JP6687455B2 - Grinding machine - Google Patents

Grinding machine Download PDF

Info

Publication number
JP6687455B2
JP6687455B2 JP2016081182A JP2016081182A JP6687455B2 JP 6687455 B2 JP6687455 B2 JP 6687455B2 JP 2016081182 A JP2016081182 A JP 2016081182A JP 2016081182 A JP2016081182 A JP 2016081182A JP 6687455 B2 JP6687455 B2 JP 6687455B2
Authority
JP
Japan
Prior art keywords
resin
thickness
grinding
electrode
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016081182A
Other languages
Japanese (ja)
Other versions
JP2017191876A (en
Inventor
義弘 堤
義弘 堤
洋平 若林
洋平 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2016081182A priority Critical patent/JP6687455B2/en
Publication of JP2017191876A publication Critical patent/JP2017191876A/en
Application granted granted Critical
Publication of JP6687455B2 publication Critical patent/JP6687455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体ウエーハ上の樹脂層を研削する研削装置に関する。   The present invention relates to a grinding device that grinds a resin layer on a semiconductor wafer.

研削装置の研削対象として、半導体ウエーハの配線層に柱状のポスト電極が立設され、このポスト電極を樹脂モールドした板状ワークが知られている。この板状ワークは表面の樹脂層が研削されることでポスト電極の上端面が外部に露出されるが、樹脂層と共にポスト電極が研削されると砥石に金属粉等の研削屑が付着してしまう。このため、板状ワークの樹脂層の上面からポスト電極の上端面までの距離を測定しながら樹脂層を研削して、樹脂層の上面からポスト電極の上端面を露出させる方法が知られている(例えば、特許文献1、2参照)。   BACKGROUND ART As a grinding target of a grinding device, a plate-like work is known in which a columnar post electrode is erected on a wiring layer of a semiconductor wafer and the post electrode is resin-molded. The upper surface of the post electrode is exposed to the outside by grinding the resin layer on the surface of this plate-shaped work.However, when the post electrode is ground together with the resin layer, grinding dust such as metal powder adheres to the grindstone. I will end up. Therefore, a method is known in which the resin layer is ground while the distance from the upper surface of the resin layer of the plate-shaped work to the upper end surface of the post electrode is measured to expose the upper end surface of the post electrode from the upper surface of the resin layer. (See, for example, Patent Documents 1 and 2).

特開2014−103140号公報JP, 2014-103140, A 特開2014−138037号公報JP, 2014-138037, A

ところで、樹脂層の上面とポスト電極の上端面の距離は、光学式のセンサ等で樹脂層の上面からの反射光とポスト電極の上端面からの反射光の光路長差から測定される。しかしながら、ポスト電極上の樹脂の厚みが小さくなるまで研削されると、樹脂層の上面からの反射光とポスト電極の上端面からの反射光とが判別できなくなってポスト電極の上端上の樹脂の厚みを測定できなくなる。このため、ポスト電極の上端面が樹脂層の上面に露出した時点で研削を停止できず、ポスト電極の上端面を研削砥石で研削してしまうという問題があった。   By the way, the distance between the upper surface of the resin layer and the upper end surface of the post electrode is measured by an optical sensor or the like from the optical path length difference between the reflected light from the upper surface of the resin layer and the reflected light from the upper end surface of the post electrode. However, if the resin on the post electrode is ground until it becomes thin, the reflected light from the upper surface of the resin layer cannot be distinguished from the reflected light from the upper end surface of the post electrode, and the resin on the upper end of the post electrode cannot be distinguished. It becomes impossible to measure the thickness. Therefore, there is a problem that the grinding cannot be stopped when the upper end surface of the post electrode is exposed on the upper surface of the resin layer, and the upper end surface of the post electrode is ground by the grinding wheel.

本発明はかかる点に鑑みてなされたものであり、樹脂層だけを研削して電極の上端面を露出させることができる研削装置を提供することを目的とする。   The present invention has been made in view of the above point, and an object of the present invention is to provide a grinding apparatus that can grind only a resin layer to expose the upper end surface of an electrode.

本発明の研削装置は、半導体ウエーハの上面に立設する柱状の電極を樹脂で覆い樹脂層を形成する板状ワークの該樹脂層の上面を研削砥石で研削する研削装置であって、板状ワークを保持する保持テーブルを回転させる回転手段を有する保持手段と、該保持手段に保持された板状ワークの該樹脂層を研削する研削砥石を回転可能に装着する研削手段と、該研削手段と該保持手段とを相対的に接近および離間する研削送り方向に研削送りする研削送り手段と、該研削砥石で研削する該樹脂の厚みを非接触で測定する非接触測定手段と、を備え、該非接触測定手段は、回転する該保持手段が保持する板状ワークの上方から測定光を投光する投光部と、該測定光が板状ワークで反射した反射光を受光する受光部と、該樹脂層を該研削砥石で研削中に該受光部が受光する該樹脂の上面で反射した第1の反射光と該電極の上端面で反射した第2の反射光と半導体ウエーハの上面で反射した第3の反射光との光路長差から、半導体ウエーハ上の樹脂の厚みt1と、該電極の上端上の樹脂の厚みt2と、該電極の上端上の樹脂の厚みt2がゼロのときの半導体ウエーハ上の樹脂の目標厚みt3と、を含む複数の厚みデータを算出する算出手段と、該算出手段が算出した該半導体ウエーハ上の樹脂の厚みt1及び該電極の上端上の樹脂の厚みt2のうち小さい厚みデータを該電極の上端上の樹脂の厚みt2と判断する判断手段と、を備え、該非接触測定手段によって該半導体ウエーハ上の樹脂の厚みt1を測定しながら該研削砥石で該樹脂を研削していき、さらに、該算出手段によって該電極の上端上の樹脂の厚みt2がゼロになるとしたときの半導体ウエーハ上の樹脂の目標厚みt3を算出し、該算出の後は該電極の上端上の樹脂の厚みt2を算出することなく該半導体ウエーハ上の樹脂の厚みt1が該目標厚みt3になるまで該研削手段で該樹脂を研削する。 The grinding apparatus of the present invention is a grinding apparatus that grinds the upper surface of a resin layer of a plate-like work that covers a columnar electrode standing on the upper surface of a semiconductor wafer with a resin to form a resin layer with a grinding wheel. Holding means having a rotating means for rotating a holding table for holding the work; grinding means for rotatably mounting a grinding wheel for grinding the resin layer of the plate-like work held by the holding means; and the grinding means. And a non-contact measuring means for measuring the thickness of the resin ground by the grinding wheel in a non-contact manner. The contact measuring unit includes a light projecting unit that projects measuring light from above the plate-shaped work held by the rotating holding unit, a light receiving unit that receives reflected light reflected by the plate-shaped work, and a light receiving unit that receives the reflected light. While grinding the resin layer with the grinding wheel From the difference in optical path length between the first reflected light reflected by the upper surface of the resin, the second reflected light reflected by the upper end surface of the electrode, and the third reflected light reflected by the upper surface of the semiconductor wafer , The thickness t1 of the resin on the semiconductor wafer, the thickness t2 of the resin on the upper end of the electrode, and the target thickness t3 of the resin on the semiconductor wafer when the thickness t2 of the resin on the upper end of the electrode is zero. A calculating means for calculating a plurality of thickness data including the plurality of thickness data, and a smaller one of the thickness t1 of the resin on the semiconductor wafer and the resin thickness t2 on the upper end of the electrode calculated by the calculating means, whichever is smaller, on the upper end of the electrode. Determining means for determining the thickness t2 of the resin, the thickness t1 of the resin on the semiconductor wafer is measured by the non-contact measuring means , and the resin is ground by the grinding wheel, and further, by the calculating means. Top of the electrode The thickness t2 of the resin on the semiconductor wafer when the zero calculates a target thickness t3 of the resin, after the calculated unloading is on the semiconductor wafer without calculating the thickness t2 of the resin on the upper end of the electrode The resin is ground by the grinding means until the thickness t1 of the resin reaches the target thickness t3.

この構成によれば、樹脂層の上面で反射した第1の反射光と電極の上端面で反射した第2の反射光と半導体ウエーハの上面で反射した第3の反射光とから測定された複数の厚みデータのうち、小さい厚みデータが電極の上端上の樹脂の厚みとして判断される。これにより、複数の厚みデータから半導体ウエーハ上の樹脂の厚みと電極の上端上の樹脂の厚みとを区別することができる。このとき、電極の上端上の樹脂の厚みがゼロのときの半導体ウエーハ上の樹脂の目標厚みが分かるため、以降は電極の上端上の樹脂の厚みを測定することなく、半導体ウエーハの樹脂の厚みだけを測定しながら研削すればよい。半導体ウエーハ上の樹脂の厚みを目標厚みに近づけるように研削することで、電極の上端上の樹脂だけを研削して電極の上端面を露出させることができる。   According to this configuration, a plurality of light beams measured from the first reflected light reflected on the upper surface of the resin layer, the second reflected light reflected on the upper end surface of the electrode, and the third reflected light reflected on the upper surface of the semiconductor wafer. The smaller thickness data is determined as the thickness of the resin on the upper end of the electrode. Thereby, the thickness of the resin on the semiconductor wafer and the thickness of the resin on the upper end of the electrode can be distinguished from the plurality of thickness data. At this time, since the target thickness of the resin on the semiconductor wafer when the resin thickness on the upper end of the electrode is zero is known, the thickness of the resin on the semiconductor wafer can be measured without measuring the resin thickness on the upper end of the electrode thereafter. It suffices to grind while measuring only. By grinding the resin on the semiconductor wafer so as to approach the target thickness, it is possible to grind only the resin on the upper end of the electrode to expose the upper end surface of the electrode.

本発明によれば、半導体ウエーハ上の樹脂の厚みと電極の上端上の樹脂の厚みから、電極の上端上の樹脂の厚みがゼロのときの半導体ウエーハ上の樹脂の目標厚みが求められる。よって、半導体ウエーハ上の樹脂の厚みを目標厚みに近づけることで、樹脂層だけを研削して電極の上端面を露出させることができる。   According to the present invention, the target thickness of the resin on the semiconductor wafer when the thickness of the resin on the upper end of the electrode is zero is determined from the thickness of the resin on the semiconductor wafer and the thickness of the resin on the upper end of the electrode. Therefore, by bringing the thickness of the resin on the semiconductor wafer close to the target thickness, it is possible to grind only the resin layer and expose the upper end surface of the electrode.

本実施の形態の研削装置の斜視図である。It is a perspective view of the grinding device of the present embodiment. 比較例の非接触測定手段による測定処理の一例を示す図である。It is a figure which shows an example of the measurement process by the non-contact measuring means of a comparative example. 本実施の形態の非接触測定手段による測定処理の一例を示す図である。It is a figure which shows an example of the measurement process by the non-contact measuring means of this Embodiment. 本実施の形態の研削装置による研削動作の一例を示す図である。It is a figure which shows an example of the grinding operation by the grinding device of this Embodiment.

以下、添付図面を参照して、本実施の形態の研削装置について説明する。図1は、本実施の形態の研削装置の斜視図である。なお、本実施の形態の研削装置は、図1に示すように研削加工専用の装置構成に限定されず、例えば、研削加工、研磨加工、洗浄加工等の一連の加工が全自動で実施されるフルオートタイプの加工装置に組み込まれてもよい。   Hereinafter, the grinding device of the present embodiment will be described with reference to the accompanying drawings. FIG. 1 is a perspective view of the grinding apparatus of this embodiment. It should be noted that the grinding apparatus of the present embodiment is not limited to the apparatus configuration dedicated to grinding as shown in FIG. 1, and for example, a series of processing such as grinding, polishing, and cleaning is carried out automatically. It may be incorporated in a fully automatic processing device.

図1に示すように、研削装置1は、多数の研削砥石46を環状に並べた研削ホイール45を用いて、保持手段20に保持された板状ワークWを研削するように構成されている。板状ワークWは、半導体ウエーハ70上の配線層71(図3A参照)に立設した柱状の電極72(図3A参照)を樹脂で覆うことで、半導体ウエーハ70上に樹脂層75が積層されて構成されている。板状ワークWは保護テープTを介して保持手段20に保持され、樹脂層75の上面が研削されることで樹脂層75の上面から柱状の電極72が露出される(図3C参照)。なお、半導体ウエーハは、シリコンウエーハに限定されず、ガリウム砒素やシリコンカーバイド等のウエーハでもよい。   As shown in FIG. 1, the grinding device 1 is configured to grind a plate-shaped work W held by a holding means 20 using a grinding wheel 45 in which a large number of grinding wheels 46 are arranged in an annular shape. In the plate-shaped work W, the resin layer 75 is laminated on the semiconductor wafer 70 by covering the columnar electrodes 72 (see FIG. 3A) standing on the wiring layer 71 (see FIG. 3A) on the semiconductor wafer 70 with resin. Is configured. The plate-like work W is held by the holding means 20 via the protective tape T, and the upper surface of the resin layer 75 is ground to expose the columnar electrodes 72 from the upper surface of the resin layer 75 (see FIG. 3C). The semiconductor wafer is not limited to a silicon wafer, and may be a wafer such as gallium arsenide or silicon carbide.

研削装置1の基台10の上面には、X軸方向に延在する矩形状の開口が形成され、この開口は保持手段20と共に移動可能な移動板11及び蛇腹状の防水カバー12に覆われている。防水カバー12の下方には、保持手段20をX軸方向に移動させるボールねじ式の進退手段(不図示)が設けられている。保持手段20は、保持テーブル21に板状ワークWを保持させた状態で、回転手段22で保持テーブル21を回転させるように構成されている。保持テーブル21の上面には、多孔質のポーラス材によって板状ワークWを吸引保持する保持面23が形成されている。   A rectangular opening extending in the X-axis direction is formed on the upper surface of the base 10 of the grinding apparatus 1. The opening is covered with a movable plate 11 movable along with the holding means 20 and a bellows-like waterproof cover 12. ing. Below the waterproof cover 12, ball screw type advancing / retreating means (not shown) for moving the holding means 20 in the X-axis direction is provided. The holding means 20 is configured to rotate the holding table 21 by the rotating means 22 while holding the plate-shaped work W on the holding table 21. On the upper surface of the holding table 21, a holding surface 23 for suction-holding the plate-shaped work W is formed by a porous material.

基台10上のコラム13には、研削手段40を保持手段20に対して接近及び離反させる方向(Z軸方向)に研削送りする研削送り手段30が設けられている。研削送り手段30は、コラム13に配置されたZ軸方向に平行な一対のガイドレール31と、一対のガイドレール31にスライド可能に設置されたモータ駆動のZ軸テーブル32とを有している。Z軸テーブル32の背面側には図示しないナット部が形成され、これらナット部にボールネジ33が螺合されている。ボールネジ33の一端部に連結された駆動モータ34によりボールネジ33が回転駆動されることで、研削手段40がガイドレール31に沿ってZ軸方向に移動される。   The column 13 on the base 10 is provided with a grinding feed means 30 for feeding the grinding means 40 toward and away from the holding means 20 (Z-axis direction). The grinding feed means 30 has a pair of guide rails 31 arranged in the column 13 and parallel to the Z-axis direction, and a motor-driven Z-axis table 32 slidably installed on the pair of guide rails 31. . Not-shown nuts are formed on the back side of the Z-axis table 32, and ball screws 33 are screwed into these nuts. The grinding motor 40 is moved along the guide rail 31 in the Z-axis direction by rotationally driving the ball screw 33 by the drive motor 34 connected to one end of the ball screw 33.

研削手段40は、ハウジング41を介してZ軸テーブル32の前面に取り付けられており、円筒状のスピンドル42の下端にマウント43を設けて構成されている。スピンドル42にはフランジ44が設けられ、フランジ44を介してハウジング41に研削手段40が支持される。マウント43の下面には、複数の研削砥石46が環状に配置された研削ホイール45が回転可能に装着されている。各研削砥石46としては、例えば、多数の砥粒をビトリファイドボンドで結合したビトリファイド砥石が使用される。ビトリファイド砥石によって研削面への樹脂の付着を低減することが可能になっている。   The grinding means 40 is attached to the front surface of the Z-axis table 32 via a housing 41, and has a mount 43 provided at the lower end of a cylindrical spindle 42. A flange 44 is provided on the spindle 42, and the grinding means 40 is supported by the housing 41 via the flange 44. On the lower surface of the mount 43, a grinding wheel 45 having a plurality of grinding wheels 46 annularly arranged is rotatably mounted. As each of the grinding wheels 46, for example, a vitrified grinding wheel in which a large number of abrasive grains are bonded by vitrified bonds is used. The vitrified grindstone makes it possible to reduce the adhesion of resin to the ground surface.

保持テーブル21の近傍には、保持テーブル21の保持面23の高さを測定する接触測定手段49と、板状ワークWの樹脂の厚みを非接触で測定する非接触測定手段50とが設けられている。接触測定手段49は、いわゆるハイトゲージであり、保持テーブル21の保持面23に測定子を接触させて、研削加工時の基準となる保持面23の高さを測定している。非接触測定手段50は、いわゆる分光干渉計であり、板状ワークWに対して測定光を投光し、板状ワークWで反射された反射光から樹脂層75(図3参照)の厚み等を測定している。なお、非接触測定手段50の詳細については後述する。   Near the holding table 21, contact measuring means 49 for measuring the height of the holding surface 23 of the holding table 21 and non-contact measuring means 50 for measuring the resin thickness of the plate-shaped work W in a non-contact manner are provided. ing. The contact measuring means 49 is a so-called height gauge, and contacts the holding surface 23 of the holding table 21 with a tracing stylus to measure the height of the holding surface 23 that serves as a reference during grinding. The non-contact measuring means 50 is a so-called spectroscopic interferometer, which projects measurement light onto the plate-like work W, and the thickness of the resin layer 75 (see FIG. 3) from the reflected light reflected by the plate-like work W. Is being measured. The details of the non-contact measuring means 50 will be described later.

また、研削装置1には、装置各部を統括制御する制御手段60が設けられている。また、非接触測定手段50には、後述する算出手段56及び判断手段57が設けられている。制御手段60、算出手段56、判断手段57は、各種処理を実行するプロセッサやメモリ等により構成される。メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体で構成される。制御手段60によって研削手段40の研削送り量が高精度に制御されることで、板状ワークWの樹脂層75だけが研削されて樹脂層75の上面から柱状の電極72(図3参A照)が露出される。   In addition, the grinding device 1 is provided with a control means 60 that integrally controls each part of the device. Further, the non-contact measuring means 50 is provided with a calculating means 56 and a judging means 57 described later. The control unit 60, the calculation unit 56, and the determination unit 57 are configured by a processor that executes various processes, a memory, and the like. The memory is configured by one or a plurality of storage media such as a ROM (Read Only Memory) and a RAM (Random Access Memory) according to the application. By controlling the grinding feed amount of the grinding means 40 with high accuracy by the control means 60, only the resin layer 75 of the plate-shaped work W is ground and the columnar electrode 72 (see FIG. ) Is exposed.

ところで、樹脂層から柱状の電極を露出させる際には、電極の上端上の樹脂の厚みを測定しながら研削する方法が一般的であるが、このような方法では樹脂だけを研削することが難しい。ここで、図2を参照して、非接触測定手段を用いた一般的な測定処理について説明する。図2は、比較例の非接触測定手段による測定処理の一例を示す図である。   By the way, when exposing the columnar electrode from the resin layer, it is common to grind while measuring the thickness of the resin on the upper end of the electrode, but it is difficult to grind only the resin by such a method. . Here, with reference to FIG. 2, a general measurement process using the non-contact measuring means will be described. FIG. 2 is a diagram showing an example of a measurement process performed by the non-contact measuring means of the comparative example.

図2Aに示すように、板状ワークWの研削開始時には非接触測定手段50からの測定光が樹脂層75を透過せず、樹脂層75の上面76で反射した第1の反射光R1だけが非接触測定手段50に受光される。これは、樹脂層75の上面76から柱状の電極72の上端面73までの距離が離れており、電極72の上端上の樹脂が十分に厚いので、樹脂層75に含まれるフィラー等によって非接触測定手段50から投光された測定光が散乱されるからである。よって、研削開始直後は、電極72の上端上の樹脂の厚みを測定することなく、板状ワークWの樹脂層75が研削される。   As shown in FIG. 2A, at the start of grinding the plate-shaped workpiece W, the measurement light from the non-contact measuring means 50 does not pass through the resin layer 75, and only the first reflected light R1 reflected by the upper surface 76 of the resin layer 75 is generated. The light is received by the non-contact measuring means 50. This is because the distance from the upper surface 76 of the resin layer 75 to the upper end surface 73 of the columnar electrode 72 is large, and the resin on the upper end of the electrode 72 is sufficiently thick so that it is not contacted by the filler or the like contained in the resin layer 75. This is because the measuring light projected from the measuring means 50 is scattered. Therefore, immediately after the start of grinding, the resin layer 75 of the plate-shaped work W is ground without measuring the thickness of the resin on the upper end of the electrode 72.

続いて、図2Bに示すように、樹脂層75が研削されて樹脂層75の上面76から柱状の電極72の上端面73までの距離が近づくと、樹脂層75の上面76で反射した第1の反射光R1に加えて、電極72の上端面73で反射した第2の反射光R2が非接触測定手段50に受光される。このとき、樹脂層75の上面76で反射された第1の反射光R1と電極72の上端面73で反射された第2の反射光R2の光路長差から、電極72の上端上の樹脂の厚みtが測定される。よって、研削の中盤では、電極72の上端上の樹脂の厚みtを測定しながら板状ワークWの樹脂層75が研削される。   Subsequently, as shown in FIG. 2B, when the resin layer 75 is ground and the distance from the upper surface 76 of the resin layer 75 to the upper end surface 73 of the columnar electrode 72 becomes shorter, the first light reflected by the upper surface 76 of the resin layer 75. In addition to the reflected light R1 of the above, the second reflected light R2 reflected by the upper end surface 73 of the electrode 72 is received by the non-contact measuring means 50. At this time, from the difference in optical path length between the first reflected light R1 reflected by the upper surface 76 of the resin layer 75 and the second reflected light R2 reflected by the upper end surface 73 of the electrode 72, the resin on the upper end of the electrode 72 is The thickness t is measured. Therefore, in the middle of grinding, the resin layer 75 of the plate-shaped work W is ground while measuring the thickness t of the resin on the upper end of the electrode 72.

しかしながら、図2Cに示すように、樹脂層75の上面76から柱状の電極72の上端面73までの距離がさらに近づくと、非接触測定手段50では樹脂層75の上面76で反射した第1の反射光R1と電極72の上端面73で反射した第2の反射光R2とが判別できなくなる。さらに、樹脂の厚みを測定するために非接触測定手段50として分光干渉計が用いられているが、通常の分光干渉計は微小な厚みを測定することができない。よって、研削終了直前は、電極72の上端上の樹脂の厚みを測定することができず、板状ワークWの樹脂層75を研削し過ぎてしまう恐れがある。   However, as shown in FIG. 2C, when the distance from the upper surface 76 of the resin layer 75 to the upper end surface 73 of the columnar electrode 72 becomes further shorter, the non-contact measuring means 50 reflects the first light reflected by the upper surface 76 of the resin layer 75. The reflected light R1 and the second reflected light R2 reflected by the upper end surface 73 of the electrode 72 cannot be distinguished. Further, a spectroscopic interferometer is used as the non-contact measuring means 50 for measuring the thickness of the resin, but a normal spectroscopic interferometer cannot measure a minute thickness. Therefore, immediately before the end of grinding, the thickness of the resin on the upper end of the electrode 72 cannot be measured, and the resin layer 75 of the plate-shaped work W may be ground too much.

そこで、本実施の形態では、研削途中で半導体ウエーハ70上の樹脂の厚みt1(図3B参照)と柱状の電極72の上端上の樹脂の厚みt2(図3B参照)を求めて、この時点での電極72の上端上の樹脂の厚みがゼロのときの半導体ウエーハ70上の樹脂の目標厚みt3(図3B参照)を算出している。これにより、目標厚みt3の算出後は電極72の上端上の樹脂の厚みt2を測定することなく、半導体ウエーハ70の樹脂の厚みt1が目標厚みt3に近づくように研削することで、樹脂層75だけを研削して電極72の上端面73を露出させることができる。   Therefore, in the present embodiment, the resin thickness t1 on the semiconductor wafer 70 (see FIG. 3B) and the resin thickness t2 on the upper ends of the columnar electrodes 72 (see FIG. 3B) are obtained during grinding, and at this point of time. The target thickness t3 (see FIG. 3B) of the resin on the semiconductor wafer 70 when the resin thickness on the upper end of the electrode 72 is zero is calculated. Accordingly, after the calculation of the target thickness t3, the resin layer 75 is ground so that the resin thickness t1 of the semiconductor wafer 70 approaches the target thickness t3 without measuring the resin thickness t2 on the upper end of the electrode 72. The upper end surface 73 of the electrode 72 can be exposed by grinding only the surface.

以下、図3を参照して、本実施の形態の非接触測定手段を用いた測定処理について説明する。図3は、本実施の形態の非接触測定手段による測定処理の一例を示す図である。   Hereinafter, with reference to FIG. 3, a measurement process using the non-contact measuring means of the present embodiment will be described. FIG. 3 is a diagram showing an example of measurement processing by the non-contact measuring means of the present embodiment.

図3Aに示すように、非接触測定手段50では、投光部51から測定光が出射されると、ハーフミラー52を介してセンサヘッド53内の参照面(不図示)で測定光の一部が反射され、参照面を透過した残りの測定光が板状ワークWの上方から投光される。板状ワークWで反射された反射光は、センサヘッド53内の参照面を通過して回折格子54で分光されて受光部55で受光される。このときの参照面からの反射光と板状ワークWからの反射光の干渉光強度に基づいて、センサヘッド53から板状ワークWの反射位置までの距離(光路長)が測定されている。   As shown in FIG. 3A, in the non-contact measuring means 50, when the measuring light is emitted from the light projecting portion 51, a part of the measuring light is reflected on the reference surface (not shown) in the sensor head 53 via the half mirror 52. Is reflected and the remaining measurement light transmitted through the reference surface is projected from above the plate-like work W. The reflected light reflected by the plate-shaped work W passes through the reference surface in the sensor head 53, is separated by the diffraction grating 54, and is received by the light receiving unit 55. The distance (optical path length) from the sensor head 53 to the reflection position of the plate-shaped work W is measured based on the interference light intensity of the reflected light from the reference surface and the reflected light from the plate-shaped work W at this time.

この板状ワークWの研削開始時には、上記したように非接触測定手段50の投光部51からの測定光が板状ワークWの樹脂層75を透過しないため、樹脂層75の上面76で反射した第1の反射光R1だけが受光部55に受光される。このため、第1の反射光R1に基づいてセンサヘッド53から樹脂層75の上面76までの距離だけが測定されており、柱状の電極72の上端上の樹脂の厚みも半導体ウエーハ70上の樹脂の厚みも測定されない。したがって、研削開始直後は板状ワークWの樹脂層75の厚みを測定することなく、板状ワークWの樹脂層75が研削されている。   At the start of grinding of the plate-shaped work W, the measurement light from the light projecting section 51 of the non-contact measuring means 50 does not pass through the resin layer 75 of the plate-shaped work W as described above, and is reflected by the upper surface 76 of the resin layer 75. Only the first reflected light R1 is received by the light receiving unit 55. Therefore, only the distance from the sensor head 53 to the upper surface 76 of the resin layer 75 is measured based on the first reflected light R1, and the thickness of the resin on the upper ends of the columnar electrodes 72 is also measured on the semiconductor wafer 70. Thickness is not measured either. Therefore, immediately after the start of grinding, the resin layer 75 of the plate-shaped work W is ground without measuring the thickness of the resin layer 75 of the plate-shaped work W.

図3Bに示すように、板状ワークWの樹脂層75が研削されると、樹脂層75の上面76から柱状の電極72の上端面73までの距離が近づけられると共に、樹脂層75の上面76から半導体ウエーハ70の上面77までの距離が近づけられる。そして、樹脂層75の上面76で反射した第1の反射光R1と電極72の上端面73で反射した第2の反射光R2と半導体ウエーハ70の上面77で反射した第3の反射光R3とが受光部55(図3A参照)に受光される。受光部55による受光結果が電気信号に変換されて算出手段56(図3A参照)に出力され、算出手段56によって第1−第3の反射光R1、R2、R3の光路長差から樹脂の厚みが算出される。   As shown in FIG. 3B, when the resin layer 75 of the plate-shaped work W is ground, the distance from the upper surface 76 of the resin layer 75 to the upper end surface 73 of the columnar electrode 72 is reduced, and at the same time, the upper surface 76 of the resin layer 75. To the upper surface 77 of the semiconductor wafer 70. Then, the first reflected light R1 reflected by the upper surface 76 of the resin layer 75, the second reflected light R2 reflected by the upper end surface 73 of the electrode 72, and the third reflected light R3 reflected by the upper surface 77 of the semiconductor wafer 70. Is received by the light receiving unit 55 (see FIG. 3A). The light reception result by the light receiving unit 55 is converted into an electric signal and output to the calculating means 56 (see FIG. 3A), and the calculating means 56 calculates the thickness of the resin from the optical path length difference between the first to third reflected lights R1, R2, and R3. Is calculated.

このとき、算出手段56では、第1−第3の反射光R1、R2、R3の光路長差から、柱状の電極72の上端上の樹脂の厚みt2と半導体ウエーハ70上の樹脂の厚みt1を含む複数の厚みデータが測定される。電極72の上端上の樹脂の厚みt2は第1、第2の反射光R1、R2の光路長差、半導体ウエーハ70上の樹脂の厚みt1は第1、第3の反射光R1、R3の光路長差であるが、これら樹脂の厚みt1、t2が複数の厚みデータのいずれに該当するのかを算出手段56では認識できない。このため、複数の厚みデータが判断手段57(図3A参照)に出力され、判断手段57によって複数の厚みデータのうち、小さいデータが電極72の上端上の樹脂の厚みt2と判断される。   At this time, the calculating means 56 calculates the thickness t2 of the resin on the upper end of the columnar electrode 72 and the thickness t1 of the resin on the semiconductor wafer 70 from the optical path length difference of the first to third reflected lights R1, R2, R3. A plurality of thickness data including is measured. The resin thickness t2 on the upper end of the electrode 72 is the optical path length difference between the first and second reflected lights R1 and R2, and the resin thickness t1 on the semiconductor wafer 70 is the optical path of the first and third reflected lights R1 and R3. Although there is a difference in length, the calculating means 56 cannot recognize which of the plurality of thickness data the thicknesses t1 and t2 of these resins correspond to. Therefore, the plurality of thickness data are output to the determination means 57 (see FIG. 3A), and the determination means 57 determines that the smaller data of the plurality of thickness data is the resin thickness t2 on the upper end of the electrode 72.

このようにして、複数の厚みデータから柱状の電極72の上端上の樹脂の厚みt2と半導体ウエーハ70上の樹脂の厚みt1とが区別される。この時点での電極72の上端上の樹脂の厚みt2と半導体ウエーハ70上の樹脂の厚みt1とから、電極72の上端上の樹脂の厚みt2がゼロになるときの半導体ウエーハ70上の樹脂の目標厚みt3が算出される。このように、第2、第3の反射光R2、R3が受光された時点で、電極72の上端面73に対応した半導体ウエーハ70上の樹脂の目標厚みt3が算出されるため、電極72の上端上の樹脂の厚みt2を測定することなく樹脂だけを研削することが可能になっている。   Thus, the thickness t2 of the resin on the upper end of the columnar electrode 72 and the thickness t1 of the resin on the semiconductor wafer 70 are distinguished from each other based on the plurality of thickness data. From the resin thickness t2 on the upper end of the electrode 72 and the resin thickness t1 on the semiconductor wafer 70 at this time, the resin thickness on the semiconductor wafer 70 when the resin thickness t2 on the upper end of the electrode 72 becomes zero. The target thickness t3 is calculated. As described above, when the second and third reflected lights R2 and R3 are received, the target thickness t3 of the resin on the semiconductor wafer 70 corresponding to the upper end surface 73 of the electrode 72 is calculated, and thus the electrode 72 of the electrode 72 is calculated. It is possible to grind only the resin without measuring the thickness t2 of the resin on the upper end.

図3Cに示すように、半導体ウエーハ70上の樹脂の目標厚みt3が算出されると、制御手段60(図3A参照)によって半導体ウエーハ70上の樹脂の厚みt1を目標厚みt3に近づけるように研削送り手段30(図3A参照)が制御される。このように、半導体ウエーハ70上の樹脂の厚みt1だけを測定しながら研削することができるため、柱状の電極72の上端上の樹脂の厚みt2が微小になっても研削精度に影響がない。よって、電極72の上端上の樹脂の厚みt1がゼロになるまで精度よく樹脂層75を研削することができ、電極72を削ることなく樹脂層75の上面76に電極72の上端面73を露出させることができる。   As shown in FIG. 3C, when the target thickness t3 of the resin on the semiconductor wafer 70 is calculated, the control means 60 (see FIG. 3A) grinds the resin thickness t1 on the semiconductor wafer 70 so as to approach the target thickness t3. The feeding means 30 (see FIG. 3A) is controlled. As described above, since the grinding can be performed while measuring only the resin thickness t1 on the semiconductor wafer 70, even if the resin thickness t2 on the upper end of the columnar electrode 72 becomes small, the grinding accuracy is not affected. Therefore, the resin layer 75 can be accurately ground until the resin thickness t1 on the upper end of the electrode 72 becomes zero, and the upper end surface 73 of the electrode 72 is exposed on the upper surface 76 of the resin layer 75 without scraping the electrode 72. Can be made.

図4を参照して、本実施の形態の研削装置による研削動作について説明する。図4は、本実施の形態の研削装置による研削動作の一例を示す図である。   With reference to FIG. 4, a grinding operation by the grinding device of the present embodiment will be described. FIG. 4 is a diagram showing an example of a grinding operation by the grinding device of the present embodiment.

図4Aに示すように、保持テーブル21に板状ワークWが載置されると、保持面23の吸引力によって板状ワークWの中心が保持面23の中心に合うように保持される。また、板状ワークWの上方に非接触測定手段50が位置付けられ、投光部51から板状ワークWに向けて測定光が投光されて測定処理が開始される。そして、保持テーブル21が回転手段22によって回転され、保持テーブル21上の板状ワークWに対して研削ホイール45が近づけられて樹脂層75が研削される。樹脂層75が薄化されることで測定光が樹脂層75を透過し、樹脂層75の上面76、柱状の電極72の上端面73、半導体ウエーハ70の上面77で測定光が反射される。   As shown in FIG. 4A, when the plate-shaped work W is placed on the holding table 21, the suction force of the holding surface 23 holds the plate-shaped work W so that the center of the plate-shaped work W is aligned with the center of the holding surface 23. Further, the non-contact measuring means 50 is positioned above the plate-shaped work W, the measurement light is projected from the light projecting portion 51 toward the plate-shaped work W, and the measurement process is started. Then, the holding table 21 is rotated by the rotating means 22, the grinding wheel 45 is brought close to the plate-shaped work W on the holding table 21, and the resin layer 75 is ground. The thinning of the resin layer 75 allows the measurement light to pass through the resin layer 75, and the measurement light is reflected by the upper surface 76 of the resin layer 75, the upper end surface 73 of the columnar electrode 72, and the upper surface 77 of the semiconductor wafer 70.

非接触測定手段50では、樹脂層75の上面76、柱状の電極72の上端面73、半導体ウエーハ70の上面77のそれぞれで反射した第1−第3の反射光R1、R2、R3(図3B参照)を受光する。これら第1−第3の反射光R1、R2、R3の光路長差から、柱状の電極72の上端上の樹脂の厚みt2と半導体ウエーハ70上の樹脂の厚みt1とが測定される。柱状の電極72の上端上の樹脂の厚みt2と半導体ウエーハ70上の樹脂の厚みt1が測定されると、電極72の上端上の樹脂の厚みt2がゼロになるときの半導体ウエーハ70上の樹脂の目標厚みt3が設定される。   In the non-contact measuring means 50, the first to third reflected lights R1, R2, and R3 reflected by the upper surface 76 of the resin layer 75, the upper end surface 73 of the columnar electrode 72, and the upper surface 77 of the semiconductor wafer 70 (FIG. 3B). (See) is received. The thickness t2 of the resin on the upper end of the columnar electrode 72 and the thickness t1 of the resin on the semiconductor wafer 70 are measured from the optical path length differences of the first to third reflected lights R1, R2, R3. When the resin thickness t2 on the upper end of the columnar electrode 72 and the resin thickness t1 on the semiconductor wafer 70 are measured, the resin on the semiconductor wafer 70 when the resin thickness t2 on the upper end of the electrode 72 becomes zero. Target thickness t3 is set.

よって、以降の研削動作では、半導体ウエーハ70上の樹脂の厚みt1を測定しながら研削すればよいため、電極72の上端上の樹脂の厚みt2を測定する必要がない。このように、制御手段60では、電極72の上端上の樹脂の厚みt2をゼロにするような制御ではなく、半導体ウエーハ70上の樹脂の厚みt1を目標厚みt3に近づけるような制御が実施される。   Therefore, in the subsequent grinding operation, since it is sufficient to grind while measuring the resin thickness t1 on the semiconductor wafer 70, it is not necessary to measure the resin thickness t2 on the upper end of the electrode 72. As described above, the control unit 60 does not control the thickness t2 of the resin on the upper end of the electrode 72 to zero, but controls the thickness t1 of the resin on the semiconductor wafer 70 to approach the target thickness t3. It

図4Bに示すように、半導体ウエーハ70上の樹脂の厚みt1が非接触測定手段50によってリアルタイムで測定されながら、研削送り手段30(図4A参照)によって研削手段40が研削送りされる。そして、半導体ウエーハ70の樹脂の厚みt1が目標厚みt3になるまで樹脂層75が研削されて、樹脂層75の上面76から柱状の電極72の上端面73が露出される。よって、電極72の上端上の樹脂の厚みt2が微小になっても、非接触測定手段50の測定精度が悪化することがなく、電極72の上端上から樹脂だけが除去される。電極72が研削されることがないため、金属粉等の加工屑が研削砥石46に付着することもない。   As shown in FIG. 4B, while the thickness t1 of the resin on the semiconductor wafer 70 is measured in real time by the non-contact measuring means 50, the grinding feeding means 30 (see FIG. 4A) feeds the grinding means 40 by grinding. Then, the resin layer 75 is ground until the resin thickness t1 of the semiconductor wafer 70 reaches the target thickness t3, and the upper end surface 73 of the columnar electrode 72 is exposed from the upper surface 76 of the resin layer 75. Therefore, even if the thickness t2 of the resin on the upper end of the electrode 72 becomes small, the measurement accuracy of the non-contact measuring means 50 does not deteriorate, and only the resin is removed from the upper end of the electrode 72. Since the electrode 72 is not ground, the processing dust such as metal powder does not adhere to the grinding wheel 46.

以上のように、本実施の形態の研削装置1では、樹脂層75の上面76で反射した第1の反射光R1と電極72の上端面73で反射した第2の反射光R2と半導体ウエーハ70の上面77で反射した第3の反射光R3とから測定された複数の厚みデータのうち、小さい厚みデータが電極72の上端上の樹脂の厚みt2として判断される。これにより、複数の厚みデータから半導体ウエーハ70上の樹脂の厚みt1と電極72の上端上の樹脂の厚みt2とを判別することができる。このとき、電極72の上端上の樹脂の厚みt2がゼロのときの半導体ウエーハ70上の樹脂の目標厚みt3が分かるため、以降は電極72の上端上の樹脂の厚みt2を測定することなく、半導体ウエーハ70の樹脂の厚みt1だけを測定しながら研削すればよい。半導体ウエーハ70上の樹脂の厚みt1を目標厚みt3に近づけるように研削することで、電極72の上端上の樹脂だけを研削して電極72の上端面73を露出させることができる。   As described above, in the grinding apparatus 1 of the present embodiment, the first reflected light R1 reflected by the upper surface 76 of the resin layer 75, the second reflected light R2 reflected by the upper end surface 73 of the electrode 72, and the semiconductor wafer 70. Of the plurality of thickness data measured from the third reflected light R3 reflected by the upper surface 77 of the above, the smaller thickness data is determined as the resin thickness t2 on the upper end of the electrode 72. Thereby, the thickness t1 of the resin on the semiconductor wafer 70 and the thickness t2 of the resin on the upper end of the electrode 72 can be discriminated from the plurality of thickness data. At this time, since the target thickness t3 of the resin on the semiconductor wafer 70 when the thickness t2 of the resin on the upper end of the electrode 72 is zero is known, thereafter, without measuring the thickness t2 of the resin on the upper end of the electrode 72, It suffices to grind while measuring only the resin thickness t1 of the semiconductor wafer 70. By grinding the resin thickness t1 on the semiconductor wafer 70 so as to approach the target thickness t3, only the resin on the upper end of the electrode 72 can be ground to expose the upper end surface 73 of the electrode 72.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the above-mentioned embodiment, and can be implemented with various modifications. In the above-described embodiment, the size and shape shown in the accompanying drawings are not limited to this, and can be appropriately changed within the range where the effect of the present invention is exhibited. Other than the above, the present invention can be appropriately modified and implemented without departing from the scope of the object of the present invention.

例えば、上記した実施の形態において、研削送り手段30が、保持手段20に対して研削手段40を接近及び離間する研削送り方向に研削送りする構成にしたが、この構成に限定されない。研削送り手段30は、保持手段20と研削手段40とを相対的に研削送り方向に研削送りする構成であればよく、例えば、研削手段40に対して保持手段20を研削送り方向に研削送りするように構成されてもよい。   For example, in the above-described embodiment, the grinding feed means 30 is configured to feed the grinding means 40 in the grinding feed direction in which the grinding means 40 approaches and separates from the holding means 20, but the present invention is not limited to this configuration. The grinding feed means 30 may be configured to relatively feed the holding means 20 and the grinding means 40 in the grinding feed direction. For example, the grinding means 40 feeds the holding means 20 in the grinding feed direction. May be configured as follows.

また、上記した実施の形態において、非接触測定手段50が、分光干渉計である構成にしたが、この構成に限定されない。非接触測定手段50は、板状ワークWの樹脂の厚みを非接触で測定可能であればよく、他の光学式の測定器を用いて板状ワークWの樹脂の厚みを測定してもよい。   Further, in the above-described embodiment, the non-contact measuring means 50 is configured as a spectroscopic interferometer, but the configuration is not limited to this. The non-contact measuring means 50 may measure the resin thickness of the plate-shaped workpiece W in a non-contact manner, and may measure the resin thickness of the plate-shaped workpiece W using another optical measuring device. .

以上説明したように、本発明は、樹脂層だけを研削して電極の上端面を露出させることができるという効果を有し、特に、樹脂層の厚み測定に分光干渉計を用いた研削装置に有用である。   As described above, the present invention has an effect that only the resin layer can be ground to expose the upper end surface of the electrode, and in particular, a grinding device using a spectral interferometer for measuring the thickness of the resin layer is provided. It is useful.

1 研削装置
20 保持手段
21 保持テーブル
22 回転手段
30 研削送り手段
40 研削手段
45 研削ホイール
46 研削砥石
50 非接触測定手段
51 投光部
55 受光部
56 算出手段
57 判断手段
60 制御手段
70 半導体ウエーハ
72 電極
73 電極の上端面
75 樹脂層
76 樹脂層の上面
77 半導体ウエーハの上面
R1 第1の反射光
R2 第2の反射光
R3 第3の反射光
W 板状ワーク
1 Grinding Device 20 Holding Means 21 Holding Table 22 Rotating Means 30 Grinding Feeding Means 40 Grinding Means 45 Grinding Wheels 46 Grinding Wheels 50 Non-contact Measuring Means 51 Light Emitting Parts 55 Light Receiving Parts 56 Calculating Means 57 Judging Means 60 Control Means 70 Semiconductor Wafers 72 Electrode 73 Upper end surface of electrode 75 Resin layer 76 Upper surface of resin layer 77 Upper surface of semiconductor wafer R1 First reflected light R2 Second reflected light R3 Third reflected light W Plate work

Claims (1)

半導体ウエーハの上面に立設する柱状の電極を樹脂で覆い樹脂層を形成する板状ワークの該樹脂層の上面を研削砥石で研削する研削装置であって、
板状ワークを保持する保持テーブルを回転させる回転手段を有する保持手段と、該保持手段に保持された板状ワークの該樹脂層を研削する研削砥石を回転可能に装着する研削手段と、該研削手段と該保持手段とを相対的に接近および離間する研削送り方向に研削送りする研削送り手段と、該研削砥石で研削する該樹脂の厚みを非接触で測定する非接触測定手段と、を備え、
該非接触測定手段は、
回転する該保持手段が保持する板状ワークの上方から測定光を投光する投光部と、
該測定光が板状ワークで反射した反射光を受光する受光部と、
該樹脂層を該研削砥石で研削中に該受光部が受光する該樹脂の上面で反射した第1の反射光と該電極の上端面で反射した第2の反射光と半導体ウエーハの上面で反射した第3の反射光との光路長差から、半導体ウエーハ上の樹脂の厚みt1と、該電極の上端上の樹脂の厚みt2と、該電極の上端上の樹脂の厚みt2がゼロのときの半導体ウエーハ上の樹脂の目標厚みt3と、を含む複数の厚みデータを算出する算出手段と、
該算出手段が算出した該半導体ウエーハ上の樹脂の厚みt1及び該電極の上端上の樹脂の厚みt2のうち小さい厚みデータを該電極の上端上の樹脂の厚みt2と判断する判断手段と、を備え、
該非接触測定手段によって該半導体ウエーハ上の樹脂の厚みt1を測定しながら該研削砥石で該樹脂を研削していき、さらに、該算出手段によって該電極の上端上の樹脂の厚みt2がゼロになるとしたときの半導体ウエーハ上の樹脂の目標厚みt3を算出し、該算出の後は該電極の上端上の樹脂の厚みt2を算出することなく該半導体ウエーハ上の樹脂の厚みt1が該目標厚みt3になるまで該研削手段で該樹脂を研削する研削装置。
A grinding device for grinding a columnar electrode standing on the upper surface of a semiconductor wafer with a resin to grind the upper surface of the resin layer of a plate-like work forming a resin layer with a grinding wheel,
Holding means having a rotating means for rotating a holding table for holding the plate-like work, grinding means for rotatably mounting a grinding wheel for grinding the resin layer of the plate-like work held by the holding means, and the grinding A grinding feed means for feeding the means and the holding means in a grinding feed direction relatively approaching and separating from each other, and a non-contact measuring means for non-contactly measuring the thickness of the resin ground by the grinding wheel. ,
The non-contact measuring means,
A light projecting section for projecting measurement light from above the plate-like work held by the rotating holding means;
A light receiving portion for receiving the reflected light of the measurement light reflected by the plate-like work,
The first reflected light reflected by the upper surface of the resin, the second reflected light reflected by the upper end surface of the electrode, and the upper surface of the semiconductor wafer, which are received by the light receiving portion while the resin layer is being ground by the grinding wheel. From the difference in optical path length from the third reflected light, when the resin thickness t1 on the semiconductor wafer, the resin thickness t2 on the upper end of the electrode, and the resin thickness t2 on the upper end of the electrode are zero. Calculation means for calculating a plurality of thickness data including a target thickness t3 of the resin on the semiconductor wafer,
A determination unit that determines the smaller thickness data of the resin thickness t1 on the semiconductor wafer and the resin thickness t2 on the upper end of the electrode calculated by the calculation unit as the resin thickness t2 on the upper end of the electrode. Prepare,
When the thickness t1 of the resin on the semiconductor wafer is measured by the non-contact measuring means, the resin is ground by the grinding wheel, and when the thickness t2 of the resin on the upper end of the electrode becomes zero by the calculating means. Then, the target thickness t3 of the resin on the semiconductor wafer is calculated, and after the calculation , the thickness t1 of the resin on the semiconductor wafer is set to the target thickness t3 without calculating the thickness t2 of the resin on the upper end of the electrode. A grinding device that grinds the resin by the grinding means until it becomes.
JP2016081182A 2016-04-14 2016-04-14 Grinding machine Active JP6687455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016081182A JP6687455B2 (en) 2016-04-14 2016-04-14 Grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016081182A JP6687455B2 (en) 2016-04-14 2016-04-14 Grinding machine

Publications (2)

Publication Number Publication Date
JP2017191876A JP2017191876A (en) 2017-10-19
JP6687455B2 true JP6687455B2 (en) 2020-04-22

Family

ID=60086077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016081182A Active JP6687455B2 (en) 2016-04-14 2016-04-14 Grinding machine

Country Status (1)

Country Link
JP (1) JP6687455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220402093A1 (en) * 2021-06-17 2022-12-22 Disco Corporation Grinding apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121061B1 (en) * 2018-04-19 2020-06-10 서우테크놀로지 주식회사 Grinding thickness control apparatus and method of semiconductor package grinder
JP7325913B2 (en) * 2019-11-22 2023-08-15 株式会社ディスコ Wafer processing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220402093A1 (en) * 2021-06-17 2022-12-22 Disco Corporation Grinding apparatus
US11904432B2 (en) * 2021-06-17 2024-02-20 Disco Corporation Grinding apparatus

Also Published As

Publication number Publication date
JP2017191876A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP2008264913A (en) Grinding device
US11400563B2 (en) Processing method for disk-shaped workpiece
JP2007335458A (en) Wafer grinder
JP6687455B2 (en) Grinding machine
TWI834725B (en) Thickness measuring device and grinding device equipped with thickness measuring device
JP6618822B2 (en) Method for detecting wear amount of grinding wheel
JP6377433B2 (en) Grinding method
TW201813769A (en) Dressing method for grinding stone capable of dressing a grinding stone efficiently without manual operation
JP2008155292A (en) Method and apparatus for machining substrate
JP6385734B2 (en) Grinding method
JP7127994B2 (en) Dressing board and dressing method
JP2017056523A (en) Grinding device
JP6721473B2 (en) Wafer processing method
JP2009099870A (en) Processing method for wafer
JP5635892B2 (en) Grinding equipment
JP5815422B2 (en) Grinding equipment
JP5694743B2 (en) Grinding equipment
JP2021146416A (en) Grinding method for wafer
JP2011235388A (en) Method for measuring thickness of ground material to be processed, and grinding device
JP6262593B2 (en) Grinding equipment
CN102615585B (en) Grinding attachment
JP2017183326A (en) Wafer grinding method and wafer grinding device
JP7474082B2 (en) Wafer grinding method
US11904432B2 (en) Grinding apparatus
JP7572518B2 (en) Edge trimming method and edge trimming device for bonded wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200402

R150 Certificate of patent or registration of utility model

Ref document number: 6687455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250