JP6687909B2 - Dielectric composition, dielectric element, electronic component and laminated electronic component - Google Patents

Dielectric composition, dielectric element, electronic component and laminated electronic component Download PDF

Info

Publication number
JP6687909B2
JP6687909B2 JP2017233843A JP2017233843A JP6687909B2 JP 6687909 B2 JP6687909 B2 JP 6687909B2 JP 2017233843 A JP2017233843 A JP 2017233843A JP 2017233843 A JP2017233843 A JP 2017233843A JP 6687909 B2 JP6687909 B2 JP 6687909B2
Authority
JP
Japan
Prior art keywords
component
mol
dielectric composition
oxide
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233843A
Other languages
Japanese (ja)
Other versions
JP2018135258A (en
Inventor
涼太 野村
涼太 野村
博樹 秋場
博樹 秋場
三四郎 阿滿
三四郎 阿滿
哲弘 高橋
哲弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US15/900,084 priority Critical patent/US10354799B2/en
Priority to DE102018104029.6A priority patent/DE102018104029B4/en
Priority to CN201810154874.0A priority patent/CN108467266B/en
Publication of JP2018135258A publication Critical patent/JP2018135258A/en
Application granted granted Critical
Publication of JP6687909B2 publication Critical patent/JP6687909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Description

本発明は、特に、たとえば車載用のような高温環境下で使用されるのに適した誘電体組成物及びその誘電体組成物を誘電体層として用いた電子部品等に関する。   The present invention particularly relates to a dielectric composition suitable for being used in a high temperature environment such as for vehicle use and an electronic component using the dielectric composition as a dielectric layer.

積層セラミックコンデンサは、その信頼性の高さやコストの安さから多くの電子機器に搭載されている。具体的な電子機器としては、携帯電話等の情報端末、家電、自動車電装品が挙げられる。この中でも車載用として使用される積層セラミックコンデンサは、家電や情報端末等に使用されている積層セラミックコンデンサに比べて、より高温領域までの保証が求められることがあり、コンデンサとしての機能が劣化し難いという高い信頼性が必要となる。コンデンサの機能を劣化させないために必要な特性としては、連続使用する上で高温雰囲気下において交流電圧を長時間印加しても絶縁抵抗が劣化しにくい、つまり高い高温負荷寿命(温度及び電圧を印加した後、初期の絶縁抵抗値を基準として一桁低下するまでの時間)を有することが重要となる。   A monolithic ceramic capacitor is mounted on many electronic devices because of its high reliability and low cost. Specific electronic devices include information terminals such as mobile phones, home appliances, and automobile electrical components. Among them, the monolithic ceramic capacitors used for in-vehicle use may be required to be guaranteed up to a higher temperature range than the monolithic ceramic capacitors used in home appliances and information terminals, and the function as a capacitor may deteriorate. High reliability that is difficult is required. The characteristics required to prevent the function of the capacitor from deteriorating are that the insulation resistance does not easily deteriorate even if an AC voltage is applied for a long time in a high temperature atmosphere during continuous use. After that, it is important to have a time until it decreases by one digit with respect to the initial insulation resistance value.

特に、150℃以上の高温領域で使用が考えられているSiCまたはGaN等パワー半導体を用いたインバータ回路に搭載されるサージ電圧除去用の積層セラミックコンデンサは、−55℃〜200℃付近までの広範囲の温度において高い信頼性が要求されている。   In particular, the surge voltage elimination monolithic ceramic capacitor mounted in an inverter circuit using a power semiconductor such as SiC or GaN, which is considered to be used in a high temperature region of 150 ° C. or higher, has a wide range from −55 ° C. to 200 ° C. High reliability is required at the temperature.

特許文献1には、十分な誘電率を示しつつ、かつ、175℃程度の高温においても、安定した静電容量温度特性および高い抵抗率ρが得られる誘電体セラミック組成物である組成式(1−a)(K1−xNa)(Sr1−y−zBaCaNb15−a(Ba1−bCa)TiOで表されるタングステンブロンズ構造系化合物とペロブスカイト構造系化合物との混晶系を主成分として含み、且つ、上記主成分100モル部に対して0.1〜40モル部の副成分を含有する誘電体セラミック組成物を用いた積層セラミックコンデンサに関する技術が開示されている。 Patent Document 1 discloses a composition formula (1) which is a dielectric ceramic composition showing a sufficient dielectric constant and capable of obtaining stable capacitance temperature characteristics and high resistivity ρ even at a high temperature of about 175 ° C. -a) (K 1-x Na x) (Sr 1-y-z Ba y Ca z) 2 Nb 5 O 15 -a (Ba 1-b Ca b) a tungsten bronze structure compound represented by TiO 3 with A laminated ceramic capacitor using a dielectric ceramic composition containing a mixed crystal system with a perovskite structure compound as a main component and containing 0.1 to 40 parts by mole of an auxiliary component with respect to 100 parts by weight of the main component. The technology regarding is disclosed.

特許文献2には、化学式(K1−xNa)SrNb15(ただし、0≦x<0.2)で表されるタングステンブロンズ型複合酸化物を主成分として含む誘電体セラミック組成物において、0.05〜20mol部の希土類元素と、0.05mol〜40mol部のMn、V、Li等とを、副成分として含むことで、室温の抵抗率が高い誘電体セラミック組成物ついての技術が開示してある。 Patent Document 2, the formula (K 1-x Na x) Sr 2 Nb 5 O 15 ( provided that, 0 ≦ x <0.2) dielectric ceramic comprising tungsten bronze-type composite oxide represented by a principal component In the composition, a dielectric ceramic composition having a high room temperature resistivity by including 0.05 to 20 mol parts of a rare earth element and 0.05 mol to 40 mol parts of Mn, V, Li and the like as auxiliary components. Is disclosed.

特許文献3には、チタン酸バリウムを含む主成分と、BaZrO、Mgの酸化物、希土類元素、Alの酸化物等及びSi、Li、GeおよびBの副成分を含有することで、高温負荷寿命に優れ、中高圧用途に好適に用いることができる誘電体磁器組成物に関する技術が開示されている。 In Patent Document 3, by containing a main component containing barium titanate, BaZrO 3 , an oxide of Mg, a rare earth element, an oxide of Al, and the like and subcomponents of Si, Li, Ge, and B, a high temperature load is obtained. A technique relating to a dielectric ceramic composition which has an excellent life and can be suitably used for medium and high pressure applications is disclosed.

WO2008/155945号公報WO2008 / 155945 WO2008/102608号公報WO2008 / 102608 特開2008−162830号公報JP, 2008-162830, A

しかしながら、上記特許文献1は、高温領域において、測定時間が直流電圧を1分程度の印加したときの比抵抗については良好な特性が得られているが、交流電圧を長時間連続して印加した高温負荷寿命については不十分である。また、上記特許文献2は、種々の副成分を含有することで、室温の絶縁性は改善されているが、高温領域、例えば、250℃における高温負荷寿命については不十分である。また、上記特許文献3は、ペロブスカイト型のチタン酸バリウム系の材料にGe等の副成分を含有することで、150℃で使用する場合には高い高温負荷寿命を有しているが、主成分がチタン酸バリウムであるため、150℃を超える温度領域で得られる比誘電率は低く、所望の静電容量を得ることが困難であった。   However, in Patent Document 1 described above, although good characteristics are obtained in the high temperature region when the DC voltage is applied for about 1 minute for the measurement time, the AC voltage is continuously applied for a long time. The high temperature load life is insufficient. Further, in Patent Document 2, the insulation property at room temperature is improved by containing various subcomponents, but the high temperature load life in a high temperature region, for example, 250 ° C., is insufficient. Further, in Patent Document 3, the perovskite-type barium titanate-based material has a high high-temperature load life when used at 150 ° C. by containing a subcomponent such as Ge, but the main component is Since it is barium titanate, the relative dielectric constant obtained in the temperature range over 150 ° C. is low and it is difficult to obtain a desired capacitance.

本発明は、上記課題に鑑みてなされたものであって、高温領域において、耐電圧および比抵抗に優れ、良好な高温負荷寿命を有する誘電体組成物と、それを用いた電子部品等を提供することである。   The present invention has been made in view of the above problems, and provides a dielectric composition having excellent withstand voltage and specific resistance in a high temperature region and having a good high temperature load life, and an electronic component using the same. It is to be.

上記の目的を達成するために、本発明の第1の観点に係る誘電体組成物は、
主成分が化学式(A6−xx+28−x30、0≦x≦5)で表され、
前記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、
前記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、
前記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、
前記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素であり、
前記主成分100モルに対して、第一副成分としてGeの酸化物を2.50モル以上20.00モル以下含むことを特徴とする。
In order to achieve the above object, the dielectric composition according to the first aspect of the present invention is
The main component is represented by the chemical formula (A 6-x B x C x + 2 D 8-x O 30 , 0 ≦ x ≦ 5),
The component A is at least one element selected from the group consisting of Ba, Ca and Sr,
The B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
The C component is at least one element selected from the group consisting of Ti and Zr,
The D component is at least one element selected from the group consisting of Nb and Ta,
The oxide of Ge is contained as a first subcomponent in an amount of 2.50 mol or more and 20.00 mol or less with respect to 100 mol of the main component.

本発明の第1の観点に係る誘電体組成物において、前記主成分100モルに対して、第二副成分としてMn、Mg、V、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を0.10モル以上20.00モル以下含むことが好ましい。   In the dielectric composition according to the first aspect of the present invention, based on 100 moles of the main component, Mn, Mg, V, W, Mo, Si, Li, B and Al as a second subcomponent are selected. It is preferable to contain at least one oxide selected from 0.10 mol to 20.00 mol.

本発明の第2の観点に係る誘電体組成物は、
結晶粒子および前記結晶粒子間を占める粒界からなる誘電体組成物であって、
前記結晶粒子が、
化学式A6−xx+28−x30(0≦x≦5)で表され、
前記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、
前記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、
前記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、
前記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素である化合物を主成分とし、
前記誘電体組成物が第一副成分としてGeの酸化物を含有し、第二副成分としてVの酸化物を含有し、
前記結晶粒子全体に対するGeを実質的に含む前記結晶粒子の存在割合が10%未満であることを特徴とする。
The dielectric composition according to the second aspect of the present invention is
A dielectric composition comprising a crystal grain and a grain boundary occupying between the crystal grains,
The crystal particles are
It is represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30 (0 ≦ x ≦ 5),
The component A is at least one element selected from the group consisting of Ba, Ca and Sr,
The B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
The C component is at least one element selected from the group consisting of Ti and Zr,
The main component is a compound in which the component D is at least one element selected from the group consisting of Nb and Ta,
The dielectric composition contains an oxide of Ge as a first subcomponent and an oxide of V as a second subcomponent,
It is characterized in that the existence ratio of the crystal particles substantially containing Ge is less than 10% with respect to the entire crystal particles.

本発明の第2の観点に係る誘電体組成物について、前記粒界におけるGeの平均濃度をC、Geを実質的に含む前記結晶粒子におけるGeの平均濃度をCとして、C/Cがモル比で10以上であることが好ましい。 In the dielectric composition according to the second aspect of the present invention, the average concentration of Ge at the grain boundary is C 1 , and the average concentration of Ge in the crystal particles substantially containing Ge is C 2 / C 1 / C It is preferable that 2 has a molar ratio of 10 or more.

本発明の第3の観点に係る誘電体組成物は、
結晶粒子および前記結晶粒子間を占める粒界からなる誘電体組成物であって、
前記結晶粒子が、
化学式A6−xx+28−x30(0≦x≦5)で表され、
前記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、
前記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、
前記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、
前記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素である化合物を主成分とし、
前記誘電体組成物が第一副成分としてGeの酸化物を含有し、第二副成分としてVの酸化物を含有し、
前記粒界におけるGeの平均濃度をC、Geが実質的に存在する前記結晶粒子におけるGeの平均濃度をCとして、C/Cがモル比で10以上であることを特徴とする。
The dielectric composition according to the third aspect of the present invention is
A dielectric composition comprising a crystal grain and a grain boundary occupying between the crystal grains,
The crystal particles are
It is represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30 (0 ≦ x ≦ 5),
The component A is at least one element selected from the group consisting of Ba, Ca and Sr,
The B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
The C component is at least one element selected from the group consisting of Ti and Zr,
The main component is a compound in which the component D is at least one element selected from the group consisting of Nb and Ta,
The dielectric composition contains an oxide of Ge as a first subcomponent and an oxide of V as a second subcomponent,
The average concentration of Ge in the grain boundary is C 1 , the average concentration of Ge in the crystal grains in which Ge is substantially present is C 2 , and C 1 / C 2 is 10 or more in molar ratio. .

本発明の第2の観点または第3の観点に係る誘電体組成物について、前記主成分100モルに対して、前記Vの酸化物の含有量がV換算で1.0モル超5.0モル以下であり、前記Geの酸化物の含有量がGe換算で10.0モル以上17.5モル以下であることが好ましい。   In the dielectric composition according to the second aspect or the third aspect of the present invention, the content of the oxide of V is more than 1.0 mol and 5.0 mol in terms of V with respect to 100 mol of the main component. The content of the Ge oxide is preferably 10.0 mol or more and 17.5 mol or less in terms of Ge.

本発明の第2の観点または第3の観点に係る誘電体組成物について、前記誘電体組成物がVの酸化物以外の第二副成分としてMn、Mg、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を含み、
前記主成分100モルに対して、前記Vの酸化物以外の第二副成分の含有量が各元素換算で合計0.10モル以上20.00モル以下であることが好ましい。
Regarding the dielectric composition according to the second aspect or the third aspect of the present invention, the dielectric composition has Mn, Mg, W, Mo, Si, Li, and B as second subcomponents other than V oxide. And at least one oxide selected from the group consisting of Al,
The content of the second subcomponent other than the oxide of V is preferably 0.10 mol or more and 20.00 mol or less in total in terms of each element with respect to 100 mol of the main component.

本発明の第1〜第3の観点に係る誘電体組成物について、
前記主成分がタングステンブロンズ型の結晶構造を有することが好ましい。
Regarding the dielectric composition according to the first to third aspects of the present invention,
It is preferable that the main component has a tungsten bronze type crystal structure.

誘電体組成物が上記のいずれかに記載の特徴を有することで、高温領域で使用されるのに適し、耐電圧および比抵抗に優れ、良好な高温負荷寿命を有する誘電体組成物を提供することが可能となる。   The dielectric composition having any of the characteristics described above provides a dielectric composition suitable for being used in a high temperature region, having excellent withstand voltage and specific resistance, and having a good high temperature load life. It becomes possible.

さらに、上記のいずれかに記載の誘電体組成物からなる誘電体層を有する電子部品は、−55℃の低温領域から150℃程度の領域での使用が求められる車載用途の電子部品や、さらにより高温の250℃程度の領域まで求められているSiCやGaN系の半導体を用いたパワーデバイス用のスナバコンデンサや、自動車のエンジンルーム内のノイズ除去に用いるコンデンサ等に用いることができる。   Furthermore, an electronic component having a dielectric layer made of any one of the above-mentioned dielectric compositions is an electronic component for in-vehicle use which is required to be used in a low temperature range of −55 ° C. to about 150 ° C., and It can be used as a snubber capacitor for power devices using SiC or GaN-based semiconductors, which is required up to a higher temperature of about 250 ° C., and a capacitor used for removing noise in the engine room of an automobile.

本発明に係る誘電体素子は、上記のいずれかに記載の誘電体組成物を備える。   A dielectric element according to the present invention comprises any one of the above dielectric compositions.

本発明に係る電子部品は、上記のいずれかに記載の誘電体組成物からなる誘電体層を備える。   An electronic component according to the present invention includes a dielectric layer made of any one of the above dielectric compositions.

本発明に係る積層電子部品は、上記のいずれかに記載の誘電体組成物からなる誘電体層と内部電極層とを交互に積層されてなる積層部分を有する。   A laminated electronic component according to the present invention has a laminated portion formed by alternately laminating dielectric layers made of any one of the above dielectric compositions and internal electrode layers.

図1は、本発明の一実施形態に係る積層セラミックコンデンサの断面図である。FIG. 1 is a cross-sectional view of a monolithic ceramic capacitor according to an embodiment of the present invention.

(第1実施形態)
まず、本発明の積層電子部品として、積層セラミックコンデンサについて説明する。図1に、一般的な積層セラミックコンデンサの断面図を示す。
(First embodiment)
First, a laminated ceramic capacitor will be described as the laminated electronic component of the present invention. FIG. 1 shows a cross-sectional view of a general monolithic ceramic capacitor.

積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、コンデンサ素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。   The monolithic ceramic capacitor 1 has a capacitor element body 10 in which dielectric layers 2 and internal electrode layers 3 are alternately laminated. At both ends of the capacitor element body 10, a pair of external electrodes 4 is formed which are electrically connected to the internal electrode layers 3 alternately arranged inside the capacitor element body 10. The shape of the capacitor element body 10 is not particularly limited, but is usually a rectangular parallelepiped. The size is not particularly limited, and may be an appropriate size depending on the application.

内部電極層3は、各端部がコンデンサ素子本体10の対向する2端面の表面に交互に露出するように積層してある。一対の外部電極4は、コンデンサ素子本体10の両端面に形成され、交互に配置された内部電極層3の露出端に接続されて、コンデンサ回路を構成する。   The internal electrode layers 3 are laminated so that their ends are alternately exposed on the surfaces of the two opposite end faces of the capacitor element body 10. The pair of external electrodes 4 are formed on both end faces of the capacitor element body 10 and are connected to the exposed ends of the alternately arranged internal electrode layers 3 to form a capacitor circuit.

誘電体層2の厚さは、特に限定されないが、一層あたり100μm以下であることが好ましく、より好ましくは30μm以下である。厚さの下限は、特に限定されないが、たとえば0.5μm程度である。本発明の誘電体組成物によれば、層間厚みを0.5μm〜30μmとした場合であっても、高い高温負荷寿命を有する誘電体層を有する積層セラミックコンデンサ1を形成することができる。   The thickness of the dielectric layer 2 is not particularly limited, but is preferably 100 μm or less per layer, and more preferably 30 μm or less. The lower limit of the thickness is not particularly limited, but is, for example, about 0.5 μm. According to the dielectric composition of the present invention, it is possible to form a monolithic ceramic capacitor 1 having a dielectric layer having a high high temperature load life even when the interlayer thickness is 0.5 μm to 30 μm.

誘電体層2の積層数は、特に限定されないが、好ましくは20以上であり、より好ましくは50以上である。   The number of stacked dielectric layers 2 is not particularly limited, but is preferably 20 or more, more preferably 50 or more.

内部電極層3に含有される導電材は特に限定されないが、Ni、Ni系合金、CuまたはCu系合金が好ましい。なお、Ni、Ni系合金、CuまたはCu系合金中には、P等の各種微量成分が0.1質量%程度以下含まれていてもよい。また、内部電極層3は、市販の電極用ペーストを使用して形成してもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよい。   The conductive material contained in the internal electrode layer 3 is not particularly limited, but Ni, Ni-based alloy, Cu or Cu-based alloy is preferable. Note that various trace components such as P may be contained in Ni, Ni-based alloy, Cu, or Cu-based alloy in an amount of about 0.1 mass% or less. The internal electrode layer 3 may be formed using a commercially available electrode paste. The thickness of the internal electrode layer 3 may be appropriately determined according to the application and the like.

より好ましくは、内部電極層3に含有される導電材は、誘電体層2の構成材料が耐還元性を有するため、NiまたはNi系合金である。このNiまたはNi系合金を主成分とし、これにAl、Si、Li、Cr、Feから選択された1種類以上の内部電極用副成分を含有していることが更に好ましい。   More preferably, the conductive material contained in the internal electrode layer 3 is Ni or a Ni-based alloy because the constituent material of the dielectric layer 2 has reduction resistance. It is more preferable that this Ni or Ni-based alloy is the main component, and that it also contains one or more kinds of subcomponents for internal electrodes selected from Al, Si, Li, Cr, and Fe.

上記内部電極層3の主成分であるNiまたはNi系合金にAl、Si、Li、Cr、Feから選択された1種類以上の内部電極用副成分を含有させることで、Niが大気中の酸素と反応しNiOになる前に、上記内部電極用副成分と酸素が反応し、Niの表面に内部電極用副成分の酸化膜を形成する。これにより、外気中の酸素が前記内部電極用副成分の酸化膜を通過しないとNiと反応できなくなるため、Niが酸化され難くなる。これにより、250℃の高温下で連続使用しても、Niを主成分とする内部電極層の酸化による連続性、導電性の劣化が起り難くなる。   By incorporating Ni or Ni-based alloy, which is the main component of the internal electrode layer 3, with one or more kinds of internal electrode subcomponents selected from Al, Si, Li, Cr, and Fe, Ni can be oxygen in the atmosphere. Before reacting with NiO to form NiO, the subcomponent for the internal electrode reacts with oxygen to form an oxide film of the subcomponent for the internal electrode on the surface of Ni. As a result, oxygen in the outside air cannot react with Ni unless it passes through the oxide film of the subcomponent for the internal electrode, so that Ni is less likely to be oxidized. As a result, even when continuously used at a high temperature of 250 ° C., deterioration of continuity and conductivity due to oxidation of the internal electrode layer containing Ni as a main component hardly occurs.

外部電極4に含有される導電材は特に限定されないが、本発明では安価なNi、Cu及び耐熱性の高いAu、Ag、Pdや、これらの合金を用いることができる。外部電極4の厚さは用途等に応じて適宜決定されればよいが、通常、10〜50μm程度であることが好ましい。   Although the conductive material contained in the external electrode 4 is not particularly limited, inexpensive Ni, Cu, Au, Ag, Pd having high heat resistance, and alloys thereof can be used in the present invention. The thickness of the external electrode 4 may be appropriately determined according to the application, etc., but is usually preferably about 10 to 50 μm.

次に、本実施形態に係る誘電体層を構成する誘電体組成物について詳細に説明する。   Next, the dielectric composition constituting the dielectric layer according to this embodiment will be described in detail.

本実施形態に係る誘電体組成物は、以下に示す主成分を有する。主成分は、化学式(A6−xx+28−x30、0≦x≦5)で表され、上記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、上記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、上記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、上記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素である。以下に各成分について説明する。 The dielectric composition according to this embodiment has the following main components. Principal components are represented by formula (A 6-x B x C x + 2 D 8-x O 30, 0 ≦ x ≦ 5), at least one said component A is selected from the group consisting of Ba, Ca and Sr elements And the B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and the C component Is at least one element selected from the group consisting of Ti and Zr, and the D component is at least one element selected from the group consisting of Nb and Ta. Each component will be described below.

本実施形態では、化学式A6−xx+28−x30で表される主成分において、B成分はY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素である。主成分がB成分を含むことにより、高い比誘電率を維持しつつ、高温負荷寿命および耐電圧に優れる誘電体組成物を得ることができる。 In the present embodiment, the main component represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30, B component Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, and Lu are at least one element selected from the group consisting of. When the main component contains the B component, it is possible to obtain a dielectric composition which is excellent in high temperature load life and withstand voltage while maintaining a high relative dielectric constant.

また、xはB成分の置換量であり、その範囲は0≦x≦5であり、好ましくは0≦x≦3である。したがって、本実施形態では、主成分においてB成分は任意の成分である。xを上記範囲とすることで、高温負荷寿命に優れる誘電体組成物が得られる。   Further, x is the substitution amount of the B component, and its range is 0 ≦ x ≦ 5, preferably 0 ≦ x ≦ 3. Therefore, in the present embodiment, the B component in the main component is an arbitrary component. By setting x in the above range, a dielectric composition excellent in high temperature load life can be obtained.

たとえば、x=0の場合のA30、x=1の場合のA30、x=2の場合のA30、または、x=3の場合のA30を主成分とすることで、高温負荷寿命に優れる誘電体組成物が得られる。 For example, A 6 C 2 D 8 O 30 when x = 0, A 5 B 1 C 3 D 7 O 30 when x = 1, A 4 B 2 C 4 D 6 O 30 when x = 2. Alternatively, by using A 3 B 3 C 5 D 5 O 30 in the case of x = 3 as a main component, a dielectric composition excellent in high temperature load life can be obtained.

本実施形態では、化学式A6−xx+28−x30で表される主成分において、A成分は、Ba、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、その置換量は(6−x)である。本実施形態においてxは0≦x≦5を満たすので、主成分はA成分を必ず含む。主成分が置換量(6−x)のA成分を含むことにより、高温負荷寿命および耐電圧に優れる誘電体組成物が得られる。 In the present embodiment, the main component represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30, A component is at least one element selected from the group consisting of Ba, Ca and Sr, The substitution amount is (6-x). In the present embodiment, x satisfies 0 ≦ x ≦ 5, so that the main component always contains the A component. When the main component contains the substitution amount (6-x) of the A component, a dielectric composition excellent in high temperature load life and withstand voltage can be obtained.

本実施形態では、化学式A6−xx+28−x30で表される主成分において、C成分はTi、Zrからなる群から選ばれる少なくとも一種の元素であり、その置換量は(2+x)である。主成分が置換量(2+x)のC成分を含むことにより、バンドキャップが広くなり、耐電圧および比誘電率に優れる誘電体組成物を得ることができる。 In the present embodiment, the main component represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30, C component is at least one element selected from the group consisting Ti, and Zr, the amount of substitution Is (2 + x). When the main component contains the substitution component (2 + x) of the C component, the band cap is widened, and a dielectric composition having excellent withstand voltage and relative dielectric constant can be obtained.

本実施形態では、化学式A6−xx+28−x30で表される主成分において、D成分はNb、Taからなる群から選ばれる少なくとも一種の元素であり、その置換量は(8−x)である。本実施形態においてxは0≦x≦5を満たすので、主成分はD成分を必ず含む。主成分が置換量(8−x)のD成分を含むことにより、タングステンブロンズ型の結晶構造が維持されやすくなり、耐電圧に優れる誘電体組成物を得ることができる。 In the present embodiment, the main component represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30, D component is at least one element selected from the group consisting Nb, from Ta, amount of substitution Is (8-x). Since x satisfies 0 ≦ x ≦ 5 in this embodiment, the main component always includes the D component. When the main component contains the substitution amount (8-x) of the D component, the tungsten bronze type crystal structure is easily maintained, and a dielectric composition excellent in withstand voltage can be obtained.

本実施形態に係る誘電体組成物は、第一副成分としてGeの酸化物を含む。本発明者は、誘電体組成物が第一副成分としてGeの酸化物を含有することで、高温負荷寿命の劣化原因と考えられる酸素欠陥の移動を抑制する効果が得られることを見出した。   The dielectric composition according to the present embodiment contains a Ge oxide as the first subcomponent. The present inventor has found that the dielectric composition containing Ge oxide as the first subcomponent has the effect of suppressing the movement of oxygen defects, which is considered to be the cause of deterioration of the high temperature load life.

本実施形態では、第一副成分としてのGeの酸化物の含有量は、上記主成分100モルに対して、2.50モル以上20.00モル以下、好ましくは5.00モル以上18.00モル以下、より好ましくは10.00モル以上17.50モル以下である。第一副成分としてのGeの酸化物の含有量を上記範囲とすることで、高温負荷寿命の劣化原因と考えられる酸素欠陥の移動が抑制され、十分な高温負荷寿命が得られる。   In this embodiment, the content of the Ge oxide as the first subcomponent is 2.50 mol or more and 20.00 mol or less, preferably 5.00 mol or more and 18.00 mol, relative to 100 mol of the main component. It is not more than 1 mol, more preferably not less than 10.00 mol and not more than 17.50 mol. By setting the content of the Ge oxide as the first subcomponent within the above range, the movement of oxygen defects, which is considered to be the cause of deterioration of the high temperature load life, is suppressed, and a sufficient high temperature load life is obtained.

本実施形態に係る誘電体組成物は、第二副成分としてMn、Mg、V、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を含むことが好ましい。また、第二副成分の含有量は、前記主成分100モルに対して好ましくは0.05モル以上30.00モル以下、より好ましくは0.10モル以上20.00モル以下である。第二副成分の含有量を上記範囲とすることで、耐電圧および比抵抗がより向上する。また、高温負荷寿命の劣化の原因と考えられている酸素欠陥の移動がより抑制されて、高温負荷寿命がより向上する。   The dielectric composition according to the present embodiment preferably contains at least one oxide selected from the group consisting of Mn, Mg, V, W, Mo, Si, Li, B and Al as the second subcomponent. The content of the second subcomponent is preferably 0.05 mol or more and 30.00 mol or less, and more preferably 0.10 mol or more and 20.00 mol or less with respect to 100 mol of the main component. By setting the content of the second subcomponent within the above range, the withstand voltage and the specific resistance are further improved. Further, the movement of oxygen defects, which is considered to be the cause of the deterioration of the high temperature load life, is further suppressed, and the high temperature load life is further improved.

なお、本実施形態に係る誘電体組成物は、比誘電率、比抵抗、耐電圧または高温負荷寿命等の特性を大きく劣化させるものでなければ、微少な不純物やその他副成分を含んでいてもかまわない。例えば、Ba、Ni、Cr、Zn、Cu、Ga等が誘電体組成物に含まれてもよい。誘電体組成物全体に対する主成分の含有量は特に限定されるものではないが、たとえば前記主成分を含有する誘電体組成物全体に対して60.0モル%以上、97.5モル%以下である。   The dielectric composition according to the present embodiment may contain minute impurities and other sub-components as long as the characteristics such as relative permittivity, specific resistance, withstand voltage or high temperature load life are not significantly deteriorated. I don't care. For example, Ba, Ni, Cr, Zn, Cu, Ga or the like may be included in the dielectric composition. The content of the main component with respect to the entire dielectric composition is not particularly limited, but is, for example, 60.0 mol% or more and 97.5 mol% or less with respect to the entire dielectric composition containing the main component. is there.

また、本実施形態に係る誘電体組成物において、上記主成分は揮発性の高いアルカリ金属を実質的に含まないことが好ましい。アルカリ金属を含まないことで、誘電体組成物は格子欠陥を生じ難く、伝導電子が生成され難いため、比抵抗も高いという特徴も有している。さらに、高温、高電界下で電解還元反応が起きにくいと考えられる。このため、還元反応により生じる伝導電子の増加を抑制できるため、長い高温負荷寿命を示すものと考えられる。なお、アルカリ金属を実質的に含まないとは、例えば、主成分に含まれる全元素に対するアルカリ金属の含有量が1.0at%以下である場合を指す。   Further, in the dielectric composition according to the present embodiment, it is preferable that the main component does not substantially contain highly volatile alkali metal. By not containing an alkali metal, the dielectric composition is less likely to generate lattice defects and conductive electrons are less likely to be generated, and thus has a characteristic of high specific resistance. Furthermore, it is considered that the electrolytic reduction reaction is unlikely to occur under high temperature and high electric field. Therefore, since it is possible to suppress an increase in conduction electrons caused by the reduction reaction, it is considered that a long high temperature load life is exhibited. The phrase “substantially free of alkali metal” refers to, for example, the case where the content of alkali metal is 1.0 at% or less based on all the elements contained in the main component.

本実施形態に係る誘電体組成物では、上記主成分は、好ましくはタングステンブロンズ型の結晶構造を有する。上記主成分がタングステンブロンズ型の結晶構造を有するか否かは、誘電体組成物のX線回折(XRD)パターンにより確認できる。   In the dielectric composition according to this embodiment, the main component preferably has a tungsten bronze type crystal structure. Whether or not the main component has a tungsten bronze type crystal structure can be confirmed by an X-ray diffraction (XRD) pattern of the dielectric composition.

本実施形態では、主成分の化学式A6−xx+28−x30において、xが0≦x≦3を満たす場合に、主成分はタングステンブロンズ型の結晶構造を有しやすい。 In the present embodiment, in the chemical formula A 6-x B x C x + 2 D 8-x O 30 of the main component, when x satisfies 0 ≦ x ≦ 3, the main component is likely to have a tungsten bronze type crystal structure. .

上記主成分がタングステンブロンズ型の結晶構造を有することで、高い耐電圧が得られやすくなる。この要因について、発明者等は以下のように考えている。本実施形態の主成分がタングステンブロンズ型の結晶構造を有すると、バンドギャップが広くなるため、価電子帯にある電子が伝導帯へ励起し難く、伝導に関わっている多数キャリアである電子のキャリア濃度を抑制することが可能となる。また、耐電圧の代表的な破壊モードである電子なだれでは、多数キャリアである伝導電子のキャリア濃度が影響していることが考えられる。主成分がタングステンブロンズ型の結晶構造を有する場合には、この多数キャリアである電子のキャリア濃度を低く抑えることが可能となるため、電子なだれによる破壊が発生し難くなったものと考えられる。さらに、バンドギャップが広くなると、高い電界強度が印加されてもある程度の広さのバンドギャップを維持することができるため、高電界でも高い耐電圧が得られ易いものと思われる。   When the main component has a tungsten bronze type crystal structure, high withstand voltage is easily obtained. The inventors consider this factor as follows. When the main component of the present embodiment has a tungsten bronze type crystal structure, the band gap is widened, so that electrons in the valence band are difficult to excite to the conduction band, and carriers of electrons that are majority carriers involved in conduction It is possible to suppress the concentration. Further, in the electron avalanche, which is a typical breakdown mode of the withstand voltage, it is considered that the carrier concentration of conduction electrons, which is the majority carrier, influences. When the main component has a tungsten bronze type crystal structure, the carrier concentration of the electrons, which are the majority carriers, can be suppressed to a low level, and it is considered that the destruction due to the electron avalanche does not easily occur. Further, when the band gap becomes wide, it is possible to maintain a wide band gap to some extent even when a high electric field strength is applied, and thus it seems that a high withstand voltage is easily obtained even in a high electric field.

このように、本実施形態に係る誘電体組成物は、高温領域において良好な特性を示すため、SiCやGaN系のパワーデバイスの使用温度域(たとえば、−55℃〜250℃)において好適に用いることができる。また、自動車のエンジンルームなど、過酷な環境下において、ノイズ除去用などの電子部品として好適に用いられることができる。   As described above, since the dielectric composition according to the present embodiment exhibits good characteristics in a high temperature region, it is preferably used in a use temperature range (for example, -55 ° C to 250 ° C) of a SiC or GaN-based power device. be able to. Further, it can be suitably used as an electronic component for noise removal in a harsh environment such as an automobile engine room.

次に、図1に示す積層セラミックコンデンサの製造方法の一例を説明する。   Next, an example of a method for manufacturing the monolithic ceramic capacitor shown in FIG. 1 will be described.

本実施形態の積層セラミックコンデンサ1は、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を塗布して焼成することにより製造される。以下、製造方法について具体的に説明する。   The monolithic ceramic capacitor 1 of the present embodiment is similar to a conventional monolithic ceramic capacitor in that a green chip is produced by an ordinary printing method or a sheet method using a paste, and after firing this, an external electrode is applied and fired. It is manufactured by The manufacturing method will be specifically described below.

まず、主成分の仮焼き粉末を準備する。主成分の出発原料として、SrやBa、Ca、Ti、Zr、Nb、Taを主として構成される酸化物やその混合物の原料粉を用いることができる。また、焼成により上述した酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。具体的には、Srの原料としてSrOを用いてもよいし、SrCOを用いてもよい。原料粉の平均粒子径は、好ましくは1.0μm以下である。各成分を所定の組成比となるように秤量した後、ボールミル等を用いて所定の時間、湿式混合を行う。得られた混合粉を乾燥後、大気中において1000℃以下の熱処理を行い、主成分の仮焼き粉末を得る。 First, the calcined powder of the main component is prepared. As a starting material for the main component, raw material powder of an oxide mainly composed of Sr, Ba, Ca, Ti, Zr, Nb, and Ta, or a mixture thereof can be used. Further, various compounds that become the above-mentioned oxides or complex oxides by firing, such as carbonates, oxalates, nitrates, hydroxides, organometallic compounds, etc., can be appropriately selected and mixed and used. Specifically, SrO may be used as the raw material of Sr, or SrCO 3 may be used. The average particle diameter of the raw material powder is preferably 1.0 μm or less. After weighing each component so as to have a predetermined composition ratio, wet mixing is performed for a predetermined time using a ball mill or the like. After the obtained mixed powder is dried, it is heat-treated at 1000 ° C. or lower in the atmosphere to obtain a calcined powder as a main component.

副成分の仮焼き粉末を準備する。副成分の原料としては、特に限定されず、各成分の酸化物やその混合物を原料粉として用いることができる。たとえば、第一副成分の出発原料として、平均粒子径が2.0μm以下のGeO粉末を用いることができる。また、必要に応じて、第二副成分の出発原料としてMn、Mg、Co、V、W、Mo、Si、Li、Bの酸化物やその混合物の原料粉を用いることができる。また、焼成により上述した酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。具体的には、Mgの原料としてMgO用いても良いし、MgCOを用いても良い。各成分を所定の組成比となるように秤量した後、ボールミル等を用いて所定の時間、湿式混合を行う。得られた混合粉を乾燥後、大気中において700℃〜800℃にて1時間〜5時間熱処理を行い、副成分の仮焼き粉末を得る。なお、熱処理前の、乾燥後の混合粉末を使用してもよい。 Prepare calcined powder of subcomponents. The raw materials for the subcomponents are not particularly limited, and oxides of each component or a mixture thereof can be used as the raw material powder. For example, GeO 2 powder having an average particle size of 2.0 μm or less can be used as a starting material for the first subcomponent. Further, if necessary, raw material powder of an oxide of Mn, Mg, Co, V, W, Mo, Si, Li, B or a mixture thereof can be used as a starting raw material of the second subcomponent. Further, various compounds that become the above-mentioned oxides or complex oxides by firing, such as carbonates, oxalates, nitrates, hydroxides, organometallic compounds, etc., can be appropriately selected and mixed and used. Specifically, MgO may be used as a raw material of Mg, or MgCO 3 may be used. After weighing each component so as to have a predetermined composition ratio, wet mixing is performed for a predetermined time using a ball mill or the like. After drying the obtained mixed powder, it is heat-treated in the air at 700 ° C. to 800 ° C. for 1 hour to 5 hours to obtain a calcined powder of a subcomponent. In addition, you may use the mixed powder after heat processing before drying.

その後、得られた主成分の仮焼き粉末と、副成分の仮焼き粉末または副成分の混合粉末とを混合・解砕し、誘電体組成物原料を得る。誘電体組成物原料は、たとえば、平均粒子径が0.5μm〜2.0μmの混合粉末である。   Then, the obtained calcined powder of the main component and the calcined powder of the subcomponent or the mixed powder of the subcomponent are mixed and crushed to obtain a dielectric composition raw material. The dielectric composition raw material is, for example, a mixed powder having an average particle diameter of 0.5 μm to 2.0 μm.

上記で得られた誘電体組成物原料を塗料化して、誘電体層用ペーストを調製する。誘電体層用ペーストは、誘電体混合粉末と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。   The dielectric composition raw material obtained above is made into a coating material to prepare a dielectric layer paste. The dielectric layer paste may be an organic paint obtained by kneading a dielectric mixed powder and an organic vehicle, or an aqueous paint.

有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン等の各種有機溶剤から適宜選択すればよい。   The organic vehicle is a binder dissolved in an organic solvent. The binder used for the organic vehicle is not particularly limited and may be appropriately selected from various ordinary binders such as ethyl cellulose and polyvinyl butyral. The organic solvent used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, and acetone according to the method to be used such as the printing method and the sheet method.

また、誘電体層用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと、誘電体原料とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されず、たとえば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などを用いればよい。   When the dielectric layer paste is a water-based paint, a water-based vehicle in which a water-soluble binder or dispersant is dissolved may be kneaded with the dielectric material. The water-soluble binder used in the water-based vehicle is not particularly limited, and for example, polyvinyl alcohol, cellulose, water-soluble acrylic resin or the like may be used.

内部電極層用ペーストは、上記した各種導電性金属や合金からなる導電材、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、上記した有機ビヒクルとを混練して調製する。   The internal electrode layer paste is obtained by kneading the above-mentioned organic vehicle with a conductive material made of the above-mentioned various conductive metals or alloys, or various oxides, organometallic compounds, resinates, etc. which become the above-mentioned conductive material after firing. Prepare.

外部電極用ペーストは、上記した内部電極層用ペーストと同様にして調製すればよい。   The external electrode paste may be prepared in the same manner as the above internal electrode layer paste.

上記した各ペースト中の有機ビヒクルの含有量に特に制限はなく、通常の含有量、例えば、バインダは1質量%〜5質量%程度、溶剤は10質量%〜50質量%程度とすれば良い。また、各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体材料、絶縁体材料等から選択される添加物が含有されていてもよい。これらの総含有量は、10質量%以下とすることが好ましい。   The content of the organic vehicle in each paste described above is not particularly limited and may be a normal content, for example, the binder is about 1% by mass to 5% by mass, and the solvent is about 10% by mass to 50% by mass. In addition, each paste may contain additives selected from various dispersants, plasticizers, dielectric materials, insulating materials, and the like, if necessary. The total content of these is preferably 10% by mass or less.

印刷法を用いる場合、誘電体層用ペーストおよび内部電極層用ペーストを、PET等の基板上に印刷、積層し、所定形状に切断した後、基板から剥離してグリーンチップとする。   When the printing method is used, the dielectric layer paste and the internal electrode layer paste are printed and laminated on a substrate such as PET, cut into a predetermined shape, and then peeled from the substrate to obtain a green chip.

また、シート法を用いる場合、誘電体層用ペーストを用いてグリーンシートを形成し、この上に内部電極層用ペーストを印刷した後、これらを積層してグリーンチップとする。   When the sheet method is used, a dielectric layer paste is used to form a green sheet, an internal electrode layer paste is printed thereon, and these are laminated to form a green chip.

焼成前に、グリーンチップに脱バインダ処理を施す。脱バインダ処理条件としては、昇温速度を好ましくは5℃/時間〜300℃/時間、保持温度を好ましくは180℃〜500℃、温度保持時間を好ましくは0.5時間〜24時間とする。また、脱バインダ処理の雰囲気は、空気もしくは還元雰囲気とする。脱バインダ処理において、Nガスや混合ガス等を加湿するには、たとえばウェッター等を使用すればよい。この場合、水温は5℃〜75℃程度が好ましい。 Before firing, the green chip is subjected to binder removal processing. As the binder removal treatment condition, the temperature rising rate is preferably 5 ° C./hour to 300 ° C./hour, the holding temperature is preferably 180 ° C. to 500 ° C., and the temperature holding time is preferably 0.5 hour to 24 hours. The atmosphere for the binder removal processing is air or a reducing atmosphere. In the binder removal treatment, for example, a wetter or the like may be used to humidify the N 2 gas, the mixed gas, or the like. In this case, the water temperature is preferably about 5 ° C to 75 ° C.

また、焼成時の保持温度は、好ましくは1100℃〜1400℃である。保持温度が上記範囲未満であると緻密化が不十分となり、前記範囲を超えると、内部電極層の異常焼結による電極の途切れや、内部電極層構成材料の拡散による容量変化率の悪化が生じやすくなる。また、前記範囲を超えると結晶粒子が粗大化して、高温負荷寿命を低下するおそれがある。   The holding temperature during firing is preferably 1100 ° C to 1400 ° C. If the holding temperature is less than the above range, the densification becomes insufficient, and if it exceeds the above range, the electrode breaks due to abnormal sintering of the internal electrode layer, and the capacity change rate deteriorates due to the diffusion of the internal electrode layer constituent material. It will be easier. On the other hand, if it exceeds the above range, the crystal grains may be coarsened and the high temperature load life may be shortened.

昇温速度を好ましくは、200℃/時間〜5000℃/時間とする。焼結後の粒度分布を0.5μm〜5.0μmの範囲内に制御するために、また、結晶粒子同士の体積拡散を抑制するために、温度保持時間を好ましくは0.5時間〜2.0時間、冷却速度を好ましくは100℃/時間〜500℃/時間とする。   The temperature rising rate is preferably 200 ° C./hour to 5000 ° C./hour. In order to control the particle size distribution after sintering within the range of 0.5 μm to 5.0 μm and to suppress the volume diffusion of crystal particles, the temperature holding time is preferably 0.5 hours to 2. The cooling rate is preferably 0 ° C./hour to 500 ° C./hour for 0 hours.

また、焼成する雰囲気としては、加湿したNとHとの混合ガスを用い、酸素分圧10−2〜10−6Paで焼成することが好ましい。しかし、酸素分圧が高い状態での焼成を実施すると、Niを含む内部電極層の場合、Niが酸化してしまい、電極としての導電性が低下してしまう。この場合は、本実施形態のより好ましい形態であるNiを主成分とする導電材に対し、Al、Si、Li、Cr、Feから選択される1種類以上の内部電極用副成分を含有させることで、Niの耐酸化性が向上し、酸素分圧が高い雰囲気においても、内部電極層として導電性を確保することが可能となる。 Further, as the atmosphere for firing, it is preferable to use a mixed gas of humidified N 2 and H 2 and fire at an oxygen partial pressure of 10 −2 to 10 −6 Pa. However, if firing is performed in a state where the oxygen partial pressure is high, Ni is oxidized in the case of the internal electrode layer containing Ni, and the conductivity as an electrode is reduced. In this case, a conductive material containing Ni as a main component, which is a more preferable form of the present embodiment, should contain one or more kinds of internal electrode subcomponents selected from Al, Si, Li, Cr, and Fe. Therefore, the oxidation resistance of Ni is improved, and it becomes possible to secure the conductivity as the internal electrode layer even in an atmosphere with a high oxygen partial pressure.

焼成後、得られたコンデンサ素子本体に対し、必要に応じてアニール処理を行う。アニール処理条件は、公知の条件とすればよい。たとえば、アニール処理時の酸素分圧を焼成時の酸素分圧よりも高い酸素分圧とし、保持温度を1000℃以下とすることが好ましい。   After firing, the obtained capacitor element body is annealed if necessary. The annealing condition may be a known condition. For example, it is preferable that the oxygen partial pressure during the annealing treatment be higher than the oxygen partial pressure during the firing, and the holding temperature be 1000 ° C. or lower.

また、上記には脱バインダ処理、焼成およびアニール処理を独立して行う製造方法を記載しているが、連続して行なってもよい。   Further, although the manufacturing method in which the binder removal treatment, the firing and the annealing treatment are independently performed is described above, they may be continuously performed.

上記のようにして得られたコンデンサ素子本体に、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを塗布して焼成し、外部電極4を形成する。そして、必要に応じ、外部電極4の表面に、めっき等により被覆層を形成する。   The capacitor element body obtained as described above is subjected to end face polishing by, for example, barrel polishing or sandblasting, and an external electrode paste is applied and baked to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.

(第2実施形態)
以下、本発明の第2実施形態について説明を行う。以下に記載の無い事項については第1実施形態と同様である。
(Second embodiment)
The second embodiment of the present invention will be described below. Items not described below are the same as those in the first embodiment.

本実施形態に係る誘電体組成物は、結晶粒子および前記結晶粒子間を占める粒界からなる誘電体組成物である。前記粒界には2つの前記結晶粒子の間に存在する二粒子粒界相および3つ以上の前記結晶粒子の間に存在する粒界多重点が含まれる。そして、前記結晶粒子が化学式(A6−xx+28−x30、0≦x≦5)で表される主成分からなる。また、本発明の目的を損なわない限り、主成分以外の析出物等からなる粒子が若干存在していても良い。 The dielectric composition according to the present embodiment is a dielectric composition including crystal grains and grain boundaries that occupy between the crystal grains. The grain boundary includes a two-grain grain boundary phase existing between two crystal grains and a grain boundary multiple point existing between three or more crystal grains. Then, consisting mainly composed of the crystal grains is represented by the formula (A 6-x B x C x + 2 D 8-x O 30, 0 ≦ x ≦ 5). Further, some particles composed of precipitates other than the main component may be present as long as the object of the present invention is not impaired.

本実施形態に係る誘電体組成物において、前記粒界にはGeが高濃度で存在する。その結果、結晶粒子全体に対するGeを実質的に含まない結晶粒子の個数割合が90%以上となる。すなわち、Geを実質的に含む結晶粒子の個数割合が10%未満となる。なお、結晶粒子がGeを実質的に含まないとは、当該結晶粒子の断面について、Geが存在する領域の面積が10%以下であることを指す。すなわち、本実施形態に係る誘電体組成物において、Geは、90%以上の結晶粒子内には実質的に存在せず、Geの大部分が粒界に存在する。   In the dielectric composition according to the present embodiment, Ge exists at a high concentration in the grain boundary. As a result, the ratio of the number of crystal particles substantially not containing Ge to the total crystal particles is 90% or more. That is, the number ratio of the crystal particles substantially containing Ge is less than 10%. In addition, that the crystal grains do not substantially contain Ge means that the area of the region where Ge exists is 10% or less in the cross section of the crystal grains. That is, in the dielectric composition according to the present embodiment, Ge does not substantially exist in 90% or more of crystal grains, and most of Ge exists in grain boundaries.

また、結晶粒子がGeを実質的に含んでいるか否かについては、当該結晶粒子の断面、すなわち当該結晶粒子を含む誘電体組成物の断面についてFE−TEM−EDX(透過型電子顕微鏡−エネルギー分散型X線分析法)を用いることで確認することができる。また、本実施形態におけるEDXの条件はプローブ径1nm、加速電圧200kVである。当該条件でGeが検出された領域については、Geの検出量を問わずGeが存在する領域であるとする。また、Geが実質的に存在しない結晶粒子の個数割合を算出する上で、観察範囲は少なくとも100個の結晶粒子の断面が観察できる範囲とする。   Further, regarding whether or not the crystal particles substantially contain Ge, FE-TEM-EDX (transmission electron microscope-energy dispersion) is applied to the cross section of the crystal particles, that is, the cross section of the dielectric composition including the crystal particles. Type X-ray analysis method). The conditions of EDX in this embodiment are a probe diameter of 1 nm and an acceleration voltage of 200 kV. The region in which Ge is detected under the conditions is a region in which Ge exists regardless of the amount of Ge detected. Moreover, in calculating the number ratio of the crystal grains in which Ge is substantially absent, the observation range is set to a range in which the cross section of at least 100 crystal grains can be observed.

また、粒界におけるGeの平均濃度をC、Geを実質的に含む結晶粒子におけるGeの平均濃度をCとして、モル比でC/Cが10以上であることが好ましく、20以上であることがさらに好ましい。C/Cが10以上であることにより、高温負荷寿命の劣化原因と考えられる酸素欠陥の移動を、粒界に高濃度で存在するGeの存在により抑制する効果が得られる。そして、高い高温負荷寿命を有する誘電体組成物を提供しやすくなる。 Further, assuming that the average concentration of Ge at the grain boundary is C 1 and the average concentration of Ge in the crystal particles substantially containing Ge is C 2 , the molar ratio of C 1 / C 2 is preferably 10 or more, and 20 or more. Is more preferable. When C 1 / C 2 is 10 or more, the effect of suppressing the movement of oxygen defects, which is considered to be the cause of deterioration of the high temperature load life, can be obtained by the presence of Ge present at a high concentration at the grain boundary. Then, it becomes easy to provide a dielectric composition having a high high temperature load life.

本実施形態に係る誘電体組成物は、少なくとも第一副成分としてGeの酸化物を含有し、第二副成分としてVの酸化物を含有する。Geの酸化物と同時にVの酸化物を含有させることで、Geの結晶粒子への固溶を抑制することが可能となる。   The dielectric composition according to the present embodiment contains at least a Ge oxide as a first subcomponent and a V oxide as a second subcomponent. By including the oxide of V at the same time as the oxide of Ge, it becomes possible to suppress the solid solution of Ge in the crystal particles.

本実施形態では、第一副成分としてのGeの酸化物の含有量は、上記主成分100モルに対して、Ge換算で10.0モル以上17.5モル以下であることが好ましい。第一副成分としてのGeの酸化物の含有量を上記範囲とすることで、高温負荷寿命の劣化原因と考えられる酸素欠陥の移動が抑制され、より優れた高温負荷寿命が得られ易くなる。また、第二副成分としてのVの酸化物の含有量は、上記主成分100モルに対して、V換算で1.00モル超、5.0モル以下とすることが好ましい。これにより、Geを実質的に含まない結晶粒子の割合を95%まで高めることが可能となり、粒界におけるGeの平均濃度を高めることが出来るため、より優れた高温負荷寿命が得られ易くなる。   In the present embodiment, the content of the Ge oxide as the first subcomponent is preferably 10.0 mol or more and 17.5 mol or less in terms of Ge with respect to 100 mol of the main component. By setting the content of the Ge oxide as the first subcomponent within the above range, the movement of oxygen defects, which is considered to be the cause of the deterioration of the high temperature load life, is suppressed, and a more excellent high temperature load life is easily obtained. In addition, the content of the oxide of V as the second subcomponent is preferably more than 1.00 mol and 5.0 mol or less in terms of V with respect to 100 mol of the main component. This makes it possible to increase the proportion of crystal grains that do not substantially contain Ge to 95% and increase the average concentration of Ge at the grain boundaries, so that it becomes easier to obtain a better high temperature load life.

本実施形態に係る誘電体組成物は、Vの酸化物以外の第二副成分としてMn、Mg、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を含むことが好ましい。また、Vの酸化物以外の第二副成分の含有量は、前記主成分100モルに対して各元素換算で合計0.10モル以上20.00モル以下であることが好ましい。Vの酸化物以外の第二副成分の含有量を上記範囲とすることで、耐電圧および比抵抗がより向上する。また、高温負荷寿命の劣化の原因と考えられている酸素欠陥の移動がより抑制されて、高温負荷寿命がより向上する。   The dielectric composition according to the present embodiment contains at least one oxide selected from the group consisting of Mn, Mg, W, Mo, Si, Li, B and Al as the second subcomponent other than the oxide of V. It is preferable. Further, the content of the second subcomponent other than the oxide of V is preferably 0.10 mol or more and 20.00 mol or less in total in terms of each element with respect to 100 mol of the main component. By setting the content of the second subcomponent other than the oxide of V in the above range, the withstand voltage and the specific resistance are further improved. Further, the movement of oxygen defects, which is considered to be the cause of the deterioration of the high temperature load life, is further suppressed, and the high temperature load life is further improved.

(第3実施形態)
以下、本発明の第3実施形態について説明を行う。以下に記載の無い事項については第2実施形態と同様である。
(Third Embodiment)
The third embodiment of the present invention will be described below. Items not described below are the same as those in the second embodiment.

本実施形態に係る誘電体組成物において、粒界におけるGeの平均濃度をC、Geを実質的に含む結晶粒子におけるGeの平均濃度をCとして、モル比でC/Cが10以上である。また、20以上であることがさらに好ましい。C/Cが10以上であることにより、高温負荷寿命の劣化原因と考えられる酸素欠陥の移動を、粒界に高濃度で存在するGeの存在により抑制する効果が得られる。そして、高い高温負荷寿命を有する誘電体組成物を提供できる。 In the dielectric composition according to the present embodiment, the average concentration of Ge at the grain boundaries is C 1 , and the average concentration of Ge in the crystal grains substantially containing Ge is C 2 , and the molar ratio of C 1 / C 2 is 10. That is all. Further, it is more preferably 20 or more. When C 1 / C 2 is 10 or more, the effect of suppressing the movement of oxygen defects, which is considered to be the cause of deterioration of the high temperature load life, can be obtained by the presence of Ge present at a high concentration at the grain boundary. And the dielectric composition which has a high high temperature load life can be provided.

また、本実施形態に係る誘電体組成物において、結晶粒子全体に対するGeを実質的に含まない結晶粒子の個数割合が90%以上であることが好ましい。   Further, in the dielectric composition according to the present embodiment, it is preferable that the number ratio of the crystal particles substantially not containing Ge to the entire crystal particles is 90% or more.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

以下、本発明の具体的実施例を挙げ、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されない。なお、表1〜表4において※印を付した試料は、本発明の範囲外である。   Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention, but the present invention is not limited to these examples. The samples marked with * in Tables 1 to 4 are outside the scope of the present invention.

(実施例1)
主成分の出発原料として、平均粒径1.0μm以下のSrCO、BaCO、CaCO、TiO、ZrO、Nb、Ta、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの各粉末を用意した。これらを表1の各試料番号の主成分組成となるように秤量し、分散媒としてのエタノールを用いでボールミルにより24時間湿式混合した。得られた混合物を乾燥し、大気中で保持温度900℃、保持時間2時間の条件で熱処理を行い、主成分の仮焼き粉末を得た。
(Example 1)
As a starting material of the main component, SrCO 3 , BaCO 3 , CaCO 3 , TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , La 2 O 3 having an average particle size of 1.0 μm or less, Pr 2 O 3, Nd 2 O 3, Sm 2 O 3, Eu 2 O 3, Gd 2 O 3, Tb 2 O 3, Dy 2 O 3, Ho 2 O 3, Er 2 O 3, Tm 2 O 3, Powders of Yb 2 O 3 and Lu 2 O 3 were prepared. These were weighed so as to have the main component composition of each sample number in Table 1, and wet-mixed for 24 hours by a ball mill using ethanol as a dispersion medium. The obtained mixture was dried and heat-treated in the atmosphere at a holding temperature of 900 ° C. for a holding time of 2 hours to obtain a calcined powder as a main component.

第一副成分の出発原料としてGeO粉末、第二副成分の出発原料としてMnO、MgO、V、WO、MoO、SiO、LiCO、B、Alの各粉末を用意した。これらを表1の配合比となるように秤量し、分散媒としてのエタノールを用いでボールミルにより24時間湿式混合した。得られた混合物を乾燥し、大気中で保持温度800℃、保持時間2時間の条件で熱処理を行い、副成分の仮焼き粉末を得た。 GeO 2 powder as a starting material for the first subcomponent, and MnO, MgO, V 2 O 5 , WO 3 , MoO 3 , SiO 2 , Li 2 CO 3 , B 2 O 3 , and Al 2 as starting materials for the second subcomponent. Each powder of O 3 was prepared. These were weighed so as to have the compounding ratio shown in Table 1, and wet-mixed for 24 hours by a ball mill using ethanol as a dispersion medium. The obtained mixture was dried and heat-treated in the atmosphere at a holding temperature of 800 ° C. for a holding time of 2 hours to obtain a calcined powder of a subcomponent.

Figure 0006687909
Figure 0006687909

上記の方法で得られた主成分の仮焼き粉末と副成分の仮焼き粉末とを混合・解砕し、誘電体組成物原料を得た。この誘電体組成物原料1000gに対して、トルエン+エタノール溶液、可塑剤及び分散剤を90:6:4で混合した溶剤を700g入れ、通常の良く知られている分散方法であるバスケットミルを用いて2時間分散させ、誘電体層用ペーストを作製した。なお、これらのペーストの粘性はいずれも約200cpsに調整した。   The main component calcined powder obtained by the above method and the sub-component calcined powder were mixed and crushed to obtain a dielectric composition raw material. To 1000 g of this dielectric composition raw material, 700 g of a solvent prepared by mixing a toluene + ethanol solution, a plasticizer and a dispersant at 90: 6: 4 was added, and a basket mill, which is a well-known dispersion method, was used. And dispersed for 2 hours to prepare a dielectric layer paste. The viscosity of each of these pastes was adjusted to about 200 cps.

内部電極層の原料として、平均粒径が0.2μmのNi、平均粒径が0.1μm以下のAl、および、平均粒径が0.1μm以下のSiの酸化物を準備し、Alの含有量およびSiの含有量(Siの酸化物の含有量をSi換算した含有量)の総量がNiに対して5質量%となるように秤量した。その後、1200℃以上の加湿したNとHとの混合ガス中で熱処理し、ボールミル等を用いて解砕することで、平均粒径0.20μmの数種の原料粉末を準備した。 As raw materials for the internal electrode layers, Ni having an average particle size of 0.2 μm, Al having an average particle size of 0.1 μm or less, and Si oxide having an average particle size of 0.1 μm or less are prepared, and Al is contained. The total amount and the content of Si (content obtained by converting the content of the oxide of Si into the content of Si) were weighed so as to be 5% by mass with respect to Ni. Then, heat treatment was performed in a mixed gas of N 2 and H 2 that was humidified at 1200 ° C. or higher, and the mixture was crushed using a ball mill or the like to prepare several kinds of raw material powders having an average particle diameter of 0.20 μm.

前記原料粉末100質量部と、有機ビヒクル(エチルセルロース樹脂8質量部をブチルカルビトール92質量部に溶解したもの)30質量部、及びブチルカルビトール8質量部とを、3本ロールにより混練、ペースト化し、内部電極層用ペーストを得た。   100 parts by mass of the raw material powder, 30 parts by mass of an organic vehicle (8 parts by mass of ethyl cellulose resin dissolved in 92 parts by mass of butyl carbitol), and 8 parts by mass of butyl carbitol were kneaded with a three-roll to form a paste. Thus, an internal electrode layer paste was obtained.

そして、作製した誘電体層用ペーストを用いて、PETフィルム上に、乾燥後の厚みが12μmとなるようにグリーンシートを形成した。次いで、この上に内部電極層用ペーストを用いて、内部電極層を所定パターンで印刷した後、PETフィルムからシートを剥離し、内部電極層を有するグリーンシートを作製した。次いで、内部電極層を有するグリーンシートを複数枚積層し、加圧接着することによりグリーン積層体とし、このグリーン積層体を所定サイズに切断することにより、グリーンチップを得た。   Then, using the prepared dielectric layer paste, a green sheet was formed on the PET film so that the thickness after drying was 12 μm. Then, the internal electrode layer paste was printed thereon with a predetermined pattern by using an internal electrode layer paste, and then the sheet was peeled from the PET film to produce a green sheet having the internal electrode layer. Next, a plurality of green sheets each having an internal electrode layer were laminated and pressure-bonded to form a green laminated body, and the green laminated body was cut into a predetermined size to obtain a green chip.

次いで、得られたグリーンチップについて、脱バインダ処理、焼成、アニール処理を行うことで積層セラミック焼成体を得た。なお、脱バインダ処理、焼成及びアニールの条件は、以下の通りである。また、それぞれの雰囲気ガスの加湿にはウェッターを用いた。   Next, the obtained green chip was subjected to binder removal treatment, firing, and annealing treatment to obtain a laminated ceramic fired body. The conditions for binder removal processing, firing and annealing are as follows. A wetter was used to humidify each atmosphere gas.

(脱バインダ処理)
昇温速度:100℃/時間
保持温度:400℃
温度保持時間:8.0時間
雰囲気ガス:加湿したNとHとの混合ガス
(Binder removal processing)
Temperature rising rate: 100 ° C / hour Holding temperature: 400 ° C
Temperature holding time: 8.0 hours Atmosphere gas: Mixed gas of humidified N 2 and H 2

(焼成)
昇温速度:500℃/時間
保持温度:1200℃〜1350℃
温度保持時間:2.0時間
冷却速度:100℃/時間
雰囲気ガス:加湿したNとHとの混合ガス
酸素分圧:10−5〜10−9Pa
(Baking)
Temperature rising rate: 500 ° C / hour Holding temperature: 1200 ° C to 1350 ° C
Temperature holding time: 2.0 hours Cooling rate: 100 ° C./hour Atmosphere gas: Moistened mixed gas of N 2 and H 2 Oxygen partial pressure: 10 −5 to 10 −9 Pa

(アニール処理)
保持温度:800℃〜1000℃
温度保持時間:2.0時間
昇温、降温速度:200℃/時間
雰囲気ガス:加湿したNガス
(Annealing treatment)
Holding temperature: 800 ℃ ~ 1000 ℃
Temperature holding time: 2.0 hours temperature rise, temperature decrease rate: 200 ° C./hour Atmosphere gas: humidified N 2 gas

得られた各積層セラミック焼結体の誘電体層(誘電体組成物)についてICP発光分光分析法を用いて各試料の組成分析を行った結果、表1に記載されている誘電体組成物原料の組成とほぼ同等な値であることを確認した。   The dielectric layer (dielectric composition) of each of the obtained laminated ceramic sintered bodies was subjected to composition analysis of each sample by ICP emission spectroscopy, and as a result, the dielectric composition raw materials shown in Table 1 were obtained. It was confirmed that the value was almost the same as the composition.

また、得られた各積層セラミック焼結体の誘電体層(誘電体組成物)について、X線回析パターンより、タングステンブロンズ型の結晶構造を有しているか否かを確認した。タングステンブロンズ型の結晶構造を有している場合には○、有していない場合には×と評価した。結果を表2に示す。なお、表2ではタングステンブロンズ型のことをTB型と表記している。   Further, it was confirmed from the X-ray diffraction pattern that the dielectric layer (dielectric composition) of each obtained multilayer ceramic sintered body had a tungsten bronze type crystal structure. It was evaluated as ◯ when it had a tungsten bronze type crystal structure, and as x when it did not have it. The results are shown in Table 2. In Table 2, the tungsten bronze type is referred to as the TB type.

得られた積層セラミック焼結体の端面をサンドブラストにて研磨した後、外部電極としてIn−Ga共晶合金を塗布し、図1に示す積層セラミックコンデンサと同形状の試料No.1から試料No.75の積層セラミックコンデンサ試料を得た。得られた積層セラミックコンデンサ試料のサイズは、いずれも3.2mm×1.6mm×1.2mmであり、誘電体層の厚み10μm、内部電極層の厚み2μm、内部電極層に挟まれた誘電体層の数は50層であった。   After polishing the end faces of the obtained monolithic ceramic sintered body by sandblasting, an In-Ga eutectic alloy was applied as an external electrode, and sample No. 1 to Sample No. 75 multilayer ceramic capacitor samples were obtained. The size of each of the obtained multilayer ceramic capacitor samples was 3.2 mm × 1.6 mm × 1.2 mm, the thickness of the dielectric layer was 10 μm, the thickness of the internal electrode layer was 2 μm, and the dielectric layer sandwiched between the internal electrode layers. The number of layers was 50.

得られた試料No.1から試料No.75の積層セラミックコンデンサ試料について、比誘電率(εs)、比抵抗、高温負荷寿命、および耐電圧を下記に示す方法により測定した。結果を表2に示す。   The obtained sample No. 1 to Sample No. The 75 laminated ceramic capacitor samples were measured for relative permittivity (εs), specific resistance, high temperature load life, and withstand voltage by the methods shown below. The results are shown in Table 2.

[比誘電率(εs)]
積層セラミックコンデンサに対し、25℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。そして、比誘電率εs(単位なし)を、誘電体層の厚みと、有効電極面積と、測定の結果得られた静電容量Cとに基づき算出した。比誘電率は高いほうが好ましく、250以上を良好であると判断した。
[Specific permittivity (εs)]
A capacitance L was measured by inputting a signal having a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms to a multilayer ceramic capacitor at 25 ° C. with a digital LCR meter (4284A manufactured by YHP). Then, the relative permittivity εs (no unit) was calculated based on the thickness of the dielectric layer, the effective electrode area, and the capacitance C obtained as a result of the measurement. The higher the relative permittivity, the better, and it was judged that 250 or more was good.

[比抵抗]
積層セラミックコンデンサ試料に対し、225℃において、デジタル抵抗メータ(ADVANTEST社製R8340)にて、測定電圧30V、測定時間60秒の条件で絶縁抵抗を測定した。コンデンサ試料の電極面積および誘電体層の厚みから比抵抗の値を算出した。比抵抗は高いほうが好ましく、1.00×1012Ωcm以上、より好ましくは6.00×1012Ωcm以上を良好であると判断した。比抵抗が低いとコンデンサとしては漏れ電流が大きくなり、電気回路において誤動作を起こしてしまう。
[Specific resistance]
The insulation resistance of the multilayer ceramic capacitor sample was measured at 225 ° C. with a digital resistance meter (R8340 manufactured by ADVANTEST Co., Ltd.) under the conditions of a measurement voltage of 30 V and a measurement time of 60 seconds. The specific resistance value was calculated from the electrode area of the capacitor sample and the thickness of the dielectric layer. The higher the specific resistance is, the more preferable it is. 1.00 × 10 12 Ωcm or more, more preferably 6.00 × 10 12 Ωcm or more is judged to be good. If the specific resistance is low, the capacitor has a large leakage current, which causes a malfunction in an electric circuit.

[高温負荷寿命]
高温負荷寿命試験では、各試料番号の試料200個について、温度250℃で、誘電体層の厚みに対し40V/μmとなるように直流電圧を印加して、絶縁抵抗の経時変化を測定した。絶縁抵抗が1桁劣化するまでの時間を故障時間し、故障時間のワイブル解析から50%の平均故障時間(MTTF)を求めた。本発明では、平均故障時間(MTTF)を高温負荷寿命とした。高温負荷寿命は長い方が好ましく、500時間以上、より好ましくは550時間以上、さらに好ましくは1200時間以上を良好であると判断した。
[High temperature load life]
In the high temperature load life test, with respect to 200 samples of each sample number, a DC voltage was applied at a temperature of 250 ° C. so as to be 40 V / μm with respect to the thickness of the dielectric layer, and a change in insulation resistance with time was measured. The time until the insulation resistance deteriorates by one digit was determined as the failure time, and the mean failure time (MTTF) of 50% was obtained from the Weibull analysis of the failure time. In the present invention, the mean time to failure (MTTF) is defined as the high temperature load life. It is judged that the high temperature load life is preferably long, 500 hours or more is more preferable, 550 hours or more is more preferable, and 1200 hours or more is more preferable.

[耐電圧]
積層セラミックコンデンサ試料に対し、250℃において、昇圧速度100V/secで交流電圧を印加し、漏れ電流が10mAを超えた時点での交流電圧を交流耐電圧とした。交流耐電圧は高いほうが好ましく、75.0V/μm以上を良好であると判断した。より好ましくは100.0V/μm以上である。
[Withstand voltage]
An AC voltage was applied to the multilayer ceramic capacitor sample at a temperature rising rate of 100 V / sec at 250 ° C., and the AC voltage when the leakage current exceeded 10 mA was taken as the AC withstand voltage. The higher the AC withstand voltage is, the better, and it is judged that 75.0 V / μm or more is good. More preferably, it is 100.0 V / μm or more.

Figure 0006687909
Figure 0006687909

表2の結果から、化学式A6−xx+28−x30で表される主成分においてxが0≦x≦5を満たし、さらに主成分100モルに対して、第一副成分としてGeの酸化物を2.50モル以上20.00モル以下含む試料No.1、2、5〜10、12〜25および27〜75では、25℃での比誘電率、225℃での比抵抗、250℃での高温負荷寿命、および250℃での交流耐電圧に優れることが確認された。 From the results in Table 2, x satisfies 0 ≦ x ≦ 5 in the main component represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30 and further, with respect to 100 mol of the main component, Sample No. containing 2.50 mol or more and 20.00 mol or less of Ge oxide as a component. 1, 2, 5-10, 12-25 and 27-75 are excellent in relative permittivity at 25 ° C, specific resistance at 225 ° C, high temperature load life at 250 ° C, and AC withstand voltage at 250 ° C. It was confirmed.

その中でも、主成分がタングステンブロンズ型の結晶構造を有する試料No.1、2、5〜10、12〜23および27〜75では、特に250℃での高温負荷寿命および250℃での交流耐電圧に優れることが確認された。   Among them, sample No. having a tungsten bronze type crystal structure as a main component. It was confirmed that Nos. 1, 2, 5-10, 12-23 and 27-75 were excellent in high temperature load life at 250 ° C and AC withstand voltage at 250 ° C.

また、第二副成分としてMn、Mg、V、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を0.10モル以上20.00モル以下含む試料No.51〜69および72では、特に250℃での交流耐電圧に優れることが確認された。   In addition, Sample No. containing at least one oxide selected from the group consisting of Mn, Mg, V, W, Mo, Si, Li, B, and Al as the second subcomponent in an amount of 0.10 mol or more and 20.00 mol or less. 51-69 and 72 were confirmed to have excellent AC withstand voltage at 250 ° C.

(実施例2)
実施例2では、出発原料を表3の配合比となるように秤量した点以外は実施例1と同様にして試料No.101〜試料No.175の積層セラミックコンデンサを得た。
(Example 2)
In Example 2, sample No. 1 was prepared in the same manner as in Example 1 except that the starting materials were weighed so as to have the compounding ratio shown in Table 3. 101-Sample No. A laminated ceramic capacitor of 175 was obtained.

得られた試料No.101〜175の積層セラミックコンデンサ試料について、実施例1と同様の方法でタングステンブロンズ型の結晶構造の有無を確認し、比誘電率、比抵抗、高温負荷寿命、および耐電圧を測定した。     The obtained sample No. For the multilayer ceramic capacitor samples 101 to 175, the presence or absence of a tungsten bronze type crystal structure was confirmed by the same method as in Example 1, and the relative dielectric constant, the specific resistance, the high temperature load life, and the withstand voltage were measured.

さらに、積層セラミックコンデンサ試料をカットし、誘電体組成物の断面観察を行った。具体的には、少なくとも100個以上の結晶粒子が視野内に存在する大きさの視野について各結晶粒子においてGeが実質的に存在するか否か、およびGeが実質的に存在しない結晶粒子の割合をFE−TEM−EDXを用いて確認した。すなわち、Geが存在する領域の面積割合が10%未満である結晶粒子の存在割合を特定した。具体的には、FE−TEM−EDXを用いて各結晶粒子においてGeが存在する領域の面積を特定し、結晶粒子全体に対する当該面積が10%以下である結晶粒子の割合を特定した。EDXの条件はプローブ径1nm、加速電圧200kVとした。さらに、前記視野中の粒界におけるGeの平均濃度を測定した。具体的には、前記視野中の粒界から20点の測定点を任意に選択してGeの濃度を測定し、平均してCを得た。また、各Geが実質的に存在する結晶粒子におけるGeの濃度を測定し、平均してCを得た。そして、各試料におけるC/Cを算出した。結果を表4に示す。なお、表4ではタングステンブロンズ型のことをTB型と表記している。 Furthermore, the multilayer ceramic capacitor sample was cut and the cross section of the dielectric composition was observed. Specifically, whether or not Ge is substantially present in each crystal grain in a visual field of a size in which at least 100 crystal grains are present in the visual field, and the proportion of the crystal grains in which Ge is substantially absent Was confirmed using FE-TEM-EDX. That is, the existence ratio of the crystal particles in which the area ratio of the region where Ge is present is less than 10% was specified. Specifically, FE-TEM-EDX was used to specify the area of the region where Ge was present in each crystal particle, and the ratio of the crystal particle having the area of 10% or less to the whole crystal particle was specified. The EDX conditions were a probe diameter of 1 nm and an acceleration voltage of 200 kV. Further, the average concentration of Ge at the grain boundaries in the visual field was measured. Specifically, 20 measurement points were arbitrarily selected from the grain boundaries in the visual field to measure the Ge concentration, and averaged to obtain C 1 . In addition, the concentration of Ge in the crystal particles in which each Ge is substantially present was measured and averaged to obtain C 2 . Then, C 1 / C 2 in each sample was calculated. The results are shown in Table 4. In Table 4, the tungsten bronze type is referred to as the TB type.

Figure 0006687909
Figure 0006687909

Figure 0006687909
Figure 0006687909

表3および表4の結果から、主成分からなる結晶粒子および前記結晶粒子間を占める粒界からなり、主成分、Geの酸化物(第一副成分)およびVの酸化物(第二副成分)を含有し、Geが実質的に存在しない結晶粒子の存在割合が90%以上である場合には25℃での比誘電率、225℃での比抵抗、250℃での高温負荷寿命および250℃での交流耐電圧に優れることが確認された。また、主成分からなる結晶粒子および前記結晶粒子間を占める粒界からなり、主成分、Geの酸化物(第一副成分)およびVの酸化物(第二副成分)を含有し、C/Cがモル比で10以上である場合にも25℃での比誘電率、225℃での比抵抗、250℃での高温負荷寿命および250℃での交流耐電圧に優れることが確認された。 From the results of Table 3 and Table 4, the main component, the oxide of Ge (first subcomponent) and the oxide of V (second subcomponent), which consist of crystal grains composed of the main component and grain boundaries occupying between the crystal grains, are obtained. ), The relative dielectric constant at 25 ° C., the specific resistance at 225 ° C., the high temperature load life at 250 ° C. and It was confirmed that the AC withstand voltage at ℃ was excellent. In addition, it is composed of crystal grains composed of a main component and a grain boundary occupying between the crystal grains, contains a main component, an oxide of Ge (first subcomponent) and an oxide of V (second subcomponent), and C 1 It has been confirmed that even when / C 2 is 10 or more in molar ratio, the dielectric constant at 25 ° C., the specific resistance at 225 ° C., the high temperature load life at 250 ° C., and the AC withstanding voltage at 250 ° C. are excellent. It was

また、Vの酸化物の含有量がV換算で1.0モル超5.0モル以下であり、かつ、Geの酸化物の含有量が10.0モル以上17.5モル以下である積層セラミックコンデンサ試料では、特に250℃の高温負荷寿命が優れることが確認された。     Further, the content of the oxide of V is more than 1.0 mol and 5.0 mol or less in terms of V, and the content of the oxide of Ge is 10.0 mol or more and 17.5 mol or less. It was confirmed that the capacitor sample was particularly excellent in high temperature load life at 250 ° C.

また、Vの酸化物以外の第二副成分を各元素換算で合計0.10モル以上20.00モル以下含む積層セラミックコンデンサ試料では、特に、225℃の比抵抗と250℃での交流耐電圧に優れることが確認された。   Further, in the case of a multilayer ceramic capacitor sample containing a total of 0.10 mol or more and 20.00 mol or less of the second subcomponents other than the oxide of V in terms of each element, the resistivity at 225 ° C. and the AC withstand voltage at 250 ° C. It was confirmed to be excellent.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   The embodiments and examples disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiments and examples but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications and variations within the scope.

本発明の誘電体組成物は、比誘電率が高く、特に高温領域における比抵抗、耐電圧および高温負荷寿命が長いため、車載用電子部品としてエンジンルームに近接する環境下で適用でき、さらに、SiCやGaN系の半導体を用いたパワーデバイス近傍に搭載される電子部品としての用途にも適用できる。   The dielectric composition of the present invention has a high relative permittivity, and particularly has a long specific resistance in a high temperature region, a withstand voltage and a high temperature load life, and thus can be applied as an in-vehicle electronic component in an environment close to an engine room. It can also be applied as an electronic component mounted near a power device using a SiC or GaN-based semiconductor.

1 積層セラミックコンデンサ
2 誘電体層
3 内部電極層
4 外部電極
10 コンデンサ素子本体
1 Multilayer Ceramic Capacitor 2 Dielectric Layer 3 Internal Electrode Layer 4 External Electrode 10 Capacitor Element Body

Claims (10)

主成分が化学式(A6−xx+28−x30、0≦x≦5)で表され、
前記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、
前記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、
前記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、
前記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素であり、
前記主成分100モルに対して、第一副成分としてGeの酸化物を2.50モル以上20.00モル以下含み、
前記主成分がタングステンブロンズ型の結晶構造を有する誘電体組成物。
The main component is represented by the chemical formula (A 6-x B x C x + 2 D 8-x O 30 , 0 ≦ x ≦ 5),
The component A is at least one element selected from the group consisting of Ba, Ca and Sr,
The B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
The C component is at least one element selected from the group consisting of Ti and Zr,
The D component is at least one element selected from the group consisting of Nb and Ta,
The main component with respect to 100 moles, the oxide of Ge seen contains 2.50 mol to 20.00 mol as a first subcomponent,
A dielectric composition wherein the main component has a tungsten bronze type crystal structure .
前記主成分100モルに対して、第二副成分としてMn、Mg、V、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を0.10モル以上20.00モル以下含む、請求項1に記載の誘電体組成物。   20. 0.10 mol or more of at least one oxide selected from the group consisting of Mn, Mg, V, W, Mo, Si, Li, B and Al as the second subcomponent with respect to 100 mol of the main component. The dielectric composition according to claim 1, comprising not more than 00 mol. 結晶粒子および前記結晶粒子間を占める粒界からなる誘電体組成物であって、
前記結晶粒子が、
化学式A6−xx+28−x30(0≦x≦5)で表される化合物を主成分とし、
前記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、
前記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、
前記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、
前記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素であり、
前記誘電体組成物が第一副成分としてGeの酸化物を含有し、第二副成分としてVの酸化物を含有し、
前記結晶粒子全体に対するGeを実質的に含む前記結晶粒子の存在割合が10%未満であり、
前記主成分がタングステンブロンズ型の結晶構造を有することを特徴とする誘電体組成物。
A dielectric composition comprising a crystal grain and a grain boundary occupying between the crystal grains,
The crystal particles are
A compound represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30 (0 ≦ x ≦ 5) as a main component,
The component A is at least one element selected from the group consisting of Ba, Ca and Sr,
The B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
The C component is at least one element selected from the group consisting of Ti and Zr,
The D component is at least one element selected from the group consisting of Nb and Ta,
The dielectric composition contains an oxide of Ge as a first subcomponent and an oxide of V as a second subcomponent,
Ri existing ratio is less than 10% der of the crystal grains substantially comprising Ge for entire crystal grains,
The dielectric composition characterized Rukoto said main component having a crystal structure of the tungsten bronze type.
前記粒界におけるGeの平均濃度をC、Geを実質的に含む前記結晶粒子におけるGeの平均濃度をCとして、C/Cがモル比で10以上である請求項3に記載の誘電体組成物。 The average concentration of Ge in the grain boundary is C 1 , and the average concentration of Ge in the crystal particles substantially containing Ge is C 2 , and C 1 / C 2 is 10 or more in molar ratio. Dielectric composition. 結晶粒子および前記結晶粒子間を占める粒界からなる誘電体組成物であって、
前記結晶粒子が、
化学式A6−xx+28−x30(0≦x≦5)で表される化合物を主成分とし、
前記A成分がBa、CaおよびSrからなる群から選ばれる少なくとも一種の元素であり、
前記B成分がY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選ばれる少なくとも一種の元素であり、
前記C成分がTi、Zrからなる群から選ばれる少なくとも一種の元素であり、
前記D成分がNb、Taからなる群から選ばれる少なくとも一種の元素であり、
前記誘電体組成物が第一副成分としてGeの酸化物を含有し、第二副成分としてVの酸化物を含有し、
前記粒界におけるGeの平均濃度をC、Geが実質的に存在する前記結晶粒子におけるGeの平均濃度をCとして、C/Cがモル比で10以上であり、
前記主成分がタングステンブロンズ型の結晶構造を有することを特徴とする誘電体組成物。
A dielectric composition comprising a crystal grain and a grain boundary occupying between the crystal grains,
The crystal particles are
A compound represented by the chemical formula A 6-x B x C x + 2 D 8-x O 30 (0 ≦ x ≦ 5) as a main component,
The component A is at least one element selected from the group consisting of Ba, Ca and Sr,
The B component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
The C component is at least one element selected from the group consisting of Ti and Zr,
The D component is at least one element selected from the group consisting of Nb and Ta,
The dielectric composition contains an oxide of Ge as a first subcomponent and an oxide of V as a second subcomponent,
The average concentration of Ge in the crystal grains the average concentration of Ge in the grain boundary C 1, Ge substantially present as C 2, Ri der 10 or more C 1 / C 2 is molar ratio,
The dielectric composition characterized Rukoto said main component having a crystal structure of the tungsten bronze type.
前記主成分100モルに対して、前記Vの酸化物の含有量がV換算で1.0モル超5.0モル以下であり、前記Geの酸化物の含有量がGe換算で10.0モル以上17.5モル以下である請求項3〜5のいずれかに記載の誘電体組成物。   The content of the oxide of V is more than 1.0 mol and 5.0 mol or less in terms of V, and the content of the oxide of Ge is 10.0 mol in terms of Ge with respect to 100 mol of the main component. The dielectric composition according to any one of claims 3 to 5, which is not less than 17.5 mol and not more than 1.75 mol. 前記誘電体組成物がVの酸化物以外の第二副成分としてMn、Mg、W、Mo、Si、Li、BおよびAlからなる群から選ばれる少なくとも一種の酸化物を含み、
前記主成分100モルに対して、前記Vの酸化物以外の第二副成分の含有量が各元素換算で合計0.10モル以上20.00モル以下である請求項3〜6のいずれかに記載の誘電体組成物。
The dielectric composition contains at least one oxide selected from the group consisting of Mn, Mg, W, Mo, Si, Li, B and Al as a second accessory component other than the oxide of V,
The content of the second subcomponent other than the oxide of V is 0.10 mol or more and 20.00 mol or less in total in terms of each element with respect to 100 mol of the main component. The dielectric composition described.
前記請求項1〜のいずれかに記載の誘電体組成物を備える誘電体素子。 Dielectric device comprising a dielectric composition according to any of the claims 1-7. 前記請求項1〜のいずれかに記載の誘電体組成物からなる誘電体層を備える電子部品。 Electronic component comprising a dielectric layer comprising a dielectric composition according to any of the claims 1-7. 前記請求項1〜のいずれかに記載の誘電体組成物からなる誘電体層と内部電極層とを交互に積層されてなる積層部分を有する積層電子部品。 Multilayer electronic component having the claims 1-7 or dielectric stacked portion formed by stacking comprising the composition of dielectric layers and internal electrode layers alternately according to the.
JP2017233843A 2017-02-23 2017-12-05 Dielectric composition, dielectric element, electronic component and laminated electronic component Active JP6687909B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/900,084 US10354799B2 (en) 2017-02-23 2018-02-20 Dielectric composition, dielectric element, electronic device, and multilayer electronic device
DE102018104029.6A DE102018104029B4 (en) 2017-02-23 2018-02-22 DIELECTRIC COMPOSITION, DIELECTRIC ELEMENT, ELECTRONIC COMPONENT, AND ELECTRONIC MULTILAYER COMPONENT
CN201810154874.0A CN108467266B (en) 2017-02-23 2018-02-23 Dielectric composition, dielectric element, electronic component, and laminated electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017032394 2017-02-23
JP2017032394 2017-02-23

Publications (2)

Publication Number Publication Date
JP2018135258A JP2018135258A (en) 2018-08-30
JP6687909B2 true JP6687909B2 (en) 2020-04-28

Family

ID=63366572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233843A Active JP6687909B2 (en) 2017-02-23 2017-12-05 Dielectric composition, dielectric element, electronic component and laminated electronic component

Country Status (2)

Country Link
JP (1) JP6687909B2 (en)
DE (1) DE102018104029B4 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035914B2 (en) * 2018-08-31 2022-03-15 Tdk株式会社 Dielectric compositions and electronic components
JP7099212B2 (en) * 2018-09-13 2022-07-12 Tdk株式会社 Dielectric compositions and electronic components
JP7168914B2 (en) * 2019-03-22 2022-11-10 Tdk株式会社 Dielectric compositions and electronic components
JP7310550B2 (en) 2019-10-31 2023-07-19 Tdk株式会社 Dielectric films, dielectric elements and electronic circuit boards
JP7338533B2 (en) 2020-03-30 2023-09-05 Tdk株式会社 Dielectric compositions and electronic components
JP7459756B2 (en) 2020-10-22 2024-04-02 Tdk株式会社 Multilayer ceramic electronic components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274607A (en) * 1990-03-26 1991-12-05 Toshiba Corp Dielectric composite
JP4524558B2 (en) * 2003-12-22 2010-08-18 Tdk株式会社 Piezoelectric ceramic and manufacturing method thereof
JP4299827B2 (en) * 2005-12-05 2009-07-22 Tdk株式会社 Dielectric ceramic composition, electronic component and multilayer ceramic capacitor
JP5158071B2 (en) 2007-02-22 2013-03-06 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
CN101679123B (en) 2007-06-20 2012-11-14 株式会社村田制作所 Dielectric ceramic composition, and laminated ceramic capacitor

Also Published As

Publication number Publication date
DE102018104029B4 (en) 2020-09-24
DE102018104029A1 (en) 2018-10-25
JP2018135258A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
CN108467266B (en) Dielectric composition, dielectric element, electronic component, and laminated electronic component
JP6687909B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP6809528B2 (en) Dielectric compositions, dielectric elements, electronic components and laminated electronic components
JP6973374B2 (en) Dielectric compositions, dielectric devices, electronic components and laminated electronic components
JP6763175B2 (en) Dielectric Porcelain Compositions and Multilayer Ceramic Capacitors
US10262796B2 (en) Dielectric composition and electronic component
JP6801707B2 (en) Dielectric composition, dielectric elements, electronic components and laminated electronic components
JP6588620B2 (en) Multilayer ceramic capacitor
JP6753221B2 (en) Dielectric composition and laminated electronic components
JP6696267B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP6769337B2 (en) Dielectric composition and electronic components
JP6922701B2 (en) Dielectric compositions, electronic components and laminated electronic components
JP6766510B2 (en) Dielectric composition and electronic components
JP7070254B2 (en) Dielectric compositions and electronic components
JP6665709B2 (en) Dielectric composition and electronic component
JP6665710B2 (en) Dielectric composition and electronic component
JP4098206B2 (en) Dielectric porcelain composition and electronic component
JP6786936B2 (en) Dielectric composition and electronic components
JP6972993B2 (en) Dielectric composition and electronic components
JP7035914B2 (en) Dielectric compositions and electronic components
JP7294209B2 (en) Dielectric compositions and electronic components
JP7338533B2 (en) Dielectric compositions and electronic components
JP6665711B2 (en) Dielectric composition and electronic component
JP7315903B2 (en) Dielectric compositions and electronic components
JP6658337B2 (en) Dielectric composition and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6687909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150