JP6688460B2 - Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same - Google Patents

Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same Download PDF

Info

Publication number
JP6688460B2
JP6688460B2 JP2016064527A JP2016064527A JP6688460B2 JP 6688460 B2 JP6688460 B2 JP 6688460B2 JP 2016064527 A JP2016064527 A JP 2016064527A JP 2016064527 A JP2016064527 A JP 2016064527A JP 6688460 B2 JP6688460 B2 JP 6688460B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
nanoheterostructure
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064527A
Other languages
Japanese (ja)
Other versions
JP2017182930A (en
Inventor
河合 泰明
泰明 河合
博昭 若山
博昭 若山
米倉 弘高
弘高 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016064527A priority Critical patent/JP6688460B2/en
Publication of JP2017182930A publication Critical patent/JP2017182930A/en
Application granted granted Critical
Publication of JP6688460B2 publication Critical patent/JP6688460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ナノヘテロ構造を有するリチウム二次電池用電極、その製造方法、およびそれを備えるリチウム二次電池に関する。   The present invention relates to a lithium secondary battery electrode having a nano-hetero structure, a method for manufacturing the same, and a lithium secondary battery including the same.

リチウム二次電池は、エネルギー密度の高い二次電池として知られており、様々な電子機器の電源として従来から使用されている。しかしながら、従来のリチウム二次電池は、出力特性、例えば、放電容量が必ずしも十分なものではなく、より高い出力特性を有するリチウム二次電池が求められていた。   A lithium secondary battery is known as a secondary battery having a high energy density and has been conventionally used as a power source for various electronic devices. However, conventional lithium secondary batteries are not always sufficient in output characteristics, for example, discharge capacity, and there has been a demand for lithium secondary batteries having higher output characteristics.

このようなリチウム二次電池に使用される電極は、従来から、数μm〜数十μmの電極材料粉末を、カーボン等の導電材や導電助剤、バインダー、溶剤等と混合してペーストを形成し、このペーストを集電体上に塗布して乾燥させ、必要に応じて加圧成形することによって製造されてきた。しかしながら、バインダーを用いて製造された電極は、バインダーがリチウムイオンや電子の伝導を阻害するため、多量の導電材や導電助剤を添加する必要があり、このような電極を正極として備えているリチウム二次電池は放電容量が低いという問題があった。   The electrode used in such a lithium secondary battery has conventionally been formed by mixing electrode material powder of several μm to several tens of μm with a conductive material such as carbon, a conductive auxiliary agent, a binder, a solvent, etc. Then, the paste is applied onto a current collector, dried, and pressure-molded if necessary. However, since the binder inhibits the conduction of lithium ions and electrons in the electrode manufactured using the binder, it is necessary to add a large amount of a conductive material or a conductive auxiliary agent, and such an electrode is provided as a positive electrode. The lithium secondary battery has a problem of low discharge capacity.

特開2014−179238号公報(特許文献1)には、LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、所定の繰り返し構造の一単位の長さの三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体からなるリチウム二次電池用電極材が開示されており、この電極材とアルミニウム板等の導電材とをプレス成形することにより、これらが一体化したリチウム二次電池用部材が製造できることも開示されている。しかしながら、前記ナノヘテロ構造体からなる正極材とアルミニウム集電体とを備える電極を冷間プレスにより製造すると、正極材に大きな隙間が生じやすく、電池の放電容量にバラツキが発生し、電池の安定性が低下する場合があった。 Japanese Unexamined Patent Application Publication No. 2014-179238 (Patent Document 1) discloses that Li 7 La 3 Zr 2 O 12 and LiCoO 2 are contained in a matrix composed of one inorganic component of Li 7 La 3 Zr 2 O 12 and LiCoO 2 . Lithium consisting of a nano-heterostructure in which the other inorganic component is arranged three-dimensionally and periodically and at least a part of which has a three-dimensional periodic structure having a length of one unit of a predetermined repeating structure. An electrode material for a secondary battery is disclosed, and it is also disclosed that a member for a lithium secondary battery in which these electrode materials and an electrically conductive material such as an aluminum plate are integrated can be manufactured by press molding. However, when an electrode provided with a positive electrode material composed of the nano-heterostructure and an aluminum current collector is manufactured by cold pressing, a large gap is likely to occur in the positive electrode material, variation in the discharge capacity of the battery occurs, and the stability of the battery is improved. Was sometimes lowered.

特開2014−179238号公報JP, 2014-179238, A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、ナノヘテロ構造を有し、リチウム二次電池の放電容量を増加させることが可能な電極、その製造方法、及び、それを備えるリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above problems of the prior art, and has an electrode having a nano-hetero structure and capable of increasing the discharge capacity of a lithium secondary battery, a method for manufacturing the electrode, and the electrode. It is intended to provide a lithium secondary battery.

本発明者らは、アルミニウム集電体表面に、LiLaZr12及びLiCoOにより形成されている所定の三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体粉末の分散液を滴下し、自然乾燥により乾固させて前記ナノヘテロ構造体粉末の集合体を形成し、このナノヘテロ構造体粉末の集合体とアルミニウム集電体とを備える積層体を温間圧力成形した後、得られた加圧成型体にアニール処理を施すことによって、電池の安定性が向上する電極が得られることを見出した。しかしながら、この電極を備えているリチウム二次電池は、放電容量が必ずしも十分に高いものではなかった。 The inventors of the present invention provide a nano-heterostructure powder having a predetermined three-dimensional periodic structure formed of Li 7 La 3 Zr 2 O 12 and LiCoO 2 on at least a part of the surface of an aluminum current collector. After dropping the dispersion liquid and drying to dryness by natural drying to form an aggregate of the nanoheterostructure powder, after warm pressure molding a laminate including the aggregate of the nanoheterostructure powder and an aluminum current collector It was found that an electrode with improved battery stability can be obtained by subjecting the obtained pressure-molded body to annealing treatment. However, the discharge capacity of the lithium secondary battery provided with this electrode is not always sufficiently high.

そこで、本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、前記の電極の製造方法において、集電体としてニッケル集電体を使用することによって、リチウム二次電池の放電容量を増加させることが可能な電極が得られることを見出し、本発明を完成するに至った。   Therefore, as a result of intensive studies to achieve the above-mentioned object, the present inventors have used a nickel current collector as a current collector in the above-described method for manufacturing an electrode, thereby improving the discharge capacity of a lithium secondary battery. The inventors have found that an electrode capable of increasing the electric field can be obtained, and completed the present invention.

すなわち、本発明の全固体リチウム二次電池用正極は、LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体からなり、電極密度が1.5〜3.5g/cmである正極材と、ニッケル集電体と、厚さが1〜3μmであり、一方の面が前記正極材と接触し、他方の面が前記ニッケル集電体と接触しているNiO層と、を備えていることを特徴とするものである。 That is, the positive electrode for an all-solid-state lithium secondary battery of the present invention comprises Li 7 La 3 Zr 2 O 12 and LiCoO 2 in a matrix composed of one inorganic component of Li 7 La 3 Zr 2 O 12 and LiCoO 2 . The other inorganic component is arranged three-dimensionally and periodically, and at least partly has a three-dimensional periodic structure in which the average value of the length of one unit of the repeating structure is 1 nm to 100 nm. A positive electrode material composed of a nanoheterostructure and having an electrode density of 1.5 to 3.5 g / cm 3 , a nickel current collector, and a thickness of 1 to 3 μm, and one surface of the positive electrode material is in contact with the positive electrode material. And a NiO layer having the other surface in contact with the nickel current collector.

また、本発明の全固体リチウム二次電池は、このような本発明の正極を備えていることを特徴とすることを特徴とするものである。 Further, the all-solid-state lithium secondary battery of the present invention is characterized by including such a positive electrode of the present invention.

本発明の全固体リチウム二次電池用正極の製造方法は、LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体粉末を溶媒に分散させる工程と、前記工程で得られた前記ナノヘテロ構造体粉末の分散液をニッケル集電体上に滴下し、自然乾燥により前記ナノヘテロ構造体粉末を乾固させ、前記ニッケル集電体の表面に前記ナノヘテロ構造体粉末の集合体を形成する工程と、前記工程で得られた前記ニッケル集電体と前記ナノヘテロ構造体粉末の集合体とからなる積層体を、20〜150℃の温度、500〜2000MPaの圧力で温間加圧成形する工程と、前記工程で得られた加圧成型体に、大気圧下、400〜800℃の温度で加熱処理を施す工程と、を含むことを特徴とする方法である。このような本発明の全固体リチウム二次電池用正極の製造方法においては、前記加圧成型体の加熱処理を窒素雰囲気下で行うことが好ましい。 The method for producing a positive electrode for an all-solid-state lithium secondary battery according to the present invention comprises: Li 7 La 3 Zr 2 O 12 and LiCoO 2 in a matrix composed of one inorganic component of Li 7 La 3 Zr 2 O 12 and LiCoO 2. The other inorganic component is arranged three-dimensionally and periodically, and at least a part thereof has a three-dimensional periodic structure in which the average value of the length of one unit of the repeating structure is 1 nm to 100 nm. A step of dispersing the nanoheterostructure powder in a solvent, a dispersion of the nanoheterostructure powder obtained in the step is dropped onto a nickel current collector, and the nanoheterostructure powder is dried to dryness by natural drying, A step of forming an aggregate of the nanoheterostructure powder on the surface of the nickel current collector, and an aggregation of the nickel current collector and the nanoheterostructure powder obtained in the step A step of warm press-molding a laminated body composed of a body and a pressure of 500-2000 MPa at a temperature of 20-150 ° C., and a pressure-molded body obtained in the above step, under atmospheric pressure, 400-800 ° C. And a step of performing heat treatment at the temperature of 1. In such a method for producing a positive electrode for an all-solid lithium secondary battery of the present invention, it is preferable that the heat treatment of the pressure-molded body is performed in a nitrogen atmosphere.

なお、本発明のリチウム二次電池用電極によってリチウム二次電池の放電容量を増加させることが可能な理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明のリチウム二次電池用電極の製造方法においては、ニッケル集電体表面に所定のナノヘテロ構造体粉末の分散液を滴下し、自然乾燥により乾固させるため、前記ナノヘテロ構造体粉末が隙間なく積み上げられた前記ナノヘテロ構造体粉末の集合体が形成する。このような前記ナノヘテロ構造体粉末の集合体を温間圧力成形することによって、前記ナノヘテロ構造体粉末が緻密に凝集するとともに、凝集した粉末の間にも大きな隙間が形成されにくいため、リチウム二次電池の放電容量を増加させることが可能になると推察される。また、本発明のリチウム二次電池用電極の製造方法においては、集電体としてニッケル集電体を使用している。このニッケル集電体においては、アニール処理を施すことによって、その表面(本発明においては、前記ナノヘテロ構造体からなる正極材との界面)に加熱により結晶化したNiO層が形成される。このNiO層においては、ナノヘテロ構造体の前記無機成分と接触している部位の粒子の活性が高くなる(不定比化合物)ため、また、リチウムが結晶格子中に組み込まれている固溶状態が形成され(Liは15%程度固溶可能)、導電率が変化して半導体の性質を発現し、電子移動も可能となるため、リチウム二次電池の放電容量を増加させることが可能になると推察される。   The reason why the discharge capacity of the lithium secondary battery can be increased by the lithium secondary battery electrode of the present invention is not always clear, but the present inventors speculate as follows. That is, in the method for producing an electrode for a lithium secondary battery of the present invention, a dispersion liquid of a predetermined nano-heterostructure powder is dropped on the surface of a nickel current collector, and the nano-heterostructure powder is dried to dryness by natural drying. An aggregate of the nano-heterostructure powders stacked without any gap is formed. By performing warm pressure molding of such an aggregate of the nano-heterostructure powder, the nano-heterostructure powder is densely aggregated, and a large gap is not easily formed between the aggregated powders. It is estimated that the discharge capacity of the battery can be increased. Further, in the method for producing an electrode for a lithium secondary battery of the present invention, a nickel current collector is used as the current collector. This nickel current collector is annealed to form a crystallized NiO layer on its surface (in the present invention, an interface with the positive electrode material composed of the nanoheterostructure) by heating. In this NiO layer, the activity of the particles in the part in contact with the inorganic component of the nanoheterostructure becomes high (nonstoichiometric compound), and a solid solution state in which lithium is incorporated in the crystal lattice is formed. (Li can be dissolved in about 15% as a solid solution), the conductivity changes, the property of the semiconductor is expressed, and the electron transfer is also possible, so it is presumed that the discharge capacity of the lithium secondary battery can be increased. It

なお、本発明における「繰り返し構造の一単位の長さの平均値」とは、一方の無機成分からなるマトリックス中に配置されている他方の無機成分の隣接するもの同士の中心間の距離の平均値であり、いわゆる周期構造の間隔(d)に相当する。係る周期構造の間隔(d)は、以下のように小角X線回折により求められる。また、本発明に係る球状、柱状、ジャイロイド状又は層状といった構造についても、以下のように小角X線回折により測定される特徴的な回折パターンにより規定することができる。   The "average value of the length of one unit of the repeating structure" in the present invention means the average of the distances between the centers of adjacent ones of the other inorganic components arranged in the matrix composed of one inorganic component. It is a value and corresponds to the so-called periodic structure interval (d). The interval (d) of the periodic structure is obtained by small angle X-ray diffraction as follows. Further, the spherical, columnar, gyroid-shaped, or layered structure according to the present invention can be defined by a characteristic diffraction pattern measured by small-angle X-ray diffraction as follows.

すなわち、小角X線回折により、球状、柱状、ジャイロイド状、層状等の形状の構造体がマトリックス中に周期的に配置した擬似結晶格子の特徴的な格子面からのBragg反射が観察される。その際、周期構造が形成されていると回折ピークが観察され、それら回折スペクトルの大きさ(q=2π/d)の比から、球状、柱状、ジャイロイド状、層状等の構造を特定することができる。また、係る回折ピークのピーク位置から、Braggの式(nλ=2dsinθ;λはX線波長、θは回折角を示す。)により、周期構造の間隔(d)を求めることができる。以下の表1に、各構造とピーク位置の回折スペクトルの大きさ(q)の比の関係を示す。なお、表1に示すようなピークが全て確認される必要はなく、観察されたピークから構造が特定できればよい。   That is, by small-angle X-ray diffraction, Bragg reflection from a characteristic lattice plane of a pseudo-crystal lattice in which spherical, columnar, gyroid-shaped, layered, and other structures are periodically arranged in a matrix is observed. At that time, a diffraction peak is observed when a periodic structure is formed, and a spherical, columnar, gyroid-shaped, or layered structure should be specified from the ratio of the size (q = 2π / d) of the diffraction spectra. You can Further, the interval (d) of the periodic structure can be obtained from the peak position of the diffraction peak by the Bragg equation (nλ = 2d sin θ; λ is the X-ray wavelength, θ is the diffraction angle). Table 1 below shows the relationship between each structure and the ratio of the size (q) of the diffraction spectrum at the peak position. Note that it is not necessary to confirm all the peaks shown in Table 1, as long as the structure can be specified from the observed peaks.

また、このような球状、柱状、ジャイロイド状、層状といった構造は、透過型電子顕微鏡(TEM)を用いて特定することも可能であり、それによってその形状や周期性を判別・評価することができる。さらに、様々な方向からの観察や三次元トモグラフィーを用いることによって、三次元性をより詳しく判別することも可能である。   Further, such a spherical, columnar, gyroid, or layered structure can also be specified by using a transmission electron microscope (TEM), whereby the shape or periodicity can be discriminated and evaluated. it can. Furthermore, it is possible to discriminate the three-dimensionality in more detail by observing from various directions and using three-dimensional tomography.

本発明によれば、ナノヘテロ構造を有し、リチウム二次電池の放電容量を増加させることが可能な電極を得ることが可能となる。   According to the present invention, it is possible to obtain an electrode having a nano-hetero structure and capable of increasing the discharge capacity of a lithium secondary battery.

参考例1及び比較参考例1〜2における温間加圧成形時の圧力と得られた加圧成型体中の正極材の密度との関係を示すグラフである。It is a graph which shows the relationship between the pressure at the time of warm pressure molding in the reference example 1 and the comparative reference examples 1-2, and the density of the positive electrode material in the obtained pressure molding. 比較参考例1で得られた加圧成型体の断面を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross section of the pressure-molded body obtained in Comparative Reference Example 1. 比較参考例1で得られた加圧成型体の断面を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross section of the pressure-molded body obtained in Comparative Reference Example 1. 特許文献1に記載の方法に従って作製した電極の断面を示す走査型電子顕微鏡写真である。6 is a scanning electron micrograph showing a cross section of an electrode manufactured according to the method described in Patent Document 1. 実施例1で作製した電極のエネルギー分散型X線分光法による分析結果を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the analysis result of the electrode manufactured in Example 1 by energy dispersive X-ray spectroscopy. 比較例1で作製した電極のエネルギー分散型X線分光法による分析結果を示す走査型電子顕微鏡写真である。5 is a scanning electron micrograph showing an analysis result of an electrode manufactured in Comparative Example 1 by energy dispersive X-ray spectroscopy. 比較例3で作製した電極のエネルギー分散型X線分光法による分析結果を示す走査型電子顕微鏡写真である。5 is a scanning electron micrograph showing an analysis result of an electrode manufactured in Comparative Example 3 by energy dispersive X-ray spectroscopy. 実施例1および比較例1〜6で作製した電極の正極材の厚みと放電容量との関係を示すグラフである。7 is a graph showing the relationship between the thickness of the positive electrode material of the electrodes manufactured in Example 1 and Comparative Examples 1 to 6 and the discharge capacity. 実施例2〜4および比較例7〜15で作製した電極の正極材の厚みと放電容量との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the positive electrode material of the electrode produced in Examples 2-4, and Comparative Examples 7-15 and discharge capacity.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to its preferred embodiments.

先ず、本発明のリチウム二次電池用電極について説明する。本発明のリチウム二次電池用電極は、LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体からなり、電極密度が1.5〜3.5g/cmである正極材と、ニッケル集電体と、厚さが1〜3μmであり、一方の面が前記正極材と接触し、他方の面が前記ニッケル集電体と接触しているNiO層と、を備えていることを特徴とするものである。 First, the electrode for a lithium secondary battery of the present invention will be described. The electrode for a lithium secondary battery of the present invention, Li 7 La 3 Zr 2 O 12 and matrix of the one inorganic component of the LiCoO 2 Li 7 La 3 Zr 2 O 12 and other of LiCoO 2 of From a nanoheterostructure in which inorganic components are arranged three-dimensionally and periodically, and which has at least a part of a three-dimensional periodic structure in which the average value of the length of one unit of the repeating structure is 1 nm to 100 nm And a positive electrode material having an electrode density of 1.5 to 3.5 g / cm 3 , a nickel current collector, and a thickness of 1 to 3 μm. One surface is in contact with the positive electrode material and the other surface is And a NiO layer that is in contact with the nickel current collector.

本発明にかかるナノヘテロ構造体は、球状構造、柱状構造、ジャイロイド状構造、層状構造(好ましくは、柱状構造、ジャイロイド状構造、層状構造)といったナノ構造を有するものであり、LiLaZr12とLiCoOとの組み合わせについて、それらの配置、組成、構造スケールなどを様々に制御したナノヘテロ構造を有するものとして得ることが可能である。そのため、本発明にかかるナノヘテロ構造体によれば、界面増大効果、ナノサイズ効果、耐久性などの飛躍的な向上が発揮され、リチウム二次電池用電極材としての利用率を高めることができる。また、本発明にかかるナノヘテロ構造体は、ナノ構造に起因して反応界面の面積が大きく、電荷移動がスムーズに起こるため、出力特性が向上する。その結果、このような本発明にかかるナノヘテロ構造体からなる正極材を備えるリチウム二次電池においては蓄電池特性の飛躍的な向上が発揮されるようになる。 The nanoheterostructure according to the present invention has a nanostructure such as a spherical structure, a columnar structure, a gyroid structure, and a layered structure (preferably a columnar structure, a gyroid structure, and a layered structure), and Li 7 La 3 With respect to the combination of Zr 2 O 12 and LiCoO 2 , it is possible to obtain a nanoheterostructure having various arrangements, compositions, structural scales, and the like controlled. Therefore, according to the nano-heterostructure of the present invention, the effect of increasing the interface, the nano-size effect, the durability, etc. can be dramatically improved, and the utilization rate as the electrode material for a lithium secondary battery can be increased. In addition, the nanoheterostructure according to the present invention has a large reaction interface area due to the nanostructure and smooth charge transfer, thus improving output characteristics. As a result, in the lithium secondary battery including the positive electrode material made of the nanoheterostructure according to the present invention, the storage battery characteristics are dramatically improved.

本発明にかかるナノヘテロ構造体を構成するLiLaZr12(以下、「LLZO」と略す)は正極材のリチウムイオン伝導体として機能するものであり、LiCoO(以下、「LCO」と略す)は正極材の正極活物質として機能するものである。従って、本発明にかかるナノヘテロ構造体は、リチウム二次電池の正極材として機能するものである。 Li 7 La 3 Zr 2 O 12 (hereinafter, abbreviated as “LLZO”) constituting the nanoheterostructure according to the present invention functions as a lithium ion conductor of a positive electrode material, and LiCoO 2 (hereinafter, “LCO”). Abbreviated) functions as the positive electrode active material of the positive electrode material. Therefore, the nanoheterostructure according to the present invention functions as a positive electrode material for a lithium secondary battery.

本発明にかかるナノヘテロ構造体においては、LLZOとLCOのいずれがナノヘテロ構造のマトリックスを形成していてもよいが、正極材の体積当りあるいは質量当りの放電容量を最大にできるという観点から、LCOがマトリックスを形成していることが好ましい。また、マトリックス中に三次元的且つ周期的に配置している無機成分の断面直径としては、小さすぎると導電パスが形成しにくくなり、大きすぎると界面が減少するという観点から、5〜90nmが好ましい。さらに、LLZOとLCOとの割合としては、LCO1モルに対してLLZOが0.05〜0.1モルであることが好ましい。LLZOの割合が前記範囲から逸脱すると、放電容量が低下する傾向にある。   In the nano-heterostructure according to the present invention, either LLZO or LCO may form a nano-heterostructure matrix, but from the viewpoint that the discharge capacity per volume or mass of the positive electrode material can be maximized, LCO It is preferable to form a matrix. In addition, the cross-sectional diameter of the inorganic components that are three-dimensionally and periodically arranged in the matrix is 5 to 90 nm from the viewpoint that it is difficult to form a conductive path if it is too small and the interface decreases if it is too large. preferable. Further, as a ratio of LLZO and LCO, it is preferable that LLZO is 0.05 to 0.1 mol per mol of LCO. If the proportion of LLZO deviates from the above range, the discharge capacity tends to decrease.

本発明にかかる正極材は、このようなナノヘテロ構造体により構成されるものであり、その密度(電極密度)は1.5〜3.5g/cmである。正極材の密度が前記下限未満になると、電気抵抗が増大したり、電極強度が低下したりする。他方、密度が前記上限を超える正極材を得るには、温間加圧成形の際に成形圧力を増大させる必要があるが、成形圧力を増大させると、凝集した一次粒子が破壊されて正極材の内部に多数のクラックが発生し、電気抵抗が増大する。また、電極抵抗が減少し、電極強度が増大するという観点から、正極材の密度は2.5〜3.0g/cmであることが好ましい。 The positive electrode material according to the present invention is composed of such a nanoheterostructure, and its density (electrode density) is 1.5 to 3.5 g / cm 3 . When the density of the positive electrode material is less than the above lower limit, the electric resistance increases or the electrode strength decreases. On the other hand, in order to obtain a positive electrode material having a density exceeding the upper limit, it is necessary to increase the molding pressure during warm pressure molding, but when the molding pressure is increased, the aggregated primary particles are destroyed and the positive electrode material is destroyed. A large number of cracks are generated inside and the electric resistance increases. Further, the density of the positive electrode material is preferably 2.5 to 3.0 g / cm 3 from the viewpoint that the electrode resistance decreases and the electrode strength increases.

本発明にかかる正極材の厚みとしては特に制限はないが、5〜100μmが好ましく、10〜50μmがより好ましい。正極材の厚みが前記下限未満になると、リチウム二次電池に占める正極の割合が少なくなり、放電容量が低下する傾向にあり、他方、前記上限を超えると、正極材中のリチウム伝導性が低下する傾向にある。   The thickness of the positive electrode material according to the present invention is not particularly limited, but is preferably 5 to 100 μm, more preferably 10 to 50 μm. When the thickness of the positive electrode material is less than the lower limit, the proportion of the positive electrode in the lithium secondary battery decreases, and the discharge capacity tends to decrease. On the other hand, when the thickness exceeds the upper limit, the lithium conductivity in the positive electrode material decreases. Tend to do.

本発明にかかるニッケル集電体は特に制限はなく、従来公知のニッケル集電体を用いることができる。このようなニッケル集電体の厚みとして特に制限はないが、50〜1000μmが好ましく、100〜500μmがより好ましい。ニッケル集電体の厚みが前記下限未満になると、温間加圧成形により、所定の電極密度を有する正極材を得ることが困難となる傾向にあり、他方、前記上限を超えると、正極材との密着性が低下する傾向にある。なお、前記ニッケル集電体は、表面にリン酸処理を施すことによって、正極材との密着性を向上させることができる。   The nickel current collector according to the present invention is not particularly limited, and a conventionally known nickel current collector can be used. The thickness of such a nickel current collector is not particularly limited, but is preferably 50 to 1000 μm, more preferably 100 to 500 μm. If the thickness of the nickel current collector is less than the lower limit, it tends to be difficult to obtain a positive electrode material having a predetermined electrode density by warm pressure molding, while if it exceeds the upper limit, a positive electrode material is obtained. Adhesion tends to decrease. The nickel current collector can improve the adhesion with the positive electrode material by subjecting the surface of the nickel current collector to phosphoric acid treatment.

本発明のリチウム二次電池用電極は、このような正極材とニッケル集電体とを備えており、さらに、前記正極材と前記ニッケル集電体との間にNiO層を備えている。このNiO層は、その一方の面が前記正極材と接触しており、他方の面が前記ニッケル集電体と接触している。このようなNiO層は、不定比化合物や半導体的性質を有することや正極材との強固な固着機能により、リチウム二次電池の放電容量を増加させることが可能になると考えられる。   The lithium secondary battery electrode of the present invention includes such a positive electrode material and a nickel current collector, and further includes a NiO layer between the positive electrode material and the nickel current collector. One surface of the NiO layer is in contact with the positive electrode material, and the other surface is in contact with the nickel current collector. It is considered that such a NiO layer can increase the discharge capacity of the lithium secondary battery due to the fact that it has a non-stoichiometric compound or semiconductor property and has a strong fixing function with the positive electrode material.

本発明にかかるNiO層の厚みは1〜3μmである。NiO層の厚みが前記下限未満になると、前記下限未満になると、前記機能が小さくなるため、リチウム二次電池の放電容量を増加させることができない。他方、前記上限を超えるNiO層は、加熱処理により形成することができない。   The NiO layer according to the present invention has a thickness of 1 to 3 μm. When the thickness of the NiO layer is less than the lower limit, when the thickness is less than the lower limit, the function becomes small, and thus the discharge capacity of the lithium secondary battery cannot be increased. On the other hand, the NiO layer exceeding the upper limit cannot be formed by heat treatment.

本発明のリチウム二次電池は、このような本発明の電極を正極として備えるものであり、高い放電容量を有するものである。このようなリチウム二次電池としては、例えば、本発明の電極と対極とによって電解質を挟持したリチウム二次電池が挙げられる。前記対極、電解質としては公知のものを使用することができる。   The lithium secondary battery of the present invention includes such an electrode of the present invention as a positive electrode and has a high discharge capacity. Examples of such a lithium secondary battery include a lithium secondary battery in which an electrolyte is sandwiched between the electrode of the present invention and a counter electrode. As the counter electrode and the electrolyte, known ones can be used.

また、本発明のリチウム二次電池の放電容量は前記電極を構成する正極材の厚みに依存する傾向にある。すなわち、
正極材の厚みが10μm以上15μm未満の場合、放電容量は45mAh/g以上、
正極材の厚みが15μm以上25μm未満の場合、放電容量は40mAh/g以上、
正極材の厚みが25μm以上30μm未満の場合、放電容量は35mAh/g以上、
正極材の厚みが30μm以上35μm未満の場合、放電容量は30mAh/g以上、
正極材の厚みが35μm以上45μm未満の場合、放電容量は25mAh/g以上、
正極材の厚みが45μm以上50μm未満の場合、放電容量は20mAh/g以上、
正極材の厚みが50μm以上55μm未満の場合、放電容量は15mAh/g以上、
正極材の厚みが55μm以上60μm未満の場合、放電容量は10mAh/g以上、
正極材の厚みが60μm以上の場合、放電容量は5mAh/g以上、
となる傾向にある。
Further, the discharge capacity of the lithium secondary battery of the present invention tends to depend on the thickness of the positive electrode material forming the electrode. That is,
When the thickness of the positive electrode material is 10 μm or more and less than 15 μm, the discharge capacity is 45 mAh / g or more,
When the thickness of the positive electrode material is 15 μm or more and less than 25 μm, the discharge capacity is 40 mAh / g or more,
When the thickness of the positive electrode material is 25 μm or more and less than 30 μm, the discharge capacity is 35 mAh / g or more,
When the thickness of the positive electrode material is 30 μm or more and less than 35 μm, the discharge capacity is 30 mAh / g or more,
When the thickness of the positive electrode material is 35 μm or more and less than 45 μm, the discharge capacity is 25 mAh / g or more,
When the thickness of the positive electrode material is 45 μm or more and less than 50 μm, the discharge capacity is 20 mAh / g or more,
When the thickness of the positive electrode material is 50 μm or more and less than 55 μm, the discharge capacity is 15 mAh / g or more,
When the thickness of the positive electrode material is 55 μm or more and less than 60 μm, the discharge capacity is 10 mAh / g or more,
When the thickness of the positive electrode material is 60 μm or more, the discharge capacity is 5 mAh / g or more,
Tends to be.

次に、本発明のリチウム二次電池用電極の製造方法について説明する。本発明のリチウム二次電池用電極の製造方法は、
LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体粉末を溶媒に分散させる工程(分散液調製工程)と、前記工程で得られた前記ナノヘテロ構造体粉末の分散液をニッケル集電体上に滴下し、自然乾燥により前記ナノヘテロ構造体粉末を乾固させ、前記ニッケル集電体の表面に前記ナノヘテロ構造体粉末の集合体を形成する工程(積層体形成工程)と、前記工程で得られた前記ニッケル集電体と前記ナノヘテロ構造体粉末の集合体とからなる積層体を、20〜150℃の温度、500〜2000MPaの圧力で温間加圧成形する工程(温間加圧成形工程)と、前記工程で得られた加圧成型体に400〜800℃の温度で加熱処理を施す工程(アニール処理工程)と、を含むことを特徴とする方法である。
Next, a method for manufacturing the electrode for a lithium secondary battery of the present invention will be described. The method for producing an electrode for a lithium secondary battery of the present invention,
Li 7 La 3 Zr 2 O 12 and other inorganic components are three-dimensionally and periodically arranged among the matrix of the inorganic components of Li 7 La 3 Zr 2 O 12 and LiCoO 2 of one of LiCoO 2 And the step of dispersing the nano-heterostructure powder having a three-dimensional periodic structure in at least a part of which the average value of the length of one unit of the repeating structure is 1 nm to 100 nm in a solvent (dispersion liquid preparation step ) And the dispersion liquid of the nano-heterostructure powder obtained in the step is dropped on a nickel current collector, and the nano-heterostructure powder is dried to dryness by natural drying, and the nano-hetero structure is formed on the surface of the nickel current collector. A step of forming an aggregate of the structure powder (laminate forming step), and a product including the nickel current collector obtained in the step and the aggregate of the nano-heterostructure powder. A step (warm pressure molding step) of warm pressure molding the layered body at a temperature of 20 to 150 ° C. and a pressure of 500 to 2000 MPa, and 400 to 800 ° C. to the pressure molded body obtained in the above step. And a step of performing heat treatment at a temperature (annealing step).

[分散液調製工程]
係る工程は、以下に説明するナノヘテロ構造体粉末を溶媒に分散させ、ナノヘテロ構造体粉末の分散液を調製する工程である。
[Dispersion liquid preparation process]
This step is a step of dispersing the nanoheterostructure powder described below in a solvent to prepare a dispersion liquid of the nanoheterostructure powder.

本発明に用いられるナノヘテロ構造体粉末は、LLZO及びLCOのうちの一方の無機成分からなるマトリックス中にLLZO及びLCOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有するナノヘテロ構造体の粉末である。   The nano-heterostructure powder used in the present invention has a matrix composed of one inorganic component of LLZO and LCO in which the other inorganic component of LLZO and LCO is arranged three-dimensionally and periodically, and repeatedly. It is a powder of a nano-heterostructure having a three-dimensional periodic structure having an average value of one unit of structure of 1 nm to 100 nm in at least a part thereof.

このようなナノヘテロ構造体粉末は特開2014−179238号公報に記載の方法に従って製造したナノヘテロ構造体を粉砕することによって得ることができる。粉砕の方法としては特に制限はなく、ジェットミル、ロールミル、ボールミル等の各種粉砕機や乳鉢を用いた方法等が挙げられる。   Such nano-heterostructure powder can be obtained by pulverizing the nano-heterostructure manufactured according to the method described in JP-A-2014-179238. The pulverization method is not particularly limited, and examples thereof include a method using various pulverizers such as a jet mill, a roll mill, a ball mill and a mortar.

本発明において、前記ナノヘテロ構造体粉末の平均一次粒子径としては20〜100nmが好ましく、30〜60nmがより好ましい。前記ナノヘテロ構造体粉末の平均一次粒子径が前記下限未満になると、非晶部分を伴う微結晶成分が増加してLLZO及びLCOの機能が低下する傾向にあり、他方、前記上限を超えると、ナノヘテロ構造体粉末の表面だけが利用され、内部が利用できない傾向にある。   In the present invention, the average primary particle diameter of the nanoheterostructure powder is preferably 20 to 100 nm, more preferably 30 to 60 nm. When the average primary particle diameter of the nano-heterostructure powder is less than the lower limit, the fine crystal component accompanied by an amorphous portion tends to increase, and the functions of LLZO and LCO tend to decrease. There is a tendency that only the surface of the structure powder is used and the inside cannot be used.

本発明に用いられる溶媒としては、用いるナノヘテロ構造体を均一に分散できるものであれば特に制限はなく、アルコール(例えば、エタノール、プロパノール、ブタノール、)、エーテル(例えば、エチルメチルエーテル)、ケトン(例えば、メチルエチルケトン)、トルエン、シクロヘキサン等、及びこれらの混合溶媒が挙げられる。   The solvent used in the present invention is not particularly limited as long as it can uniformly disperse the nano-heterostructure to be used, and alcohol (eg, ethanol, propanol, butanol), ether (eg, ethyl methyl ether), ketone ( Examples thereof include methyl ethyl ketone), toluene, cyclohexane, and the like, and mixed solvents thereof.

本発明に用いられるナノヘテロ構造体粉末の分散液において、前記ナノヘテロ構造体粉末の濃度としては0.05〜0.5g/mlが好ましく、0.1〜0.3g/mlがより好ましい。ナノヘテロ構造体粉末の濃度が前記下限未満になると、浮遊、懸濁するナノヘテロ構造体粉末がコロイド状態となる傾向にあり、他方、前記上限を超えると、沈降するナノヘテロ構造体粉末が増加し、浮遊しているナノヘテロ構造体粉末との間に密度差が生じる傾向にある。したがって、正極材の厚みを増加させる場合には、以下の積層体形成工程を繰り返すことが好ましい。   In the dispersion liquid of the nanoheterostructure powder used in the present invention, the concentration of the nanoheterostructure powder is preferably 0.05 to 0.5 g / ml, more preferably 0.1 to 0.3 g / ml. When the concentration of the nano-heterostructure powder is less than the lower limit, the suspended and suspended nano-heterostructure powder tends to be in a colloidal state, while when it exceeds the upper limit, the precipitated nano-heterostructure powder increases and floats. There is a tendency for a density difference to occur between the nano heterostructure powder and the nanoheterostructure powder. Therefore, when increasing the thickness of the positive electrode material, it is preferable to repeat the following laminated body forming step.

[積層体形成工程]
係る工程は、以下に説明する、前記ニッケル集電体の表面に前記ナノヘテロ構造体粉末の集合体を形成して、前記ニッケル集電体と前記ナノヘテロ構造体粉末の集合体との積層体を作製する工程である。
[Laminate formation process]
The step concerned forms the aggregate of the said nano-heterostructure powder on the surface of the said nickel electrical power collector demonstrated below, and produces the laminated body of the said nickel electrical power collector and the aggregate of the said nano-heterostructure powder. It is a process to do.

先ず、前記工程において調製された前記ナノヘテロ構造体粉末の分散液をニッケル集電体上に滴下する。これにより、前記ニッケル集電体の表面に前記ナノヘテロ構造体粉末の分散液の膜が形成される。その後、このようにして形成された前記ナノヘテロ構造体粉末の分散液の膜を自然乾燥させて、前記ナノヘテロ構造体粉末を蒸発乾固させる。これにより、前記ナノヘテロ構造体粉末が隙間なく積み上げられた集合体が前記ニッケル集電体の表面に形成される。このようなナノヘテロ構造体粉末が隙間なく積み上げられた集合体に、後述する温間加圧性成形を施すと、空隙が少なく、緻密な正極が形成され、リチウム二次電池の放電容量を増加させることが可能となる。   First, the dispersion liquid of the nano-heterostructure powder prepared in the step is dropped on the nickel current collector. As a result, a film of the dispersion liquid of the nanoheterostructure powder is formed on the surface of the nickel current collector. Then, the film of the dispersion liquid of the nanoheterostructure powder thus formed is naturally dried to evaporate the nanoheterostructure powder to dryness. As a result, an aggregate in which the nanoheterostructure powders are stacked without a gap is formed on the surface of the nickel current collector. When an aggregate in which such nano-heterostructure powders are piled up without a gap is subjected to warm pressure molding described later, a dense positive electrode is formed with few voids, and the discharge capacity of the lithium secondary battery is increased. Is possible.

また、この工程において、前記ナノヘテロ構造体粉末の分散液の滴下と前記ナノヘテロ構造体粉末の蒸発乾固を繰り返すことによって、正極材の厚みを増加させることができる。   Further, in this step, the thickness of the positive electrode material can be increased by repeatedly dropping the dispersion liquid of the nanoheterostructure powder and evaporating and drying the nanoheterostructure powder.

[温間加圧成形工程]
係る工程は、前記ニッケル集電体と前記ナノヘテロ構造体粉末の集合体との積層体に温間加圧成形を施して、前記ナノヘテロ構造体粉末の集合体からなる正極と前記ニッケル集電体とを備える加圧成型体を作製する工程である。
[Warm pressure molding process]
The step is such that the laminate of the nickel current collector and the aggregate of the nano-heterostructure powder is subjected to warm pressure molding, and the positive electrode and the nickel current collector made of the aggregate of the nano-heterostructure powder. It is a step of producing a pressure-molded body including.

前記工程において作製された積層体に温間加圧成形を施す。これにより、空隙が少なく、緻密な正極が形成され、リチウム二次電池の放電容量を増加させることが可能となる。   The laminated body produced in the above step is subjected to warm pressure molding. As a result, a dense positive electrode with few voids is formed, and the discharge capacity of the lithium secondary battery can be increased.

温間加圧成形時の温度は20〜150℃である。温間加圧成形時の温度が前記下限未満になると、ナノヘテロ構造体粉末の流動性が低下し、成形性も悪くなり、他方、前記上限を超えると、成形用金型の温度を均一に保持できなくなったり、金型のオスとメスとの隙間に付着させる潤滑剤が焼き付いて機能しなくなったりする。また、ナノヘテロ構造体の流動性や成形性を確保するという観点から、温間加圧成形時の温度としては100〜150℃が好ましく、130〜150℃がより好ましい。   The temperature during warm pressure molding is 20 to 150 ° C. When the temperature at the time of warm pressure molding is lower than the lower limit, the fluidity of the nano-heterostructure powder is lowered and the moldability is deteriorated. On the other hand, when the temperature is higher than the upper limit, the temperature of the molding die is kept uniform. It may not be possible, or the lubricant that adheres to the gap between the male and female of the mold may seize and cease to function. From the viewpoint of ensuring the fluidity and moldability of the nanoheterostructure, the temperature during warm pressure molding is preferably 100 to 150 ° C, more preferably 130 to 150 ° C.

また、温間加圧成形時の圧力は500〜2000MPaである。温間加圧成形時の圧力が前記下限未満になると正極材が形成されず、他方、前記上限を超えると、正極材の密度が著しく低下する。また、高密度の正極材が得られるという観点から、温間加圧成形時の圧力としては700〜1500MPaが好ましく、800〜1200MPaがより好ましい。   The pressure during warm pressure molding is 500 to 2000 MPa. If the pressure during warm press molding is less than the lower limit, the positive electrode material is not formed, while if it exceeds the upper limit, the density of the positive electrode material is significantly reduced. Further, from the viewpoint that a high-density positive electrode material can be obtained, the pressure during warm pressure molding is preferably 700 to 1500 MPa, more preferably 800 to 1200 MPa.

[アニール処理工程]
係る工程は、前記工程で作製された加圧成型体に大気圧下で加熱処理(アニール処理)を施して、前記正極材と前記ニッケル集電体と前記NiO層とを備える電極を得る工程である。また、この加熱処理(アニール処理)によって、前記加圧成型体中のナノヘテロ構造体粉末の間の隙間を減少させることができ、所定の電極密度を有する正極材を得ることができる。
[Annealing process]
In this step, the pressure-molded body produced in the above step is subjected to heat treatment (annealing treatment) under atmospheric pressure to obtain an electrode including the positive electrode material, the nickel current collector, and the NiO layer. is there. Further, by this heat treatment (annealing treatment), the gap between the nano-heterostructure powders in the pressure-molded body can be reduced, and a positive electrode material having a predetermined electrode density can be obtained.

このような加熱処理(アニール処理)の温度としては400〜800℃が好ましく、500〜800℃がより好ましく、700〜800℃が特に好ましい。加熱処理(アニール処理)の温度が前記下限未満になると、前記加圧成型体においてナノヘテロ構造体粉末の間の隙間の焼結(粒子の凝集)が進行しない傾向にあり、他方、前記上限を超えると、LCOが他の酸化物に変化し、リチウムイオンを貯蔵するLCOの機能が消失する傾向にある。   The temperature of such heat treatment (annealing treatment) is preferably 400 to 800 ° C, more preferably 500 to 800 ° C, and particularly preferably 700 to 800 ° C. When the temperature of the heat treatment (annealing treatment) is lower than the lower limit, sintering in the gap between the nanoheterostructure powders (aggregation of particles) in the pressure-molded body tends not to proceed, while the upper limit is exceeded. Then, the LCO changes to another oxide, and the function of the LCO that stores lithium ions tends to disappear.

また、前記加熱処理(アニール処理)は、大気圧下で実施する必要がある。加圧下で加熱処理(アニール処理)を実施する、すなわち、ホットプレス処理を実施した場合には、ナノヘテロ構造体粉末の流動性は増加するものの、荷電状態から解放されたときの形状変化等が不安定(スプリングバック)となるため、リチウム二次電池の放電容量が低下する傾向にある。   Further, the heat treatment (annealing treatment) needs to be performed under atmospheric pressure. When the heat treatment (annealing treatment) is performed under pressure, that is, when the hot press treatment is performed, the fluidity of the nano-heterostructure powder increases, but the shape change etc. when released from the charged state does not occur. Since it becomes stable (spring back), the discharge capacity of the lithium secondary battery tends to decrease.

前記加熱処理(アニール処理)は、酸素雰囲気下で実施しても窒素雰囲気下で実施してもよいが、安定したNiO層が形成するという観点から、窒素雰囲気下で実施することが好ましい。   The heat treatment (annealing treatment) may be performed in an oxygen atmosphere or a nitrogen atmosphere, but it is preferably performed in a nitrogen atmosphere from the viewpoint of forming a stable NiO layer.

このように、ニッケル集電体と前記ナノヘテロ構造体の集合体を一体化して温間加圧成形することによって、緻密な正極材を備え、ニッケル集電体と正極材との間に安定な界面を有する電極を得ることができ、リチウム二次電池の放電容量を増加させることが可能となる。   As described above, the nickel current collector and the assembly of the nano-heterostructures are integrated and warm-pressed to provide a dense positive electrode material, and a stable interface is provided between the nickel current collector and the positive electrode material. It is possible to obtain an electrode having the following, and it is possible to increase the discharge capacity of the lithium secondary battery.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用したナノヘテロ構造体粉末は以下の方法により調製した。   Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The nanoheterostructure powders used in Examples and Comparative Examples were prepared by the following method.

(調製例1)
特開2014−179238号公報に記載の方法に従ってナノヘテロ構造体粉末を調製した。すなわち、ブロックコポリマーとしてポリスチレン−b−ポリ(2−ビニルピリジン)(PS−b−P2VP、PS成分の数平均分子量:40.5×10、P2VP成分の数平均分子量:40×10)0.5gと、LiLaZr12(LLZO)前駆体(Li前駆体、La前駆体及びZr前駆体)としてサリチル酸リチウム(C(OH)COOLi)0.346g、トリス(2,4−ペンタンジオナト)ランタン(III)水和物(La(CHCOCHCOCH・xHO)0.156g及びテトラキス(2,4−ペンタンジオナト)ジルコニウム(IV)(Zr(CHCOCHCOCH)0.1305gと、LiCoO(LCO)前駆体(Li前駆体及びCo前駆体)としてサリチル酸リチウム(C(OH)COOLi)0.120g及びコバルトカルボニル(Co(CO))0.234gとを100mlのテトラヒドロフラン(THF)に溶解し、原料溶液を得た。なお、この原料溶液中のLCO前駆体1モルに対するLLZO前駆体の量は0.11モルである。
(Preparation example 1)
Nano-heterostructure powder was prepared according to the method described in JP-A-2014-179238. That is, as a block copolymer, polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP, number average molecular weight of PS component: 40.5 × 10 3 , number average molecular weight of P2VP component: 40 × 10 3 ) 0 0.5 g, 0.36 g of lithium salicylate (C 6 H 4 (OH) COOLi) as a Li 7 La 3 Zr 2 O 12 (LLZO) precursor (Li precursor, La precursor and Zr precursor), and tris (2). , 4-pentanedionato) lanthanum (III) hydrate (La (CH 3 COCHCOCH 3) 3 · xH 2 O) 0.156g and tetrakis (2,4-pentanedionato) zirconium (IV) (Zr (CH 3 COCHCOCH 3 ) 4 ) 0.1305 g and salicylic acid as LiCoO 2 (LCO) precursor (Li precursor and Co precursor) 0.120 g of lithium (C 6 H 4 (OH) COOLi) and 0.234 g of cobalt carbonyl (Co (CO) 8 ) were dissolved in 100 ml of tetrahydrofuran (THF) to obtain a raw material solution. The amount of the LLZO precursor was 0.11 mol with respect to 1 mol of the LCO precursor in this raw material solution.

この原料溶液を熱処理容器に入れ、空気気流下、600℃で25時間焼成することによって、LLZOからなるマトリックス中にLCOが三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体(以下、「LCO/LLZOナノヘテロ構造体」と略す。)を得た。このLCO/LLZOナノヘテロ構造体を、乳鉢で均一に粉砕し、篩分けにより粒径が約1μmのLCO/LLZOナノヘテロ構造体粉末を得た。   This raw material solution was placed in a heat treatment container and calcined at 600 ° C. for 25 hours in an air stream, whereby LCOs were three-dimensionally and periodically arranged in a matrix composed of LLZO, and the length of one unit of repeating structure was long. A nanoheterostructure (hereinafter abbreviated as “LCO / LLZO nanoheterostructure”) having a three-dimensional periodic structure having an average value of 1 nm to 100 nm in at least a part thereof was obtained. The LCO / LLZO nanoheterostructure was uniformly crushed in a mortar and sieved to obtain LCO / LLZO nanoheterostructure powder having a particle size of about 1 μm.

(参考例1)
調製例1で得られたLCO/LLZOナノヘテロ構造体粉末をエタノールに、LCO/LLZOナノヘテロ構造体粉末の濃度が0.17g/mlとなるように均一に分散させた。得られる正極材の厚みが50μmとなるように、所定量のLCO/LLZOナノヘテロ構造体粉末のエタノール分散液をニッケル集電体(純金属ニッケル板((株)ニラコ製)を直径14mm×厚み500μmに加工したもの)上に滴下して、ドラフト内(常温(15〜25℃))で6時間自然乾燥させることにより、前記LCO/LLZOナノヘテロ構造体粉末を蒸発乾固させ、前記ニッケル集電体の表面に所定量の前記LCO/LLZOナノヘテロ構造体粉末の集合体を形成した。
(Reference example 1)
The LCO / LLZO nanoheterostructure powder obtained in Preparation Example 1 was uniformly dispersed in ethanol so that the concentration of the LCO / LLZO nanoheterostructure powder would be 0.17 g / ml. A predetermined amount of the LCO / LLZO nanoheterostructure powder ethanol dispersion was used as a nickel current collector (a pure metal nickel plate (manufactured by Niraco Co., Ltd.)) with a diameter of 14 mm and a thickness of 500 μm so that the thickness of the obtained positive electrode material was 50 μm. (Which has been processed into 1.) and then naturally dried in a draft (normal temperature (15 to 25 ° C.)) for 6 hours to evaporate the LCO / LLZO nanoheterostructure powder to dryness, and to obtain the nickel current collector. A predetermined amount of the LCO / LLZO nanoheterostructure powder aggregate was formed on the surface of the.

次に、このようにして得られた前記ニッケル集電体と前記LCO/LLZOナノヘテロ構造体粉末の集合体とからなる積層体に、温度150℃、圧力500MPa、1000MPa、又は1500MPaの条件で1〜2秒間の温間加圧成形を施し、厚み50μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える加圧成型体を作製した。得られた加圧成型体中の正極材の密度を測定し、温間加圧成形時の圧力に対してプロットした結果を図1に示す。   Next, the laminated body composed of the thus obtained nickel current collector and the LCO / LLZO nanoheterostructure powder aggregate was placed under conditions of a temperature of 150 ° C., a pressure of 500 MPa, 1000 MPa, or 1500 MPa. Warm pressure molding was performed for 2 seconds to prepare a pressure molded body including a positive electrode material made of the LCO / LLZO nanoheterostructure having a thickness of 50 μm and the nickel current collector. FIG. 1 shows the results of measuring the density of the positive electrode material in the obtained pressure-molded body and plotting it against the pressure during warm pressure molding.

(比較参考例1)
集電体としてアルミニウム集電体(純金属アルミニウム板((株)ニラコ製)を直径14mm×厚み500μmに加工したもの)を使用し、温間加圧成形時の圧力を300MPa、500MPa、1000MPa、1500PMa、又は2000MPaに変更した以外は参考例1と同様にして、厚み50μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記アルミニウム集電体とを備える加圧成型体を作製した。得られた加圧成型体中の正極材の密度を測定し、温間加圧成形時の圧力に対してプロットした結果を図1に示す。
(Comparative Reference Example 1)
An aluminum current collector (a pure metal aluminum plate (manufactured by Niraco Co., Ltd.) processed into a diameter of 14 mm and a thickness of 500 μm) is used as a current collector, and the pressure during warm pressure molding is 300 MPa, 500 MPa, 1000 MPa, In the same manner as in Reference Example 1 except that the pressure was changed to 1500 PMa or 2000 MPa, a pressure molded body including a positive electrode material made of the LCO / LLZO nanoheterostructure having a thickness of 50 μm and the aluminum current collector was produced. FIG. 1 shows the results of measuring the density of the positive electrode material in the obtained pressure-molded body and plotting it against the pressure during warm pressure molding.

また、得られた加圧成型体の断面を走査型電子顕微鏡(SEM)により観察した。その結果を図2Aに示す。また、図2Bは図2A中の白線内を拡大したものである。図2A〜図2Bに示した結果から明らかなように、得られた加圧成型体中の正極材内にクラックが観察された。   Further, the cross section of the obtained pressure-molded body was observed with a scanning electron microscope (SEM). The result is shown in FIG. 2A. Further, FIG. 2B is an enlarged view of the white line in FIG. 2A. As is clear from the results shown in FIGS. 2A and 2B, cracks were observed in the positive electrode material in the obtained pressure-molded body.

一方、図2Cには、特開2014−179238号公報に記載されている方法に従って、金型にアルミニウム集電体を入れ、その上にLCO/LLZOナノヘテロ構造体粉末を充填し、冷間プレスにより作製した電極の断面の走査型電子顕微鏡(SEM)写真を示す。図2Cに示した結果から明らかなように、得られた電極中の正極材内には、LCO/LLZOナノヘテロ構造体粉末の間に50〜100μmの大きさの隙間が観察された。   On the other hand, in FIG. 2C, according to the method described in JP-A-2014-179238, an aluminum current collector is put into a mold, and LCO / LLZO nanoheterostructure powder is filled on the aluminum current collector, followed by cold pressing. The scanning electron microscope (SEM) photograph of the cross section of the produced electrode is shown. As is clear from the results shown in FIG. 2C, gaps having a size of 50 to 100 μm were observed between the LCO / LLZO nanoheterostructure powders in the positive electrode material in the obtained electrode.

(比較参考例2)
集電体としてステンレス(SUS316)集電体(ステンレスSUS316鋼板((株)ニラコ製)を直径14mm×厚み500μmに加工したもの)を使用し、温間加圧成形時の圧力を300MPa、500MPa、1000MPa、又は2000MPaに変更した以外は参考例1と同様にして、厚み50μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ステンレス集電体とを備える加圧成型体を作製した。得られた加圧成型体中の正極材の密度を測定し、温間加圧成形時の圧力に対してプロットした結果を図1に示す。
(Comparative Reference Example 2)
A stainless steel (SUS316) current collector (stainless steel SUS316 steel plate (manufactured by Niraco Co., Ltd.) processed to have a diameter of 14 mm and a thickness of 500 μm) is used as a current collector, and the pressure during warm pressure forming is 300 MPa, 500 MPa, In the same manner as in Reference Example 1 except that the pressure was changed to 1000 MPa or 2000 MPa, a pressure-molded body including a positive electrode material made of the LCO / LLZO nanoheterostructure having a thickness of 50 μm and the stainless current collector was produced. FIG. 1 shows the results of measuring the density of the positive electrode material in the obtained pressure-molded body and plotting it against the pressure during warm pressure molding.

図1に示した結果から明らかなように、いずれの集電体を用いた場合においても、温間加圧成形時の圧力に好適な範囲及び最適値が存在することがわかった。例えば、ニッケル集電体を用いた場合には、圧力500〜1500MPaで温間加圧成形することによって、電極密度が1.5〜3.5g/cmの前記LCO/LLZOナノヘテロ構造体からなる正極材が得られることがわかった。 As is clear from the results shown in FIG. 1, it was found that there is a suitable range and optimum value for the pressure during warm pressure molding regardless of which collector is used. For example, when a nickel current collector is used, the LCO / LLZO nanoheterostructure having an electrode density of 1.5 to 3.5 g / cm 3 is formed by performing warm pressure molding at a pressure of 500 to 1500 MPa. It was found that a positive electrode material was obtained.

(実施例1)
前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液中のLCO/LLZOナノヘテロ構造体粉末の濃度を0.085g/mlに変更し、得られる正極材の厚みが25μmとなるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下した以外は参考例1と同様にして、前記ニッケル集電体と前記LCO/LLZOナノヘテロ構造体粉末の集合体とからなる積層体を作製した。
(Example 1)
The concentration of the LCO / LLZO nanoheterostructure powder in the ethanol dispersion of the LCO / LLZO nanoheterostructure powder was changed to 0.085 g / ml so that the thickness of the obtained positive electrode material was 25 μm and the predetermined amount of the above was used. A laminate comprising the nickel current collector and the LCO / LLZO nanoheterostructure powder aggregate was prepared in the same manner as in Reference Example 1 except that the ethanol dispersion of the LCO / LLZO nanoheterostructure powder was added dropwise.

次に、このようにして得られた積層体に、温度150℃、圧力900MPaの条件で1〜2秒間の温間加圧成形を施し、前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える加圧成型体を作製した。得られた加圧成型体に、窒素雰囲気下、750℃で12時間の加熱処理(アニール処理)を施し、厚み25μmの前記正極材と前記ニッケル集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.0g/cmであった。 Next, the laminated body thus obtained was subjected to warm pressure molding for 1 to 2 seconds under the conditions of a temperature of 150 ° C. and a pressure of 900 MPa, and the positive electrode material composed of the LCO / LLZO nanoheterostructure and the nickel. A pressure molded body including a current collector was produced. The obtained pressure-molded body was subjected to a heat treatment (annealing treatment) at 750 ° C. for 12 hours in a nitrogen atmosphere to obtain an electrode including the positive electrode material having a thickness of 25 μm and the nickel current collector. When the density of the positive electrode material in this electrode was measured, it was 3.0 g / cm 3 .

このようにして得られた電極について、走査型電子顕微鏡(SEM)を用いてエネルギー分散型X線(EDX)分光分析を行なった。図3は前記電極断面の各無機成分の元素分布をマッピングした結果を示す。図3に示した結果から、前記正極材と前記ニッケル集電体との間に厚み1〜3μmのNiO層が形成されていることがわかった。また、前記正極材内においてLa、Zr、Coの分布に粗密が見られた。   The electrode thus obtained was subjected to energy dispersive X-ray (EDX) spectroscopy using a scanning electron microscope (SEM). FIG. 3 shows the result of mapping the element distribution of each inorganic component in the cross section of the electrode. From the results shown in FIG. 3, it was found that a NiO layer having a thickness of 1 to 3 μm was formed between the positive electrode material and the nickel current collector. Further, the distribution of La, Zr, and Co was uneven in the positive electrode material.

(比較例1)
得られる正極材の厚みが20μmとなるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下した以外は実施例1と同様にして、厚み20μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える加圧成型体を作製した。比較例1においては、この加圧成型体に加熱処理(アニール処理)を施さず、そのまま電極として使用した。この電極中の正極材の密度を測定したところ、3.0g/cmであった。
(Comparative Example 1)
The LCO / LLZO nanoheterostructure having a thickness of 20 μm was prepared in the same manner as in Example 1 except that a predetermined amount of the ethanol dispersion of the LCO / LLZO nanoheterostructure powder was added dropwise so that the obtained positive electrode material had a thickness of 20 μm. A pressure-molded body including a positive electrode material having a body and the nickel current collector was produced. In Comparative Example 1, the pressure-molded body was used as an electrode without heat treatment (annealing treatment). When the density of the positive electrode material in this electrode was measured, it was 3.0 g / cm 3 .

このようにして得られた電極について、走査型電子顕微鏡(SEM)を用いてエネルギー分散型X線(EDX)分光分析を行なった。図4は前記電極断面の各無機成分の元素分布をマッピングした結果を示す。図4に示した結果から、前記正極材と前記ニッケル集電体との間にNiO層は形成されていなかった。また、前記正極材内において無機成分は一様に分布していた。   The electrode thus obtained was subjected to energy dispersive X-ray (EDX) spectroscopy using a scanning electron microscope (SEM). FIG. 4 shows the result of mapping the element distribution of each inorganic component in the cross section of the electrode. From the results shown in FIG. 4, the NiO layer was not formed between the positive electrode material and the nickel current collector. Further, the inorganic component was uniformly distributed in the positive electrode material.

(比較例2)
実施例1と同様にして作成した前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える加圧成型体に、窒素雰囲気下、750℃、4.9MPa(50kgf/cm)の条件で3時間のホットプレス処理を施し、厚み20μmの前記正極材と前記ニッケル集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.3g/cmであった。
(Comparative example 2)
A pressure-molded body including the positive electrode material made of the LCO / LLZO nanoheterostructure and the nickel current collector prepared in the same manner as in Example 1 was placed under a nitrogen atmosphere at 750 ° C. and 4.9 MPa (50 kgf / cm 2). The hot press treatment was performed for 3 hours under the conditions of 1) to obtain an electrode including the positive electrode material having a thickness of 20 μm and the nickel current collector. When the density of the positive electrode material in this electrode was measured, it was 3.3 g / cm 3 .

(比較例3)
得られる正極材の厚みが20μmとなるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下した以外は実施例1と同様にして、前記ニッケル集電体と前記LCO/LLZOナノヘテロ構造体粉末の集合体とからなる積層体を作製した。この積層体に、窒素雰囲気下、750℃、4.9MPa(50kgf/cm)の条件で3時間のホットプレス処理を施し、厚み20μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.2g/cmであった。
(Comparative example 3)
In the same manner as in Example 1 except that a predetermined amount of the ethanol dispersion of the LCO / LLZO nanoheterostructure powder was dropped so that the thickness of the obtained positive electrode material was 20 μm, the nickel current collector and the LCO / A laminated body including an aggregate of LLZO nanoheterostructure powder was produced. This laminated body was subjected to a hot press treatment under a nitrogen atmosphere at 750 ° C. and 4.9 MPa (50 kgf / cm 2 ) for 3 hours to obtain a positive electrode material made of the LCO / LLZO nanoheterostructure having a thickness of 20 μm and the nickel. An electrode provided with a current collector was obtained. When the density of the positive electrode material in this electrode was measured, it was 3.2 g / cm 3 .

このようにして得られた電極について、走査型電子顕微鏡(SEM)を用いてエネルギー分散型X線(EDX)分光分析を行なった。図5は前記電極断面の各無機成分の元素分布をマッピングした結果を示す。図5に示した結果から、前記正極材と前記ニッケル集電体との間にNiO層は形成されていなかった。また、前記正極材内において無機成分は一様に分布していた。   The electrode thus obtained was subjected to energy dispersive X-ray (EDX) spectroscopy using a scanning electron microscope (SEM). FIG. 5 shows the result of mapping the element distribution of each inorganic component in the cross section of the electrode. From the results shown in FIG. 5, no NiO layer was formed between the positive electrode material and the nickel current collector. Further, the inorganic component was uniformly distributed in the positive electrode material.

(比較例4〜5)
ホットプレス処理時の圧力を5.9MPa(60kgf/cm)(比較例4)又は12.7MPa(130kgf/cm)(比較例5)に変更した以外は比較例3と同様にして、厚み20μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える電極を得た。これら電極中の正極材の密度を測定したところ、3.4g/cm(比較例4)及び3.6g/cm(比較例5)であった。
(Comparative Examples 4-5)
The thickness was the same as in Comparative Example 3 except that the pressure during hot press treatment was changed to 5.9 MPa (60 kgf / cm 2 ) (Comparative Example 4) or 12.7 MPa (130 kgf / cm 2 ) (Comparative Example 5). An electrode having a positive electrode material composed of the LCO / LLZO nanoheterostructure of 20 μm and the nickel current collector was obtained. When the density of the positive electrode material in these electrodes was measured, they were 3.4 g / cm 3 (Comparative Example 4) and 3.6 g / cm 3 (Comparative Example 5).

(比較例6)
得られる正極材の厚みが30μmとなるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下し、ホットプレス処理時の圧力を5.9MPa(60kgf/cm)に変更した以外は比較例3と同様にして、厚み30μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.3g/cmであった。
(Comparative example 6)
A predetermined amount of the LCO / LLZO nanoheterostructure powder ethanol dispersion was added dropwise so that the thickness of the obtained positive electrode material was 30 μm, and the pressure during hot pressing was changed to 5.9 MPa (60 kgf / cm 2 ). An electrode including a positive electrode material made of the LCO / LLZO nanoheterostructure having a thickness of 30 μm and the nickel current collector was obtained in the same manner as in Comparative Example 3 except for the above. When the density of the positive electrode material in this electrode was measured, it was 3.3 g / cm 3 .

(実施例2)
温間加圧成形時の圧力を1000MPaに変更した以外は実施例1と同様にして、厚み25μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.0g/cmであった。
(Example 2)
An electrode including a positive electrode material composed of the LCO / LLZO nanoheterostructure having a thickness of 25 μm and the nickel current collector was obtained in the same manner as in Example 1 except that the pressure during warm pressure molding was changed to 1000 MPa. . When the density of the positive electrode material in this electrode was measured, it was 3.0 g / cm 3 .

(実施例3〜4)
得られる正極材の厚みが45μm(実施例3)又は60μm(実施例4)となるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下した以外は実施例2と同様にして、所定の厚みの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ニッケル集電体とを備える電極を得た。これらの電極中の正極材の密度を測定したところ、2.9g/cm(実施例3)及び2.8g/cm(実施例4)であった。
(Examples 3 to 4)
Same as Example 2 except that a predetermined amount of the LCO / LLZO nanoheterostructure powder ethanol dispersion was dropped so that the thickness of the obtained positive electrode material was 45 μm (Example 3) or 60 μm (Example 4). Then, an electrode including a positive electrode material composed of the LCO / LLZO nanoheterostructure having a predetermined thickness and the nickel current collector was obtained. When the density of the positive electrode material in these electrodes was measured, it was 2.9 g / cm 3 (Example 3) and 2.8 g / cm 3 (Example 4).

(比較例7)
集電体としてアルミニウム集電体を使用し、温間加圧成形時の圧力を500MPaに変更した以外は実施例2と同様にして、厚み25μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記アルミニウム集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.7g/cmであった。
(Comparative Example 7)
An aluminum current collector was used as a current collector, and a positive electrode material composed of the LCO / LLZO nanoheterostructure having a thickness of 25 μm was prepared in the same manner as in Example 2 except that the pressure during warm press molding was changed to 500 MPa. An electrode including the aluminum current collector was obtained. When the density of the positive electrode material in this electrode was measured, it was 3.7 g / cm 3 .

(比較例8〜11)
得られる正極材の厚みが10μm(比較例8)、20μm(比較例9)、35μm(比較例10)又は40μm(比較例11)となるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下した以外は比較例7と同様にして、所定の厚みの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記アルミニウム集電体とを備える電極を得た。これらの電極中の正極材の密度を測定したところ、3.8g/cm(比較例8)、3.8g/cm(比較例9)、3.7g/cm(比較例10)、3.6g/cm(比較例11)であった。
(Comparative Examples 8 to 11)
A predetermined amount of the LCO / LLZO nanoheterostructure powder so that the thickness of the obtained positive electrode material is 10 μm (Comparative Example 8), 20 μm (Comparative Example 9), 35 μm (Comparative Example 10) or 40 μm (Comparative Example 11). An electrode including the positive electrode material made of the LCO / LLZO nanoheterostructure having a predetermined thickness and the aluminum current collector was obtained in the same manner as in Comparative Example 7 except that the ethanol dispersion liquid of Example 1 was dropped. When the density of the positive electrode material in these electrodes was measured, it was 3.8 g / cm 3 (Comparative Example 8), 3.8 g / cm 3 (Comparative Example 9), 3.7 g / cm 3 (Comparative Example 10), It was 3.6 g / cm 3 (Comparative Example 11).

(比較例12)
集電体としてステンレス(SUS316)集電体を使用した以外は実施例2と同様にして、厚み25μmの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ステンレス集電体とを備える電極を得た。この電極中の正極材の密度を測定したところ、3.0g/cmであった。
(Comparative Example 12)
An electrode including the positive electrode material made of the LCO / LLZO nanoheterostructure having a thickness of 25 μm and the stainless current collector was obtained in the same manner as in Example 2 except that a stainless (SUS316) current collector was used as the current collector. It was When the density of the positive electrode material in this electrode was measured, it was 3.0 g / cm 3 .

(比較例13〜15)
得られる正極材の厚みが20μm(比較例13)、35μm(比較例14)又は50μm(比較例15)となるように、所定量の前記LCO/LLZOナノヘテロ構造体粉末のエタノール分散液を滴下した以外は比較例7と同様にして、所定の厚みの前記LCO/LLZOナノヘテロ構造体からなる正極材と前記ステンレス集電体とを備える電極を得た。これらの電極中の正極材の密度を測定したところ、3.1g/cm(比較例13)、3.0g/cm(比較例14)、2.9g/cm(比較例15)であった。
(Comparative Examples 13 to 15)
A predetermined amount of the ethanol dispersion of the LCO / LLZO nanoheterostructure powder was added dropwise so that the thickness of the obtained positive electrode material was 20 μm (Comparative Example 13), 35 μm (Comparative Example 14) or 50 μm (Comparative Example 15). An electrode including a positive electrode material made of the LCO / LLZO nanoheterostructure having a predetermined thickness and the stainless current collector was obtained in the same manner as in Comparative Example 7 except for the above. When the density of the positive electrode material in these electrodes was measured, it was 3.1 g / cm 3 (Comparative Example 13), 3.0 g / cm 3 (Comparative Example 14), and 2.9 g / cm 3 (Comparative Example 15). there were.

<放電容量測定>
実施例及び比較例で得られた各電極を正極として、リチウム金属箔(φ14mm×0.4mm)を負極として用い、これらの電極によりポリエチレンオキサイド(PEO)にリチウム−ビス(トリフルオロメタンスルホニル)イミド(LiTFSI)をドーピングしたポリマー電解質(φ14mm×1mm)を挟持し、電池セルを作製した。この電池セルの放電容量をサイクリックボルタメトリー(CV)により3V〜4.2Vの範囲をスキャンレート0.05mV/秒で測定し、得られた電極の正極材の厚みに対してプロットした結果を図6〜図7に示す。
<Discharge capacity measurement>
Each of the electrodes obtained in Examples and Comparative Examples was used as a positive electrode, and a lithium metal foil (φ14 mm × 0.4 mm) was used as a negative electrode. With these electrodes, polyethylene oxide (PEO) was converted into lithium-bis (trifluoromethanesulfonyl) imide ( A polymer electrolyte (φ14 mm × 1 mm) doped with LiTFSI) was sandwiched to prepare a battery cell. The discharge capacity of this battery cell was measured by cyclic voltammetry (CV) in the range of 3 V to 4.2 V at a scan rate of 0.05 mV / sec, and the results plotted against the thickness of the positive electrode material of the obtained electrode were obtained. It shows in FIGS.

図6に示した結果から明らかなように、実施例1と比較例1とを対比すると、温間圧力成形した後、アニール処理を施すことによって、放電容量が約2倍に増大することがわかった。また、温間圧力成形した後、アニール処理を施した場合(実施例1)には、温間圧力成形した後、ホットプレス処理を施した場合(比較例2)及び温間圧力成形及びアニール処理の代わりにホットプレス処理を施した場合(比較例3〜6)に比べて、放電容量が大きくなることがわかった。   As is clear from the results shown in FIG. 6, when Example 1 and Comparative Example 1 are compared, it is found that the discharge capacity is increased to about double by performing the annealing treatment after the warm pressure forming. It was Further, when the annealing treatment is performed after the warm pressure molding (Example 1), the hot pressing treatment is performed after the warm pressure molding (Comparative example 2) and the warm pressure molding and the annealing treatment are performed. It was found that the discharge capacity was larger than that in the case where hot press treatment was applied instead of (Comparative Examples 3 to 6).

また、図7に示した結果から明らかなように、同じ正極材厚みで比較すると、集電体としてニッケル集電体を使用した場合(実施例2〜4)には、アルミニウム集電体を使用した場合(比較例7〜11)及びステンレス集電体を使用した場合(比較例13〜15)に比べて、放電容量が大きくなることがわかった。   Further, as is clear from the results shown in FIG. 7, when comparing the same positive electrode material thickness, when a nickel current collector is used as a current collector (Examples 2 to 4), an aluminum current collector is used. It was found that the discharge capacity was larger than that in the case (Comparative Examples 7 to 11) and the case in which the stainless current collector was used (Comparative Examples 13 to 15).

以上説明したように、本発明によれば、ナノヘテロ構造体からなる正極材とニッケル集電体と一体化して電極を成形することができ、また、正極材とニッケル集電体との界面が安定している電極を得ることができる。   As described above, according to the present invention, an electrode can be formed by integrating a positive electrode material composed of a nanoheterostructure and a nickel current collector, and the interface between the positive electrode material and the nickel current collector is stable. Can be obtained.

したがって、本発明の電極は、電解質が固体である全固体リチウム二次電池の正極材として有用である。   Therefore, the electrode of the present invention is useful as a positive electrode material for an all-solid-state lithium secondary battery in which the electrolyte is solid.

Claims (4)

LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体からなり、電極密度が1.5〜3.5g/cmである正極材と、
ニッケル集電体と、
厚さが1〜3μmであり、一方の面が前記正極材と接触し、他方の面が前記ニッケル集電体と接触しているNiO層と、
を備えていることを特徴とする全固体リチウム二次電池用正極
Li 7 La 3 Zr 2 O 12 and other inorganic components are three-dimensionally and periodically arranged among the matrix of the inorganic components of Li 7 La 3 Zr 2 O 12 and LiCoO 2 of one of LiCoO 2 The nanoheterostructure has at least a part of a three-dimensional periodic structure in which the average value of the length of one unit of the repeating structure is 1 nm to 100 nm, and the electrode density is 1.5 to 3. A positive electrode material having a weight of 5 g / cm 3 ,
A nickel current collector,
A NiO layer having a thickness of 1 to 3 μm, one surface of which contacts the positive electrode material and the other surface of which contacts the nickel current collector;
A positive electrode for an all-solid-state lithium secondary battery, comprising:
請求項1に記載の正極を備えていることを特徴とする全固体リチウム二次電池。 An all-solid-state lithium secondary battery comprising the positive electrode according to claim 1. LiLaZr12及びLiCoOのうちの一方の無機成分からなるマトリックス中にLiLaZr12及びLiCoOのうちの他方の無機成分が三次元的且つ周期的に配置しており、繰り返し構造の一単位の長さの平均値が1nm〜100nmである三次元的周期構造を少なくとも一部に有しているナノヘテロ構造体粉末を溶媒に分散させる工程と、
前記工程で得られた前記ナノヘテロ構造体粉末の分散液をニッケル集電体上に滴下し、自然乾燥により前記ナノヘテロ構造体粉末を乾固させ、前記ニッケル集電体の表面に前記ナノヘテロ構造体粉末の集合体を形成する工程と、
前記工程で得られた前記ニッケル集電体と前記ナノヘテロ構造体粉末の集合体とからなる積層体を、20〜150℃の温度、500〜2000MPaの圧力で温間加圧成形する工程と、
前記工程で得られた加圧成型体に、大気圧下、400〜800℃の温度で加熱処理を施す工程と、
を含むことを特徴とする全固体リチウム二次電池用正極の製造方法。
Li 7 La 3 Zr 2 O 12 and other inorganic components are three-dimensionally and periodically arranged among the matrix of the inorganic components of Li 7 La 3 Zr 2 O 12 and LiCoO 2 of one of LiCoO 2 And a step of dispersing a nano-heterostructure powder having a three-dimensional periodic structure having an average value of the length of one unit of the repeating structure of 1 nm to 100 nm in at least a part in a solvent,
The dispersion liquid of the nanoheterostructure powder obtained in the step is dropped on a nickel current collector, and the nanoheterostructure powder is dried to dryness by natural drying, and the nanoheterostructure powder is formed on the surface of the nickel current collector. Forming an aggregate of
A step of warm press-molding a laminate comprising the nickel current collector obtained in the step and an assembly of the nano-heterostructure powder at a temperature of 20 to 150 ° C. and a pressure of 500 to 2000 MPa;
A step of subjecting the pressure-molded body obtained in the above step to a heat treatment at a temperature of 400 to 800 ° C. under atmospheric pressure;
A method for producing a positive electrode for an all-solid-state lithium secondary battery, comprising:
前記加圧成型体の加熱処理を窒素雰囲気下で行うことを特徴とする請求項3に記載の全固体リチウム二次電池用正極の製造方法。 The method for producing a positive electrode for an all-solid lithium secondary battery according to claim 3, wherein the heat treatment of the pressure molded body is performed in a nitrogen atmosphere.
JP2016064527A 2016-03-28 2016-03-28 Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same Active JP6688460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064527A JP6688460B2 (en) 2016-03-28 2016-03-28 Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064527A JP6688460B2 (en) 2016-03-28 2016-03-28 Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
JP2017182930A JP2017182930A (en) 2017-10-05
JP6688460B2 true JP6688460B2 (en) 2020-04-28

Family

ID=60006364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064527A Active JP6688460B2 (en) 2016-03-28 2016-03-28 Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same

Country Status (1)

Country Link
JP (1) JP6688460B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335550B (en) * 2022-03-10 2022-05-31 安徽盟维新能源科技有限公司 Preparation method of three-dimensional organic framework composite material, lithium metal cathode and battery
CN117242590A (en) * 2022-04-14 2023-12-15 京东方科技集团股份有限公司 Battery assembly and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149812A (en) * 1996-11-18 1998-06-02 Japan Storage Battery Co Ltd Positive electrode plate for lithium battery and lithium battery
JP4848613B2 (en) * 2003-11-07 2011-12-28 株式会社Gsユアサ Battery current collector and non-aqueous electrolyte battery using the same
CN101351907B (en) * 2005-10-11 2010-09-29 埃克塞勒特龙固体公司 Method of manufacturing lithium battery
JP2008091328A (en) * 2006-09-04 2008-04-17 Sumitomo Electric Ind Ltd Lithium secondary cell and its manufacturing method
JP2010140664A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Method of manufacturing sintered cathode body and sintered cathode body
JP2013229132A (en) * 2012-04-24 2013-11-07 Toyota Motor Corp Electrode sintered body and electrode sintered body manufacturing method
JP6089822B2 (en) * 2013-03-14 2017-03-08 株式会社豊田中央研究所 Method for producing electrode material for lithium secondary battery
JP6089823B2 (en) * 2013-03-14 2017-03-08 株式会社豊田中央研究所 Electrode material and battery comprising the same

Also Published As

Publication number Publication date
JP2017182930A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6983942B2 (en) Electrode material with mixed particle size
US9692041B2 (en) Lithium battery and method of preparing cathode active material for the lithium battery
JP7028354B2 (en) All-solid-state lithium-ion secondary battery
CN108604665B (en) Solid-state battery, separator, electrode, and manufacturing method
KR102277905B1 (en) Lithium battery, and preparation method of cathode active material for the lithium battery
WO2017046915A1 (en) Composite electrolyte for secondary batteries, secondary battery and battery pack
JP6597701B2 (en) Negative electrode mixture, negative electrode including the negative electrode mixture, and all-solid-state lithium ion secondary battery including the negative electrode
JP6944783B2 (en) Manufacturing method of electrodes for all-solid-state batteries and manufacturing method of all-solid-state batteries
US11923510B2 (en) Solid-state battery and method of manufacture thereof
JP6776994B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
JP5614646B2 (en) Electrode thin film, all-solid-state lithium battery, and method for producing electrode thin film
CN110121799B (en) Electrode for secondary battery, and methods for producing them
JP6973319B2 (en) Solid-state battery electrodes and solid-state batteries
US20190214677A1 (en) All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
WO2017046917A1 (en) Composite electrolyte for secondary battery, secondary battery, and battery pack
JPWO2018193992A1 (en) All-solid-state lithium-ion secondary battery
Lin et al. Graphene-wrapped Li4Ti5O12 hollow spheres consisting of nanosheets as novel anode material for lithium-ion batteries
JP7087784B2 (en) Solid-state battery electrodes and solid-state batteries
JP6688460B2 (en) Positive electrode for all-solid-state lithium secondary battery, manufacturing method thereof, and all-solid-state lithium secondary battery including the same
Sheha Studies on TiO2/reduced graphene oxide composites as cathode materials for magnesium-ion battery
KR102309264B1 (en) Silicon Nano-composite Structured Powders for Anode Materials and Method for Producing the Same
CN113544875A (en) Method for manufacturing all-solid-state battery
CN114050255B (en) Positive electrode active material, preparation method thereof and lithium ion battery
US10177372B2 (en) Metal oxide composite and method of preparing the same
WO2023199543A1 (en) Composite active material particles, battery, and method for producing composite active material particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200318

R150 Certificate of patent or registration of utility model

Ref document number: 6688460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150