JP6688522B2 - Motorized valve - Google Patents

Motorized valve Download PDF

Info

Publication number
JP6688522B2
JP6688522B2 JP2019564192A JP2019564192A JP6688522B2 JP 6688522 B2 JP6688522 B2 JP 6688522B2 JP 2019564192 A JP2019564192 A JP 2019564192A JP 2019564192 A JP2019564192 A JP 2019564192A JP 6688522 B2 JP6688522 B2 JP 6688522B2
Authority
JP
Japan
Prior art keywords
valve
straight portion
valve body
opening
side straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019564192A
Other languages
Japanese (ja)
Other versions
JPWO2019181427A1 (en
Inventor
吉田 竜也
竜也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020060200A priority Critical patent/JP6950988B2/en
Application granted granted Critical
Publication of JP6688522B2 publication Critical patent/JP6688522B2/en
Publication of JPWO2019181427A1 publication Critical patent/JPWO2019181427A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • F16K1/38Valve members of conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、弁室及び弁口(オリフィス)が設けられた弁本体と、リフト量に応じて前記弁口を流れる流体の流量を変化させる弁体とを備えた電動弁に係り、特に、ヒートポンプ式冷暖房システム等において冷媒流量を制御するのに好適な電動弁に関する。   The present invention relates to a motor-operated valve including a valve body having a valve chamber and a valve opening (orifice), and a valve body that changes a flow rate of fluid flowing through the valve opening according to a lift amount, and more particularly to a heat pump. The present invention relates to a motor-operated valve suitable for controlling the flow rate of a refrigerant in a heating and cooling system.

この種の電動弁として、例えば特許文献1に所載のものが既に知られている。   As this type of motor-operated valve, for example, the one described in Patent Document 1 is already known.

図4は、前記した従来例の電動弁の要部及び流量特性を示している。図示従来例の電動弁は、弁室40a、弁座46a、及び該弁座46aに連なる弁口46が設けられた弁本体40と、弁座46aからのリフト量に応じて弁口46を流れる流体の流量を変化させる弁体14とを備え、弁体14は、例えば特許文献1等に所載の如くの、雄ねじ部が設けられたガイドブッシュ、雌ねじ部が設けられた弁軸ホルダ、及びステッピングモータ等で構成されるねじ送り式昇降駆動機構により、弁座46aに対して昇降せしめられる。   FIG. 4 shows a main part and a flow rate characteristic of the above-mentioned conventional motor-operated valve. The electric valve of the illustrated conventional example flows through the valve chamber 40a, the valve seat 46a, the valve body 40 provided with the valve opening 46 connected to the valve seat 46a, and the valve opening 46 according to the lift amount from the valve seat 46a. A valve bush 14 for changing the flow rate of the fluid, and the valve body 14 includes a guide bush provided with a male screw portion, a valve shaft holder provided with a female screw portion, and a valve bush as described in, for example, Patent Document 1. A screw feed type elevating and lowering drive mechanism including a stepping motor or the like raises and lowers the valve seat 46a.

弁体14は、円筒面(昇降方向で外径が一定)からなるストレート部14sと、該ストレート部14sの下側(先端側)に連なる、リフト量に応じて弁口46を流れる流体の流量を変化させるための曲面部14bとを有する。曲面部14bは、先端に近づくに従って制御角(弁体14の中心軸線Oと平行な線との交差角)が段階的に大きくされた複数段(ここでは2段)の逆円錐台状のテーパ面部(上側テーパ面部14ba及び下側テーパ面部14bb)を有する。なお、曲面部14bとしては、先端に近づくに従って次第にその外周面の曲がり具合がきつく(曲率が大きく)なっている楕球状のもの(楕球面部)なども知られている。   The valve body 14 has a straight portion 14s having a cylindrical surface (constant outer diameter in the ascending / descending direction) and a flow rate of a fluid flowing through the valve port 46 depending on the lift amount, which is continuous to the lower side (tip side) of the straight portion 14s. Curved surface portion 14b for changing The curved surface portion 14b has a plurality of steps (here, two steps) of an inverted truncated cone shape in which the control angle (intersection angle with the line parallel to the central axis O of the valve body 14) is gradually increased toward the tip. It has a surface portion (upper taper surface portion 14ba and lower taper surface portion 14bb). As the curved surface portion 14b, an elliptic spherical portion (ellipsoidal spherical portion) in which the outer peripheral surface is gradually curved (curvature is large) as it approaches the tip is known.

一方、弁口46は、弁座46aに連なる円筒面(昇降方向で内径が一定)からなるストレート部46sと、該ストレート部46sの下側に連なる、下側に行くに従って内径が大きくされた円錐台面からなる拡径部46cとを有する。   On the other hand, the valve opening 46 is a straight portion 46s formed of a cylindrical surface (having a constant inner diameter in the ascending / descending direction) connected to the valve seat 46a, and a conical portion connected to the lower side of the straight portion 46s and having an inner diameter increased toward the lower side. It has a diameter-expanded portion 46c formed of a table surface.

この従来例の電動弁では、図4に示すように、前記ねじ送り式昇降駆動機構により、弁体14が弁座46aに対して昇降せしめられ、これによって、弁体14と弁座46aとの間の間隙(リフト量、弁開度)が増減されて、冷媒等の流体の弁口通過流量が調整される。また、弁体14が最下降位置(原点位置ともいい、モータに対する供給パルス数が0パルスとされる位置)にあるときに、弁体14と弁座46aとの間に所定の大きさの間隙が形成され、弁体14のストレート部14sと弁口46のストレート部46sとの間で所定量の通過流量(0パルス流量ともいう)が確保される。そのため、例えば弁座46aへの弁体14の喰いつきを防止するとともに、低流量域での制御性を確保できる。このように、弁体14が最下降位置(通常なら全閉状態となる)にあるときでも、弁座46aとの間に所定の大きさの間隙が形成されるタイプを、閉弁レスタイプと称する。   In this conventional motor-operated valve, as shown in FIG. 4, the valve feed 14 is moved up and down with respect to the valve seat 46a by the screw feed type lifting drive mechanism, whereby the valve body 14 and the valve seat 46a are separated from each other. The gap (lift amount, valve opening degree) between them is increased or decreased to adjust the flow rate of the fluid such as refrigerant passing through the valve opening. Further, when the valve body 14 is at the lowest position (also called the origin position, where the number of pulses supplied to the motor is 0 pulse), a gap of a predetermined size is provided between the valve body 14 and the valve seat 46a. Is formed, and a predetermined amount of passage flow rate (also referred to as 0 pulse flow rate) is secured between the straight portion 14s of the valve body 14 and the straight portion 46s of the valve opening 46. Therefore, for example, it is possible to prevent the valve body 14 from biting the valve seat 46a and ensure controllability in a low flow rate range. As described above, a type in which a gap of a predetermined size is formed between the valve body 14 and the valve seat 46a even when the valve body 14 is at the lowest position (normally in the fully closed state) is referred to as a valveless type. To call.

また、この種の電動弁としては、前記した閉弁レスタイプの電動弁のほか、図5に示すように、弁体14においてストレート部14sの上側に、弁座46aに着接する逆円錐台面からなる着座面部14aを設け、弁体14が最下降位置にあるときに、弁体14が弁座46aに着座する閉弁タイプのものなども既に知られている。   Further, as this type of electrically operated valve, in addition to the above-described valveless type electrically operated valve, as shown in FIG. 5, on the upper side of the straight portion 14s in the valve body 14, from the inverted truncated cone surface that is in contact with the valve seat 46a. There is already known a valve closing type in which the seating surface portion 14a is provided and the valve body 14 is seated on the valve seat 46a when the valve body 14 is at the lowest position.

特開2017−180525号公報JP, 2017-180525, A

しかしながら、例えば前記のような低流量制御(微小流量制御)を行う電動弁においては、弁口のストレート部と該弁口に挿通される弁体のストレート部との間の隙間が小さく(狭く)設定される。そのため、熱影響等によって弁座及び弁口が設けられた弁シートと弁体とが熱変形したときに、弁シートと弁体とが干渉するおそれがあり、弁体が動かなくなる(弁ロックする)、弁シートや弁体が傷付く、弁口を流れる流体の弁口通過流量のばらつきが大きくなる等の懸念があった。   However, for example, in a motor-operated valve that performs low flow rate control (micro flow rate control) as described above, the gap between the straight portion of the valve opening and the straight portion of the valve body inserted through the valve opening is small (narrow). Is set. Therefore, when the valve seat provided with the valve seat and the valve opening and the valve body are thermally deformed due to a thermal effect or the like, the valve seat and the valve body may interfere with each other, and the valve body does not move (valve locks). ), There is a concern that the valve seat and the valve body will be damaged, and the variation in the flow rate of the fluid flowing through the valve opening will increase.

本発明は、前記課題に鑑みてなされたものであって、その目的とするところは、熱影響等による弁シートと弁体との干渉を回避し得て、動作性、耐久性、制御性を効果的に向上させることのできる電動弁を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to avoid interference between a valve seat and a valve body due to a thermal effect or the like, and to improve operability, durability, and controllability. An object is to provide an electrically operated valve that can be effectively improved.

上記する課題を解決するために、本発明に係る電動弁は、基本的に、弁口が設けられた弁シート及び前記弁口を介して冷媒が導入導出される弁室を有する弁本体と、リフト量に応じて前記弁口を流れる冷媒の流量を変化させる弁体とを備え、前記弁口に、円筒面からなる弁口側ストレート部が設けられ、前記弁体に、リフト量に応じて前記弁口側ストレート部に挿通される、昇降方向で外径が一定かつ前記弁口側ストレート部より小径の弁体側ストレート部が設けられ、前記弁シートの線膨張係数は、前記弁体の線膨張係数以上に設定されるとともに、前記弁体において前記弁体側ストレート部の先端側に、曲率ないし制御角が先端に近づくに従って連続的又は段階的に大きくされた曲面部が連設されており、前記弁口側ストレート部は、前記弁口における最狭部とされており、前記弁口側ストレート部と前記弁体側ストレート部との間で画成される開口面積は、前記弁体が前記弁口を通過するときに、昇降方向に垂直な断面で視て前記弁口と前記弁体との間で画成される開口面積のうちの最小面積とされており、前記弁口側ストレート部の内径をD[mm]、前記弁口側ストレート部の開口面積をA1[mm]、前記弁口側ストレート部と前記弁体側ストレート部との間で画成される開口面積をA2[mm]として、1.0≦D≦2.5かつA2/A1≦0.056D−2に設定されていることを特徴としている。 In order to solve the problems described above, the motor-operated valve according to the present invention is basically a valve body having a valve seat provided with a valve opening and a valve chamber into which a refrigerant is introduced and drawn out through the valve opening, A valve body that changes the flow rate of the refrigerant flowing through the valve opening according to the lift amount, the valve opening is provided with a valve opening side straight portion formed of a cylindrical surface, and the valve body according to the lift amount. A valve body side straight portion, which is inserted through the valve mouth side straight portion and has a constant outer diameter in the vertical direction and a smaller diameter than the valve mouth side straight portion, is provided, and the linear expansion coefficient of the valve seat is the line of the valve body. While being set to an expansion coefficient or more, on the tip side of the valve body side straight portion in the valve body, a curved surface portion that is continuously or stepwise increased as the curvature or control angle approaches the tip is continuously provided, The valve opening side straight part is The opening area is defined as the narrowest part in the valve opening and is defined between the valve-portion-side straight portion and the valve-element-side straight portion. Is a minimum area of the opening area defined between the valve opening and the valve body when viewed in a cross section perpendicular to, and the inner diameter of the valve opening side straight portion is D [mm], the valve 1.0 ≦ D ≦ where the opening area of the mouth side straight portion is A1 [mm 2 ] and the opening area defined between the valve mouth side straight portion and the valve body side straight portion is A2 [mm 2 ]. It is characterized in that it is set to 2.5 and A2 / A1 ≦ 0.056D −2 .

更に好ましい態様では、前記曲面部は、1段もしくは複数段の逆円錐台面からなるテーパ面部を有する。   In a further preferred aspect, the curved surface portion has a tapered surface portion formed of one or a plurality of steps of an inverted truncated cone surface.

更に好ましい態様では、前記曲面部は、流量特性としてイコールパーセント特性あるいはそれに近似する特性を得られるように設計される。   In a further preferred aspect, the curved surface portion is designed so as to obtain an equal percentage characteristic or a characteristic close to it as a flow rate characteristic.

別の好ましい態様では、前記弁体の最下降位置において、前記弁口側ストレート部と前記弁体側ストレート部との昇降方向でのラップ量は、0.05mm以上に設定される。   In another preferred aspect, at the lowest position of the valve body, the amount of lap between the valve-portion-side straight portion and the valve-body-side straight portion in the vertical direction is set to 0.05 mm or more.

別の好ましい態様では、前記弁本体に設けられたキャンと、前記キャンに外装されたステータとをさらに有する。   In another preferred aspect, the valve body further includes a can and a stator mounted on the can.

本発明によれば、微小流量制御を行う電動弁において、弁シートの線膨張係数が弁体の線膨張係数以上に設定されるので、熱影響等によって弁シートと弁体とが熱変形したときに、弁シートの変形量(膨張量)が該弁シートに設けられた弁口に挿通される弁体の変形量(膨張量)より大きくなるため、熱影響等による弁シートと弁体との干渉を回避でき、動作性、耐久性、制御性を効果的に向上させることができる。   According to the present invention, in the motor-operated valve for controlling the minute flow rate, the linear expansion coefficient of the valve seat is set to be equal to or higher than the linear expansion coefficient of the valve body, so that when the valve seat and the valve body are thermally deformed due to thermal influence or the like. In addition, since the deformation amount (expansion amount) of the valve seat becomes larger than the deformation amount (expansion amount) of the valve body that is inserted into the valve opening provided in the valve seat, the valve seat and the valve body may be affected by heat and the like Interference can be avoided, and operability, durability, and controllability can be effectively improved.

本発明に係る電動弁の一実施形態を示す縦断面図。1 is a longitudinal sectional view showing an embodiment of a motor-operated valve according to the present invention. 図1に示される電動弁の要部を拡大して示す要部拡大縦断面図。FIG. 3 is an enlarged vertical cross-sectional view of a main part of the motor-operated valve shown in FIG. 1 in an enlarged manner. 弁口の口径(φD)と流路断面積比(A2/A1)との関係を示す図。The figure which shows the relationship between the diameter ((phi) D) of a valve opening, and a flow path cross-sectional area ratio (A2 / A1). 従来の電動弁の要部及び流量特性の一例を示す図。The figure which shows an example of the principal part and flow rate characteristic of the conventional motor operated valve. 従来の電動弁の要部及び流量特性の他例を示す図。The figure which shows the other example of the principal part and flow rate characteristic of the conventional motor operated valve.

以下、本発明の実施形態を図面を参照しながら説明する。なお、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、誇張して描かれている場合がある。また、本明細書において、上下、左右等の位置、方向を表わす記述は、図1の方向矢印表示を基準としており、実際の使用状態での位置、方向を指すものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, a gap formed between members, a separation distance between members, and the like may be exaggerated for easier understanding of the invention and for convenience of drawing. is there. Further, in this specification, the description of the position and direction such as up and down, left and right is based on the direction arrow display in FIG. 1, and does not indicate the position and direction in the actual use state.

図1は、本発明に係る電動弁の一実施形態を示す縦断面図である。   FIG. 1 is a vertical cross-sectional view showing an embodiment of a motor-operated valve according to the present invention.

図示実施形態の電動弁1は、例えばヒートポンプ式冷暖房システム等において冷媒流量を調整するために使用されるもので、主に、弁体14を有する弁軸10と、ガイドブッシュ20と、弁軸ホルダ30と、弁本体40と、キャン55と、ロータ51とステータ52とからなるステッピングモータ50と、圧縮コイルばね60と、抜け止め係止部材70と、ねじ送り機構28と、下部ストッパ機構29とを備える。   The motor-operated valve 1 of the illustrated embodiment is used for adjusting a refrigerant flow rate in, for example, a heat pump type cooling and heating system, and mainly includes a valve shaft 10 having a valve body 14, a guide bush 20, and a valve shaft holder. 30, a valve body 40, a can 55, a stepping motor 50 including a rotor 51 and a stator 52, a compression coil spring 60, a retaining lock member 70, a screw feed mechanism 28, and a lower stopper mechanism 29. Equipped with.

前記弁軸10は、上側から、上部小径部11と、中間大径部12と、下部小径部13とを有し、その下部小径部13の下端部に、弁口46を流れる流体(冷媒)の通過流量を制御するための弁体14が一体的に形成されている。   The valve shaft 10 has an upper small diameter portion 11, an intermediate large diameter portion 12 and a lower small diameter portion 13 from the upper side, and a fluid (refrigerant) flowing through the valve port 46 at the lower end portion of the lower small diameter portion 13. The valve body 14 for controlling the passage flow rate is integrally formed.

前記弁体14は、図1とともに図2を参照すればよく分かるように、上側(弁室40a側)から、弁軸10の下部小径部13より若干小径の円筒面(昇降方向で外径が一定)からなるストレート部(弁体側ストレート部)14sと、該ストレート部14sの下側(先端側)に連なる、弁座46aからのリフト量に応じて弁口46を流れる流体の流量を変化させるための曲面部14bとを有する。曲面部14bは、先端に近づくに従って制御角(弁体14の中心軸線Oと平行な線との交差角)が段階的に大きくされた複数段(ここでは2段)の逆円錐台状のテーパ面部を有する。ここでは、前記複数段(2段)の逆円錐台状のテーパ面部は、逆円錐台面からなる上側テーパ面部14baと、上側テーパ面部14baより制御角が大きい逆円錐台面からなる下側テーパ面部14bbとを有している。   As can be seen by referring to FIG. 1 and FIG. 2 as well, the valve element 14 has a cylindrical surface (having an outer diameter in the ascending and descending direction) slightly smaller than the lower small diameter portion 13 of the valve shaft 10 from the upper side (the valve chamber 40a side). A straight portion (valve-side straight portion) 14 s consisting of a fixed amount and a flow rate of fluid flowing through the valve port 46 depending on the lift amount from the valve seat 46 a connected to the lower side (tip side) of the straight portion 14 s. And a curved surface portion 14b for. The curved surface portion 14b has a plurality of steps (here, two steps) of an inverted truncated cone shape in which the control angle (intersection angle with the line parallel to the central axis O of the valve body 14) is gradually increased toward the tip. It has a face part. Here, the plurality of steps (two steps) of the inverted truncated cone-shaped tapered surface portions are the upper tapered surface portion 14ba formed of the inverted truncated cone surface and the lower tapered surface portion 14bb formed of the inverted truncated cone surface having a larger control angle than the upper tapered surface portion 14ba. And have.

前記ストレート部14sの昇降方向(上下方向)における長さbは、本例では、0.05mm以上かつ0.5mm以下に設定されている。弁体14のストレート部14sの外径(及び、後述する弁口46のストレート部46sの内径)は、微小流量を作り出すために、公差を厳しく(例えば数μmレベルで)加工、管理する必要があるが、前記ストレート部14sの昇降方向長さbを0.05mm以上かつ0.5mm以下にすることで、加工性を向上できるとともに、寸法測定・管理をしやすくすることができる。   In this example, the length b of the straight portion 14s in the up-and-down direction (vertical direction) is set to 0.05 mm or more and 0.5 mm or less. The outer diameter of the straight portion 14s of the valve body 14 (and the inner diameter of the straight portion 46s of the valve opening 46, which will be described later), needs to be tightly processed (for example, at a level of several μm) and managed in order to create a minute flow rate. However, when the length b of the straight portion 14s in the up-down direction is set to 0.05 mm or more and 0.5 mm or less, workability can be improved and dimensional measurement / management can be facilitated.

前記ガイドブッシュ20は、前記弁軸10(の中間大径部12)が軸線O方向に相対移動(摺動)可能及び軸線O回りに相対回転可能な状態で内挿される円筒部21と、該円筒部21の上端部から上方に延びており、該円筒部21よりも内径が大きく、前記弁軸10の中間大径部12の上端側と上部小径部11の下端側とが内挿される延設部22とを有している。前記ガイドブッシュ20の円筒部21の外周には、ロータ51の回転駆動に応じて前記弁軸10の弁体14を弁本体40の弁座46aに対して昇降させるねじ送り機構28の一方を構成する固定ねじ部(雄ねじ部)23が形成されている。また、前記円筒部21の下部(固定ねじ部23より下側の部分)は、大径とされ、弁本体40の嵌合穴44への嵌合部27とされる。前記固定ねじ部23(における弁軸ホルダ30より下側)には、下部ストッパ25が螺着されて固定されており、その下部ストッパ25の外周には、弁軸ホルダ30(すなわち、弁軸ホルダ30に連結された弁軸10)の回転下動規制を行う下部ストッパ機構29の一方を構成する固定ストッパ体24が一体的に突設されている。なお、嵌合部27の上面27aは、下部ストッパ25の下動規制を行う(言い換えれば、下部ストッパ25の下動限界位置もしくは最下動位置を規定する)ストッパ部とされる。   The guide bush 20 has a cylindrical portion 21 inserted therein such that (the intermediate large diameter portion 12 of) the valve shaft 10 is relatively movable (sliding) in the direction of the axis O and relatively rotatable around the axis O. It extends upward from the upper end of the cylindrical portion 21, has an inner diameter larger than that of the cylindrical portion 21, and the upper end side of the intermediate large-diameter portion 12 and the lower end side of the upper small-diameter portion 11 of the valve shaft 10 are inserted. And the installation portion 22. On the outer circumference of the cylindrical portion 21 of the guide bush 20, one of the screw feed mechanisms 28 for raising and lowering the valve body 14 of the valve shaft 10 with respect to the valve seat 46a of the valve body 40 according to the rotational drive of the rotor 51 is configured. A fixed screw portion (male screw portion) 23 is formed. Further, the lower portion of the cylindrical portion 21 (the portion below the fixing screw portion 23) has a large diameter and serves as a fitting portion 27 into the fitting hole 44 of the valve body 40. A lower stopper 25 is screwed and fixed to (on the lower side of the valve shaft holder 30 in) the fixing screw portion 23, and the valve shaft holder 30 (that is, the valve shaft holder is attached to the outer periphery of the lower stopper 25. A fixed stopper body 24, which constitutes one of the lower stopper mechanisms 29 for restricting the downward movement of the rotation of the valve shaft 10) connected to 30, is integrally projected. The upper surface 27a of the fitting portion 27 serves as a stopper portion that regulates the lower movement of the lower stopper 25 (in other words, defines the lower movement limit position or the lowermost movement position of the lower stopper 25).

前記弁軸ホルダ30は、前記ガイドブッシュ20が内挿される円筒部31と前記弁軸10(の上部小径部11)の上端部が挿通される挿通穴32aが貫設された天井部32とを有している。前記弁軸ホルダ30の円筒部31の内周には、前記ガイドブッシュ20の固定ねじ部23と螺合して前記ねじ送り機構28を構成する可動ねじ部(雌ねじ部)33が形成されると共に、その円筒部31の外周下端には、前記下部ストッパ機構29の他方を構成する可動ストッパ体34が一体的に突設されている。   The valve shaft holder 30 includes a cylindrical portion 31 into which the guide bush 20 is inserted, and a ceiling portion 32 having an insertion hole 32a through which the upper end portion of (the upper small diameter portion 11 of) the valve shaft 10 is inserted. Have A movable screw portion (female screw portion) 33 that is screwed with the fixing screw portion 23 of the guide bush 20 to form the screw feed mechanism 28 is formed on the inner periphery of the cylindrical portion 31 of the valve shaft holder 30. A movable stopper body 34, which constitutes the other of the lower stopper mechanisms 29, is integrally projectingly provided on the lower end of the outer periphery of the cylindrical portion 31.

前記弁軸ホルダ30は、例えば、ポリフェニレンサルファイド(PPS)樹脂を基材として、カーボンフィラ(CF)を配合させることで、可動ねじ部(雌ねじ部)33や可動ストッパ体34の耐摩耗性を向上することができる。また、同様にし、ポリテトラフルオロエチレン(PTFE)や黒鉛(C)を配合させることで、可動ねじ部33の摺動性を向上することができる。   The valve shaft holder 30 improves wear resistance of the movable screw portion (female screw portion) 33 and the movable stopper body 34 by blending carbon filler (CF) with polyphenylene sulfide (PPS) resin as a base material, for example. can do. Similarly, by blending polytetrafluoroethylene (PTFE) or graphite (C), the slidability of the movable screw portion 33 can be improved.

また、前記弁軸10の上部小径部11と中間大径部12との間に形成された段丘面と前記弁軸ホルダ30の天井部32の下面との間には、弁軸10の上部小径部11に外挿されるように、前記弁軸10と前記弁軸ホルダ30とが昇降方向(軸線O方向)で離れる方向に付勢する、言い換えれば前記弁軸10(弁体14)を常時下方(閉弁方向)に付勢する圧縮コイルばね60が縮装されている。   Further, between the terrace surface formed between the upper small diameter portion 11 and the intermediate large diameter portion 12 of the valve shaft 10 and the lower surface of the ceiling portion 32 of the valve shaft holder 30, the upper small diameter portion of the valve shaft 10 is provided. The valve shaft 10 and the valve shaft holder 30 are urged in such a manner that they are separated from each other in the up-and-down direction (the direction of the axis O) so that the valve shaft 10 (valve body 14) is always moved downward. The compression coil spring 60 that urges in the (valve closing direction) is compressed.

前記弁本体40は、例えば真鍮やSUS等の円筒体から構成されている。この弁本体40は、内部に流体が導入導出される弁室40aを有している。該弁室40aの側部に設けられた横向きの第1開口41に第1導管41aがろう付け等により連結固定され、該弁室40aの天井部に前記弁軸10(の中間大径部12)が軸線O方向に相対移動(摺動)可能及び軸線O回りに相対回転可能な状態で挿通される挿通穴43及び前記ガイドブッシュ20の下部(嵌合部27)が嵌合されて取付固定される嵌合穴44が形成され、該弁室40aの下部に設けられた縦向きの第2開口42に第2導管42aがろう付け等により連結固定されている。また、前記弁室40aと前記第2開口42との間に設けられた底部壁からなる弁シート45に、前記弁体14が接離又は近接離間する弁座46aを有する弁口46が形成されている。   The valve body 40 is composed of a cylindrical body such as brass or SUS. The valve body 40 has a valve chamber 40a into which a fluid is introduced and discharged. The first conduit 41a is connected and fixed by brazing or the like to the first lateral opening 41 provided in the side portion of the valve chamber 40a, and the valve shaft 10 (the intermediate large diameter portion 12 of the valve shaft 10 is attached to the ceiling portion of the valve chamber 40a. ) Is relatively movable (sliding) in the axis O direction and is relatively rotatable around the axis O, and the insertion hole 43 and the lower portion (fitting portion 27) of the guide bush 20 are fitted and fixed. The fitting hole 44 is formed, and the second conduit 42a is connected and fixed by brazing or the like to the vertically oriented second opening 42 provided in the lower portion of the valve chamber 40a. Further, a valve seat 45 formed of a bottom wall provided between the valve chamber 40a and the second opening 42 is formed with a valve port 46 having a valve seat 46a for contacting or separating the valve body 14 with or away from it. ing.

前記弁口46は、図1とともに図2を参照すればよく分かるように、上側(弁室40a側)から、弁座46aの下側に連なる、円筒面(昇降方向で内径が一定)からなるストレート部46sと、該ストレート部46sの下側に連なる、下側に行くに従って内径が連続的に大きくされた円錐台面からなる拡径部46cとを有する。つまり、本例において、ストレート部46sは、弁口46における最狭部(弁口46において最も口径が小さくされた部分)となっており、ストレート部46sの内径が弁口46の口径とされている。   As will be understood by referring to FIG. 1 as well as FIG. 2, the valve port 46 is formed of a cylindrical surface (having a constant inner diameter in the ascending / descending direction) which is continuous from the upper side (the valve chamber 40a side) to the lower side of the valve seat 46a. It has a straight portion 46s and an enlarged diameter portion 46c which is continuous with the lower side of the straight portion 46s and which is a truncated cone surface whose inner diameter is continuously increased toward the lower side. That is, in this example, the straight portion 46s is the narrowest portion of the valve opening 46 (the portion of the valve opening 46 with the smallest diameter), and the inner diameter of the straight portion 46s is the diameter of the valve opening 46. There is.

前記弁座46a及びストレート部46sの内径(口径)(φD)は、前記弁軸10の下部小径部13より小径、かつ、当該弁口46(のストレート部46s)に挿通される前記弁体14のストレート部14sの外径(φd)より若干大径に設計されている。   The inner diameter (diameter) (φD) of the valve seat 46a and the straight portion 46s is smaller than that of the lower small-diameter portion 13 of the valve shaft 10 and the valve body 14 inserted into (the straight portion 46s of) the valve opening 46. The diameter is designed to be slightly larger than the outer diameter (φd) of the straight portion 14s.

また、ここでは、弁軸ホルダ30の可動ストッパ体34とガイドブッシュ20に固定された下部ストッパ25の固定ストッパ体24とが当接し、弁体14が最下降位置(原点位置)にあるときに、ストレート部14sの下端部とストレート部46sの下端部とが略同じ位置になるように、かつ、弁体14のストレート部14sと弁口46のストレート部46sとの昇降方向でのラップ量(重なり量)L(すなわち、距離Lは、弁体14のストレート部14sの下端と弁口46のストレート部46sの上端との昇降方向の距離)が、ねじ送り機構28(を構成する固定ねじ部23と可動ねじ部33との間)のねじガタ分である0.05mm以上となるように、各部の寸法形状が設定されている(図1及び図2に示される状態)。   Further, here, when the movable stopper body 34 of the valve shaft holder 30 and the fixed stopper body 24 of the lower stopper 25 fixed to the guide bush 20 come into contact with each other and the valve body 14 is at the lowest position (origin position). , So that the lower end portion of the straight portion 14s and the lower end portion of the straight portion 46s are located at substantially the same position, and the straight portion 14s of the valve body 14 and the straight portion 46s of the valve opening 46 are vertically lapped ( The overlap amount) L (that is, the distance L is the distance in the up-and-down direction between the lower end of the straight portion 14s of the valve body 14 and the upper end of the straight portion 46s of the valve opening 46) is (the fixed screw portion that constitutes the screw feeding mechanism 28. The dimension and shape of each part are set so as to be 0.05 mm or more, which is the amount of play between the screw 23 and the movable screw part 33) (the state shown in FIGS. 1 and 2).

一方、前記弁本体40の上端部には鍔状板47がかしめ等により固着されると共に、該鍔状板47の外周に設けられた段差部に、天井付き円筒状のキャン55の下端部が突き合わせ溶接により密封接合されている。   On the other hand, a flanged plate 47 is fixed to the upper end of the valve body 40 by caulking, and the lower end of a cylindrical can 55 with a ceiling is attached to a step provided on the outer periphery of the flanged plate 47. Sealed and joined by butt welding.

前記弁本体40に設けられたキャン55の内側かつ前記ガイドブッシュ20及び前記弁軸ホルダ30の外側には、ロータ51が回転自在に配在され、前記キャン55の外側に、前記ロータ51を回転駆動すべく、ヨーク52a、ボビン52b、ステータコイル52c、及び樹脂モールドカバー52d等からなるステータ52が配置されている。ステータコイル52cには、複数のリード端子52eが接続され、これらのリード端子52eには、基板52fを介して複数のリード線52gが接続され、ステータコイル52cへの通電励磁によってキャン55内に配在されたロータ51が軸線O回りで回転するようになっている。   A rotor 51 is rotatably arranged inside a can 55 provided on the valve body 40 and outside the guide bush 20 and the valve shaft holder 30, and the rotor 51 is rotated outside the can 55. A stator 52 including a yoke 52a, a bobbin 52b, a stator coil 52c, a resin mold cover 52d, and the like is arranged for driving. A plurality of lead terminals 52e are connected to the stator coil 52c, and a plurality of lead wires 52g are connected to the lead terminals 52e via a substrate 52f. The existing rotor 51 is adapted to rotate around the axis O.

キャン55内に配在された前記ロータ51は、前記弁軸ホルダ30に係合支持されており、当該弁軸ホルダ30は前記ロータ51とともに(一体に)回転するようになっている(詳細構造は、上記特許文献1等参照)。   The rotor 51 arranged in the can 55 is engaged with and supported by the valve shaft holder 30, and the valve shaft holder 30 rotates (integrally) with the rotor 51 (detailed structure). Refer to the above-mentioned Patent Document 1).

前記ロータ51及び弁軸ホルダ30の上側には、弁軸ホルダ30とロータ51との昇降方向における相対移動を防止する(言い換えれば、弁軸ホルダ30に対してロータ51を下方に押し付ける)と共に弁軸10と弁軸ホルダ30とを連結すべく、前記弁軸10(の上部小径部11)の上端部に圧入・溶接等により外嵌固定されたプッシュナット71と、該プッシュナット71とロータ51との間に介在され、弁軸10の上端部が挿通される挿通穴72aが中央に形成された円板状部材からなるロータ押さえ72とから構成される抜け止め係止部材70が配在されている。すなわち、前記ロータ51は、圧縮コイルばね60の付勢力により上方に付勢される弁軸ホルダ30と前記ロータ押さえ72との間で挟持されている。なお、弁軸ホルダ30(の天井部32)の上面は、前記ロータ押さえ72の下面(平坦面)と当接している。   Above the rotor 51 and the valve shaft holder 30, the valve shaft holder 30 and the rotor 51 are prevented from moving relative to each other in the vertical direction (in other words, the rotor 51 is pressed downward against the valve shaft holder 30) and the valve is In order to connect the shaft 10 and the valve shaft holder 30, a push nut 71 externally fitted and fixed to the upper end portion of (the upper small diameter portion 11 of) the valve shaft 10 by press fitting, welding, etc., the push nut 71 and the rotor 51. And a retainer locking member 70 formed of a rotor retainer 72 formed of a disc-shaped member having a through hole 72a formed at the center, which is interposed between the rotor retainer 72 and the upper end of the valve shaft 10. ing. That is, the rotor 51 is sandwiched between the valve shaft holder 30 and the rotor retainer 72, which are biased upward by the biasing force of the compression coil spring 60. The upper surface of (the ceiling portion 32 of) the valve shaft holder 30 is in contact with the lower surface (flat surface) of the rotor retainer 72.

また、前記弁軸10の上端部に固定された前記プッシュナット71には、動作時にガイドブッシュ20に対して弁軸ホルダ30が上方に移動し過ぎて、ガイドブッシュ20の固定ねじ部23と弁軸ホルダ30の可動ねじ部33との螺合が外れるのを防止すべく、弁軸ホルダ30をガイドブッシュ20側に付勢するコイルばねからなる復帰ばね75が外装されている。   In addition, the push nut 71 fixed to the upper end of the valve shaft 10 moves the valve shaft holder 30 upwards with respect to the guide bush 20 excessively during operation, so that the fixing screw portion 23 of the guide bush 20 and the valve nut. In order to prevent the shaft holder 30 from being unscrewed from the movable screw portion 33, a return spring 75 formed of a coil spring that biases the valve shaft holder 30 toward the guide bush 20 is provided.

そして、本実施形態の電動弁1では、例えば弁シート部46aへの弁体14の喰いつきを防止するとともに、低流量域での制御性を確保すべく、弁体14が最下降位置(原点位置)にあるときに、弁体14と弁シート部46aとの間に所定の大きさの間隙が形成され、弁体14のストレート部14sと弁口46のストレート部46sとの間に形成される間隙(開口面積)を通して冷媒等の流体が流されるようになっている。   Then, in the motor-operated valve 1 of the present embodiment, for example, in order to prevent the valve body 14 from biting the valve seat portion 46a and ensure controllability in a low flow rate range, the valve body 14 is at the lowest position (origin). Position), a gap of a predetermined size is formed between the valve body 14 and the valve seat portion 46a, and is formed between the straight portion 14s of the valve body 14 and the straight portion 46s of the valve opening 46. A fluid such as a refrigerant is allowed to flow through a gap (opening area).

かかる構成の電動弁1では、ステータ52(のステータコイル52c)への通電励磁によってロータ51が回転せしめられると、それと一体に弁軸ホルダ30及び弁軸10が回転せしめられる。このとき、ガイドブッシュ20の固定ねじ部23と弁軸ホルダ30の可動ねじ部33とからなるねじ送り機構28により、弁軸10が弁体14を伴って昇降せしめられ、これによって、弁体14と弁座46aとの間の間隙(リフト量、弁開度)が増減されて、冷媒等の流体の通過流量が調整される(図4参照)。また、弁軸ホルダ30の可動ストッパ体34とガイドブッシュ20に固定された下部ストッパ25の固定ストッパ体24とが当接し、弁体14が最下降位置にあるとき(弁体14のリフト量が0のとき)でも、弁体14と弁座46aとの間に間隙が形成され、弁体14のストレート部14sと弁口46のストレート部46sとの間で所定量の通過流量(0パルス流量)が確保される(図4参照)。   In the motor-operated valve 1 having such a configuration, when the rotor 51 is rotated by energizing and exciting the stator 52 (the stator coil 52c of the stator 52), the valve shaft holder 30 and the valve shaft 10 are rotated integrally with the rotor 51. At this time, the valve shaft 10 is moved up and down together with the valve body 14 by the screw feed mechanism 28 including the fixing screw portion 23 of the guide bush 20 and the movable screw portion 33 of the valve shaft holder 30. The gap between the valve seat 46a and the valve seat 46a (lift amount, valve opening) is increased or decreased to adjust the flow rate of the fluid such as the refrigerant (see FIG. 4). Further, when the movable stopper body 34 of the valve shaft holder 30 and the fixed stopper body 24 of the lower stopper 25 fixed to the guide bush 20 contact each other and the valve body 14 is at the lowest position (the lift amount of the valve body 14 is Even when 0), a gap is formed between the valve body 14 and the valve seat 46a, and a predetermined amount of passage flow rate (0 pulse flow rate) between the straight portion 14s of the valve body 14 and the straight portion 46s of the valve opening 46. ) Is secured (see FIG. 4).

ところで、本実施形態の電動弁1において、弁体14のストレート部14sと弁口46のストレート部46sとの間で画成される開口面積(リング状の流路断面積)は、弁体14が弁口46を通過するときに(詳しくは、弁体14が、弁口46の内側を昇降するとともに、弁体14が最上昇位置にあるときに、弁体14の先端部(下端部)が弁口46の上端部(ここでは、弁座46a)より上側(弁室40a側)に位置せしめられて弁口46から抜け出るときに)、昇降方向に垂直な断面で視て弁口46(の内面)と弁体14(の外面)との間で画成される開口面積(流路断面積)のうちの最小面積とされており、その弁体14のストレート部14sと弁口46のストレート部46sとの間の開口面積によって、前記した低流量域における微小流量制御を行うようになっている。   By the way, in the motor-operated valve 1 of the present embodiment, the opening area (ring-shaped flow passage cross-sectional area) defined between the straight portion 14s of the valve body 14 and the straight portion 46s of the valve opening 46 is equal to the valve body 14 When passing through the valve opening 46 (specifically, when the valve body 14 moves up and down inside the valve opening 46 and the valve body 14 is at the highest position, the tip portion (lower end portion) of the valve body 14). Is positioned above the upper end of the valve opening 46 (here, the valve seat 46a) (outside the valve chamber 40a) and exits from the valve opening 46), and the valve opening 46 ( (The inner surface of the valve body) and (the outer surface of) the valve body 14 is defined as the minimum area of the opening area (flow passage cross-sectional area) defined between the straight portion 14s of the valve body 14 and the valve opening 46. Due to the opening area between the straight portion 46s and the straight portion 46s, It is adapted to perform flow control.

ここで、「微小流量」は、本発明者等による鋭意研究によって、図3に示すように、A2/A1が0.056D−2以下(A2/A1≦0.056D−2)の範囲で実現し得る(換言すれば、必要流量を確保し得る)ことが確認されている。なお、D[mm]は、弁口46のストレート部46sの内径(つまり、弁口46の口径)、A1[mm]は、弁口46のストレート部46sの開口面積(つまり、A1=πD/4)、A2[mm]は、弁体14のストレート部14sと弁口46のストレート部46sとの間で画成される開口面積(つまり、弁体14のストレート部14sの外径(直径)をdとしたとき、A2=π(D−d)/4)である。Here, the “minute flow rate” is realized in the range of A2 / A1 of 0.056D −2 or less (A2 / A1 ≦ 0.056D −2 ), as shown in FIG. It has been confirmed that it is possible (in other words, the required flow rate can be secured). Note that D [mm] is the inner diameter of the straight portion 46s of the valve opening 46 (that is, the diameter of the valve opening 46), and A1 [mm 2 ] is the opening area of the straight portion 46s of the valve opening 46 (that is, A1 = πD 2/4), A2 [mm 2] , the aperture area being defined between the straight portion 46s of the straight portion 14s and the valve port 46 of the valve body 14 (i.e., the outer diameter of the straight portion 14s of the valve body 14 When (diameter) is d, A2 = π (D 2 −d 2 ) / 4).

また、上記範囲において、D<1.0においては、流路断面積比(A2/A1)に対して流量変化が大きく(つまり、0.056D−2の曲線勾配が急となり)、D>2.5においては、流路断面積比(A2/A1)に対して流量変化が小さく(つまり、0.056D−2の曲線勾配が緩くなり)、D<1.0及びD>2.5の範囲では、流量制御が難しくなる(制御性が低下する)。そのため、「微小流量」の制御は、弁口46のストレート部46sの内径(弁口46の口径)が1.0mm以上かつ2.5mm以下(1.0≦D≦2.5)の範囲(図3中の斜線で示される領域)で実施される。Further, in the above range, when D <1.0, the flow rate changes largely with respect to the flow path cross-sectional area ratio (A2 / A1) (that is, the curve slope of 0.056D −2 becomes steep), and D> 2. .5, the flow rate change is small with respect to the flow path cross-sectional area ratio (A2 / A1) (that is, the curve slope of 0.056D −2 becomes gentle), and D <1.0 and D> 2.5. In the range, flow rate control becomes difficult (controllability decreases). Therefore, the control of the "minute flow rate" is performed in the range where the inner diameter of the straight portion 46s of the valve opening 46 (diameter of the valve opening 46) is 1.0 mm or more and 2.5 mm or less (1.0≤D≤2.5) ( This is performed in the hatched area in FIG.

しかし、前記のような微小流量制御を行う電動弁1においては、前述したように、弁シート45に設けられた弁口46のストレート部46sとリフト量に応じて該弁口46のストレート部46sに挿通される弁体14のストレート部14sとの間の隙間が小さく(狭く)設定される。そのため、熱影響等によって弁シート45と弁体14とが熱変形したときに、弁シート45と弁体14とが干渉するおそれがあった。   However, in the motor-operated valve 1 that performs the minute flow rate control as described above, as described above, the straight portion 46s of the valve opening 46 provided in the valve seat 45 and the straight portion 46s of the valve opening 46 according to the lift amount. The gap between the straight portion 14s of the valve body 14 inserted through the is set small (narrow). Therefore, when the valve seat 45 and the valve body 14 are thermally deformed due to the influence of heat or the like, the valve seat 45 and the valve body 14 may interfere with each other.

そこで、本実施形態の電動弁1では、前記のような熱影響等による弁シート45と弁体14との干渉を回避すべく、以下のような対策が講じられている。   Therefore, in the motor-operated valve 1 of the present embodiment, the following measures are taken in order to avoid the interference between the valve seat 45 and the valve body 14 due to the above-mentioned thermal influence or the like.

すなわち、本実施形態の電動弁1では、弁シート45(弁本体40)の線膨張係数は、弁体14(弁軸10)の線膨張係数以上に設定されている。   That is, in the motor-operated valve 1 of the present embodiment, the linear expansion coefficient of the valve seat 45 (valve body 40) is set to be equal to or higher than the linear expansion coefficient of the valve body 14 (valve shaft 10).

ここで、弁シート45(弁本体40)や弁体14(弁軸10)は、例えば、真鍮やSUS等の金属、あるいは、PPS等の樹脂で作製することができる。   Here, the valve seat 45 (valve body 40) and the valve body 14 (valve shaft 10) can be made of, for example, metal such as brass or SUS, or resin such as PPS.

真鍮、SUS(例えばSUS303)、PPSの線膨張係数の関係は、SUS<真鍮<PPSとなっているので、弁シート45(弁本体40)や弁体14(弁軸10)を構成する材料として、以下の表1のような組み合わせを採用することで、弁シート45(弁本体40)の線膨張係数を弁体14(弁軸10)の線膨張係数以上に設定することができる。   The relationship between the linear expansion coefficients of brass, SUS (for example, SUS303), and PPS is SUS <brass <PPS, so as a material for the valve seat 45 (valve body 40) and the valve body 14 (valve shaft 10). By adopting the combination shown in Table 1 below, the linear expansion coefficient of the valve seat 45 (valve body 40) can be set to be equal to or higher than the linear expansion coefficient of the valve body 14 (valve shaft 10).

Figure 0006688522
このように、本実施形態の電動弁1では、微小流量制御を行う電動弁1において、弁シート45の線膨張係数が弁体14の線膨張係数以上に設定されるので、熱影響等によって弁シート45と弁体14とが熱変形したときに、弁シート45の変形量(膨張量)が該弁シート45に設けられた弁口46に挿通される弁体14の変形量(膨張量)より大きくなるため、熱影響等による弁シート45と弁体14との干渉を回避でき、動作性、耐久性、制御性を効果的に向上させることができる。
Figure 0006688522
As described above, in the motor-operated valve 1 of the present embodiment, in the motor-operated valve 1 that performs the minute flow rate control, the linear expansion coefficient of the valve seat 45 is set to be equal to or higher than the linear expansion coefficient of the valve body 14, so that the valve is affected by heat or the like. When the seat 45 and the valve element 14 are thermally deformed, the deformation amount (expansion amount) of the valve seat 45 is changed by the valve opening 14 provided in the valve seat 45. Since it becomes larger, it is possible to avoid interference between the valve seat 45 and the valve body 14 due to thermal influence, etc., and it is possible to effectively improve operability, durability, and controllability.

なお、本明細書中で、線膨張係数とは、径方向の線膨張係数のことを示すが、等方性材料(線膨張係数が方向に関わらず一定の材料)の場合は、その材料のいずれの方向の線膨張係数を径方向の線膨張係数とみなしてもよいことは勿論である。また、線膨張係数(特に等方性材料の場合)は、JIS Z 2285(金属材料の線膨張係数の測定方法)に基づき、常温から120℃の範囲での測定した結果を採用してもよい。なお、本実施形態における弁体14と弁シート45は等方性材料から構成されている。   In the present specification, the linear expansion coefficient refers to a linear expansion coefficient in the radial direction, but in the case of an isotropic material (a material having a constant linear expansion coefficient regardless of the direction), It goes without saying that the linear expansion coefficient in either direction may be regarded as the radial linear expansion coefficient. Further, the linear expansion coefficient (particularly in the case of an isotropic material) may be a result measured from room temperature to 120 ° C. based on JIS Z 2285 (measuring method of linear expansion coefficient of metal material). . The valve element 14 and the valve seat 45 in this embodiment are made of an isotropic material.

なお、上記実施形態では、弁体14における曲面部14bが、先端側ほど制御角が段階的に大きくされた複数段の逆円錐台状のテーパ面部(上側テーパ面部14ba及び下側テーパ面部14bb)で構成されているが、これに限られる訳ではなく、1段の逆円錐台面からなるテーパ面部で構成してもよいし、例えば、流量特性としてイコールパーセント特性あるいはそれに近似する特性を得られるように設計された、先端に近づくに従って曲率が連続的に大きくされた楕球面部、あるいは、該楕球面部と一段もしくは複数段の逆円錐台状のテーパ面部との組み合わせ等により構成してもよいことは勿論である。   In the above-described embodiment, the curved surface portion 14b of the valve body 14 has a plurality of stages of inverted truncated cone-shaped tapered surface portions (the upper tapered surface portion 14ba and the lower tapered surface portion 14bb) whose control angles are gradually increased toward the tip end side. However, the present invention is not limited to this, and it may be configured by a taper surface portion composed of a single inverted truncated cone surface. For example, an equal percent characteristic or a characteristic close to it can be obtained as the flow rate characteristic. The ellipsoidal spherical portion designed to have a curvature continuously increased as it approaches the tip, or a combination of the elliptic spherical surface portion and one or more steps of an inverted frustoconical taper surface portion may be used. Of course.

また、上記実施形態では、弁体14が最下降位置(原点位置)にあるときに、弁体14と弁座46aとの間に所定の大きさの間隙が形成される閉弁レスタイプの電動弁1を例示して説明したが、本発明は、例えば弁体14のストレート部14sの上側(換言すれば、弁軸10の下部小径部13と弁体14のストレート部14sとの間)に、弁座46aに着接(着座)する逆円錐台面からなる着座面部14aを設け、弁体14が最下降位置(原点位置)にあるときに、弁体14(の着座面部14a)が弁座46aに着座する閉弁タイプの電動弁にも適用できることは勿論である(図5参照)。   In addition, in the above-described embodiment, when the valve body 14 is at the lowest position (origin position), a valve-closureless type electric motor is provided in which a gap of a predetermined size is formed between the valve body 14 and the valve seat 46a. Although the valve 1 has been described as an example, the present invention can be applied to, for example, the upper side of the straight portion 14s of the valve body 14 (in other words, between the lower small diameter portion 13 of the valve shaft 10 and the straight portion 14s of the valve body 14). , A seating surface portion 14a formed of an inverted truncated cone surface that is seated on (seats) the valve seat 46a is provided, and when the valve body 14 is at the lowest position (origin position), the valve body 14 (the seating surface portion 14a) is Needless to say, the present invention can be applied to a valve-closing type electric valve that is seated on 46a (see FIG. 5).

1 電動弁
10 弁軸
14 弁体
14a 着座面部
14b 曲面部
14ba 上側テーパ面部
14bb 下側テーパ面部
14s ストレート部(弁体側ストレート部)
20 ガイドブッシュ
21 円筒部
23 固定ねじ部(雄ねじ部)
28 ねじ送り機構
29 下部ストッパ機構
30 弁軸ホルダ
33 可動ねじ部(雌ねじ部)
40 弁本体
40a 弁室
41 第1開口
41a 第1導管
42 第2開口
42a 第2導管
45 弁シート
46 弁口
46a 弁座
46c 拡径部
46s ストレート部(弁口側ストレート部)
47 鍔状板
50 ステッピングモータ
51 ロータ
52 ステータ
55 キャン
60 圧縮コイルばね
70 抜け止め係止部材
1 Motorized Valve 10 Valve Shaft 14 Valve Body 14a Seating Surface 14b Curved Surface 14ba Upper Tapered Surface 14bb Lower Tapered Surface 14s Straight Section (Valve Side Straight Section)
20 Guide bush 21 Cylindrical part 23 Fixing screw part (male screw part)
28 Screw feeding mechanism 29 Lower stopper mechanism 30 Valve shaft holder 33 Movable screw part (female screw part)
40 valve body 40a valve chamber 41 1st opening 41a 1st conduit 42 2nd opening 42a 2nd conduit 45 valve seat 46 valve opening 46a valve seat 46c diameter expansion part 46s straight part (valve opening side straight part)
47 collar plate 50 stepping motor 51 rotor 52 stator 55 can 60 compression coil spring 70 retaining locking member

Claims (5)

弁口が設けられた弁シート及び前記弁口を介して冷媒が導入導出される弁室を有する弁本体と、リフト量に応じて前記弁口を流れる冷媒の流量を変化させる弁体とを備え、
前記弁口に、円筒面からなる弁口側ストレート部が設けられ、前記弁体に、リフト量に応じて前記弁口側ストレート部に挿通される、昇降方向で外径が一定かつ前記弁口側ストレート部より小径の弁体側ストレート部が設けられている電動弁であって、
前記弁シートの線膨張係数は、前記弁体の線膨張係数以上に設定されるとともに、
前記弁体において前記弁体側ストレート部の先端側に、曲率ないし制御角が先端に近づくに従って連続的又は段階的に大きくされた曲面部が連設されており、
前記弁口側ストレート部は、前記弁口における最狭部とされており、
前記弁口側ストレート部と前記弁体側ストレート部との間で画成される開口面積は、前記弁体が前記弁口を通過するときに、昇降方向に垂直な断面で視て前記弁口と前記弁体との間で画成される開口面積のうちの最小面積とされており、
前記弁口側ストレート部の内径をD[mm]、前記弁口側ストレート部の開口面積をA1[mm]、前記弁口側ストレート部と前記弁体側ストレート部との間で画成される開口面積をA2[mm]として、1.0≦D≦2.5かつA2/A1≦0.056D−2に設定されていることを特徴とする電動弁。
A valve body having a valve seat provided with a valve opening and a valve chamber through which the refrigerant is introduced and drawn out through the valve opening, and a valve body that changes a flow rate of the refrigerant flowing through the valve opening according to a lift amount. ,
The valve opening is provided with a valve opening side straight portion formed of a cylindrical surface, and the valve body is inserted into the valve opening side straight portion according to a lift amount, and has a constant outer diameter in a vertical direction and the valve opening. An electric valve having a valve body side straight portion having a smaller diameter than the side straight portion,
The linear expansion coefficient of the valve seat is set to be equal to or greater than the linear expansion coefficient of the valve body,
In the valve body, on the tip side of the valve body side straight portion, a curved surface portion that is continuously or stepwise increased as the curvature or control angle approaches the tip is continuously provided,
The valve opening side straight portion is the narrowest portion in the valve opening,
The opening area defined between the valve-portion-side straight portion and the valve-body-side straight portion has the same value as that of the valve orifice when viewed in a cross section perpendicular to the vertical direction when the valve element passes through the valve orifice. It is the minimum area of the opening area defined between the valve body and
The inner diameter of the valve-portion-side straight portion is D [mm], the opening area of the valve-portion-side straight portion is A1 [mm 2 ], and is defined between the valve-portion-side straight portion and the valve body-side straight portion. A motor-operated valve having an opening area of A2 [mm 2 ] and 1.0 ≦ D ≦ 2.5 and A2 / A1 ≦ 0.056D −2 .
前記曲面部は、1段もしくは複数段の逆円錐台面からなるテーパ面部を有することを特徴とする請求項1に記載の電動弁。   The motor-operated valve according to claim 1, wherein the curved surface portion has a taper surface portion formed of one or more stages of inverted truncated cone surfaces. 前記曲面部は、流量特性としてイコールパーセント特性あるいはそれに近似する特性を得られるように設計されていることを特徴とする請求項1に記載の電動弁。   The motor-operated valve according to claim 1, wherein the curved surface portion is designed so as to obtain an equal percentage characteristic or a characteristic similar thereto as a flow rate characteristic. 前記弁体の最下降位置において、前記弁口側ストレート部と前記弁体側ストレート部との昇降方向でのラップ量は、0.05mm以上に設定されていることを特徴とする請求項1から3のいずれか一項に記載の電動弁。 In the lowest position of the valve body, lapping amount in the lifting direction and the valve-port side straight portion the valve body side straight portion from claim 1, characterized in that it is set to at least 0.05 mm 3 The electric valve according to any one of 1 . 前記弁本体に設けられたキャンと、前記キャンに外装されたステータとをさらに有することを特徴とする請求項1から4のいずれか一項に記載の電動弁。 The motor-operated valve according to any one of claims 1 to 4, further comprising a can provided on the valve body, and a stator provided on the can.
JP2019564192A 2018-03-22 2019-03-01 Motorized valve Active JP6688522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060200A JP6950988B2 (en) 2018-03-22 2020-03-30 Electric valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018053981 2018-03-22
JP2018053981 2018-03-22
PCT/JP2019/007997 WO2019181427A1 (en) 2018-03-22 2019-03-01 Electric valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020060200A Division JP6950988B2 (en) 2018-03-22 2020-03-30 Electric valve

Publications (2)

Publication Number Publication Date
JP6688522B2 true JP6688522B2 (en) 2020-04-28
JPWO2019181427A1 JPWO2019181427A1 (en) 2020-04-30

Family

ID=67986171

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019564192A Active JP6688522B2 (en) 2018-03-22 2019-03-01 Motorized valve
JP2020060200A Active JP6950988B2 (en) 2018-03-22 2020-03-30 Electric valve

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020060200A Active JP6950988B2 (en) 2018-03-22 2020-03-30 Electric valve

Country Status (3)

Country Link
JP (2) JP6688522B2 (en)
CN (1) CN111954775B (en)
WO (1) WO2019181427A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063453B2 (en) * 2018-03-22 2022-05-09 株式会社不二工機 Solenoid valve
CN112032327B (en) * 2020-09-14 2022-10-28 上海电气电站设备有限公司 Regulating valve profile structure and regulating valve

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840662U (en) * 1981-09-11 1983-03-17 石川島播磨重工業株式会社 valve structure
JPS63214579A (en) * 1987-03-02 1988-09-07 Mitsubishi Heavy Ind Ltd High-temperature, high-pressure difference valve
JPH08159321A (en) * 1994-12-05 1996-06-21 Fuji Koki Seisakusho:Kk Motor-driven flow control valve
JP3533479B2 (en) * 1995-06-29 2004-05-31 ジヤトコ株式会社 Pressure regulating valve
JPH1030744A (en) * 1996-07-18 1998-02-03 Fuji Koki:Kk Electric flow control valve
JP4812601B2 (en) * 2006-01-05 2011-11-09 株式会社不二工機 Motorized valve
JP6178557B2 (en) * 2012-10-17 2017-08-09 株式会社鷺宮製作所 Flow control valve
CN104728483B (en) * 2013-12-20 2018-10-19 杭州三花研究院有限公司 A kind of flow control valve and its control method and refrigeration system
JP6419482B2 (en) * 2014-08-06 2018-11-07 株式会社不二工機 Electrically driven valve
JP6546747B2 (en) * 2015-02-17 2019-07-17 株式会社不二工機 Flow control valve
JP6508968B2 (en) * 2015-02-20 2019-05-08 株式会社不二工機 Motorized valve
JP6370269B2 (en) * 2015-07-17 2018-08-08 株式会社鷺宮製作所 Motorized valve and refrigeration cycle
JP6676432B2 (en) * 2016-03-28 2020-04-08 株式会社不二工機 Electric valve and method of assembling the same
JP6461872B2 (en) * 2016-08-30 2019-01-30 株式会社不二工機 Motorized valve

Also Published As

Publication number Publication date
JPWO2019181427A1 (en) 2020-04-30
JP2020109323A (en) 2020-07-16
WO2019181427A1 (en) 2019-09-26
JP6950988B2 (en) 2021-10-20
CN111954775B (en) 2022-05-13
CN111954775A (en) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6461872B2 (en) Motorized valve
CN111396618B (en) Electric valve
US10344872B2 (en) Electric valve having a valve body with a constricted surface portion
JP6478957B2 (en) Motorized valve
JP6688522B2 (en) Motorized valve
CN108458147B (en) Electric valve
JP7063453B2 (en) Solenoid valve
JP2019128022A (en) Motor-operated valve
JP6757996B2 (en) Solenoid valve
JP6618977B2 (en) Motorized valve
JP6839164B2 (en) Electric valve
JP7006979B2 (en) Solenoid valve
JP6621789B2 (en) Motorized valve
JP7072907B2 (en) Solenoid valve
JP2022033227A (en) Motor-operated valve
JP7332191B2 (en) electric valve
JP7006981B2 (en) Solenoid valve
JP2021073419A (en) Motor-operated valve
JP2020091038A (en) Motor-operated valve
JP6621788B2 (en) Motorized valve
JP2017044286A (en) Motor valve and its assembling method
CN114688275A (en) Electric valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6688522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250