiates the same. A combination in which the area of the positive area of the value D and the area of the negative area connected to the positive area exceeds the threshold value is extracted as the transient area (step S36). Next, the section calculation unit 72 extracts the transient range by using the logical sum, the logical product, and the like of these transient range candidates (step S37).

(変形例3−2)
上記各例において、窓幅設定部61は窓幅を可変としてもよい。例えば、窓幅設定部61は、得られる過渡判別量Eが最大となる窓幅を選定する。各窓の注目点よりも前(過去)の幅をL1とし、注目点よりも後(未来)の幅をL2とする。窓幅設定部61は、L1=L2に設定する。図18(a)〜図18(c)で例示するように、窓幅設定部61は、窓幅L1=L2を段階的に徐々に広げる。構成要素算出部62は、各段階において過渡判別量を算出する。窓幅設定部61は、構成要素算出部62が算出した過渡判別量のうち最大となる場合の窓幅L1+L2を窓幅として設定する。例えば、過渡判別量のピーク値で比較することで、過渡判別量の大小を判断することができる。
(Modification 3-2)
In each of the above examples, the window width setting unit 61 may change the window width. For example, the window width setting unit 61 selects a window width that maximizes the obtained transient determination amount E. The width before (past) the attention point of each window is L1, and the width after (future) the attention point is L2. The window width setting unit 61 sets L1 = L2. As illustrated in FIGS. 18A to 18C, the window width setting unit 61 gradually widens the window width L1 = L2 stepwise. The component calculation unit 62 calculates the transient determination amount at each stage. The window width setting unit 61 sets, as the window width, the window width L1 + L2 when the transition determination amount calculated by the component calculation unit 62 is maximum. For example, the magnitude of the transient determination amount can be determined by comparing the peak values of the transient determination amount.

図19は、窓幅設定部61が窓幅を設定する場合に実行するフローチャートを例示する図である。図19で例示するように、窓幅設定部61は、窓幅L1=L2を未設定の値に設定する(ステップS41)。次に、窓幅設定部61は、測定データの未処理のデータ点を選択する(ステップS42)。次に、構成要素算出部62は、過渡判別量Eを算出する(ステップS43)。次に、窓幅設定部61は、全データ点における過渡判別量Eの計算が終了したか否かを判定する(ステップS44)。ステップS44で「No」と判定された場合、ステップS42から再度実行される。   FIG. 19 is a diagram exemplifying a flowchart executed when the window width setting unit 61 sets the window width. As illustrated in FIG. 19, the window width setting unit 61 sets the window width L1 = L2 to an unset value (step S41). Next, the window width setting unit 61 selects an unprocessed data point of the measurement data (step S42). Next, the component calculation unit 62 calculates the transient determination amount E (step S43). Next, the window width setting unit 61 determines whether or not the calculation of the transient determination amount E at all data points has been completed (step S44). When it is determined as "No" in step S44, the process is repeated from step S42.

ステップS44で「Yes」と判定された場合、窓幅設定部61は、過渡判別量の合計を算出する(ステップS45)。次に、窓幅設定部61は、窓幅を全ての設定値に設定したか否かを判定する(ステップS46)。ステップS46で「No」と判定された場合、ステップS41から再度実行される。ステップS46で「Yes」と判定された場合、窓幅設定部61は、過渡判別量合計値の比較を行う(ステップS47)。次に、窓幅設定部61は、窓幅を、過渡判別量合計値が最も高くなる場合の窓幅に決定する(ステップS48)。   When it is determined to be “Yes” in step S44, the window width setting unit 61 calculates the total of the transient determination amounts (step S45). Next, the window width setting unit 61 determines whether the window width has been set to all the set values (step S46). When it is determined as "No" in step S46, the process is executed again from step S41. When it is determined to be “Yes” in step S46, the window width setting unit 61 compares the transient determination amount total values (step S47). Next, the window width setting unit 61 determines the window width to be the window width when the transient discrimination amount total value is the highest (step S48).

窓幅L1と窓幅L2とを独立して決定する場合には、ステップS41〜ステップS46を、窓幅L1と窓幅L2とに対して個別に実行すればよい。   When the window width L1 and the window width L2 are independently determined, steps S41 to S46 may be individually executed for the window width L1 and the window width L2.

窓幅設定部61は、注目点ごとに窓幅を設定してもよい。図20(a)で例示するように、窓幅設定部61は、注目点ごとに窓幅L1=L2を段階的に徐々に広げる。構成要素算出部62は、各段階において過渡判別量を算出する。窓幅設定部61は、構成要素算出部62が算出した過渡判別量のうち最大となる場合の窓幅L1+L2を窓幅として設定する。   The window width setting unit 61 may set the window width for each point of interest. As illustrated in FIG. 20A, the window width setting unit 61 gradually widens the window width L1 = L2 step by step for each target point. The component calculation unit 62 calculates the transient determination amount at each stage. The window width setting unit 61 sets, as the window width, the window width L1 + L2 when the transition determination amount calculated by the component calculation unit 62 is maximum.

図20(b)は、窓幅設定部61が窓幅を設定する場合に実行するフローチャートを例示する図である。図20(b)で例示するように、窓幅設定部61は、測定データの未処理のデータ点を選択する(ステップS51)。次に、窓幅設定部61は、窓幅L1=L2を未設定の値に設定する(ステップS52)。次に、構成要素算出部62は、過渡判別量Eを算出する(ステップS53)。次に、窓幅設定部61は、窓幅を全ての設定値に設定したか否かを判定する(ステップS54)。ステップS54で「No」と判定された場合、ステップS52から再度実行される。   FIG. 20B is a diagram illustrating a flowchart executed by the window width setting unit 61 when setting the window width. As illustrated in FIG. 20B, the window width setting unit 61 selects an unprocessed data point of the measurement data (step S51). Next, the window width setting unit 61 sets the window width L1 = L2 to an unset value (step S52). Next, the component calculation unit 62 calculates the transient determination amount E (step S53). Next, the window width setting unit 61 determines whether the window width has been set to all the set values (step S54). When it is determined as "No" in step S54, the process is repeated from step S52.

ステップS54で「Yes」と判定された場合、過渡判別量の比較を行う(ステップS55)。窓幅設定部61は、窓幅を、過渡判別量合計値が最も高くなる場合の窓幅に決定する(ステップS56)。次に、窓幅設定部61は、決定された窓幅における過渡判別量を保存する(ステップS57)。次に、窓幅設定部61は、全データ点の処理が終了したか否かを判定する(ステップS58)。ステップS58で「No」と判定された場合、ステップS51から再度実行される。ステップS58で「Yes」と判定された場合、フローチャートの実行が終了する。   When it is determined to be “Yes” in step S54, the transient determination amounts are compared (step S55). The window width setting unit 61 determines the window width to be the window width when the transient discrimination amount total value is the highest (step S56). Next, the window width setting unit 61 stores the transient determination amount in the determined window width (step S57). Next, the window width setting unit 61 determines whether the processing of all data points is completed (step S58). When it is determined as "No" in step S58, the process is repeated from step S51. When it is determined to be “Yes” in step S58, the execution of the flowchart ends.

窓幅L1と窓幅L2とを独立して設定する場合には、ステップS52〜ステップS57を個別に実行すればよい。本変形例は、実施例1,2にも適用することができる。   When the window width L1 and the window width L2 are set independently, steps S52 to S57 may be executed individually. This modification can be applied to the first and second embodiments.

(変形例3−3)
上記各例において、構成要素算出部62は、過渡判別量を算出する際に各構成要素に重み付けを行ってもよい。例えば、構成要素算出部62は、「平均の変化」と「標準偏差の変化」とに重みを設定する。具体的には、構成要素算出部62は、測定データの全注目点において、上記式(2)に従って「平均の変化」および「標準偏差の変化」を算出する。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」の2乗の累積加算値を算出する。「平均の変化」の2乗の累積加算値をAとし、「標準偏差の変化」の2乗の累積加算値をAとした場合に、係数k=1とし、係数k=A/Aとする。次に、構成要素算出部62は、下記式(5)に従って、重み付けを行った過渡判別量Mを算出する。
=(kΔe +kΔσ 0.5 (5)
(Modification 3-3)
In each of the above examples, the constituent element calculation unit 62 may weight each constituent element when calculating the transient determination amount. For example, the component calculation unit 62 sets weights on “change in average” and “change in standard deviation”. Specifically, the component calculation unit 62 calculates “change in average” and “change in standard deviation” according to the above equation (2) at all the points of interest in the measurement data. Next, the constituent element calculation unit 62 calculates the cumulative addition value of the square of “change in average” and “change in standard deviation”. The square of the cumulative addition value of "change in average" and A E, the square of the cumulative value of the "change of standard deviation" in the case of the A S, then the coefficient k e = 1, the coefficient k s = A E / A S. Next, the component calculation unit 62 calculates the weighted transient determination amount M according to the following equation (5).
M i = (k e Δe i 2 + k s Δσ i 2) 0.5 (5)

図21は、この場合に実行されるフローチャートを例示する図である。図21で例示するように、構成要素算出部62は、測定データの未処理のデータ点を選択する(ステップS61)。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」を算出する(ステップS62)。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」の2乗を累積加算する(ステップS63)。次に、構成要素算出部62は、全てのデータ点の処理が終了したか否かを判定する(ステップS64)。ステップS64で「No」と判定された場合、ステップS61から再度実行される。   FIG. 21 is a diagram illustrating a flowchart executed in this case. As illustrated in FIG. 21, the component calculation unit 62 selects an unprocessed data point of the measurement data (step S61). Next, the component calculation unit 62 calculates "change in average" and "change in standard deviation" (step S62). Next, the component calculation unit 62 cumulatively adds the squares of the “change in average” and the “change in standard deviation” (step S63). Next, the component calculation unit 62 determines whether or not the processing of all data points has been completed (step S64). When it is determined as "No" in step S64, the process is repeated from step S61.

ステップS64で「Yes」と判定された場合、構成要素算出部62は、累積加算値の比率に基づいて重み係数を決定する(ステップS65)。「平均の変化」の2乗の累積加算値をAとし、「標準偏差の変化」の2乗の累積加算値をAとした場合に、係数k=1とし、係数k=A/Aとする。次に、構成要素算出部62は、センサ12の測定データの未処理のデータ点を選択する(ステップS66)。次に、構成要素算出部62は、上記式(5)に従って、過渡判別量Mを算出する(ステップS67)。次に、構成要素算出部62は、全データ点の処理が終了したか否かを判定する(ステップS68)。ステップS68で「No」と判定された場合、ステップS66から再度実行される。ステップS68で「Yes」と判定された場合、フローチャートの実行が終了する。 When it determines with "Yes" at step S64, the component calculation part 62 determines a weighting coefficient based on the ratio of a cumulative addition value (step S65). The square of the cumulative addition value of "change in average" and A E, the square of the cumulative value of the "change of standard deviation" in the case of the A S, then the coefficient k e = 1, the coefficient k s = A E / A S. Next, the component calculation unit 62 selects an unprocessed data point of the measurement data of the sensor 12 (step S66). Next, the component calculation unit 62 calculates the transient determination amount M according to the above equation (5) (step S67). Next, the component calculation unit 62 determines whether or not the processing of all data points has been completed (step S68). When it is determined as "No" in step S68, the process is repeated from step S66. When it is determined to be “Yes” in step S68, the execution of the flowchart ends.

図22は、窓幅を可変として、過渡判別量に重み付けを行う場合に実行されるフローチャートを例示する図である。図22で例示するように、窓幅設定部61は、窓幅L1=L2を未設定の値に設定する(ステップS71)。次に、構成要素算出部62は、測定データの未処理のデータ点を選択する(ステップS72)。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」を算出する(ステップS73)。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」の2乗を累積加算する(ステップS74)。次に、構成要素算出部62は、全てのデータ点の処理が終了したか否かを判定する(ステップS75)。ステップS75で「No」と判定された場合、ステップS72から再度実行される。   FIG. 22 is a diagram exemplifying a flowchart that is executed when the window width is variable and the transient determination amount is weighted. As illustrated in FIG. 22, the window width setting unit 61 sets the window width L1 = L2 to an unset value (step S71). Next, the component calculation unit 62 selects an unprocessed data point of the measurement data (step S72). Next, the component calculation unit 62 calculates "change in average" and "change in standard deviation" (step S73). Next, the component calculation unit 62 cumulatively adds the squares of the “change in average” and the “change in standard deviation” (step S74). Next, the component calculation unit 62 determines whether or not the processing of all the data points has been completed (step S75). When it is determined as "No" in step S75, the process is executed again from step S72.

ステップS75で「Yes」と判定された場合、構成要素算出部62は、累積加算値の比率に基づいて重み係数を算出する(ステップS76)。「平均の変化」の2乗の累積加算値をAとし、「標準偏差の変化」の2乗の累積加算値をAとした場合に、係数k=1とし、係数k=A/Aとする。次に、構成要素算出部62は、測定データの未処理のデータ点を選択する(ステップS77)。次に、構成要素算出部62は、上記式(5)に従って、過渡判別量Mを算出する(ステップS78)。次に、構成要素算出部62は、全データ点の処理が終了したか否かを判定する(ステップS79)。ステップS79で「No」と判定された場合、ステップS77から再度実行される。 When it is determined to be “Yes” in step S75, the constituent element calculation unit 62 calculates the weighting coefficient based on the ratio of the cumulative addition value (step S76). The square of the cumulative addition value of "change in average" and A E, the square of the cumulative value of the "change of standard deviation" in the case of the A S, then the coefficient k e = 1, the coefficient k s = A E / A S. Next, the component calculation unit 62 selects an unprocessed data point of the measurement data (step S77). Next, the component calculation unit 62 calculates the transient determination amount M according to the above equation (5) (step S78). Next, the component calculation unit 62 determines whether or not the processing of all data points has been completed (step S79). When it is determined as "No" in step S79, the process is executed again from step S77.

ステップS79で「Yes」と判定された場合、窓幅設定部61は、過渡判別量Mの合計を算出する(ステップS80)。次に、窓幅設定部61は、窓幅を全ての設定値に設定したか否かを判定する(ステップS81)。ステップS81で「No」と判定された場合、窓幅設定部61は、ステップS71から再度実行される。ステップS81で「Yes」と判定された場合、窓幅設定部61は、過渡判別量Mの合計値を比較する(ステップS82)。   When it is determined to be “Yes” in step S79, the window width setting unit 61 calculates the total of the transient determination amount M (step S80). Next, the window width setting unit 61 determines whether the window width has been set to all the set values (step S81). When it is determined to be “No” in step S81, the window width setting unit 61 is executed again from step S71. When it is determined to be “Yes” in step S81, the window width setting unit 61 compares the total value of the transient determination amount M (step S82).

次に、窓幅設定部61は、過渡判別量Mの合計値が最大となる設定値に、窓幅を決定する(ステップS83)。次に、構成要素算出部62は、窓幅に対応した重み係数を設定する(ステップS84)。次に、構成要素算出部62は、センサ12の測定データの未処理のデータ点を選択する(ステップS85)。次に、構成要素算出部62は、過渡判別量Mを算出する(ステップS86)。次に、構成要素算出部62は、全データ点の処理が終了したか否かを判定する(ステップS87)。ステップS87で「No」と判定された場合、ステップS85から再度実行される。ステップS87で「Yes」と判定された場合、フローチャートの実行が終了する。   Next, the window width setting unit 61 determines the window width to a set value that maximizes the total value of the transient determination amount M (step S83). Next, the component calculation unit 62 sets a weighting factor corresponding to the window width (step S84). Next, the component calculation unit 62 selects an unprocessed data point of the measurement data of the sensor 12 (step S85). Next, the constituent element calculating unit 62 calculates the transient determination amount M (step S86). Next, the component calculation unit 62 determines whether or not the processing of all data points has been completed (step S87). When it is determined as "No" in step S87, the process is repeated from step S85. When it is determined to be “Yes” in step S87, the execution of the flowchart ends.

図23は、実施例4に係る判定装置40cのブロック図である。図23で例示するように、判定装置40cが図6の判定装置40と異なる点は、過渡判別量算出部60の代わりに過渡判別量算出部60cが備わり、弁別部70の代わりに弁別部70cが備わっている点である。過渡判別量算出部60cが過渡判別量算出部60と異なる点は、増減値算出部64がさらに備わっている点である。弁別部70bが弁別部70と異なる点は、増減値取得部73、過渡判別量取得部74、重み設定部75、および閾値設定部76がさらに備わっている点である。以下、実施例1と異なる点について説明する。実施例1〜3と同じ符号を付した構成要素は、実施例1〜3と同様の機能を果たす。以下、実施例1〜3と異なる点について説明する。   FIG. 23 is a block diagram of the determination device 40c according to the fourth embodiment. As illustrated in FIG. 23, the determination device 40c is different from the determination device 40 of FIG. 6 in that the transient discriminant amount calculation unit 60c is provided instead of the transient discriminant amount calculation unit 60, and the discriminator 70c is provided instead of the discriminator 70. The point is that. The difference between the transient determination amount calculation unit 60c and the transient determination amount calculation unit 60 is that an increase / decrease value calculation unit 64 is further provided. The discriminator 70b is different from the discriminator 70 in that an increase / decrease value acquisition unit 73, a transient determination amount acquisition unit 74, a weight setting unit 75, and a threshold value setting unit 76 are further provided. Hereinafter, differences from the first embodiment will be described. The components denoted by the same reference numerals as those in the first to third embodiments fulfill the same functions as those in the first to third embodiments. Hereinafter, points different from the first to third embodiments will be described.

過渡判別量Eの大小を検出するための閾値を固定した場合、特に小さな過渡判別量Eを検出することが困難となる。そこで、学習用OKデータによって最適な閾値を求め、それに基づいて定常域/過渡域の弁別を行うことが好ましい。閾値設定部76は、図24(a)で例示するように、過渡判別量Eのヒストグラムを作成して、それに対して大津の二値化を行う。この場合には、パラメータの設定を完全に自動化することもできる。定常域部分は過渡判別量Eが小さいため、自動的に過渡域から除外することになる。閾値の自動設定により過渡域を検出した後で、過渡域の空白区間が長い場合には、その区間に対して再帰的に大津の二値化を適用して閾値を設定し、過渡判別量Eの更に小さな過渡判別量Eの部分を定常域として検出することも可能である。   When the threshold for detecting the magnitude of the transient discrimination amount E is fixed, it becomes difficult to detect a particularly small transient discrimination amount E. Therefore, it is preferable to determine the optimum threshold value by the learning OK data and perform the discrimination between the steady region / transient region based on the optimum threshold value. As illustrated in FIG. 24A, the threshold setting unit 76 creates a histogram of the transient discriminant amount E and binarizes Otsu for it. In this case, the parameter setting can be completely automated. Since the transient discrimination amount E is small in the steady region, it is automatically excluded from the transient region. If the blank area in the transient area is long after the transient area is detected by the automatic threshold setting, the threshold is set by recursively applying the Otsu binarization to the interval, and the transient discrimination amount E It is also possible to detect the portion of the transient discrimination amount E that is smaller than the above as the steady region.

図24(b)は、過渡判別量Eが局所的にみて大きい部分のみを過渡域として検出する方法である。過渡判別量Eの局所ピーク対する割合として弁別閾値を設定することにより、過渡判別量Eの小さい部分を過渡域として検出することができる。この場合、ノイズとして落とすピーク値・ピークに対する閾値の比率・局所ピークを探索する区間サイズなど、幾つかのパラメータ設定が必要となる。なお、この手法は、合成判別量に対して適用することも可能である。   FIG. 24B shows a method in which only the portion where the transient determination amount E is locally large is detected as the transient region. By setting the discrimination threshold value as the ratio of the transient discrimination amount E to the local peak, the portion where the transient discrimination amount E is small can be detected as the transient region. In this case, it is necessary to set some parameters such as a peak value dropped as noise, a ratio of a threshold value to a peak, and an interval size for searching a local peak. It should be noted that this method can also be applied to the combined discriminant amount.

図25(a)および図25(b)は、判定装置40cが実行するフローチャートを例示する図である。図25(a)で例示するように、構成要素算出部62は、全過渡判別量の算出処理を実行する(ステップS91)。図25(b)は、ステップS91の詳細を例示するフローチャートである。図25(b)で例示するように、データ格納部50は、測定データとして、学習用OKデータを一時的に格納する(ステップS101)。次に、窓幅設定部61は、測定データの未処理のデータ点を選択する(ステップS102)。   25 (a) and 25 (b) are diagrams illustrating a flowchart executed by the determination device 40c. As illustrated in FIG. 25A, the constituent element calculation unit 62 executes the calculation process of the total transient determination amount (step S91). FIG. 25B is a flowchart illustrating the details of step S91. As illustrated in FIG. 25B, the data storage unit 50 temporarily stores the learning OK data as the measurement data (step S101). Next, the window width setting unit 61 selects an unprocessed data point of the measurement data (step S102).

次に、窓幅設定部61は、図19または図20(b)のフローチャートを実行することで、窓幅の設定を行う(ステップS103)。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」を算出する(ステップS104)。次に、構成要素算出部62は、過渡判別量Eの構成比率を算出する(ステップS105)。次に、構成要素算出部62は、各データ点の過渡判別量Eを算出する(ステップS106)。次に、構成要素算出部62は、各算出値の格納を行う(ステップS107)。次に、構成要素算出部62は、全てのデータ点の処理が終了したか否かを判定する(ステップS108)。ステップS108で「No」と判定された場合、ステップS102から再度実行される。ステップS108で「Yes」と判定された場合、フローチャートの実行が終了する。   Next, the window width setting unit 61 sets the window width by executing the flowchart of FIG. 19 or FIG. 20 (b) (step S103). Next, the constituent element calculation unit 62 calculates "change in average" and "change in standard deviation" (step S104). Next, the constituent element calculation unit 62 calculates the constituent ratio of the transient determination amount E (step S105). Next, the component calculation unit 62 calculates the transient determination amount E of each data point (step S106). Next, the component calculation unit 62 stores each calculated value (step S107). Next, the component calculation unit 62 determines whether or not the processing of all data points has been completed (step S108). When it is determined as "No" in step S108, the process is executed again from step S102. When it is determined to be “Yes” in step S108, the execution of the flowchart ends.

次に、区間算出部72は、測定データの未処理のデータ点を選択する(ステップS92)。次に、過渡判別量取得部74は、過渡判別量Eを取得する(ステップS93)。また、構成比率取得部71は、比率mを取得する(ステップS94)。次に、区間算出部72は、過渡判別量Eおよび比率mを正規化し、重み付け加算する(ステップS95)。次に、閾値設定部76は、図24(a)で説明したように、二値化閾値を自動設定する(ステップS96)。次に、区間算出部72は、定常域と過渡域とを弁別する(ステップS97)。次に、区間算出部72は、全データの処理が終了したか否かを判定する(ステップS98)。ステップS98で「No」と判定された場合、ステップS92から再度実行される。ステップS98で「Yes」と判定された場合、フローチャートの実行が終了する。   Next, the section calculation unit 72 selects an unprocessed data point of the measurement data (step S92). Next, the transient determination amount acquisition unit 74 acquires the transient determination amount E (step S93). Further, the composition ratio acquisition unit 71 acquires the ratio m (step S94). Next, the section calculation unit 72 normalizes the transient determination amount E and the ratio m, and performs weighted addition (step S95). Next, the threshold setting unit 76 automatically sets the binarization threshold as described with reference to FIG. 24A (step S96). Next, the section calculation unit 72 discriminates between the steady range and the transient range (step S97). Next, the section calculation unit 72 determines whether or not the processing of all data is completed (step S98). When it is determined as "No" in step S98, the process is executed again from step S92. When it is determined to be “Yes” in step S98, the execution of the flowchart ends.

図26(a)および図26(b)は、判定装置40cが実行する他のフローチャートを例示する図である。図26(a)で例示するように、構成要素算出部62は、全過渡判別量の算出処理を実行する(ステップS111)。図26(b)は、ステップS111の詳細を例示するフローチャートである。図26(b)で例示するように、データ格納部50は、測定データとして、学習用OKデータを一時的に格納する(ステップS121)。次に、窓幅設定部61は、測定データの未処理のデータ点を選択する(ステップS122)。   26A and 26B are diagrams illustrating another flowchart executed by the determination device 40c. As illustrated in FIG. 26A, the constituent element calculation unit 62 executes the calculation process of the total transient determination amount (step S111). FIG. 26B is a flowchart illustrating the details of step S111. As illustrated in FIG. 26B, the data storage unit 50 temporarily stores the learning OK data as the measurement data (step S121). Next, the window width setting unit 61 selects an unprocessed data point of the measurement data (step S122).

次に、窓幅設定部61は、図19または図20(b)のフローチャートを実行することで、窓幅の設定を行う(ステップS123)。次に、構成要素算出部62は、「平均の変化」および「標準偏差の変化」を算出する(ステップS124)。次に、増減値算出部64は、過渡判別量の増減値として微分値Dを算出する(ステップS125)。次に、構成要素算出部62は、各データ点の過渡判別量を算出する(ステップS126)。次に、構成要素算出部62は、各算出値の格納を行う(ステップS127)。次に、構成要素算出部62は、全てのデータ点の処理が終了したか否かを判定する(ステップS128)。ステップS128で「No」と判定された場合、ステップS122から再度実行される。ステップS128で「Yes」と判定された場合、フローチャートの実行が終了する。   Next, the window width setting unit 61 sets the window width by executing the flowchart of FIG. 19 or FIG. 20 (b) (step S123). Next, the component calculation unit 62 calculates "change in average" and "change in standard deviation" (step S124). Next, the increase / decrease value calculation unit 64 calculates the differential value D as the increase / decrease value of the transient determination amount (step S125). Next, the component calculation unit 62 calculates the transient determination amount of each data point (step S126). Next, the component calculation unit 62 stores each calculated value (step S127). Next, the component calculation unit 62 determines whether or not the processing of all data points has been completed (step S128). When it is determined as “No” in step S128, the process is repeated from step S122. When it is determined to be “Yes” in step S128, the execution of the flowchart ends.

次に、区間算出部72は、測定データの未処理のデータ点を選択する(ステップS112)。次に、過渡判別量取得部74は、過渡判別量Eを取得する(ステップS113)。次に、閾値設定部76は、図24(b)で説明したように、局所ピークを用いた閾値設定を行う(ステップS114)。次に、区間算出部72は、ステップS114で設定された閾値を過渡判別量Eに適用することで、定常域と過渡域とを弁別する(ステップS115)。また、ステップS112の実行後、増減値取得部73は、増減値算出部64から増減値として微分値Dを取得する(ステップS116)。次に、区間算出部72は、増減値に基づいて定常域と過渡域とを弁別する(ステップS117)。   Next, the section calculation unit 72 selects an unprocessed data point of the measurement data (step S112). Next, the transient determination amount acquisition unit 74 acquires the transient determination amount E (step S113). Next, the threshold setting unit 76 performs threshold setting using a local peak, as described with reference to FIG. 24 (b) (step S114). Next, the section calculation unit 72 discriminates between the steady region and the transient region by applying the threshold value set in step S114 to the transient determination amount E (step S115). After the execution of step S112, the increase / decrease value acquisition unit 73 acquires the differential value D as the increase / decrease value from the increase / decrease value calculation unit 64 (step S116). Next, the section calculation unit 72 discriminates between the steady region and the transient region based on the increase / decrease value (step S117).

ステップS115およびステップS117の実行後、区間算出部72は、ステップS115で弁別された定常域および過渡域と、ステップS117で弁別された定常域および過渡域とを統合する(ステップS118)。例えば、論理和・論理積を用いて統合することができる。次に、区間算出部72は、全データ点の処理が終了したか否かを判定する(ステップS119)。ステップS119で「No」と判定された場合、ステップS112から再度実行される。ステップS119で「Yes」と判定された場合、フローチャートの実行が終了する。   After executing steps S115 and S117, the section calculation unit 72 integrates the steady region and the transient region discriminated in step S115 with the steady region and the transient region discriminated in step S117 (step S118). For example, they can be integrated using logical sum and logical product. Next, the section calculation unit 72 determines whether or not the processing of all data points is completed (step S119). When it is determined as “No” in step S119, the process is repeated from step S112. When it is determined to be “Yes” in step S119, the execution of the flowchart ends.

本実施例によれば、センサ12の出力値の変化が小さい場合でも、閾値を適切に設定することにより、過渡判別量Eの小さな動作も的確に過渡域として検出することができる。一方、定常域のノイズレベルの反応から不要な過渡域を生成することは抑制できる。これにより、過渡域用の識別器が生成できなかった動作も複雑な識別器で判定できるようになり、異常判断性能が向上する。   According to the present embodiment, even if the change in the output value of the sensor 12 is small, an operation with a small transient determination amount E can be accurately detected as a transient region by appropriately setting the threshold value. On the other hand, it is possible to suppress the generation of an unnecessary transient region from the reaction of the noise level in the steady region. As a result, even a motion that cannot be generated by the transient classifier can be determined by the complex classifier, and the abnormality determination performance is improved.

図27(a)は、判定装置40〜40cのハードウェア構成を説明するためのブロック図である。図27(a)を参照して、判定装置40〜40cは、CPU101、RAM102、記憶装置103、表示装置104等を備える。CPU(Central Processing Unit)101は、中央演算処理装置である。   FIG. 27A is a block diagram for explaining the hardware configuration of the determination devices 40 to 40c. With reference to FIG. 27A, the determination devices 40 to 40c include a CPU 101, a RAM 102, a storage device 103, a display device 104, and the like. A CPU (Central Processing Unit) 101 is a central processing unit.

CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。記憶装置103は、弁別プログラムを記憶している。表示装置104は、液晶ディスプレイ、エレクトロルミネッセンスパネルなどであり、判定結果を表示する。なお、本実施例においては判定装置40〜40cの各部は、プログラムの実行によって実現されているが、専用の回路などのハードウェアを用いてもよい。   The CPU 101 includes one or more cores. A RAM (Random Access Memory) 102 is a volatile memory that temporarily stores a program executed by the CPU 101, data processed by the CPU 101, and the like. The storage device 103 is a non-volatile storage device. As the storage device 103, for example, a ROM (Read Only Memory), a solid state drive (SSD) such as a flash memory, a hard disk driven by a hard disk drive, or the like can be used. The storage device 103 stores a discrimination program. The display device 104 is a liquid crystal display, an electroluminescence panel, or the like, and displays the determination result. Although each unit of the determination devices 40 to 40c is realized by executing a program in the present embodiment, hardware such as a dedicated circuit may be used.

図27(b)は、作業システムについて例示する図である。上記各例においては、判定装置40〜40cは、センサ12から測定データを取得し、カメラ30から画像データを取得している。これに対して、判定装置40〜40cの機能を有するサーバ202が、インターネットなどの電気通信回線201を通じてセンサ12およびカメラ30からデータを取得してもよい。   FIG. 27B is a diagram illustrating a work system. In each of the above examples, the determination devices 40 to 40c acquire the measurement data from the sensor 12 and the image data from the camera 30. On the other hand, the server 202 having the functions of the determination devices 40 to 40c may acquire data from the sensor 12 and the camera 30 via the telecommunication line 201 such as the Internet.

上記各例において、過渡判別量として、「平均の変化」と「標準偏差の変化」との和を用いたが、他の過渡判別量を用いてもよい。例えば、過渡判別量として、中央値、最小値から最大値までの範囲、四分位範囲(第1四分位〜第3四分位)、歪度、尖度などを用いることができる。過渡判別量として中央値を用いる場合、中央値の変化と標準偏差の変化との比を構成要素の比率として用いることができる。過渡判別量として最小値から最大値までの範囲を用いる場合、平均の変化と(最大値−最小値)の変化との比を構成要素の比率として用いることができる。過渡判別量として四分位範囲を用いる場合、第1四分位の変化と第3四分位の変化との比を構成要素の比率として用いることができる。過渡判別量として歪度を用いる場合、標準偏差の変化と歪度の変化との比を構成要素の比率として用いることができる。過渡判別量として尖度を用いる場合、標準偏差の変化と尖度の変化との比を構成要素の比率として用いることができる。   In each of the above examples, the sum of “change in average” and “change in standard deviation” is used as the transient discriminant amount, but other transient discriminant amounts may be used. For example, the median value, the range from the minimum value to the maximum value, the interquartile range (first quartile to third quartile), skewness, kurtosis, and the like can be used as the transition discriminant amount. When the median value is used as the transient discriminating amount, the ratio of the change in the median value and the change in the standard deviation can be used as the ratio of the constituent elements. When the range from the minimum value to the maximum value is used as the transient determination amount, the ratio of the change of the average and the change of (maximum value-minimum value) can be used as the ratio of the constituent elements. When the quartile range is used as the transient discriminant amount, the ratio of the change in the first quartile and the change in the third quartile can be used as the ratio of the constituents. When the skewness is used as the transient discrimination amount, the ratio of the change in the standard deviation and the change in the skewness can be used as the ratio of the constituent elements. When kurtosis is used as the transient discriminant, the ratio of the change in standard deviation to the change in kurtosis can be used as the ratio of the constituent elements.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the specific embodiments, and various modifications and alterations are possible within the scope of the gist of the present invention described in the claims. It can be changed.

10 作業ロボット
11 ロボットハンド
12 センサ
20 コントローラ
30 カメラ
40 判定装置
50 データ格納部
60 過渡判別量算出部
61 窓幅設定部
62 構成要素算出部
63 構成比率算出部
64 増減値算出部
70 弁別部
71 構成比率取得部
72 区間算出部
73 増減値取得部
74 過渡判別量取得部
75 重み設定部
76 閾値設定部
80 良否判定部
81 識別器作成部
82 状態判定部
90 出力部
100 作業装置
10 Working Robot 11 Robot Hand 12 Sensor 20 Controller 30 Camera 40 Judgment Device 50 Data Storage Section 60 Transient Discrimination Amount Calculation Section 61 Window Width Setting Section 62 Constituent Calculation Section 63 Composition Ratio Calculation Section 64 Increase / Decrease Calculation Section 70 Discrimination Section 71 Composition Ratio acquisition unit 72 Section calculation unit 73 Increase / decrease value acquisition unit 74 Transient determination amount acquisition unit 75 Weight setting unit 76 Threshold setting unit 80 Pass / fail judgment unit 81 Discriminator creation unit 82 State determination unit 90 Output unit 100 Working device

Claims (9)

対象物に対して作業を行う作業部の力または変位を検出するセンサの時系列出力値の統計的変化量を構成する複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方を算出する算出部と、
前記複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方に基づいて、前記作業部が対象物に対して作業を行う過渡域と前記作業部が対象物に対して作業を行わない定常域とを弁別する弁別部と、を備えることを特徴とする弁別装置。
At least one of a ratio of a plurality of constituent elements constituting a statistical change amount of a time-series output value of a sensor that detects a force or a displacement of a working unit that performs work on an object and an increase / decrease value of the statistical change amount. A calculation unit for calculating one,
Based on at least one of the ratio of the plurality of constituent elements and the increase / decrease value of the statistical change amount, a transitional region in which the working unit works on the object and the working unit works on the object. And a discriminating section for discriminating between a stationary region in which the operation is not performed.
前記弁別部は、さらに前記統計的変化量の大小に基づいて、前記過渡域と前記定常域とを弁別することを特徴とする請求項1記載の弁別装置。   The discriminator according to claim 1, wherein the discriminator further discriminates between the transient region and the steady region based on the magnitude of the statistical change amount. 前記弁別部は、前記構成要素の比率、前記統計的変化量の増減値、および前記統計的変化量のそれぞれ正規化値に対して重み付け加算することによって得られた判定値に基づいて、前記過渡域と前記定常域とを弁別することを特徴とする請求項1または2記載の弁別装置。   The discriminator is configured to perform the transition based on a determination value obtained by weighting and adding the ratio of the constituent elements, the increase / decrease value of the statistical change amount, and the normalized value of the statistical change amount. The discriminating device according to claim 1, wherein the discriminating device discriminates a region from the steady region. 前記弁別部は、前記構成要素の比率に基づいて抽出した過渡域候補、前記統計的変化量の増減値に基づいて抽出した過渡域候補、および前記統計的変化量の大小に基づいて抽出した過渡域候補の論理和または論理積を用いて、前記過渡域と前記定常域とを弁別することを特徴とする請求項1または2記載の弁別装置。   The discrimination unit is a transient region candidate extracted based on the ratio of the constituent elements, a transient region candidate extracted based on the increase / decrease value of the statistical change amount, and a transient extracted based on the magnitude of the statistical change amount. The discriminator according to claim 1 or 2, wherein the transitional region and the steady region are discriminated by using a logical sum or a logical product of the region candidates. 前記算出部は、前記センサの時系列出力値に対して所定のサンプリング周期で所定の窓幅を有する各窓において前記統計的変化量を算出し、
前記統計的変化量の合計値が最大となるように前記窓幅を変化させることを特徴とする請求項1〜4のいずれか一項に記載の弁別装置。
The calculation unit calculates the statistical variation amount in each window having a predetermined window width at a predetermined sampling period with respect to the time-series output value of the sensor,
The discriminator according to any one of claims 1 to 4, wherein the window width is changed so that a total value of the statistical change amounts becomes maximum.
前記統計的変化量のヒストグラムを作成し、当該ヒストグラムに対する大津の二値化によって前記統計的変化量の大小に対する閾値を設定する閾値設定部を備えることを特徴とする請求項2記載の弁別装置。   The discrimination apparatus according to claim 2, further comprising a threshold value setting unit that creates a histogram of the statistical change amount and sets a threshold value for the magnitude of the statistical change amount by binarizing Otsu for the histogram. 前記統計的変化量の局所ピークに基づいて、前記統計的変化量の大小に対する閾値を設定する閾値設定部を備えることを特徴とする請求項2記載の弁別装置。   The discriminating apparatus according to claim 2, further comprising a threshold setting unit that sets a threshold for the magnitude of the statistical variation based on a local peak of the statistical variation. 対象物に対して作業を行う作業部の力または変位を検出するセンサの時系列出力値の統計的変化量を構成する複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方を算出し、
前記複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方に基づいて、前記作業部が対象物に対して作業を行う過渡域と前記作業部が対象物に対して作業を行わない定常域とを弁別する、ことを特徴とする弁別方法。
At least one of a ratio of a plurality of constituent elements constituting a statistical change amount of a time-series output value of a sensor that detects a force or a displacement of a working unit that performs work on an object and an increase / decrease value of the statistical change amount. Calculate one,
Based on at least one of the ratio of the plurality of constituent elements and the increase / decrease value of the statistical change amount, a transitional region in which the working unit works on the object and the working unit works on the object. The discrimination method is characterized by discriminating between a stationary region in which no operation is performed.
コンピュータに、
対象物に対して作業を行う作業部の力または変位を検出するセンサの時系列出力値の統計的変化量を構成する複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方を算出する処理と、
前記複数の構成要素の比率および前記統計的変化量の増減値の少なくともいずれか一方に基づいて、前記作業部が対象物に対して作業を行う過渡域と前記作業部が対象物に対して作業を行わない定常域とを弁別する処理と、を実行させることを特徴とする弁別プログラム。
On the computer,
At least one of a ratio of a plurality of constituent elements constituting a statistical change amount of a time-series output value of a sensor that detects a force or a displacement of a working unit that performs work on an object and an increase / decrease value of the statistical change amount. A process of calculating one,
Based on at least one of the ratio of the plurality of constituent elements and the increase / decrease value of the statistical change amount, a transitional region in which the working unit works on the object and the working unit works on the object. A discrimination program for discriminating between a stationary region in which is not performed, and a discrimination program.
JP2016130783A 2016-06-30 2016-06-30 Discrimination device, discrimination method, and discrimination program Active JP6690436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016130783A JP6690436B2 (en) 2016-06-30 2016-06-30 Discrimination device, discrimination method, and discrimination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130783A JP6690436B2 (en) 2016-06-30 2016-06-30 Discrimination device, discrimination method, and discrimination program

Publications (2)

Publication Number Publication Date
JP2018001330A JP2018001330A (en) 2018-01-11
JP6690436B2 true JP6690436B2 (en) 2020-04-28

Family

ID=60945200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130783A Active JP6690436B2 (en) 2016-06-30 2016-06-30 Discrimination device, discrimination method, and discrimination program

Country Status (1)

Country Link
JP (1) JP6690436B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052493B2 (en) * 1991-09-24 2000-06-12 オムロン株式会社 Visual recognition system
JPH05337864A (en) * 1991-09-26 1993-12-21 Toshiba Corp Hole detecting method by robot groping
JP6221414B2 (en) * 2013-06-27 2017-11-01 富士通株式会社 Determination apparatus, determination program, and determination method
JP2015217486A (en) * 2014-05-19 2015-12-07 富士通株式会社 Determining apparatus, determining method, and determining program

Also Published As

Publication number Publication date
JP2018001330A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US10262233B2 (en) Image processing apparatus, image processing method, program, and storage medium for using learning data
CN111292303B (en) Weld defect type detection method and device, electronic equipment and storage medium
JP6688962B2 (en) Judgment device, judgment method, and judgment program
US10532459B2 (en) Information processing apparatus, information processing method, and storage medium for grasping an object
JP6176388B2 (en) Image identification device, image sensor, and image identification method
JP6702081B2 (en) Judgment device, judgment method, and judgment program
US9805443B2 (en) Image processing method, image processing apparatus, program, storage medium, production apparatus, and method of producing assembly
US8565488B2 (en) Operation analysis device and operation analysis method
US10275682B2 (en) Information processing apparatus, information processing method, and storage medium
JP2015217486A (en) Determining apparatus, determining method, and determining program
JPWO2013105164A1 (en) Abnormal signal determination device, abnormal signal determination method, and abnormal signal determination program
US10043276B2 (en) Image processing method, image processing apparatus, robot apparatus, program, and recording medium
US8654187B2 (en) Work recognition system, work recognition device, and work recognition method
JP6855826B2 (en) Judgment device, judgment method and judgment program
JP2020181532A (en) Image determination device and image determination method
EP4005785A1 (en) Abnormality detecting device, abnormality detecting method, and abnormality detecting program
CN112171057A (en) Quality detection method and device based on laser welding and storage medium
JP6690436B2 (en) Discrimination device, discrimination method, and discrimination program
JP2005128628A (en) Generation of template used for matching in pattern identification, and method, apparatus, and program for pattern identification using the template
JP6829456B2 (en) Image processing device and image processing program
JP6676954B2 (en) Processing device, processing method and processing program
JPH04289089A (en) Work evaluation device
JP6569312B2 (en) Processing apparatus, processing method, and processing program
TWI747334B (en) Fraud measurement detection device, method, program product and computer readable medium
JP2020008916A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150