JP6686862B2 - Vibration control device for tower structure and flange structure joined by flange - Google Patents
Vibration control device for tower structure and flange structure joined by flange Download PDFInfo
- Publication number
- JP6686862B2 JP6686862B2 JP2016242926A JP2016242926A JP6686862B2 JP 6686862 B2 JP6686862 B2 JP 6686862B2 JP 2016242926 A JP2016242926 A JP 2016242926A JP 2016242926 A JP2016242926 A JP 2016242926A JP 6686862 B2 JP6686862 B2 JP 6686862B2
- Authority
- JP
- Japan
- Prior art keywords
- horizontal flange
- damping device
- tower structure
- vibration damping
- flange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 claims description 58
- 229910000831 Steel Inorganic materials 0.000 claims description 32
- 239000010959 steel Substances 0.000 claims description 32
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 238000010248 power generation Methods 0.000 description 10
- 230000003014 reinforcing effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Wind Motors (AREA)
- Vibration Dampers (AREA)
Description
本発明は、例えば風力発電装置の塔体のように下側の鋼管の端部に設けられた下水平フランジ部と、上側の鋼管の端部に設けられた上水平フランジ部をボルト及びナットによって接合して前記鋼管同士を接合してなるタワー構造体の制振装置及び該制振装置を設置したタワー構造体に関する。 The present invention, for example, a lower horizontal flange portion provided at the end portion of the lower steel pipe like a tower of a wind turbine and an upper horizontal flange portion provided at the end portion of the upper steel pipe by bolts and nuts. The present invention relates to a vibration damping device for a tower structure formed by joining the steel pipes together and a tower structure having the vibration damping device installed.
鋼管同士をフランジ接合したタワー構造体として、例えば図6に示すような風力発電設備17の塔体19がある。
このような風力発電設備17の塔体19は、図7、図8に示すように、鋼管端部に形成された内向きの上水平フランジ部5と下水平フランジ部3(断面L型フランジ)をボルト23及びナット25によってボルト接合されて形成されている。
As a tower structure in which steel pipes are flange-joined, there is, for example, a tower body 19 of a wind turbine generator 17 as shown in FIG.
As shown in FIGS. 7 and 8, the tower body 19 of such a wind power generation facility 17 has an inward upper horizontal flange portion 5 and a lower horizontal flange portion 3 (section L-shaped flange) formed at the end of the steel pipe. Is formed by bolt-joining with a bolt 23 and a nut 25.
塔体の頂部に重量の大きいナセルを搭載するため、頂部を腹とするような1次モードが卓越し、強風時や地震時には頂部が大きく振動する。損傷や倒壊する危険性がある。また、供用期間中の繰り返し荷重により、疲労破壊が発生する危険性がある。 Since a heavy nacelle is mounted on the top of the tower, the top-belly first-order mode is outstanding, and the top vibrates greatly during strong winds or earthquakes. There is a risk of damage and collapse. In addition, there is a risk of fatigue failure due to repeated loading during the service period.
上記のように、塔体は鋼管をボルト接合しただけの単純な構造であるため、塔体そのものの構造減衰は極めて低い。非特許文献1によると、実測値から同定された1次モードの減衰定数は0.2%程度である。
そのため、塔体に別途制振装置を設けて振動を抑制する必要がある。
As described above, since the tower body has a simple structure in which steel pipes are simply joined by bolts, the structural damping of the tower body itself is extremely low. According to Non-Patent Document 1, the damping constant of the first-order mode identified from the measured value is about 0.2%.
Therefore, it is necessary to separately provide a vibration damping device on the tower body to suppress the vibration.
風力発電設備の塔体の風や地震による振動を抑制する方法としては、頂部のナセル内部にAMD(アクティブ・マス・ダンパー)やTMD(チューンド・マス・ダンパー)を設置する方法が一般的である。
また、ビルや家屋等の建築物では、骨組み内にオイルダンパーあるいは樹脂製ダンパーを設置することにより、風や地震による振動を吸収する手法が一般的である。
As a method of suppressing the vibration of the tower of the wind power generation facility due to the wind and the earthquake, it is common to install an AMD (Active Mass Damper) or TMD (Tuned Mass Damper) inside the nacelle at the top. .
Further, in buildings such as buildings and houses, it is common to install an oil damper or a resin damper in the frame to absorb vibrations caused by wind or an earthquake.
また、制振装置ではないが、フランジ接合部の補強方法としては、例えば特許文献1に記載された「フランジ補強治具」がある。
この「フランジ補強治具」は、フランジ接合部をまたぐようにフランジ周方向に間隔をおいて配される複数の補強部材と、フランジ部背面付根部分に当接した状態で、前記補強部材によりフランジ部背面に押し当てられる当て部材と、前記複数の補強部材を管体に固定するためのリング状の締付部材とからなるというものである。
Further, although it is not a vibration damping device, there is a "flange reinforcing jig" described in Patent Document 1, for example, as a method of reinforcing the flange joint portion.
This "flange reinforcing jig" is a structure in which a plurality of reinforcing members are arranged at intervals in the circumferential direction of the flange so as to straddle the flange joint portion, and a flange portion is formed by the reinforcing member in a state of being in contact with the root portion of the rear surface of the flange portion. It is composed of a contact member pressed against the rear surface of the section and a ring-shaped tightening member for fixing the plurality of reinforcing members to the pipe body.
ナセル内部にAMDやTMDを設置する方法では、塔体とは別に設備を設置することになり、高コストである。また、ナセル内の空間を制振装置が占領するため、定期点検やトラブル対応時の作業に支障が出るという問題もある。 In the method of installing AMD and TMD inside the nacelle, equipment is installed separately from the tower body, which is high cost. In addition, since the vibration control device occupies the space inside the nacelle, there is a problem in that the work at the time of regular inspection and troubleshooting is hindered.
また、オイルダンパーあるいは樹脂製ダンパーを設置する方法では、制振装置そのものが大きく、他方、塔体内部が非常に狭隘であることに鑑みると、ダンパーのような大型の装置を設置することはスペース面で無理があり、点検等の作業に支障が出る可能性もある。 In addition, in the method of installing the oil damper or the resin damper, considering that the vibration damping device itself is large and the inside of the tower body is very narrow, it is not necessary to install a large device such as a damper. However, there is a possibility that it will interfere with the work such as inspection.
また、特許文献1に記載のものは、フランジ部を補強するものであり、制振作用を期待することはできない。 Further, the one described in Patent Document 1 is for reinforcing the flange portion, and cannot expect a vibration damping action.
本発明はかかる課題を解決するためになされたものであり、可能な限り小さく、簡単な機構を有し、効率的に塔体の構造減衰を向上させるフランジ接合されたタワー構造体の制振装置、及び該制振装置を設置したタワー構造体を提供することを目的とする。 The present invention has been made to solve the above problems, and has a flange-bonded tower structure vibration damping device that has a mechanism as small as possible and has a simple mechanism to efficiently improve structural damping of the tower body. And a tower structure in which the vibration damping device is installed.
前述のように、風力発電設備17の塔体19は、図8に示すように、鋼管端部に形成された内向きの上水平フランジ部5と下水平フランジ部3(断面L型フランジ)をボルト23及びナット25によってボルト接合されている。
このため、塔体19に風荷重や自身等によって振動が生じた場合、図9に示すように、フランジ部が開くような挙動が生ずる。
そこで、発明者は、この変形に追従するように塑性変形する部材を設置することで、振動エネルギーを吸収して、制振作用を発現できると考えた。
本発明はこのような知見に基づくものであり、具体的には以下の構成からなるものである。
As described above, the tower body 19 of the wind power generation facility 17, as shown in FIG. 8, has the inwardly facing upper horizontal flange portion 5 and the lower horizontal flange portion 3 (section L-shaped flange) formed at the end of the steel pipe. Bolts are joined by bolts 23 and nuts 25.
Therefore, when the tower body 19 vibrates due to wind load or itself, as shown in FIG. 9, the flange portion opens.
Therefore, the inventor considered that by installing a member that plastically deforms so as to follow this deformation, it is possible to absorb the vibration energy and develop a vibration damping effect.
The present invention is based on such knowledge, and specifically has the following configuration.
(1)本発明に係るタワー構造体の制振装置は、下側の鋼管の端部に設けられた下水平フランジ部と、上側の鋼管の端部に設けられた上水平フランジ部を、ボルト及びナットによって接合したフランジ接合部によって前記鋼管同士を連結したタワー構造体の制振装置であって、
引張強度200〜400N/mm2程度の鋼材からなり、前記フランジ接合部において前記下水平フランジ部と前記上水平フランジ部に跨るように設置されて、設置状態において上記上水平フランジ部と接する上片部と、前記下水平フランジ部と接する下片部と、該下片部と前記上片部を連結する連結片部とを有し、前記上水平フランジ部と前記下水平フランジ部の基部が上下方向に離れたときに変形してエネルギーを吸収することを特徴とするものである。
(1) In the vibration damping device for a tower structure according to the present invention, the lower horizontal flange portion provided at the end portion of the lower steel pipe and the upper horizontal flange portion provided at the end portion of the upper steel pipe are bolted. And a vibration damping device for a tower structure in which the steel pipes are connected to each other by a flange joint portion joined by a nut,
An upper piece made of a steel material having a tensile strength of about 200 to 400 N / mm 2 , installed so as to straddle the lower horizontal flange portion and the upper horizontal flange portion at the flange joint portion, and in contact with the upper horizontal flange portion in the installed state. parts and the lower piece portion in contact with the lower horizontal flange portion, and a connecting piece for connecting the upper piece and the lower piece portion, the base portion of the lower horizontal flange portion and the upper horizontal flange portion is vertically It is characterized in that it deforms and absorbs energy when separated in the direction.
(2)また、上記(1)に記載のものにおいて、前記上片部と前記下片部は、それぞれ設置状態で同軸上となる少なくとも2個のボルト孔を有することを特徴とするものである。 (2) Further, in the structure described in (1), the upper piece portion and the lower piece portion each have at least two bolt holes that are coaxial with each other when installed. .
(3)また、上記(1)又は(2)に記載のものにおいて、全体形状が、側面視でU字又はコ字状であることを特徴とするものである。 (3) Further, in the device described in (1) or (2) above, the overall shape is U-shaped or U-shaped in a side view.
(4)本発明に係るタワー構造体は、(1)乃至(3)のいずれかに記載の制振装置を設置してなることを特徴とするものである。 (4) A tower structure according to the present invention is characterized in that the vibration damping device according to any one of (1) to (3) is installed.
(5)また、上記(4)に記載のものにおいて、制振装置がフランジ接合部の周方向の一部の領域に設置されていることを特徴とするものである。 (5) Further, in the structure described in (4) above, the vibration damping device is installed in a partial region in the circumferential direction of the flange joint.
本発明に係るタワー構造体の制振装置は、引張強度200〜400N/mm2の鋼材からなり、下水平フランジ部と上水平フランジ部に跨るように設置されて、設置状態において上記上水平フランジ部と接する上片部と、前記下水平フランジ部と接する下片部と、該下片部と前記上片部を連結する連結片部とを有し、前記上水平フランジ部と前記下水平フランジ部の基部が上下方向に離れたときに変形してエネルギーを吸収するようにしたので、装置そのものが非常に小型であり、設置に大きな空間を必要とせず、構造減衰を向上させることができる。
また、上片部と下片部に、それぞれ設置状態で同軸上となる少なくとも2個のボルト孔を有するようにすれば、タワー構造体のフランジ接合部に用いるボルトをそのまま利用できるため、タワー構造体そのものの設計を修正する必要がなく、工数を削減可能であり、かつ管理項目を削減可能である。
The vibration damping device for a tower structure according to the present invention is made of a steel material having a tensile strength of 200 to 400 N / mm 2 , is installed so as to straddle the lower horizontal flange portion and the upper horizontal flange portion, and in the installed state, the upper horizontal flange is provided. and upper piece in contact with the part, and the lower piece portion in contact with the lower horizontal flange portion, and a connecting piece for connecting the upper piece and the lower piece, the lower horizontal flange and the upper horizontal flange Since the base of the part is deformed to absorb energy when separated in the vertical direction, the device itself is very small, a large space is not required for installation, and structural damping can be improved.
If the upper piece and the lower piece each have at least two bolt holes that are coaxial when installed, the bolts used for the flange joints of the tower structure can be used as they are. There is no need to modify the design of the body itself, which can reduce man-hours and management items.
本発明の実施の形態1に係るタワー構造体の制振装置1(以下、単に「制振装置1」という)は、図1〜図3に示すように、下側の鋼管の端部に設けられた下水平フランジ部3と、上側の鋼管の端部に設けられた上水平フランジ部5を、ボルト・ナットによって接合するフランジ接合部に設けられるものである。 The vibration damping device 1 for a tower structure according to Embodiment 1 of the present invention (hereinafter simply referred to as "damping device 1") is provided at an end portion of a lower steel pipe, as shown in Figs. The lower horizontal flange portion 3 and the upper horizontal flange portion 5 provided at the end portion of the upper steel pipe are provided at the flange joint portion where the bolts and nuts are joined.
本実施の形態の制振装置1は、図2、図3に示すように、引張強度200〜400N/mm2の鋼材からなる厚板部材を押し曲げ加工して形成されたものであり、全体形状が側面視でコ字状をしており、上水平フランジ部5のフランジ面側に配置される上片部7と、下水平フランジ部3側に配置される下片部9と、下片部9と上片部7を連結する連結片部11とを有している。 As shown in FIGS. 2 and 3, the vibration damping device 1 of the present embodiment is formed by pressing and bending a thick plate member made of a steel material having a tensile strength of 200 to 400 N / mm 2. The shape is U-shaped in a side view, and an upper piece portion 7 arranged on the flange surface side of the upper horizontal flange portion 5, a lower piece portion 9 arranged on the lower horizontal flange portion 3 side, and a lower piece. It has a connecting piece portion 11 that connects the portion 9 and the upper piece portion 7 .
鋼管同士をフランジ接合したタワー構造体としては、上述した風力発電設備17の塔体19の他、橋脚、鋼製煙突などが挙げられる。
タワー構造体に用いられるのが一般鋼から高強度鋼であるため、制振装置1はこれらよりも降伏点が低く変形しやすい引張強度200〜400N/mm2程度の鋼材を用いることで、塑性変形性能が向上して大きな振動エネルギーを吸収することができる。
引張強度200〜400N/mm2の鋼材としては、いわゆる極低降伏点鋼や低降伏点鋼が挙げられる。
Examples of the tower structure in which the steel pipes are flange-joined include the tower body 19 of the wind power generation facility 17 described above, a bridge pier, and a steel chimney.
Since general steel and high strength steel are used for the tower structure, the vibration damping device 1 uses a steel material having a tensile strength of about 200 to 400 N / mm 2 which has a lower yield point and is more easily deformed. The deformation performance is improved and a large amount of vibration energy can be absorbed.
Examples of the steel material having a tensile strength of 200 to 400 N / mm 2 include so-called extremely low yield point steel and low yield point steel.
制振装置1の配置に関し、上水平フランジ部5と下水平フランジ部3を結合するボルト23を図7のように均等配置するのではなく、例えば図1に示すように、周方向で2本ずつを一つの組みとして、組となっているボルト23同士の間隔が狭く、組同士の間の間隔が広いような不連続なボルト配置をすると、間隔の広い組同士の間の変形が大きくなる。そこで、このようなこの変形量の大きい箇所に本発明による制振装置1を取り付けることで、効率的に減衰効果を増加させることが可能である。なお、図1においては、制振装置1を固定するボルト13は図示を省略している。
制振装置1の形状としては、フランジ接合部が鋼管側から開こうとする変形に追従して変形するような形状が好ましい。以下、上片部7、下片部9及び連結片部11の好ましい形状の詳細を説明する。
Regarding the arrangement of the vibration damping device 1, the bolts 23 connecting the upper horizontal flange portion 5 and the lower horizontal flange portion 3 are not evenly arranged as shown in FIG. 7, but, for example, as shown in FIG. If the bolts 23 forming a set are arranged in a discontinuous manner such that the intervals between the bolts 23 are narrow and the intervals between the sets are wide, the deformation between the sets having a wide interval becomes large. . Therefore, it is possible to efficiently increase the damping effect by attaching the vibration damping device 1 according to the present invention to such a portion where the deformation amount is large. In addition, in FIG. 1, the bolt 13 for fixing the vibration damping device 1 is not shown.
The shape of the vibration damping device 1 is preferably a shape in which the flange joint portion is deformed following the deformation of opening from the steel pipe side. Hereinafter, details of preferable shapes of the upper piece portion 7, the lower piece portion 9, and the connecting piece portion 11 will be described.
<上片部>
上片部7は、図2、図3に示すように、矩形の平板状をしており、基端側にボルト13が挿通されるボルト挿通孔15を有すると共に上水平フランジ部5のフランジ面に配置されたときに先端側が上水平フランジ部5の端部よりも延出するように形成されている。
なお、上片部7の基端側とは、制振装置1をタワー構造体におけるフランジ接合部に設置した状態で上水平フランジ部5の基部側になる側をいい、上片部7の先端側とは、同様の状態で上水平フランジ部5の先端側になる側をいう。
<Upper piece>
As shown in FIGS. 2 and 3, the upper piece portion 7 has a rectangular flat plate shape, has a bolt insertion hole 15 through which the bolt 13 is inserted at the base end side, and has a flange surface of the upper horizontal flange portion 5. The front end side is formed to extend beyond the end portion of the upper horizontal flange portion 5 when it is disposed at.
The base end side of the upper piece portion 7 refers to the side that becomes the base side of the upper horizontal flange portion 5 in a state where the vibration damping device 1 is installed in the flange joint portion of the tower structure, and the tip end of the upper piece portion 7. The side refers to the side on the tip side of the upper horizontal flange portion 5 in the same state.
ボルト挿通孔15は2個形成されている。
ボルト挿通孔15に挿通されるボルト13は、タワー構造体の下水平フランジ部3と上水平フランジ部5を固定するボルト23と同径で、長さが長いものである。そして、大型の風力発電設備の場合、ボルト径は30〜50mmであるため、ボルト挿通孔15に挿通されるボルト13はこのボルト径と同径のものであることが必要である。
Two bolt insertion holes 15 are formed.
The bolt 13 that is inserted into the bolt insertion hole 15 has the same diameter as the bolt 23 that fixes the lower horizontal flange portion 3 and the upper horizontal flange portion 5 of the tower structure, and has a long length. In the case of a large-scale wind power generation facility, the bolt diameter is 30 to 50 mm, so the bolt 13 inserted into the bolt insertion hole 15 needs to have the same diameter as this bolt diameter.
<下片部>
下片部9は、図2、図3に示すように、上片部7と同様に、矩形の平板状をしており、基端側にボルト13が挿通されるボルト挿通孔15を有すると共に下水平フランジ部3のフランジ面に配置されたときに先端側が下水平フランジ部3の端部よりも延出するように形成されている。
なお、下片部9の基端側とは、制振装置1をタワー構造体におけるフランジ接合部に設置した状態で下水平フランジ部3の基部側になる側をいい、下片部9の先端側とは、同様の状態で下水平フランジ部3の先端側になる側をいう。
ボルト挿通孔15は、上片部7と同様に2個形成されており、その径も上片部7のボルト挿通孔15と同じである。
<Bottom piece>
As shown in FIGS. 2 and 3, the lower piece portion 9 has a rectangular flat plate shape like the upper piece portion 7 and has a bolt insertion hole 15 on the proximal end side through which the bolt 13 is inserted. The tip end side is formed to extend beyond the end portion of the lower horizontal flange portion 3 when arranged on the flange surface of the lower horizontal flange portion 3.
In addition, the base end side of the lower piece portion 9 refers to a side which is a base side of the lower horizontal flange portion 3 in a state where the vibration damping device 1 is installed in a flange joint portion of the tower structure, and a tip end of the lower piece portion 9. The side refers to the side that is the tip side of the lower horizontal flange portion 3 in the same state.
Two bolt insertion holes 15 are formed similarly to the upper piece portion 7, and the diameter thereof is also the same as the bolt insertion hole 15 of the upper piece portion 7.
<連結片部>
連結片部11は、一端側が上片部7の先端側に連続すると共に他端側が下片部9の先端側に連続している。連結片部11は、制振装置1を設置した状態において、上水平フランジ部5と下水平フランジ部3の基部が上下方向に離れたときに下片部9の基端側と上片部7の基端側が離れようとするのに抵抗する。
<Connecting piece>
One end side of the connecting piece portion 11 is continuous with the tip side of the upper piece portion 7, and the other end side is continuous with the tip side of the lower piece portion 9. The connecting piece portion 11 and the base piece side of the lower piece portion 9 and the upper piece portion 7 when the base portions of the upper horizontal flange portion 5 and the lower horizontal flange portion 3 are separated from each other in the vertical direction when the vibration damping device 1 is installed. The proximal end of the will resist trying to leave.
本実施の形態の連結片部11は、図2に示すように、平板状に形成されている。このように、連結片部11を平板状とする場合でも、連結片部11と上片部7との接続面及び連結片部11と下片部9との接続面は、直角とせずに、曲率半径が板厚の50%程度の湾曲面によって連続させることが、応力集中の発生を避けるために好ましい。
なお、本例では、連結片部11と上片部7及び下片部9との境界の角部には、応力集中を低減するための切り欠き溝16を設けている。
As shown in FIG. 2, the connecting piece portion 11 of the present embodiment is formed in a flat plate shape. Thus, even when the connecting piece portion 11 is formed in a flat plate shape, the connecting surface between the connecting piece portion 11 and the upper piece portion 7 and the connecting surface between the connecting piece portion 11 and the lower piece portion 9 are not right angles, In order to avoid stress concentration, it is preferable to make it continuous by a curved surface having a radius of curvature of about 50% of the plate thickness.
In this example, a cutout groove 16 for reducing stress concentration is provided at a corner of the boundary between the connecting piece 11 and the upper piece 7 and the lower piece 9.
制振装置1は、図2、図3に示すように、側面視でコ字状をしているが、例えば制振対象のタワー構造体が大型の風力発電設備の場合、ボルト径は30〜50mmであり、上水平フランジ部5、下水平フランジ部3のフランジ幅はボルト径の2〜4倍、上水平フランジ部5及び下水平フランジ部3を重ねた厚さは200mm程度であるため、これに設置できる断面を有している。 As shown in FIGS. 2 and 3, the vibration damping device 1 has a U-shape in a side view. For example, when the tower structure to be damped is a large wind power generation facility, the bolt diameter is 30 to 50 mm, the flange width of the upper horizontal flange portion 5 and the lower horizontal flange portion 3 is 2 to 4 times the bolt diameter, and the combined thickness of the upper horizontal flange portion 5 and the lower horizontal flange portion 3 is about 200 mm. It has a cross section that can be installed on it.
<取り付け方法>
上記のように構成された本実施の形態に係る制振装置1の取り付け方法を説明する。
フランジ接合部を接合するボルト13を取り外し、コ字状の制振装置1の基端側をフランジ接合部に挿入する。
そして、フランジ接合部のボルト孔と、制振装置1における上片部7及び下片部9のボルト挿通孔15を位置合わせして、ボルト接合する。このとき、ボルト13の締め付け力の管理は、タワー構造体のフランジ接合部のボルト締付力と同等にすればよい。
<Installation method>
A method of mounting the vibration damping device 1 according to this embodiment configured as described above will be described.
The bolt 13 that joins the flange joints is removed, and the base end side of the U-shaped vibration damping device 1 is inserted into the flange joints.
Then, the bolt holes of the flange joint portion and the bolt insertion holes 15 of the upper piece portion 7 and the lower piece portion 9 of the vibration damping device 1 are aligned and bolted. At this time, the control of the tightening force of the bolt 13 may be made equal to the bolt tightening force of the flange joint portion of the tower structure.
<作用の説明>
風荷重が作用すると、上述したように、上水平フランジ部5及び下水平フランジ部3は変形し、上水平フランジ部5と下水平フランジ部3の基部が開こうとする。
このとき、制振装置1の上片部7の基部側が持ち上げられ、逆に下片部9の基部側が押し下げられて変形して、振動エネルギーを吸収する。制振装置1は上水平フランジ部5や下水平フランジ部3よりも降伏点の低い引張強度200〜400N/mm2の鋼材であるから、変形性能に優れ、容易に変形して効果的にエネルギー吸収をする。
<Explanation of action>
When the wind load acts, as described above, the upper horizontal flange portion 5 and the lower horizontal flange portion 3 are deformed, and the base portions of the upper horizontal flange portion 5 and the lower horizontal flange portion 3 try to open.
At this time, the base side of the upper piece 7 of the vibration damping device 1 is lifted up, and conversely, the base side of the lower piece 9 is pushed down and deformed to absorb the vibration energy. Since the vibration damping device 1 is a steel material having a tensile strength of 200 to 400 N / mm 2 having a lower yield point than the upper horizontal flange portion 5 and the lower horizontal flange portion 3, it is excellent in deformability and easily deforms to effectively generate energy. Absorb.
以上のように、本実施の形態の制振装置1は、装置そのものが非常に小型であり、設置に大きな空間を必要とせず、構造減衰を向上させることができる。
また、上片部7と下片部9に、それぞれ設置状態で同軸上となる少なくとも2個のボルト挿通孔15を設けているので、タワー構造体のフランジ接合部に用いるボルト孔をそのまま利用できる。
また、使用するボルト13は、既設のボルト23と同径のものを用いればよく、ボルト再選定についても煩雑な作業が不要である。
As described above, the vibration damping device 1 according to the present embodiment has a very small device itself, does not require a large space for installation, and can improve structural damping.
Further, since the upper piece portion 7 and the lower piece portion 9 are each provided with at least two bolt insertion holes 15 that are coaxial with each other when installed, the bolt holes used for the flange joint portion of the tower structure can be used as they are. .
Further, the bolt 13 to be used may have the same diameter as the existing bolt 23, and complicated work is not required for bolt reselection.
なお、上記の説明では、制振装置1の側面視の形状としてコ字状のものを例に挙げて説明したが、本発明の制振装置1は上片部7、下片部9及び連結片部11から形成されるものであれば形状はこれに限定されるものではなく、例えば図4に示すような側面視がU字状のものであってもよい。この場合、連結片部11は平板状ではなく湾曲状に形成されており、制振装置1の変形時に応力集中することがなく、滑らかな変形が可能となるので好ましい。 In the above description, the shape of the vibration damping device 1 in the side view is U-shaped, but the vibration damping device 1 of the present invention includes the upper piece portion 7, the lower piece portion 9, and the coupling. The shape is not limited to this as long as it is formed from the piece portion 11, and may be, for example, a U-shaped side view as shown in FIG. In this case, the connecting piece portion 11 is formed in a curved shape instead of a flat plate shape, so that stress is not concentrated when the vibration damping device 1 is deformed, and smooth deformation is possible, which is preferable.
また、風力発電設備のように卓越する風向が限定されている場合、振動の発生する方向は限定される。そして、卓越風向は既存の風況観測データに基づき特定することができるので、その方向が特定できれば、振動の方向が明確になる。このような場合には、図5に示すように、フランジ接合部の全周ではなく、周方向の特定の領域に局所的に制振装置1を設置することで、効率的な構造減衰向上が可能になる。 Further, when the predominant wind direction is limited as in wind power generation equipment, the direction in which vibration occurs is limited. Since the predominant wind direction can be specified based on the existing wind condition observation data, if the direction can be specified, the vibration direction becomes clear. In such a case, as shown in FIG. 5, the vibration damping device 1 is locally installed not in the entire circumference of the flange joint portion but in a specific area in the circumferential direction, thereby effectively improving the structural damping. It will be possible.
また、本発明による制振装置1は、タワー構造体の高さ方向の全てのフランジ接合部に設置する必要はなく、高さ方向に偏分布させて設置することが可能である。
タワー構造体のフランジ接合部の中でも、変形量の大きい部分であるほど、本発明の制振効果は大きい。その意味で、曲げモーメントが大きく、かつ断面係数の小さい層のフランジ接合部に設けるのが最も効果的である。
そして、本発明の制振装置1は、フランジ接合部を挟むようなごく小さい形状であるため、所望の箇所に設置が可能であり、極めて効率的である。
Further, the vibration damping device 1 according to the present invention does not need to be installed in all the flange joints in the height direction of the tower structure, but can be installed in an uneven distribution in the height direction.
Among the flange joints of the tower structure, the greater the amount of deformation, the greater the damping effect of the present invention. In that sense, it is most effective to provide the flange joint portion of the layer having a large bending moment and a small section modulus.
Further, since the vibration damping device 1 of the present invention has a very small shape such that the flange joint portion is sandwiched, the vibration damping device 1 can be installed at a desired position and is extremely efficient.
1 制振装置
3 下水平フランジ部
5 上水平フランジ部
7 上片部
9 下片部
11 連結片部
13 ボルト
15 ボルト挿通孔
16 切り欠き溝
17 風力発電設備
19 塔体
21 ブレード
23 ボルト
25 ナット
1 Damping Device 3 Lower Horizontal Flange Part 5 Upper Horizontal Flange Part 7 Upper Piece Part 9 Lower Piece Part 11 Connecting Piece Part 13 Bolt 15 Bolt Insertion Hole 16 Notch Groove 17 Wind Power Generation Facility 19 Tower 21 Blade 23 Bolt 25 Nut
Claims (5)
引張強度200〜400N/mm2の鋼材からなり、前記フランジ接合部において前記下水平フランジ部と前記上水平フランジ部に跨るように設置されて、設置状態において前記上水平フランジ部と接する上片部と、前記下水平フランジ部と接する下片部と、該下片部と前記上片部の先端側に連続してこれらを連結する連結片部とを有し、前記下片部と前記上片部の基端側が前記下水平フランジ部及び前記上水平フランジ部にボルト接合され、前記上水平フランジ部と前記下水平フランジ部の基部が上下方向に離れたときに変形してエネルギーを吸収することを特徴とするタワー構造体の制振装置。 Bolts and nuts are provided for the lower horizontal flange that is provided at the end of the lower steel pipe and projects only to the inside in the radial direction, and the upper horizontal flange that is provided at the end of the upper steel pipe and projects only to the inside in the radial direction. A vibration damping device for a tower structure, wherein the steel pipes are connected to each other by a flange joint portion joined by
Tensile consists strength 200 to 400 N / mm 2 of steel, said at flange joint is installed so as to straddle on said horizontal flange portion and the lower horizontal flange portion, the upper piece contacts the front SL on the horizontal flange in the installed state Section, a lower piece portion in contact with the lower horizontal flange portion, and a connecting piece portion that continuously connects the lower piece portion and the tip side of the upper piece portion, the lower piece portion and the upper portion. The base end side of one piece is bolted to the lower horizontal flange portion and the upper horizontal flange portion, and the base portions of the upper horizontal flange portion and the lower horizontal flange portion are deformed to absorb energy when separated in the vertical direction. A vibration control device for a tower structure, which is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016242926A JP6686862B2 (en) | 2016-12-15 | 2016-12-15 | Vibration control device for tower structure and flange structure joined by flange |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016242926A JP6686862B2 (en) | 2016-12-15 | 2016-12-15 | Vibration control device for tower structure and flange structure joined by flange |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018096147A JP2018096147A (en) | 2018-06-21 |
JP6686862B2 true JP6686862B2 (en) | 2020-04-22 |
Family
ID=62633919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016242926A Active JP6686862B2 (en) | 2016-12-15 | 2016-12-15 | Vibration control device for tower structure and flange structure joined by flange |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6686862B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7420370B2 (en) * | 2019-11-15 | 2024-01-23 | 不二ラテックス株式会社 | buckling member |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005133814A (en) * | 2003-10-30 | 2005-05-26 | Fuso Gijutsu Kenkyusho:Kk | Method for reinforcing junction part of fcd valve to single flange pipe |
JP4591891B2 (en) * | 2006-07-11 | 2010-12-01 | 株式会社日本衛生センター | Tensile member fixture and tension member with fixture |
GB2465577A (en) * | 2008-11-21 | 2010-05-26 | Vestas Wind Sys As | Monitoring device for a wind turbine |
US20130180199A1 (en) * | 2012-01-17 | 2013-07-18 | Venkata Krishna Vadlamudi | Flange connection for a wind turbine and method of connecting parts of a wind turbine |
DK2767654T3 (en) * | 2013-02-19 | 2015-10-26 | Siemens Ag | Flangehjælpemiddel to connect tower sections, adjacent to one another |
-
2016
- 2016-12-15 JP JP2016242926A patent/JP6686862B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018096147A (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10240692B2 (en) | Fastening-type pipe supporting apparatus for curved pipe | |
KR100779163B1 (en) | Apparatus for decreasing a piping vibration | |
US8807307B2 (en) | High-performance shear friction damper | |
JP5908688B2 (en) | Exposed-type column base structure of steel column | |
US20140331568A1 (en) | Bolt connection assembly for a wind turbine lattice tower structure | |
JP6686862B2 (en) | Vibration control device for tower structure and flange structure joined by flange | |
KR20180070999A (en) | Anti-bucking bending type steel damper | |
JP6406168B2 (en) | Flange joint reinforcement jig | |
JP2016519234A (en) | Assembly including tower and monopile | |
JP2021011921A (en) | Fixing structure of seismic isolator | |
KR101487134B1 (en) | Cantilever Type Vibration Control Device Using Bearings | |
KR101352599B1 (en) | A wind power generator | |
CN102392498A (en) | Four-concave edge porous metal damper | |
JP5968688B2 (en) | Seismic reduction structure | |
JP5522971B2 (en) | Rubber washer, and support and structure using the rubber washer | |
CN204201291U (en) | A kind of lifting device of Absorbable rod thermal expansion | |
KR101341847B1 (en) | Seismic reinforce device structure for bridge and construction method | |
JP6246547B2 (en) | Anti-seismic stopper structure, gap management spacer, and vibration isolator | |
JP2019077990A (en) | Damper for tower structure with flange joint and tower structure | |
CN115522654B (en) | Composite energy dissipation connecting structure for bottom of swinging wall | |
KR101828089B1 (en) | vibration isolation device for wind tower and installing method thereof | |
JP6907097B2 (en) | Support structure of columnar structure | |
KR101226006B1 (en) | Support structural body of pipe | |
CN203797162U (en) | Small-gap adjustable pipeline support device | |
JP6311653B2 (en) | Flange joint reinforcement jig |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6686862 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |