JP6685837B2 - Method for producing solid electrolyte particle membrane - Google Patents
Method for producing solid electrolyte particle membrane Download PDFInfo
- Publication number
- JP6685837B2 JP6685837B2 JP2016107539A JP2016107539A JP6685837B2 JP 6685837 B2 JP6685837 B2 JP 6685837B2 JP 2016107539 A JP2016107539 A JP 2016107539A JP 2016107539 A JP2016107539 A JP 2016107539A JP 6685837 B2 JP6685837 B2 JP 6685837B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- solid electrolyte
- resin
- membrane
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Description
本発明は、固体電解質粒子膜の製造方法に関する。 The present invention relates to a method for producing a solid electrolyte particle membrane.
リチウムイオン伝導性を有する固体電解質は、リチウムイオン全固体電池およびリチウム空気電池の固体電解質として用いることが期待される有用な化合物である。 A solid electrolyte having lithium ion conductivity is a useful compound that is expected to be used as a solid electrolyte for all-ion lithium-ion batteries and lithium-air batteries.
特に、従来のリチウムイオン電池における電解液の代わりに固体電解質をリチウムイオン電池へ用いる場合、正極材、電解質および負極材がすべて固体であるリチウムイオン全固体電池を作成することができる。リチウムイオン全固体電池は、可燃性の電解液を使用していないため安全性が飛躍的に向上した技術として提案されている。 In particular, when a solid electrolyte is used for a lithium ion battery instead of the electrolytic solution in a conventional lithium ion battery, a lithium ion all-solid battery in which the positive electrode material, the electrolyte and the negative electrode material are all solid can be prepared. The lithium-ion all-solid-state battery has been proposed as a technology with dramatically improved safety because it does not use a flammable electrolyte.
リチウムイオン全固体電池に用いる固体電解質としては、例えば、高いリチウムイオン伝導性を有する硫化物系材料が知られている。しかしながら、硫化物系材料は化学的安定性に乏しく、大気に暴露すると硫化水素が発生したり、硫化物系固体電解質と正極材とを直接接触させた場合、その境界面に、リチウムの存在しない厚さ数ナノメートルの「欠乏層」が出現し、出力特性が著しく低下したりするなどの課題がある。 As a solid electrolyte used for a lithium ion all-solid-state battery, for example, a sulfide-based material having high lithium ion conductivity is known. However, sulfide-based materials have poor chemical stability, and when exposed to the atmosphere, hydrogen sulfide is generated, and when the sulfide-based solid electrolyte and the positive electrode material are directly contacted with each other, lithium does not exist at the boundary surface. There is a problem that a "deficient layer" having a thickness of several nanometers appears and output characteristics are significantly deteriorated.
上記課題に対して、高いリチウムイオン伝導性を有し、化学的に安定なガーネット型酸化物、NASICON型の酸化物など、金属酸化物系の材料を固体電解質として用いる試みがなされている。しかしながら、酸化物系材料は柔軟性に乏しく加工が難しいため、硫化物系固体電解質のように加圧操作により粒界の抵抗を減少させてイオン伝導性を高めることは困難である。さらに、酸化物系材料は脆性材料であるため加工性に劣り、電池として組み込んだ場合、短絡を生じやすく、固体電解質層を薄くすることが難しいため、全固体電池として活物質の充てん量を増やし電池としての電気容量を増やすことが困難であった。 In order to solve the above problems, attempts have been made to use a metal oxide material such as a garnet-type oxide or a NASICON-type oxide, which has high lithium ion conductivity and is chemically stable, as a solid electrolyte. However, since an oxide-based material has poor flexibility and is difficult to process, it is difficult to reduce the resistance of the grain boundary and increase the ionic conductivity by applying a pressure like a sulfide-based solid electrolyte. Furthermore, since oxide-based materials are brittle materials, they are inferior in workability, and when incorporated into batteries, short-circuiting is likely to occur and it is difficult to thin the solid electrolyte layer. It was difficult to increase the electric capacity of the battery.
上記のような固体電解質の課題を解決するために、固体電解質を粒子状として柔軟性を有する化合物と組み合わせる技術の開示がある。特許文献1は、同一平面上に固体電解質粒子を一層に配列し、樹脂溶液を塗布し成膜することで柔軟性を有する固体電解質膜を得る技術を記載している。特許文献2は、接着性を有する剥離フィルム上に粒子を散布し樹脂を塗工しフィルムを剥離することで柔軟性を有する固体電解質膜を得る技術を記載している。 In order to solve the above problems of the solid electrolyte, there is disclosed a technique of combining the solid electrolyte with a compound having a particle shape and flexibility. Patent Document 1 describes a technique of obtaining a flexible solid electrolyte membrane by arranging solid electrolyte particles in one layer on the same plane, applying a resin solution and forming a film. Patent Document 2 describes a technique of obtaining a flexible solid electrolyte membrane by dispersing particles on an adhesive release film, coating a resin, and peeling the film.
しかしながら、特許文献1及び2に記載された方法は、いずれも膜の両面の間のリチウムイオン伝導性を確保するために固体電解質粒子の表面を両面に露出させる必要があり、例えば、研磨により物理的に樹脂を除去して固体電解質粒子の表面を露出させる方法、化学的なエッチングにより樹脂を除去する方法、イオンによるエッチングにより樹脂を除去する方法などの煩雑な過程を経る必要があった。したがって、いずれの方法も操作がきわめて複雑であったり、粒子が膜から脱落する場合あるなどの問題があり、固体電解質粒子が膜の両面に露出した柔軟性を有する固体電解質膜を簡便に製造する方法が望まれていた。 However, in the methods described in Patent Documents 1 and 2, it is necessary to expose the surfaces of the solid electrolyte particles to both surfaces in order to secure lithium ion conductivity between both surfaces of the membrane, and for example, physical treatment by polishing is required. It was necessary to go through complicated processes such as a method of removing the resin to expose the surface of the solid electrolyte particles, a method of removing the resin by chemical etching, and a method of removing the resin by etching with ions. Therefore, any of the methods has problems such as extremely complicated operations and particles falling off from the membrane, and the solid electrolyte membrane having flexibility in which solid electrolyte particles are exposed on both sides of the membrane is easily produced. A method was desired.
本発明はこのような従来の実情に鑑みて提案されたものであり、本発明は、膜の両面に固体電解質粒子の一部が露出した膜の簡便な製造方法を提供することを目的とする。 The present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a simple method for producing a membrane in which a part of the solid electrolyte particles is exposed on both sides of the membrane. .
本発明者らは、上記課題を解決すべく鋭意研究し、実験を重ねた結果、樹脂粒子と固体電解質粒子とを同一面に一層に配列し、樹脂の融点以上に加熱して、膜の両面に固体電解質粒子の一部が露出した膜を簡便に得る製造方法を見出し、本発明を成すに至った。すなわち、本発明は以下のとおりである。 The present inventors have diligently studied to solve the above problems, and as a result of repeated experiments, the resin particles and the solid electrolyte particles are arranged in a single layer on the same surface and heated to a temperature equal to or higher than the melting point of the resin so that both surfaces of the film are The present invention has been accomplished by finding a manufacturing method for easily obtaining a film in which a part of the solid electrolyte particles is exposed. That is, the present invention is as follows.
〔1〕
樹脂粒子と固体電解質粒子とを同一面に一層に配列し、上記樹脂の融点以上に加熱して、上記固体電解質粒子の一部を膜の両面に露出させることを含む、膜の製造方法。
〔2〕
上記樹脂粒子の粒子径と上記固体電解質粒子の粒子径との比が0.3≦(樹脂粒子の粒子径/固体電解質粒子の粒子径)≦3.0である、項目1に記載の膜の製造方法。
〔3〕
上記樹脂の分子量が10万以上である、項目1に記載の膜の製造方法。
[1]
A method for producing a membrane, comprising arranging resin particles and solid electrolyte particles in a single layer on the same surface and heating the resin particles to a temperature equal to or higher than the melting point of the resin to expose a part of the solid electrolyte particles on both surfaces of the membrane.
[2]
The membrane according to item 1, wherein the ratio of the particle size of the resin particles to the particle size of the solid electrolyte particles is 0.3 ≦ (particle size of resin particles / particle size of solid electrolyte particles) ≦ 3.0. Production method.
[3]
Item 2. The method for producing a film according to Item 1, wherein the resin has a molecular weight of 100,000 or more.
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。尚、本明細書において「〜」を用いて記載される範囲は、その前後に記載される数値を含むものである。 Hereinafter, modes for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments and can be variously modified and implemented within the scope of the gist thereof. In addition, the range described by using "to" in the present specification includes the numerical values described before and after the range.
《固体電解質粒子膜の製造方法》
本実施形態の固体電解質粒子膜の製造方法は、樹脂粒子と固体電解質粒子とを同一面に一層に配列し、上記樹脂の融点以上に加熱して、上記固体電解質粒子の一部を膜の両面に露出させることを含む。
<< Method for producing solid electrolyte particle membrane >>
The method for producing a solid electrolyte particle membrane of the present embodiment, the resin particles and the solid electrolyte particles are arranged in a single layer on the same surface, heated above the melting point of the resin, a portion of the solid electrolyte particles on both sides of the membrane. Including exposure to.
図1は、本実施形態における膜の製造方法によって得られる膜の一例を概略的に示す断面図である。図1において、固体電解質粒子は同一面に一層に配列し、膜の両面に固体電解質粒子の一部が露出している。図1の膜100は、固体電解質粒子110と樹脂120とから構成され、この固体電解質粒子が同一面に一層に配列し、その一部が膜の両面に露出して、膜の両面に連通している。
FIG. 1 is a cross-sectional view schematically showing an example of a film obtained by the method for manufacturing a film according to this embodiment. In FIG. 1, the solid electrolyte particles are arranged in a single layer on the same surface, and a part of the solid electrolyte particles is exposed on both surfaces of the membrane. The
本実施形態の膜の製造方法では、固体電解質粒子と樹脂粒子とを同一平面に一層に配列させることにより、図1に模式的に示すような膜を簡便に製造することができる。 In the method for producing a membrane of the present embodiment, the membrane as schematically shown in FIG. 1 can be easily produced by arranging the solid electrolyte particles and the resin particles in one layer on the same plane.
〈固体電解質粒子〉
本実施形態において、固体電解質粒子は粒子状の固体電解質であればいずれの固体電解質も用いることができる。固体電解質としては、例えば硫化物系固体電解質及び酸化物系固体電解質が挙げられ、好ましくは酸化物系固体電解質である。酸化物系固体電解質は、粒子が十分な硬度を有し、電池に固体電解質膜として組み込んだときに短絡が生じにくいため好ましい。酸化物系固体電解質としては、例えばγ−LiPO4型酸化物、逆蛍石型酸化物、NASICON型酸化物、ペロブスカイト型酸化物、及びガーネット型酸化物が挙げられる。NASICON型酸化物としては、例えばLi1+xMxTi2−x(PO4)3(ただしMはAlおよび希土類から選ばれた少なくとも1種の元素、xは、0.1〜1.9を示す。)、ペロブスカイト型酸化物としては、例えばLa2/3−xLi3xTiO3、ガーネット型酸化物としては、例えばLi7La3Zr2O12が好ましい。イオン伝導性を高める目的、化学的な安定性を高める目的、及び加工性を高める観点から、上記基本結晶構造に対して元素を置換及び/又はドープした結晶性酸化物系固体電解質粒子を用いることもできる。好ましくは、NASICON型酸化物としてはLi1.3Al0.3Ti1.7(PO4)3、ガーネット型酸化物としてはLi7La3Zr2O12、元素置換体Li6.25Al0.25La3Zr2O12、Li7La3Zr2−xNbxO12(0<X<0.95)、及びLi7La3Zr2−xTaxO12(0<X<0.95)が挙げられる。
<Solid electrolyte particles>
In the present embodiment, any solid electrolyte can be used as the solid electrolyte particles as long as it is a particulate solid electrolyte. Examples of the solid electrolyte include sulfide-based solid electrolytes and oxide-based solid electrolytes, and oxide-based solid electrolytes are preferable. The oxide-based solid electrolyte is preferable because the particles have sufficient hardness and a short circuit is less likely to occur when incorporated into a battery as a solid electrolyte membrane. Examples of the oxide solid electrolyte include γ-LiPO 4 type oxide, inverted fluorite type oxide, NASICON type oxide, perovskite type oxide, and garnet type oxide. Examples of the NASICON-type oxide include Li 1 + x M x Ti 2-x (PO 4 ) 3 (where M is at least one element selected from Al and rare earths, and x is 0.1 to 1.9). ), As a perovskite type oxide, for example, La 2 / 3-x Li 3x TiO 3 , and as a garnet type oxide, for example, Li 7 La 3 Zr 2 O 12 is preferable. Use of crystalline oxide solid electrolyte particles obtained by substituting and / or doping an element with respect to the above-mentioned basic crystal structure from the viewpoints of enhancing ionic conductivity, chemical stability, and processability. You can also Preferably, the NASICON-type oxide is Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , the garnet-type oxide is Li 7 La 3 Zr 2 O 12 , and the element substitution body Li 6.25 Al. 0.25 La 3 Zr 2 O 12, Li 7 La 3 Zr 2-x Nb x O 12 (0 <X <0.95), and Li 7 La 3 Zr 2-x Ta x O 12 (0 <X < 0.95).
固体電解質粒子の形状は限定されず、例えば、樹脂粒子と混ぜたときに均質性が得られる観点から球形に近い形状であることが好ましい。固体電解質粒子の粒子径は、組み合わせる樹脂粒子の粒子径によって好ましい範囲は異なるが、例えば5μm〜100μm、好ましくは20〜75μmである。固体電解質粒子は精密に分級することが好ましく、分級精度を高めるため固体電解質粒子をあらかじめ乾燥操作等により水分を除去し、静電気による固体電解質粒子の凝集を抑えるため除電器等を用いて静電気を除去し、ふるい振動、風力分級機等を用いた分級方法等により分級することが好ましい。 The shape of the solid electrolyte particles is not limited, and for example, a shape close to a sphere is preferable from the viewpoint of obtaining homogeneity when mixed with the resin particles. The particle size of the solid electrolyte particles is, for example, 5 μm to 100 μm, and preferably 20 to 75 μm, although the preferable range varies depending on the particle size of the resin particles to be combined. It is preferable to accurately classify the solid electrolyte particles.To improve the classification accuracy, the solid electrolyte particles are preliminarily dried to remove water, and static electricity is removed by using a static eliminator to prevent the solid electrolyte particles from aggregating due to static electricity. However, it is preferable to perform classification by a sieving vibration, a classification method using an air classifier or the like.
〈樹脂粒子〉
樹脂粒子は固体電解質粒子と同一面に一層に配列し、樹脂の融点以上に加熱することで膜を形成することができればいずれの樹脂も用いることができる。樹脂としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリアミド、及びポリアミドイミド等が挙げられる。成膜性、電気化学的な安定性から、好ましくはポリオレフィン系樹脂、更に好ましくはポリエチレン、及びポリプロピレンである。膜のリチウムイオン伝導性を高める目的で、リチウムイオン伝導性を有する樹脂を用いることも好ましい。リチウム塩を含む、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、及びポリアクリロニトリル等の樹脂粒子を用いることもまた好ましい。リチウム塩としては、例えばLiBr、LiCl、LiI、LiSCN、LiBF4、LiAsF6、LiClO4、CH3COOLi、CF3COOLi、LiCF3SO3、LiPF6、LiN(CF3SO2)2、及びLiC(CF3SO2)3が挙げられる。
<Resin particles>
Any resin may be used as long as the resin particles are arranged in a single layer on the same surface as the solid electrolyte particles and a film can be formed by heating the resin particles at a temperature higher than the melting point of the resin. Examples of the resin include polyolefin resins represented by polyethylene and polypropylene, polyester resins represented by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, polyacrylonitrile, polyamide, and polyamideimide. From the viewpoint of film-forming property and electrochemical stability, polyolefin resin is preferable, and polyethylene and polypropylene are more preferable. It is also preferable to use a resin having lithium ion conductivity for the purpose of increasing the lithium ion conductivity of the film. It is also preferable to use resin particles such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylonitrile containing a lithium salt. Examples of the lithium salt include LiBr, LiCl, LiI, LiSCN, LiBF 4 , LiAsF 6 , LiClO 4 , CH 3 COOLi, CF 3 COOLi, LiCF 3 SO 3 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , and LiC. (CF 3 SO 2) 3 and the like.
樹脂の分子量は限定されず、例えば粘度平均分子量で1万〜500万であってよい。粘度平均分子量1万〜500万のポリオレフィン樹脂粒子、例えばポリエチレン樹脂粒子を用いることが好ましい。固体電解質粒子の表面が膜の両面に十分露出する程度に樹脂の流動性を保つ観点から、粘度平均分子量1万以上であることが好ましく、樹脂粒子同士、及び樹脂粒子と固体電解質粒子との十分な固着を得る観点から、粘度平均分子量500万以下であることが好ましい。粘度平均分子量10万〜300万のポリオレフィン樹脂粒子、例えばポリエチレン樹脂粒子を用いることがさらに好ましい。 The molecular weight of the resin is not limited and may be, for example, a viscosity average molecular weight of 10,000 to 5,000,000. It is preferable to use polyolefin resin particles having a viscosity average molecular weight of 10,000 to 5,000,000, for example, polyethylene resin particles. From the viewpoint of maintaining the fluidity of the resin to such an extent that the surface of the solid electrolyte particles is sufficiently exposed on both sides of the membrane, it is preferable that the viscosity average molecular weight is 10,000 or more, and the resin particles themselves, and the resin particles and the solid electrolyte particles are sufficient. From the viewpoint of obtaining good adhesion, the viscosity average molecular weight is preferably 5,000,000 or less. It is more preferable to use polyolefin resin particles having a viscosity average molecular weight of 100,000 to 3,000,000, for example polyethylene resin particles.
樹脂粒子の形状は特に限定されず、固体電解質粒子と混ぜたときに均質性が得られる観点から、好ましくは球形に近い形状、より好ましくは球形、ブドウ状の粒子を用いることができる。樹脂粒子の粒子径は、組み合わせる固体電解質粒子の粒子径により好ましい範囲は異なるが、例えば5μm〜100μm、好ましくは20〜75μmである。樹脂粒子は精密に分級することが好ましく、分級精度を高めるため樹脂粒子をあらかじめ乾燥操作等により水分を除去し、静電気による樹脂粒子の凝集を抑えるため除電器等を用いて静電気を除去し、ふるい振動、風力分級機等を用いた分級方法等により分級することが好ましい。 The shape of the resin particles is not particularly limited, and from the viewpoint of obtaining homogeneity when mixed with the solid electrolyte particles, preferably a shape close to a sphere, more preferably a spherical or grape-like particle can be used. Although the preferable range of the particle size of the resin particles varies depending on the particle size of the solid electrolyte particles to be combined, it is, for example, 5 μm to 100 μm, preferably 20 to 75 μm. It is preferable to classify the resin particles precisely. To improve the classification accuracy, the resin particles are preliminarily dried to remove water, and static electricity is removed using a static eliminator to prevent the resin particles from aggregating due to static electricity. It is preferable to perform classification by a classification method using vibration, a wind force classifier or the like.
〈配列〉
本実施形態の膜の製造方法は、樹脂粒子と固体電解質粒子とを同一面に一層に配列することを含む。配列する前に、樹脂の粒子と固体電解質とを均質に混合することが好ましい。樹脂粒子と固体電解質粒子とを均質に混合させるには、一般的な粒子混合方法を用いることができ、例えば、容器回転式混合機、機械撹拌式混合機等を用いることができる。粒子の割れなどによる粒子径分布の変化を避ける観点から、粒子に過剰な力が加わらない方法によって混合することが好ましい。樹脂粒子の静電気による凝集による不均質化を避ける観点から、静電気除去装置等を用いて帯電を防ぐことも好ましい。
<Array>
The method for producing the membrane of the present embodiment includes arranging the resin particles and the solid electrolyte particles in a single layer on the same surface. It is preferable that the resin particles and the solid electrolyte are homogeneously mixed before the arrangement. In order to uniformly mix the resin particles and the solid electrolyte particles, a general particle mixing method can be used, and for example, a container rotary mixer, a mechanical stirring mixer, or the like can be used. From the viewpoint of avoiding a change in particle size distribution due to cracking of particles, it is preferable to mix the particles by a method in which excessive force is not applied to the particles. From the viewpoint of avoiding non-uniformity due to agglomeration of resin particles due to static electricity, it is also preferable to prevent electrification by using a static electricity removing device or the like.
固体電解質粒子と樹脂粒子との比率は限定されず、例えば、体積比で0.2≦(樹脂粒子の体積/固体電解質粒子の体積)≦10であることが好ましい。0.2≦(樹脂粒子の体積/固体電解質粒子の体積)であればより強度の高い膜が得られ、(樹脂粒子の体積/固体電解質粒子の体積)≦10であれば、固体電解質粒子の単位面積当たり密度が高まり、より高いイオン伝導性が得られるため好ましい。さらに好ましくは、0.8≦(樹脂粒子の体積/固体電解質粒子の体積)≦3である。固体電解質粒子と樹脂粒子とが一体化した膜を全固体電池に組み込んで用いる場合、デンドライト析出等が問題になる場合は、樹脂比率を高めて膜の強度を高めることが好ましく、固体電解質膜としての高いイオン伝導性が必要な場合には樹脂比率を低くして固体電解質粒子の比率を高めることでリチウムイオン伝導性を高めることが好ましい。 The ratio between the solid electrolyte particles and the resin particles is not limited, and for example, it is preferable that the volume ratio is 0.2 ≦ (volume of resin particles / volume of solid electrolyte particles) ≦ 10. If 0.2 ≦ (volume of resin particles / volume of solid electrolyte particles), a stronger film is obtained, and if (volume of resin particles / volume of solid electrolyte particles) ≦ 10, solid electrolyte particles It is preferable because the density per unit area is increased and higher ionic conductivity is obtained. More preferably, 0.8 ≦ (volume of resin particles / volume of solid electrolyte particles) ≦ 3. When a membrane in which solid electrolyte particles and resin particles are integrated and used in an all-solid-state battery is used, if dendrite precipitation or the like becomes a problem, it is preferable to increase the resin ratio to increase the strength of the membrane, and as a solid electrolyte membrane. When high ion conductivity is required, it is preferable to increase the lithium ion conductivity by lowering the resin ratio and increasing the ratio of solid electrolyte particles.
固体電解質粒子径と樹脂粒子径との組み合わせは、樹脂粒子と固体電解質粒子とを同一面に一層に配列し、樹脂の融点以上に加熱することで膜が形成できればいずれの粒子径の組み合わせも用いることができる。好ましくは、0.3≦(樹脂の粒子径/固体電解質の粒子径)≦3.0である。0.3≦(樹脂の粒子径/固体電解質の粒子径)であれば、固体電解質粒子の表面を膜の両面に露出させやすくなり、(樹脂の粒子径/固体電解質の粒子径)≦3.0であれば、より高い強度の膜を得ることができるため好ましい。更に好ましくは、0.5≦(樹脂の粒子径/固体電解質の粒子径)≦2.0である。なお、本願明細書において、粒子径は平均粒子径、具体的には数平均粒子径を用いる。数平均粒子径は、湿式の粒子径測定装置(例えば、レーザー回折/散乱式粒度分布計、動的光散乱式粒度分布計)、乾式のレーザー回折式粒度測定装置などにより測定することができる。 The combination of the solid electrolyte particle size and the resin particle size is such that the resin particles and the solid electrolyte particles are arranged in a single layer on the same surface, and if the film can be formed by heating above the melting point of the resin, any particle size combination is used. be able to. Preferably, 0.3 ≦ (particle size of resin / particle size of solid electrolyte) ≦ 3.0. If 0.3 ≦ (particle size of resin / particle size of solid electrolyte), it becomes easy to expose the surface of the solid electrolyte particles on both surfaces of the membrane, and (particle size of resin / particle size of solid electrolyte) ≦ 3. A value of 0 is preferable because a film having higher strength can be obtained. More preferably, 0.5 ≦ (particle size of resin / particle size of solid electrolyte) ≦ 2.0. In the specification of the present application, the average particle diameter, specifically, the number average particle diameter is used as the particle diameter. The number average particle size can be measured by a wet type particle size measuring device (for example, a laser diffraction / scattering type particle size distribution meter, a dynamic light scattering type particle size distribution meter), a dry type laser diffraction type particle size measuring device, or the like.
樹脂粒子と固体電解質粒子とを一層に配列させる方法としては、例えば、粘着層の上に粒子を載せ、粘着層に固定されていない粒子を除去することにより、粒子が一層に配列した構造とすることができる。粘着層としては、例えば粘着テープ、除去が容易なグリース等を基材上に塗布したものなどを用いることができる。粘着層に固定されていない粒子を除去する方法としては、粒子が載った粘着層ごと反転させることにより、固定されていない粒子を落下させて除去する方法、気体の噴射等により、粘着層に固定されていない粒子を吹き飛ばして除去する方法などを用いることができる。上記の操作は、静電気による粒子の凝集によって固体電解質粒子および樹脂粒子が不均質に分散することを避けるため、除電器等を用いて静電気を除去して操作することが好ましい。 As a method for arranging the resin particles and the solid electrolyte particles in one layer, for example, by placing the particles on the adhesive layer and removing the particles not fixed to the adhesive layer, a structure in which the particles are arranged in one layer is obtained. be able to. As the pressure-sensitive adhesive layer, for example, a pressure-sensitive adhesive tape or a base material coated with grease that can be easily removed can be used. As a method of removing particles that are not fixed to the adhesive layer, by inversion with the adhesive layer on which the particles are placed, a method of dropping and removing the particles that are not fixed, and fixing to the adhesive layer by jetting gas, etc. It is possible to use a method in which unremoved particles are blown off and removed. The above operation is preferably performed by removing static electricity by using a static eliminator or the like in order to prevent the solid electrolyte particles and the resin particles from being non-uniformly dispersed by the aggregation of particles due to static electricity.
〈加熱〉
同一面上に一層に配列させた固体電解質および樹脂粒子を、樹脂の融点以上に加熱することで一体化し、膜を形成することができる。
<heating>
The solid electrolyte and the resin particles arranged in a single layer on the same surface can be integrated by heating above the melting point of the resin to form a film.
加熱温度は樹脂の融点以上であればよく、好ましくは樹脂の融点〜(樹脂の融点より100℃高い温度)である。融点以上の温度であれば、樹脂の適正な粘性が得られ、樹脂粒子同士及び樹脂粒子と固体電解質粒子とが十分に固着して十分な膜の強度が得られ、樹脂の融点より100℃高い温度以下であれば、樹脂が変性しにくく、固体電解質粒子の表面を膜の両面に十分露出させる程度の樹脂の流動性を保つことができるため好ましい。より好ましくは樹脂の融点〜(樹脂の融点より80℃高い温度)、さらに好ましくは樹脂の融点〜(樹脂の融点より60℃高い温度)である。
The heating temperature may be equal to or higher than the melting point of the resin, and is preferably from the melting point of the resin to (a
加熱時間は限定されず、好ましくは10秒〜1時間である。10秒以上であれば、樹脂粒子同士及び樹脂粒子と固体電解質粒子とが充分に固着して、十分な膜の強度を得ることができ、1時間以下であれば、樹脂が変性しにくく、固体電解質粒子の表面が膜の両面に十分に露出する程度に樹脂の流動性を保ち、充分な膜の強度を保つことができる。より好ましくは、加熱時間は1分〜30分である。加熱は、樹脂粒子及び固体電解質粒子の固定に用いた粘着層、除去可能なグリースが加熱を行う温度で劣化、変形、又は変性しないのであれば、粘着層、グリースの載った基材ごと加熱することが好ましい。基材ごと加熱した際に粘着層、グリースに劣化、変形、変性などの問題が生じる場合は粘着層、グリースの存在しない面からの輻射熱等で加熱し、粘着層、グリースの劣化、変形、変性を抑えることが好ましい。 The heating time is not limited and is preferably 10 seconds to 1 hour. If the time is 10 seconds or more, the resin particles and the resin particles and the solid electrolyte particles are sufficiently fixed to each other, and sufficient membrane strength can be obtained. The fluidity of the resin can be maintained to the extent that the surfaces of the electrolyte particles are sufficiently exposed on both sides of the membrane, and sufficient strength of the membrane can be maintained. More preferably, the heating time is 1 minute to 30 minutes. For heating, the adhesive layer used to fix the resin particles and the solid electrolyte particles, and if the removable grease does not deteriorate, deform, or denature at the heating temperature, the adhesive layer and the base material on which the grease is placed are heated. It is preferable. If problems such as deterioration, deformation, and modification of the adhesive layer and grease occur when heating the base material together, heat the adhesive layer and grease with radiant heat from the surface where no grease is present to deteriorate, deform, or modify the adhesive layer and grease. Is preferably suppressed.
〈その他〉
同一面上に一層に配列させた固体電解質および樹脂粒子を加熱した後、一体化した固体電解質粒子および樹脂から構成される膜を基材から分離し、膜の残留粘着層、残留グリース等を有機溶剤等で除去して用いることができる。
<Other>
After heating the solid electrolyte and resin particles arranged in a single layer on the same surface, the membrane composed of the integrated solid electrolyte particles and resin is separated from the base material, and the residual adhesive layer, residual grease, etc. of the membrane are removed. It can be used by removing it with a solvent or the like.
本実施形態の膜の製造方法により製造される膜は、固体電解質粒子の一部が膜の両面に露出している。固体電解質粒子の一部が膜の両面に露出していることの確認は光学顕微鏡、レーザー式顕微鏡、走査型電子顕微鏡(Scanning Electron Microscope、SEM)等を用いて観察することにより確認することができる。 In the membrane produced by the method for producing a membrane of the present embodiment, some solid electrolyte particles are exposed on both sides of the membrane. Confirmation that part of the solid electrolyte particles is exposed on both sides of the membrane can be confirmed by observing using an optical microscope, a laser microscope, a scanning electron microscope (Scanning Electron Microscope, SEM), or the like. .
以上、本発明を実施するための形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。 The embodiments for carrying out the present invention have been described above, but the present invention is not limited to the above embodiments. The present invention can be variously modified without departing from the gist thereof.
以下、実施例および比較例により本発明の実施形態について説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[実施例1]
樹脂粒子としてポリエチレン粒子を用い、固体電解質粒子としてNASICON型の固体電解質であるLATP(Li1.3Al0.3Ti1.7(PO4)3)粒子を用いて、以下の手順により、固体電解質粒子が同一面に一層に配列し、固体電解質粒子の一部が膜の両面に露出した膜を形成した。
[Example 1]
Using polyethylene particles as the resin particles and LATP (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ) particles that are NASICON-type solid electrolytes as the solid electrolyte particles, the solid particles were solidified by the following procedure. The electrolyte particles were arranged in one layer on the same surface, and a part of the solid electrolyte particles was exposed on both surfaces of the film to form a film.
<樹脂粒子および固体電解質粒子の分級>
ポリエチレン粒子として三井化学(株)製MIPELON KM−220(粒子形状:球形、粘度分子量:271万)を110℃で2時間乾燥させた。次いで、島津製、除電器(STABLO−EX)により乾燥樹脂粒子の静電気除去操作を継続しながら20μm目開きおよび53μm目開きのステンレス製ふるいを用いて粒子を分級し、20μm〜53μmのポリエチレン粒子を得た。日機装(株)社製マイクロトラック粒度分析計によりポリエチレン粒子の数平均粒子径を求めたところ38μmであり、TG−DTA測定を行いポリエチレン粒子の融点を測定したところ136℃であった。
<Classification of resin particles and solid electrolyte particles>
As polyethylene particles, MIPELON KM-220 (particle shape: spherical, viscosity molecular weight: 2710,000) manufactured by Mitsui Chemicals, Inc. was dried at 110 ° C. for 2 hours. Then, the particles were classified using a stainless steel sieve having openings of 20 μm and openings of 53 μm while continuing the static electricity removing operation of the dry resin particles by a static eliminator (STABLO-EX) manufactured by Shimadzu to obtain polyethylene particles of 20 μm to 53 μm. Obtained. The number average particle diameter of the polyethylene particles was 38 μm as determined by Microtrac Particle Size Analyzer manufactured by Nikkiso Co., Ltd., and the melting point of the polyethylene particles was 136 ° C. when TG-DTA measurement was performed.
固体電解質粒子として豊島製作所製LATPプレートを、めのう乳鉢、乳棒を用いて荒く粉砕し、次いで自動擂潰機により100rpmの条件で10分間粉砕した。得られた粉体を150℃で2時間乾燥し、20μm目開きおよび53μm目開きのステンレス製ふるいを用いて粒子の分級を行い、島津製、除電器(STABLO−EX)により静電気除去操作を継続しながら20μm〜53μmのLATP粒子を得た。日機装(株)社製マイクロトラック粒度分析計によりLATP粒子の数平均粒子径を求めたところ30μmであった。 As a solid electrolyte particle, a Toshima Seisakusho LATP plate was roughly crushed using an agate mortar and pestle, and then crushed by an automatic crusher at 100 rpm for 10 minutes. The obtained powder is dried at 150 ° C. for 2 hours, particles are classified using a stainless steel sieve with openings of 20 μm and openings of 53 μm, and static electricity removal operation is continued by a static eliminator (STABLO-EX) manufactured by Shimadzu. Meanwhile, LATP particles of 20 μm to 53 μm were obtained. The number average particle diameter of LATP particles was 30 μm as determined by a Microtrac particle size analyzer manufactured by Nikkiso Co., Ltd.
<樹脂粒子および固体電解質粒子による成膜>
分級した樹脂粒子1.2gと分級したLATP粒子3.8gを計り取り、容器回転式混合機を用いて十分混合させ、均質な粒子混合体を得た。ポリエチレンの数平均粒子径は38μmであり、LATP粒子の数平均粒子径は30μmであるため、樹脂の粒子径/固体電解質の粒子径の比率は1.3であった。ポリエチレン粒子の比重は0.94g/cm3であり、LATP粒子の比重は2.94g/cm3であるため、ポリエチレン粒子の体積/LATP粒子の体積の比率は0.99であった。
<Film formation using resin particles and solid electrolyte particles>
1.2 g of the classified resin particles and 3.8 g of the classified LATP particles were weighed and sufficiently mixed using a container rotary mixer to obtain a homogeneous particle mixture. Since the number average particle diameter of polyethylene was 38 μm and the number average particle diameter of LATP particles was 30 μm, the ratio of the resin particle diameter / the solid electrolyte particle diameter was 1.3. Since the specific gravity of polyethylene particles was 0.94 g / cm 3 and the specific gravity of LATP particles was 2.94 g / cm 3 , the ratio of volume of polyethylene particles / volume of LATP particles was 0.99.
寸法4cm×4cm、厚み0.2mmのアルミニウム製板の中心部2cm×2cmの領域に、ダウコーニング社製耐熱グリースを薄く塗布し、上記粒子混合体をグリース上に載せ、基材ごと反転させることで、基材上に固定化されていない余剰粒子を除去した。基材上に更に粒子混合体を載せ、反転させることで余剰粒子を除去する操作を数回繰り返し、ポリエチレン粒子とLATP粒子とが一層に配列した状態とした。なお、余剰粒子の除去操作は島津製、除電器(STABLO−EX)により静電気除去操作を継続しながら実施した。 Apply a thin coat of Dow Corning heat-resistant grease to a central area of 2 cm x 2 cm of an aluminum plate having a size of 4 cm x 4 cm and a thickness of 0.2 mm, place the particle mixture on the grease, and invert the base material together. Then, the excess particles not fixed on the substrate were removed. The operation of removing the surplus particles by further placing the particle mixture on the base material and inverting the mixture was repeated several times, so that the polyethylene particles and the LATP particles were arranged in a single layer. The operation of removing the excess particles was performed by a static eliminator (STABLO-EX) manufactured by Shimadzu while continuing the operation of removing static electricity.
粒子の載った基材ごと190℃に加熱した平板ブロックヒーター上に載せ30分間加熱を継続した。その後、15分間冷却し、樹脂と固体電解質粒子とが一体化した膜を基材から分離した。その後、膜に残留したグリースをヘキサンで除去し、樹脂と固体電解質粒子とが一体化した膜を得た。SEMを用いて×1000の倍率で膜の両面を観察したところ、粒子表面の一部が両面に露出していることを確認した。 The base material on which the particles were placed was placed on a flat plate block heater heated to 190 ° C., and heating was continued for 30 minutes. Then, it was cooled for 15 minutes, and the membrane in which the resin and the solid electrolyte particles were integrated was separated from the substrate. Then, the grease remaining on the membrane was removed with hexane to obtain a membrane in which the resin and the solid electrolyte particles were integrated. When both surfaces of the film were observed using a SEM at a magnification of × 1000, it was confirmed that part of the particle surface was exposed on both surfaces.
SEM観察条件
装置:KEYENCE社製 VE−9800
加速電圧:1.2KV
スポット径:6(装置の設定値)
真空度:3Pa
検出器:二次電子検出器
SEM observation condition Device: VE-9800 manufactured by KEYENCE
Accelerating voltage: 1.2KV
Spot diameter: 6 (set value of the device)
Degree of vacuum: 3 Pa
Detector: Secondary electron detector
[実施例2]
LATP粒子を4.2g用い、ポリエチレン粒子を0.7g用い、樹脂粒子体積/固体電解質粒子体積比率が0.52であること以外は実施例1と同じ操作を行い、固体電解質粒子と樹脂とが一体化した膜を得た。SEM観察の結果、固体電解質粒子の一部が膜の両面に露出した膜であった。
[Example 2]
The same operation as in Example 1 was carried out except that 4.2 g of LATP particles were used, 0.7 g of polyethylene particles were used, and the resin particle volume / solid electrolyte particle volume ratio was 0.52. An integrated film was obtained. As a result of SEM observation, the solid electrolyte particles were partially exposed on both sides of the membrane.
[実施例3]
ポリエチレン粒子を53μm目開きのふるいおよび100μm目開きのふるいを用いて分級し、粒子径53〜100μmのポリエチレン粒子を得た。ポリエチレン粒子の数平均粒子径を測定したところ75μmであり、ポリエチレン粒子の粒子径/固体電解質粒子の粒子径の比率は0.7であった。このポリエチレン粒子を樹脂粒子として用いること以外は実施例1と同じ方法を用いて固体電解質と樹脂とが一体化した膜を得た。SEM観察の結果、固体電解質粒子の一部が膜の両面に露出した膜であった。
[Example 3]
The polyethylene particles were classified using a sieve having a mesh opening of 53 μm and a sieve having a mesh opening of 100 μm to obtain polyethylene particles having a particle diameter of 53 to 100 μm. The number average particle diameter of the polyethylene particles was measured and found to be 75 μm, and the ratio of the particle diameter of the polyethylene particles / the particle diameter of the solid electrolyte particles was 0.7. A membrane in which the solid electrolyte and the resin were integrated was obtained by the same method as in Example 1 except that the polyethylene particles were used as the resin particles. As a result of SEM observation, the solid electrolyte particles were partially exposed on both sides of the membrane.
[実施例4]
豊島製作所製固体電解質LLZO(Li7La3Zr2O12)板状ターゲット材を粉砕して、粒子径20〜50μmLLZO粒子を得ること以外は実施例1と同様の方法で操作を行い、固体電解質粒子と樹脂が一体化した膜を得た。この時、LLZO粒子の数平均粒子径は31μmであり、樹脂の粒子径/固体電解質の粒子径の比率は1.27であった。LLZO粒子の比重は4.85g/cm3であったため、ポリエチレン粒子の体積/LATP粒子の体積の比率は1.63であった。得られた膜のSEM観察の結果、固体電解質粒子の一部が膜の両面に露出した膜であった。
[Example 4]
By grinding Toshima Seisakusho solid electrolyte LLZO (Li 7 La 3 Zr 2 O 12) plate-like target material, except that to obtain a particle size 20~50μmLLZO particles do in the same manner as in Example 1, the solid electrolyte A film in which the particles and the resin are integrated was obtained. At this time, the number average particle size of the LLZO particles was 31 μm, and the ratio of the particle size of the resin / the particle size of the solid electrolyte was 1.27. Since the specific gravity of the LLZO particles was 4.85 g / cm 3 , the ratio of the volume of polyethylene particles / the volume of LATP particles was 1.63. As a result of SEM observation of the obtained membrane, the solid electrolyte particles were partially exposed on both sides of the membrane.
[実施例5]
実施例1と同じLATP粉砕粒子を20μm目開きのふるいで分級し、粒子径20μm以下のLATP粒子を得た。LATP粒子の数平均粒子径を測定したところ11μmであった。実施例1と同じポリエチレン粒子を53μm目開きのふるいおよび100μm目開きのふるいを用いて分級し、粒子径53〜100μmのポリエチレン粒子を得た。ポリエチレン粒子の数平均粒径を測定したところ74μmであった。ポリエチレン粒子の粒子径/固体電解質粒子の粒子径の比率は7.5であった。上記、ポリエチレン粒子及び固体電解質粒子を用いること以外は実施例1と同じ操作を行い、固体電解質粒子と樹脂が一体化した膜を得たが、膜の強度が低く亀裂が生じ、分離が困難であった。
[Example 5]
The same LATP ground particles as in Example 1 were classified with a sieve having an opening of 20 μm to obtain LATP particles having a particle diameter of 20 μm or less. When the number average particle diameter of the LATP particles was measured, it was 11 μm. The same polyethylene particles as in Example 1 were classified using a sieve having a mesh opening of 53 μm and a sieve having a mesh opening of 100 μm to obtain polyethylene particles having a particle diameter of 53 to 100 μm. The number average particle diameter of the polyethylene particles was measured and found to be 74 μm. The ratio of the particle diameter of polyethylene particles / the particle diameter of solid electrolyte particles was 7.5. The same operation as in Example 1 was carried out except that the above-mentioned polyethylene particles and solid electrolyte particles were used to obtain a membrane in which the solid electrolyte particles and the resin were integrated, but the membrane had low strength and cracked, and separation was difficult. there were.
[実施例6]
樹脂粒子として、粘度分子量8.5万の旭化成(株)製クレオレックス K4125Pを用いること以外は実施例1記載と同様の方法を用いて固体電解質粒子と樹脂が一体化した膜を得たが、分離の操作の際に膜の強度が低く膜に多数の亀裂が生じ膜状に単離することは困難であった。
[Example 6]
A film in which the solid electrolyte particles and the resin were integrated was obtained by using the same method as described in Example 1 except that CREOREX K4125P manufactured by Asahi Kasei Co., Ltd. having a viscosity molecular weight of 85,000 was used as the resin particles. During the separation operation, the strength of the film was low and many cracks were generated in the film, making it difficult to isolate the film.
[実施例7]
LATP粒子を4.7g用いて、ポリエチレン粒子を0.3g用いて、樹脂粒子の体積/固体電解質粒子の体積の比率が0.20としたこと以外は実施例1と同じ方法を用いて固体電解質粒子と樹脂とが一体化した膜を得たが、分離の際に粒子が先に脱落したため、膜状に単離することは困難であった。
[Example 7]
Using the same method as in Example 1, except that 4.7 g of LATP particles and 0.3 g of polyethylene particles were used and the ratio of the volume of resin particles / the volume of solid electrolyte particles was 0.20. Although a film in which the particles and the resin were integrated was obtained, it was difficult to isolate the particles in the form of a film because the particles fell off during the separation.
[比較例1]
実施例1において樹脂粒子および固体電解質粒子による成膜の際に粒子混合体を基材に載せ、反転させる操作を行わず粒子を一層に配列させないこと以外は同じ操作を行い固体電解質粒子と樹脂とが一体化した膜を得ることを試みた。得られた複合物をSEMにより観察したところ、粒子を同一平面上に一層に配列しなかったため粒子が複数層以上で一体化した複合体となり、一つの固体電解質粒子が膜の両面に露出していなかった。
[Comparative Example 1]
In Example 1, the same operation was performed except that the particle mixture was placed on the substrate during the film formation with the resin particles and the solid electrolyte particles, and the operation of reversing was not performed and the particles were not arranged in one layer. Tried to obtain an integrated membrane. When the obtained composite was observed by SEM, the particles were not arranged in one layer on the same plane, so that the particles became a composite in which a plurality of layers were integrated, and one solid electrolyte particle was exposed on both sides of the membrane. There wasn't.
実施例と比較例の膜の形成条件と結果を表1に示す。表1から明らかなように、樹脂粒子の粒子径と固体電解質粒子の粒子径の差異が大きい実施例5では、固体電解質と樹脂が一体化した膜を分離することは困難であった。これに対して樹脂の粒子径と固体電解質の粒子径の比率が好ましい範囲である実施例1〜4では、固体電解質粒子と樹脂が一体化した膜がより容易に得られた。樹脂の粘度分子量が低い粒子を用いた実施例6では、固体電解質と樹脂が一体化した膜を分離することが困難であったのに対し、好ましい範囲の粘度分子量を用いた実施例1〜4では、固体電解質と粒子が一体化した膜がより容易に得られた。また、実施例7では、固体電解質と樹脂が一体化した膜を分離することは困難であったのに対して、樹脂の体積と固体電解質の体積の比率が好ましい範囲である実施例1〜4では、固体電解質粒子と樹脂が一体化した膜がより容易に得られた。 Table 1 shows the film forming conditions and the results of Examples and Comparative Examples. As is clear from Table 1, in Example 5 in which the particle size of the resin particles and the particle size of the solid electrolyte particles were large, it was difficult to separate the membrane in which the solid electrolyte and the resin were integrated. On the other hand, in Examples 1 to 4 in which the ratio of the particle size of the resin to the particle size of the solid electrolyte is in the preferable range, the membrane in which the solid electrolyte particles and the resin were integrated was more easily obtained. In Example 6 in which particles of resin having a low viscosity molecular weight were used, it was difficult to separate the membrane in which the solid electrolyte and the resin were integrated, whereas in Examples 1 to 4 in which a viscosity molecular weight in a preferable range was used. In, it was easier to obtain a membrane in which the solid electrolyte and particles were integrated. In addition, in Example 7, it was difficult to separate the membrane in which the solid electrolyte and the resin were integrated, whereas in Examples 1 to 4 in which the ratio of the volume of the resin to the volume of the solid electrolyte was in a preferable range. In, it was easier to obtain a membrane in which the solid electrolyte particles and the resin were integrated.
本発明の方法により、膜の両面に固体電解質粒子の一部が露出した膜を簡便に得られるようになる。膜の両面に固体電解質粒子の一部が露出した膜は、リチウムイオン全固体電池の電解質膜、リチウムイオンを選択的に透過することからリチウムイオン分離膜、など広範囲に適用可能である。 The method of the present invention makes it possible to easily obtain a membrane in which a part of the solid electrolyte particles is exposed on both sides of the membrane. The membrane in which a part of the solid electrolyte particles is exposed on both sides of the membrane can be widely applied to an electrolyte membrane of a lithium ion all-solid battery, a lithium ion separation membrane because it selectively permeates lithium ions, and the like.
100 固体電解質膜
110 固体電解質粒子
120 樹脂
100
Claims (3)
前記樹脂の融点以上に加熱することと、
前記樹脂の融点以上に加熱した後に前記基材を除去して、前記固体電解質粒子の一部を膜の両面に露出させることを含む、膜の製造方法。 By removing the pressure-sensitive adhesive layer disposed on the substrate and the resin particles carrying the mixture of solid electrolyte particles, the said resin particles which are not fixed to the adhesive layer and the solid electrolyte particles, the said resin particles and it is arranged more on the same surface of the solid electrolyte particles,
And heating above the melting point of the resin,
A method for producing a membrane , comprising removing the base material after heating to above the melting point of the resin to expose a part of the solid electrolyte particles on both sides of the membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016107539A JP6685837B2 (en) | 2016-05-30 | 2016-05-30 | Method for producing solid electrolyte particle membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016107539A JP6685837B2 (en) | 2016-05-30 | 2016-05-30 | Method for producing solid electrolyte particle membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017216066A JP2017216066A (en) | 2017-12-07 |
JP6685837B2 true JP6685837B2 (en) | 2020-04-22 |
Family
ID=60577180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016107539A Active JP6685837B2 (en) | 2016-05-30 | 2016-05-30 | Method for producing solid electrolyte particle membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6685837B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112542598A (en) * | 2020-12-24 | 2021-03-23 | 郑州佛光发电设备有限公司 | System and method for heating metal air battery electrolyte by using self-oxygen production mode |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017128719A1 (en) * | 2017-12-04 | 2019-06-06 | Schott Ag | A lithium ion conductive composite material comprising at least a polymer and lithium ion conductive particles, and methods of producing a lithium ion conductor from the composite material |
JP7324517B2 (en) * | 2018-09-28 | 2023-08-10 | 日榮新化株式会社 | Adhesive film, composite membrane, all-solid-state battery, and method for producing composite membrane |
JP7217615B2 (en) * | 2018-11-12 | 2023-02-03 | Jx金属株式会社 | Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery |
KR102608245B1 (en) | 2019-01-21 | 2023-11-29 | 삼성전자주식회사 | Elctrically conductive hybrid membrane, making method thereof, secondary battery and electronic device comprising the same |
JP7243421B2 (en) * | 2019-05-07 | 2023-03-22 | トヨタ自動車株式会社 | METHOD FOR MANUFACTURING SOLID ELECTROLYTE LAYER |
CN112467091A (en) * | 2019-09-06 | 2021-03-09 | 青岛九环新越新能源科技股份有限公司 | Inorganic oxide particle-based electrode and solid-state battery |
JP7542221B2 (en) | 2021-01-19 | 2024-08-30 | パナソニックIpマネジメント株式会社 | Ion-permeable membrane and method for producing same |
-
2016
- 2016-05-30 JP JP2016107539A patent/JP6685837B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112542598A (en) * | 2020-12-24 | 2021-03-23 | 郑州佛光发电设备有限公司 | System and method for heating metal air battery electrolyte by using self-oxygen production mode |
CN112542598B (en) * | 2020-12-24 | 2021-11-12 | 郑州佛光发电设备有限公司 | System and method for heating metal air battery electrolyte by using self-oxygen production mode |
Also Published As
Publication number | Publication date |
---|---|
JP2017216066A (en) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6685837B2 (en) | Method for producing solid electrolyte particle membrane | |
CN108701814B (en) | Plate-like lithium composite oxide | |
Li et al. | Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant | |
TWI523303B (en) | Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material | |
JP5459198B2 (en) | Sulfide solid electrolyte material, all-solid battery, method for producing sulfide solid electrolyte material, method for producing solid electrolyte layer | |
CN104412421B (en) | The manufacture method of coating active material | |
EP1732152B1 (en) | Negative electrode member for secondary lithium battery and process for producing the same | |
CN108604665A (en) | Solid state battery, partition board, electrode and manufacturing method | |
US20140087265A1 (en) | Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery | |
JP6894243B2 (en) | Negative electrode layer and lithium all-solid-state battery | |
US11108081B2 (en) | Method for producing sulfide solid electrolyte particles | |
KR20200096736A (en) | Anode layer and all solid state battery | |
Choudhury et al. | Effect of fibrous separators on the performance of lithium–sulfur batteries | |
EP3979360A1 (en) | All-solid-state battery and method for producing same | |
JP2021131979A (en) | Negative electrode for lithium ion battery | |
Muchakayala et al. | Modified ceramic coated polyethylene separator–A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability | |
JP2015185237A (en) | Positive electrode for all-solid type lithium secondary batteries, and all-solid type lithium secondary battery arranged by use thereof | |
JP6674072B1 (en) | Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material | |
US12009477B2 (en) | All-solid-state battery | |
JP6797241B2 (en) | Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member and method for manufacturing all-solid-state battery | |
KR102617672B1 (en) | Lithium Electrode Coated a Protective film and Lithium Secondary Battery Using The Same | |
JP6127555B2 (en) | Composite active material and method for producing the same | |
US12080853B2 (en) | Battery and production method for battery | |
Neubüser et al. | (Re-) crystallization mechanism of highly oriented Si-microwire arrays by TEM analysis | |
KR20190142260A (en) | An active material powder for use in a negative electrode of a battery and a battery comprising such an active material powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200302 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6685837 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |