JP6685565B2 - Gas cells, atomic clocks and atomic sensors - Google Patents

Gas cells, atomic clocks and atomic sensors Download PDF

Info

Publication number
JP6685565B2
JP6685565B2 JP2018543834A JP2018543834A JP6685565B2 JP 6685565 B2 JP6685565 B2 JP 6685565B2 JP 2018543834 A JP2018543834 A JP 2018543834A JP 2018543834 A JP2018543834 A JP 2018543834A JP 6685565 B2 JP6685565 B2 JP 6685565B2
Authority
JP
Japan
Prior art keywords
single crystal
sapphire substrate
gas cell
crystal sapphire
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018543834A
Other languages
Japanese (ja)
Other versions
JPWO2018066377A1 (en
Inventor
真也 柳町
真也 柳町
健 池上
健 池上
高木 秀樹
秀樹 高木
昭文 高見澤
昭文 高見澤
優一 倉島
優一 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2018066377A1 publication Critical patent/JPWO2018066377A1/en
Application granted granted Critical
Publication of JP6685565B2 publication Critical patent/JP6685565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/06Gaseous, i.e. beam masers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Description

本発明は原子時計および原子センサ等に利用するガスセルに関する。   The present invention relates to a gas cell used for an atomic clock, an atomic sensor and the like.

セシウム(Cs)やルビジウム(Rb)原子などのアルカリ原子を周波数基準に用いた超小型原子時計(チップスケール原子時計、Chip Scale Atomic Clock=CSAC)の開発が活発に進められ、製品化も行われている(図2)。
原子時計では、周波数基準原子をガラスのセル(図1)に封入し、これに光やマイクロ波などを照射し、マイクロ波2重共鳴法(図3(a))や、コヒーレントポピュレーショントラッピング共鳴(CPT共鳴)法(図3(b))といった分光手段を用いて基準信号を取得する。
Development of ultra-small atomic clocks (Chip Scale Atomic Clock = CSAC) using alkali atoms such as cesium (Cs) and rubidium (Rb) atoms as frequency reference is actively promoted and commercialized. (Fig. 2).
In an atomic clock, a frequency reference atom is enclosed in a glass cell (Fig. 1), and this is irradiated with light or microwaves, and the microwave double resonance method (Fig. 3 (a)) or coherent population trapping resonance is used. A reference signal is acquired using a spectroscopic means such as the (CPT resonance) method (FIG. 3B).

このとき、原子時計として必要な性能を確保できるだけの質の良い信号を取得するために、セルの中にNeやArなどの緩衝気体(バッファガス)と呼ばれる不活性ガスを封入する必要がある。
不活性ガスが封入されたガスセルを低価格で大量生産するために、ガスセル作製にシリコンウェハーが用いられる。
At this time, in order to obtain a high-quality signal that can ensure the performance required as an atomic clock, it is necessary to fill an inert gas called a buffer gas such as Ne or Ar in the cell.
Silicon wafers are used in the production of gas cells in order to mass produce gas cells filled with an inert gas at a low cost.

ガスセルの作製は、壁材となるシリコンウェハーにたくさんの穴がエッチング等の加工法により開けられ、その両面に光を通過させる窓材としてガラスが接合され、またバッファガスおよび周波数基準原子が封入され、最後に個別のガスセルにダイシングされる。
壁材となる穴の空いたシリコンウェハーと窓材のガラスを接合する方法としては陽極接合が用いられるが、陽極接合ではガラス中に含まれるNaイオンが重要な役割を果たし、このため窓材に使われるガラスとしては、シリコンと熱膨張率が近くNaを含有するパイレックス(登録商標)などのホウケイ酸ガラスが用いられている。
To make a gas cell, many holes are made in a silicon wafer that is a wall material by a processing method such as etching, glass is bonded on both sides as a window material that allows light to pass through, and buffer gas and frequency reference atoms are enclosed. Finally, it is diced into individual gas cells.
Anodic bonding is used to bond the silicon wafer with holes, which is the wall material, to the glass of the window material, but Na ions contained in the glass play an important role in the anodic bonding, and as a result, As the glass used, borosilicate glass such as Pyrex (registered trademark) having a thermal expansion coefficient close to that of silicon and containing Na is used.

一方、バッファガスは原子時計を動作させるために必要な信号を取得するために不可欠であるが、その一方で、周波数基準原子であるRbやCsなどのアルカリ原子と衝突することで「バッファガスシフト」と呼ばれる周波数シフトが発生する。
バッファガスシフトが長期間にわたりに一定であれば問題とならないが、パイレックス(登録商標)などのホウケイ酸ガラスは大気中のヘリウム(He)ガス、およびバッファガスに用いられるNeなどを透過するため、大気中のHeガスのガスセルへの侵入やバッファガスのガスセル抜けにより「バッファガスシフト」は時間的に変化し、これが原子時計の発振周波数の時間変化(ドリフト)を発生させるため問題となっている。
On the other hand, the buffer gas is indispensable for acquiring the signal necessary for operating the atomic clock, but on the other hand, it collides with alkali atoms such as Rb and Cs, which are frequency reference atoms, to cause “buffer gas shift”. A frequency shift called is generated.
It does not matter if the buffer gas shift is constant over a long period of time, but borosilicate glass such as Pyrex (registered trademark) permeates helium (He) gas in the atmosphere and Ne used as a buffer gas. The "buffer gas shift" changes with time due to the intrusion of He gas into the gas cell and the escape of the buffer gas from the gas cell, which causes a time change (drift) of the oscillation frequency of the atomic clock, which is a problem.

また、窓材に使用されるSiO2を含むガラスは周波数基準原子Csにより還元され、その結果Cs原子がガラスに吸着され窓材に浸透拡散していくため、ガスセル内の基準信号を取得するCs原子の消失や経年変化も問題となっている。Further, the glass containing SiO 2 used for the window material is reduced by the frequency reference atom Cs, and as a result, the Cs atom is adsorbed by the glass and permeates and diffuses into the window material, so that the reference signal in the gas cell is acquired by Cs. Loss of atoms and aging are also problems.

特開2001−285064号公報JP 2001-285064 A 特開2015−119443号公報JP, 2005-119443, A 特開2016−12855号公報JP, 2016-12855, A

池上健、”CPTを利用した小型原子時計開発の世界的動向”, 日本時計学会誌マイクロメカトロニクス, p77-91. Vol. 52, No. 199(2008)Ken Ikegami, “Global trends in the development of small atomic clocks using CPT”, Journal of Japan Society of Watchmaking Micromechatronics, p77-91. Vol. 52, No. 199 (2008) Olga Kozlova, Stephane Guerandel, and Emeric de Clercq, “Temperature and Pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar”, Phys. Rev. A 83, 062714(2011)Olga Kozlova, Stephane Guerandel, and Emeric de Clercq, “Temperature and Pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar”, Phys. Rev. A 83, 062714 (2011) Francis J. Norton, “Permeation of Gases through Solids”, J. Appl. Phys. 28, 34(1957)Francis J. Norton, “Permeation of Gases through Solids”, J. Appl. Phys. 28, 34 (1957) 柳町真也、”平成27年度 NEDO報告資料抜粋”Shinya Yanagimachi, “Excerpts from 2015 NEDO report materials”

大気中のHeやバッファガスNeなどを透過しない透光性材料(窓材)として、水晶やサファイアなどの単結晶、また、アルミナセラミックスなどのセラミックスを用いることが考えられる。
図10はヘリウムに対する素材によるガス透過率の傾向を示したものである。
しかし、センサネットなど分散配置される複数システムの時刻同期を行う場合、時刻精度として10年間で誤差0.01秒以下が要求される。
ガスセル材料として、Heに対して10-18m2/s/Paの透過率を持つホウケイ酸ガラスを用いると、バッファガスシフトにより10年間で10〜100秒程度の誤差を生じてしまう。
このため、ガスセル構成材料にはガス透過率が10-22m2/s/Pa以下であることが求められる。
As a translucent material (window material) that does not transmit He and buffer gas Ne in the atmosphere, it is conceivable to use single crystals such as quartz and sapphire, or ceramics such as alumina ceramics.
FIG. 10 shows the tendency of gas permeability depending on the material with respect to helium.
However, when synchronizing the time of multiple distributed systems such as sensor nets, the error of 0.01 seconds or less is required as the time accuracy in 10 years.
If borosilicate glass with a transmittance of 10 -18 m 2 / s / Pa for He is used as the gas cell material, an error of about 10 to 100 seconds will occur in 10 years due to the buffer gas shift.
Therefore, the gas cell constituting material is required to have gas permeability of not more than 10- 22 m 2 / s / Pa .

これらのうち、サファイア単結晶やアルミナセラミックスはさらに周波数基準原子RbやCsなどのアルカリ原子との反応性が低く窓材内への浸透拡散による消失も小さい物質である。   Of these, sapphire single crystal and alumina ceramics are substances that have low reactivity with alkali atoms such as frequency reference atoms Rb and Cs and are not easily lost by permeation and diffusion into the window material.

窓材に好適なサファイア単結晶は職人芸によるオプティカルコンタクトと呼ばれる手法では大量生産のためのダイシングに耐えるほどの接合強度は確保できない。   A sapphire single crystal suitable for a window material cannot secure a bonding strength enough to withstand dicing for mass production by a technique called optical contact by craftsmanship.

また、1000℃以上の高温の熱処理を行えば、サファイア単結晶の接合強度は向上するが、内部にCsやRbを封入しなくはならないガスセルの作製には利用できない。
さらに、ガスセル作製にはNe、窒素やArなどのバッファガスを封入する必要があるが、窓材にサファイア単結晶を使用して高純度のバッファガスを封入し得るガスセル作製方法は知られていない。
Further, if the heat treatment at a high temperature of 1000 ° C. or higher improves the bonding strength of the sapphire single crystal, it cannot be used for producing a gas cell in which Cs or Rb must be enclosed.
Furthermore, it is necessary to enclose a buffer gas such as Ne, nitrogen or Ar in the gas cell production, but there is no known method for producing a high purity buffer gas by using a sapphire single crystal as a window material. .

本発明のガスセルは窓材のサファイア単結晶をダイシングに耐える強度で壁材のシリコンウェハーまたはサファイア単結晶と接合して作製される。
より詳しくは次の手段を提供できる。
The gas cell of the present invention is manufactured by bonding a sapphire single crystal of a window material to a silicon wafer or a sapphire single crystal of a wall material with a strength that can withstand dicing.
More specifically, the following means can be provided.

(1)
周波数基準に用いられるアルカリ原子とバッファガスを封入したガスセルであって、
前記ガスセルは所定のヘリウムガス透過率(10-22m2/s/Pa)以下を満たす単一材料または該単一材料とシリコンからなることを特徴とするガスセル。
(2)
前記単一材料はアルミナセラミクス、または単結晶サファイア、または単結晶水晶であることを特徴とする(1)に記載のガスセル。
(1)
A gas cell filled with an alkali atom and a buffer gas used for frequency reference,
A gas cell, wherein the gas cell comprises a single material satisfying a predetermined helium gas permeability (10 −22 m 2 / s / Pa) or less, or a single material and silicon.
(2)
The gas cell according to (1), wherein the single material is alumina ceramics, single crystal sapphire, or single crystal quartz.

(3)
前記ガスセルは、
一方の面から他方の面へと貫通する開口部を含む単結晶サファイア基板と、
前記開口部を介して対向し、前記基板の両面と接合する2つの単結晶サファイア基板と、
からなることを特徴とする(2)に記載のガスセル。
(4)
前記ガスセルは、さらに一方の面から他方の面へと貫通する第2の開口部および2つの開口部間を連結する連結部を備える、
ことを特徴とする(3)に記載のガスセル。
(5)
前記開口部を含む単結晶サファイア基板に代えてシリコン基板である、
ことを特徴とする(4)に記載のガスセル。
(3)
The gas cell is
A single crystal sapphire substrate including an opening penetrating from one surface to the other surface,
Two single crystal sapphire substrates facing each other through the opening and bonded to both surfaces of the substrate;
The gas cell according to (2), characterized in that
(4)
The gas cell further includes a second opening penetrating from one surface to the other surface and a connecting portion connecting the two openings.
The gas cell according to (3), characterized in that
(5)
A silicon substrate in place of the single crystal sapphire substrate including the opening,
The gas cell according to (4), characterized in that

(6)
(1)乃至(5)のいずれかに記載のガスセルを備え、
光マイクロ波2重共鳴法またはコヒーレントポピュレーショントラッピング共鳴法により前記アルカリ原子の固有周波数を検出することを特徴とする原子時計。
(6)
The gas cell according to any one of (1) to (5) is provided,
An atomic clock characterized in that the natural frequency of the alkali atom is detected by an optical microwave double resonance method or a coherent population trapping resonance method.

(7)
(3)に記載するガスセルを製造する方法であって、
第1の単結晶サファイア基板に前記開口部を穿ち、
第1の単結晶サファイア基板の底面に第2の単結晶サファイア基板を、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、そのまま常温で接合し、
その下部を前記第2の単結晶サファイア基板で封止された前記開口部にセシウム液滴を滴下またはセシウム発生能力を有するディスペンサーを保持し、
次に真空チェンバーにおいて第1の単結晶サファイア基板の上面に第3の単結晶サファイア基板を、真空中で両基板の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーをネオンとアルゴンの混合ガス雰囲気にして、常温で接合して前記開口部の上部を封止したことを特徴とするガスセルを製造する方法。
(7)
A method for producing a gas cell according to (3), comprising:
Punching the opening in the first single crystal sapphire substrate;
The bottom surface of the first single crystal sapphire substrate is irradiated with the second single crystal sapphire substrate, and the bonding surfaces of both substrates are irradiated with a high-speed atom beam of argon in a vacuum, and the bonding is performed at room temperature as it is.
A dispenser having the ability to drop cesium droplets or generate cesium in the opening whose lower part is sealed with the second single crystal sapphire substrate is held,
Then, in the vacuum chamber, the third single crystal sapphire substrate was irradiated on the upper surface of the first single crystal sapphire substrate, and the bonding surface of both substrates was irradiated with a fast atom beam of argon in vacuum, and then the vacuum chamber was irradiated with neon and argon. A method of manufacturing a gas cell, which comprises forming a mixed gas atmosphere, bonding at room temperature, and sealing the upper portion of the opening.

(8)
(4)に記載するガスセルを製造する方法であって、
第1の単結晶サファイア基板に第1の前記開口部を穿ち、
さらに一方の面から他方の面へと貫通する第2の開口部を穿ち、および2つの開口部間を連結する連結部となる溝を加工し、
第1の単結晶サファイア基板の底面に第2の単結晶サファイア基板を、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、そのまま常温で接合し、
その下部を前記第2の単結晶サファイア基板で封止された前記第1の開口部にセシウム液滴を滴下またはセシウム発生能力を有するディスペンサーを保持し、
次に真空チェンバーにおいて第1の単結晶サファイア基板の上面に第3の単結晶サファイア基板を、真空中で両基板の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーをネオンとアルゴンの混合ガス雰囲気にして、常温で接合して前記開口部の上部を封止したことを特徴とするガスセルを製造する方法。
(9)
前記開口部を含む単結晶サファイア基板に代えてシリコン基板である、
ことを特徴とする(7)または(8)のいずれかに記載のガスセルを製造する方法。
(10)
(1)乃至(5)のいずれかに記載のガスセルを備えることを特徴とする原子センサ。
(8)
A method for producing the gas cell according to (4), comprising:
Drilling the first opening in the first single crystal sapphire substrate;
Further, a second opening is formed which penetrates from one surface to the other surface, and a groove serving as a connecting portion that connects the two opening portions is processed,
The bottom surface of the first single crystal sapphire substrate is irradiated with the second single crystal sapphire substrate, and the bonding surfaces of both substrates are irradiated with a high-speed atom beam of argon in a vacuum, and the bonding is performed at room temperature as it is.
Holding a dispenser having the ability to drop cesium droplets or cesium droplets in the first opening whose lower part is sealed with the second single crystal sapphire substrate,
Then, in the vacuum chamber, the third single crystal sapphire substrate was irradiated on the upper surface of the first single crystal sapphire substrate, and the bonding surface of both substrates was irradiated with a fast atom beam of argon in vacuum, and then the vacuum chamber was irradiated with neon and argon. A method of manufacturing a gas cell, which comprises forming a mixed gas atmosphere, bonding at room temperature, and sealing the upper portion of the opening.
(9)
A silicon substrate in place of the single crystal sapphire substrate including the opening,
The method for producing the gas cell according to any one of (7) and (8), characterized in that
(10)
An atomic sensor comprising the gas cell according to any one of (1) to (5).

本発明で製作されるセルに適宜周波数基準原子およびバッファガスを封入することにより初めて周波数ドリフトがなく、周波数基準原子Csが消費されない理想的なガスセルを得ることができる。
凡そ10年その性能を維持しつつ連続して利用し得るサファイアガスセルの作製により周波数の長期安定度が向上し、時刻同期性能が長期にわたり維持され、長期的に安定した動作を約束した原子時計および原子センサの製作が可能となった。
An ideal gas cell in which there is no frequency drift and the frequency reference atoms Cs are not consumed can be obtained only by appropriately filling the frequency reference atoms and the buffer gas in the cell manufactured according to the present invention.
By making a sapphire gas cell that can be continuously used for approximately 10 years while maintaining its performance, the long-term stability of the frequency is improved, the time synchronization performance is maintained for a long time, and an atomic clock that promises stable operation in the long term and Atomic sensors can be manufactured.

(a)は単一素材から一体的に成形される熱捩じ切りタイプガスセル、(b)は窓材と壁材を接合してなる接合型ガスセルを表す図である。(a) is a view showing a thermal screwing type gas cell integrally molded from a single material, and (b) is a joint type gas cell formed by joining a window material and a wall material. 原子時計の基本構成を表した概略図である。It is a schematic diagram showing the basic composition of an atomic clock. 周波数基準原子の固有周波数を検出する、(a)光マイクロ波2重共鳴法におけるガスセル配置を表した図、(b)コヒーレントポピュレーショントラッピング共鳴法におけるガスセル配置を表した図である。It is a figure showing the gas cell arrangement in the optical microwave double resonance method which detects the natural frequency of a frequency reference atom, and the figure showing the gas cell arrangement in the (b) coherent population trapping resonance method. 実施例1におけるガスセル壁材の側面図と上面図である。3A and 3B are a side view and a top view of the gas cell wall material in the first embodiment. 実施例1のガスセルの作製工程概略である。3 is a schematic view of a manufacturing process of the gas cell of Example 1. 実施例3におけるガスセル壁材の側面図と上面図である。7A and 7B are a side view and a top view of a gas cell wall material in Example 3. FIG. 実施例3のガスセルの作製工程概略である。7 is a schematic view of a gas cell manufacturing process of Example 3. 実施例4におけるガスセル壁材の側面図と上面図である。9A and 9B are a side view and a top view of a gas cell wall material in Example 4. 実施例4のガスセルの作製工程概略である。6 is a schematic view of a gas cell manufacturing process of Example 4. ヘリウムに対する素材によるガス透過率の傾向を表す図である。It is a figure showing the tendency of the gas permeability by the material to helium.

まず図4に示すように、厚さ2mmの単結晶サファイア基板10に、直径2mmの2つの貫通孔11およびそれらを繋ぐ幅1mmで深さ0.2mmの溝12を加工した。   First, as shown in FIG. 4, a single crystal sapphire substrate 10 having a thickness of 2 mm was machined with two through holes 11 having a diameter of 2 mm and a groove 12 connecting them with a width of 1 mm and a depth of 0.2 mm.

加工後に、図5(a)に示すように、ウェハ表面を化学的機械研磨法により研磨し、加工時のバリなどを除去するとともに、二乗平均粗さ(Rq)が0.3nm以下の平滑な表面に仕上げた。   After processing, as shown in Fig. 5 (a), the wafer surface is polished by a chemical mechanical polishing method to remove burrs during processing, and a smooth surface with a root mean square roughness (Rq) of 0.3 nm or less. Finished.

図5(b)に示すように、このサファイア基板10と、厚さ0.4mmのサファイアウェハ20を接合した。
接合は、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、スパッタエッチングにより表面の清浄化および活性化を行い、そのまま常温で接合した(真空中での接合プロセスについては、先行文献:特許第2791429号、3774782号)。
As shown in FIG. 5B, the sapphire substrate 10 and the sapphire wafer 20 having a thickness of 0.4 mm were bonded.
Bonding is performed by irradiating the bonding surfaces of both substrates with a high-speed atom beam of argon in a vacuum, cleaning and activating the surface by sputter etching, and bonding at room temperature as it is (for the bonding process in a vacuum, (References: Patent Nos. 2791429 and 3774782).

次に図5(c)に示すように、基板10の一方の穴に、加熱によりセシウムを放出するセシウムディスペンサー40を入れ、これをサファイアウェハ30と接合することにより、2つの穴と溝部を封止する。   Next, as shown in FIG. 5 (c), a cesium dispenser 40 that releases cesium by heating is placed in one hole of the substrate 10 and bonded to the sapphire wafer 30 to seal the two holes and the groove. Stop.

接合においては、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーに不純物濃度1×10-6%以下の高純度のネオンとアルゴンの混合ガスを10kPa導入し、この混合ガス雰囲気にて常温で接合を行った。In bonding, after irradiating the bonding surfaces of both substrates with a high-velocity atomic beam of argon in a vacuum, a high-purity mixed gas of neon and argon with an impurity concentration of 1 × 10 -6 % or less was introduced into the vacuum chamber at 10 kPa. Bonding was performed at room temperature in this mixed gas atmosphere.

これにより、図5(d)に示すように、2つの穴と溝部をアルゴンとネオンの混合ガス雰囲気で封止した。
封止接合後、レーザー光50を照射してセシウムディスペンサーを加熱し、セシウム原子41を放出させる。
以上により、図5(e)に示すように、アルゴンとネオンの混合ガスおよびセシウム原子を接合封止した、ガスセルを作製した。
As a result, as shown in FIG. 5D, the two holes and the groove were sealed with a mixed gas atmosphere of argon and neon.
After the sealing and joining, the laser light 50 is irradiated to heat the cesium dispenser to emit the cesium atom 41.
As described above, as shown in FIG. 5 (e), a gas cell was produced in which a mixed gas of argon and neon and cesium atoms were jointly sealed.

比較例として、実施例1と同様の構成で、ガスセル封止のための二度目のサファイアウェハの接合を、不純物濃度5×10-4%のネオンとアルゴンの混合ガス10kPaの雰囲気中で行った。これらは通常超高純度ガスとされるものであるが、不純物ガス濃度が大きいため、ガスセルの封止およびそれに続くダイシングなどの工程で要求される接合強度は得られなかった。As a comparative example, with the same configuration as that of Example 1, the second joining of the sapphire wafer for gas cell sealing was performed in an atmosphere of a mixed gas of neon and argon having an impurity concentration of 5 × 10 −4 % and 10 kPa. . These are usually ultra-high purity gases, but because of the high impurity gas concentration, the bonding strength required in the steps such as gas cell sealing and subsequent dicing cannot be obtained.

壁材として厚さ2mmのSi基板に、直径2mmの2つの貫通孔およびそれらを繋ぐ幅0.1mmで深さ1mmの溝を、フォトリソグラフィーと深掘りエッチングにより加工した(図示せず)。   As a wall material, a Si substrate having a thickness of 2 mm was processed by photolithography and deep etching to form two through holes having a diameter of 2 mm and a groove connecting them with a width of 0.1 mm and a depth of 1 mm (not shown).

Si基板を使用することにより、貫通孔および溝を高精度に加工できるとともに、加工後の表面の研磨が不要となる。   By using the Si substrate, it is possible to process the through hole and the groove with high accuracy, and it becomes unnecessary to polish the surface after processing.

このように加工したSi基板を用いて、実施例1と同様にサファイアウェハとの接合、セシウムディスペンサー導入、アルゴンとネオンガス中でのサファイアウェハとの封止接合、レーザー加熱によるセシウム原子放出を行うことにより、ガスセルを作製した。   Using the Si substrate processed in this manner, bonding to a sapphire wafer, introduction of a cesium dispenser, sealing bonding of a sapphire wafer in argon and neon gas, and cesium atom emission by laser heating are performed as in Example 1. A gas cell was produced according to.

まず図6に示すように、壁材として厚さ1mmのサファイア基板15に、直径1mmの貫通孔16を加工した。
加工後に、図7(a)に示すように、ウェハ表面を化学的機械研磨法により研磨し、加工時のバリなどを除去するとともに、二乗平均粗さ(Rq)が0.3nm以下の平滑な表面に仕上げた。
First, as shown in FIG. 6, a through hole 16 having a diameter of 1 mm was formed in a sapphire substrate 15 having a thickness of 1 mm as a wall material.
After processing, as shown in Fig. 7 (a), the surface of the wafer is polished by chemical mechanical polishing to remove burrs during processing, and a smooth surface with a root mean square roughness (Rq) of 0.3 nm or less. Finished.

図7(b)に示すように、このサファイア基板15と、厚さ0.4mmのサファイアウェハ25を接合した。
接合は、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、スパッタエッチングにより表面の清浄化および活性化を行い、そのまま常温で接合した。
As shown in FIG. 7B, this sapphire substrate 15 and a sapphire wafer 25 having a thickness of 0.4 mm were bonded.
The joining was performed by irradiating the joining surfaces of both substrates with a high-velocity atom beam of argon in a vacuum, cleaning and activating the surfaces by sputter etching, and joining at room temperature.

次に、基板15の穴に窒素ガス雰囲気中にて直径約0.1mmのセシウム液滴45を滴下した。セシウムの融点は28.44℃であるので、常温からわずかの加熱を行うことにより液体となり、微少量の滴下が可能となる。
基板15の温度がセシウムの融点以下であれば、セシウム液滴は滴下後速やかに固化する。
Next, a cesium droplet 45 having a diameter of about 0.1 mm was dropped into the hole of the substrate 15 in a nitrogen gas atmosphere. Since the melting point of cesium is 28.44 ° C, it becomes a liquid by slightly heating it from room temperature, and it becomes possible to add a very small amount of it.
If the temperature of the substrate 15 is equal to or lower than the melting point of cesium, the cesium droplets solidify immediately after dropping.

これを大気にさらすことなく真空チャンバーに導入し、図7(c)に示すように、真空中にて基板15とサファイアウェハ35の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーに不純物ガス濃度が1×10-6%以下のネオンとアルゴンの混合ガスを導入し、この混合ガス雰囲気にて常温で接合を行った。This was introduced into a vacuum chamber without exposing it to the atmosphere, and as shown in FIG. 7 (c), the bonding surface between the substrate 15 and the sapphire wafer 35 was irradiated with a high-speed atom beam of argon in a vacuum, and then the vacuum chamber was placed in the vacuum chamber. A mixed gas of neon and argon having an impurity gas concentration of 1 × 10 −6 % or less was introduced, and bonding was performed at room temperature in this mixed gas atmosphere.

これにより、図7(d)に示すように、貫通孔16をアルゴンとネオンの混合ガス雰囲気で封止した。
封止接合後、セシウムの融点である28.44℃以上に加熱することにより、セシウムの一部が気化する。
As a result, as shown in FIG. 7D, the through hole 16 was sealed in a mixed gas atmosphere of argon and neon.
After the sealing and joining, the cesium is partly vaporized by heating to 28.44 ° C. or higher, which is the melting point of cesium.

以上により、アルゴンとネオンの混合ガスおよびセシウム原子を接合封止した、サファイア製ガスセルを作製した。   As described above, a sapphire gas cell in which the mixed gas of argon and neon and the cesium atom were jointly sealed was produced.

まず、図8に示すように、厚さ2mmの単結晶水晶基板17に、直径2mmの2つの貫通孔18およびそれらを繋ぐ幅1mmで深さ0.2mmの溝19を加工した。
加工後に、図9(a)に示すように、ウェハ表面を化学的機械研磨法により研磨し、加工時のバリなどを除去するとともに、二乗平均粗さ(Rq)が0.3nm以下の平滑な表面に仕上げた。
First, as shown in FIG. 8, two through holes 18 having a diameter of 2 mm and a groove 19 having a width of 1 mm and a depth of 0.2 mm connecting the two through holes 18 having a diameter of 2 mm were formed in a single crystal quartz substrate 17 having a thickness of 2 mm.
After processing, as shown in Fig. 9 (a), the wafer surface is polished by a chemical mechanical polishing method to remove burrs during processing, and a smooth surface with a root mean square roughness (Rq) of 0.3 nm or less. Finished.

図9(b)に示すように、この単結晶水晶基板17の両面と、厚さ0.4mmの単結晶水晶基板21の接合される面に、スパッタ成膜により厚さ20nmのジルコニア(ZrO2)膜60を成膜し、単結晶水晶基板17と単結晶水晶基板21を接合した。接合は、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、スパッタエッチングにより表面の清浄化および活性化を行い、そのまま常温で接合した。As shown in FIG. 9B, zirconia (ZrO 2 ) having a thickness of 20 nm is formed by sputter deposition on both surfaces of the single crystal quartz substrate 17 and the surface to be joined with the single crystal quartz substrate 21 having a thickness of 0.4 mm. The film 60 was formed, and the single crystal quartz substrate 17 and the single crystal quartz substrate 21 were bonded. The joining was performed by irradiating the joining surfaces of both substrates with a high-velocity atom beam of argon in a vacuum, cleaning and activating the surfaces by sputter etching, and joining at room temperature.

次に、図9(c)に示すように、基板17の一方の穴に、加熱によりセシウムを放出するセシウムディスペンサー40を入れ、図9(d)に示すように、これを同じくジルコニア膜60を成膜した単結晶水晶基板31と接合することにより、2つの穴と溝部を封止する。接合においては、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーにネオンとアルゴンの混合ガスを導入し、この混合ガス雰囲気にて常温で接合を行った。   Next, as shown in FIG. 9 (c), a cesium dispenser 40 that releases cesium by heating is placed in one hole of the substrate 17, and this is also coated with a zirconia film 60 as shown in FIG. 9 (d). The two holes and the groove are sealed by bonding with the formed single crystal quartz substrate 31. In the bonding, after irradiating the bonding surfaces of both substrates with a high-velocity atomic beam of argon in a vacuum, a mixed gas of neon and argon was introduced into the vacuum chamber, and bonding was performed at room temperature in this mixed gas atmosphere.

これにより、2つの穴と溝部をアルゴンとネオンの混合ガス雰囲気で封止した。
封止接合後、図9(e)に示すように、レーザー光50を照射してセシウムディスペンサーを加熱し、セシウム原子41を放出させる。以上により、アルゴンとネオンの混合ガスおよびセシウム原子を接合封止した、ガスセルを作製した(図9(f))。
Thereby, the two holes and the groove were sealed with a mixed gas atmosphere of argon and neon.
After the sealing and joining, as shown in FIG. 9E, laser light 50 is irradiated to heat the cesium dispenser to emit cesium atoms 41. As described above, a gas cell was produced in which a mixed gas of argon and neon and cesium atoms were jointly sealed (FIG. 9 (f)).

比較例として、接合される面にジルコニア膜60を形成せずに、実施例(追加)と同様に単結晶水晶を用いてガスセルの作製を行った。単結晶水晶基板間の接合強度が小さく、ダイシング工程で接合部が剥離したため、ガスセルを作製できなかった。   As a comparative example, without forming the zirconia film 60 on the surfaces to be bonded, a gas cell was manufactured using single crystal quartz in the same manner as in the example (additional). The gas cell could not be produced because the bonding strength between the single crystal quartz substrates was small and the bonded portion was separated during the dicing process.

以上の実施例において、接合前にはアルゴンガスの高速原子ビームを用いているが、これにかわりネオン、窒素、クリプトン、キセノンなどのガスを利用することが可能であり、またこれらのガスを用いたイオンビームやプラズマ照射によっても高速原子ビームと同等の効果を得ることが出来る。   In the above examples, a fast atom beam of argon gas was used before joining, but it is possible to use a gas such as neon, nitrogen, krypton, or xenon instead of this gas. The same effect as the fast atom beam can be obtained by the ion beam irradiation or plasma irradiation.

二度目の接合の際に真空チャンバー内に導入されるガスとしては、ネオンとアルゴンの混合ガスに限らず、ヘリウム、窒素、クリプトン、キセノンを含む不活性ガスの単体ガス、およびそれらの混合ガスを、利用することが出来る。   The gas introduced into the vacuum chamber at the time of the second bonding is not limited to the mixed gas of neon and argon, but a single gas of an inert gas containing helium, nitrogen, krypton, xenon, and a mixed gas thereof. , Can be used.

また、壁材料として単結晶サファイア、シリコン、単結晶水晶を用いたが、ヘリウムやネオンの透過性が小さく、表面を平滑に研磨可能な材料、例えば焼結アルミナセラミクスなどであれば、ガスセルの壁材として用いることができる。   Also, although single crystal sapphire, silicon, and single crystal quartz were used as the wall material, if the material has a low permeability to helium or neon and the surface can be polished smoothly, such as sintered alumina ceramics, the wall of the gas cell It can be used as a material.

同様に、窓材料としては単結晶サファイアに限らず、ヘリウムやネオンの透過性が小さく、表面を平滑に研磨可能で、光透過性が良好な材料、例えば透光性焼結アルミナセラミクスやスピネル、ガーネット単結晶および焼結体などであれば、ガスセルの窓材として用いることが出来る。   Similarly, the window material is not limited to single crystal sapphire, has a low permeability of helium and neon, the surface can be polished smoothly, and a material with good light transparency, such as translucent sintered alumina ceramics and spinel, Garnet single crystals and sintered bodies can be used as window materials for gas cells.

水晶の接合性を向上するため表面に形成する接合用中間膜60としては、ジルコニア(ZrO2)に限らず透明で化学的に安定な材料の膜、例えばTa2O5、TiO2、HfO2などを用いることが出来る。The bonding intermediate film 60 formed on the surface to improve the bondability of the crystal is not limited to zirconia (ZrO 2 ) but a film of a transparent and chemically stable material, for example, Ta 2 O 5 , TiO 2 , HfO 2 Etc. can be used.

本発明のガスセルは原子時計だけでなく、原子センサにも適用することができる。   The gas cell of the present invention can be applied to not only an atomic clock but also an atomic sensor.

10、15 単結晶サファイア基板
12、19 溝
11、16、18 貫通孔
17、21、31 単結晶水晶基板
20、25、30、35 サファイアウェハ
40 セシウムディスペンサー
41 セシウム原子
45 セシウム液滴
50 レーザー光
60 接合用中間膜
10, 15 Single crystal sapphire substrate 12, 19 Grooves 11, 16, 18 Through holes 17, 21, 31 Single crystal quartz substrate 20, 25, 30, 35 Sapphire wafer 40 Cesium dispenser 41 Cesium atom 45 Cesium droplet 50 Laser light 60 Bonding intermediate film

Claims (6)

周波数基準に用いられるアルカリ原子とバッファガスを封入したガスセルであって、
前記ガスセルは
一方の面から他方の面へと貫通する開口部を含む単結晶サファイア基板と、
前記開口部を介して対向し、前記基板の両面と接合する2つの単結晶サファイア基板と、
からなることを特徴とするガスセル。
A gas cell filled with an alkali atom and a buffer gas used for frequency reference,
The gas cell,
A single crystal sapphire substrate including an opening penetrating from one surface to the other surface,
Two single crystal sapphire substrates facing each other through the opening and bonded to both surfaces of the substrate;
Gas cell characterized by comprising the.
前記ガスセルは、さらに一方の面から他方の面へと貫通する第2の開口部および2つの開口部間を連結する連結部を備える、
ことを特徴とする請求項に記載のガスセル。
The gas cell further includes a second opening penetrating from one surface to the other surface and a connecting portion connecting the two openings.
The gas cell according to claim 1 , wherein:
請求項1又は2記載のガスセルを備え、
光マイクロ波2重共鳴法またはコヒーレントポピュレーショントラッピング共鳴法により前記アルカリ原子の固有周波数を検出することを特徴とする原子時計。
A gas cell according to claim 1 or 2 ,
An atomic clock characterized in that the natural frequency of the alkali atom is detected by an optical microwave double resonance method or a coherent population trapping resonance method.
請求項に記載するガスセルを製造する方法であって、
第1の単結晶サファイア基板に前記開口部を穿ち、
第1の単結晶サファイア基板の底面に第2の単結晶サファイア基板を、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、そのまま常温で接合し、
その下部を前記第2の単結晶サファイア基板で封止された前記開口部にセシウム液滴を滴下またはセシウム発生能力を有するディスペンサーを保持し、
次に真空チェンバーにおいて第1の単結晶サファイア基板の上面に第3の単結晶サファイア基板を、真空中で両基板の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーをネオンとアルゴンの混合ガス雰囲気にして、常温で接合して前記開口部の上部を封止したことを特徴とするガスセルを製造する方法。
A method of manufacturing the gas cell according to claim 1 , comprising:
Punching the opening in the first single crystal sapphire substrate;
The bottom surface of the first single crystal sapphire substrate is irradiated with the second single crystal sapphire substrate, and the bonding surfaces of both substrates are irradiated with a high-speed atom beam of argon in a vacuum, and the bonding is performed at room temperature as it is.
A dispenser having the ability to drop cesium droplets or generate cesium in the opening whose lower part is sealed with the second single crystal sapphire substrate is held,
Then, in the vacuum chamber, the third single crystal sapphire substrate was irradiated on the upper surface of the first single crystal sapphire substrate, and the bonding surface of both substrates was irradiated with a fast atom beam of argon in vacuum, and then the vacuum chamber was irradiated with neon and argon. A method of manufacturing a gas cell, which comprises forming a mixed gas atmosphere, bonding at room temperature, and sealing the upper portion of the opening.
請求項に記載するガスセルを製造する方法であって、
第1の単結晶サファイア基板に第1の前記開口部を穿ち、
さらに一方の面から他方の面へと貫通する第2の開口部を穿ち、および2つの開口部間を連結する連結部となる溝を加工し、
第1の単結晶サファイア基板の底面に第2の単結晶サファイア基板を、真空中にて両基板の接合面にアルゴンの高速原子ビームを照射し、そのまま常温で接合し、
その下部を前記第2の単結晶サファイア基板で封止された前記第1の開口部にセシウム液滴を滴下またはセシウム発生能力を有するディスペンサーを保持し、
次に真空チェンバーにおいて第1の単結晶サファイア基板の上面に第3の単結晶サファイア基板を、真空中で両基板の接合面にアルゴンの高速原子ビームを照射した後、真空チャンバーをネオンとアルゴンの混合ガス雰囲気にして、常温で接合して前記開口部の上部を封止したことを特徴とするガスセルを製造する方法。
A method of manufacturing the gas cell according to claim 2 , comprising:
Drilling the first opening in the first single crystal sapphire substrate;
Further, a second opening is formed which penetrates from one surface to the other surface, and a groove serving as a connecting portion that connects the two opening portions is processed,
The bottom surface of the first single crystal sapphire substrate is irradiated with the second single crystal sapphire substrate, and the bonding surfaces of both substrates are irradiated with a high-speed atom beam of argon in a vacuum, and the bonding is performed at room temperature as it is.
Holding a dispenser having the ability to drop cesium droplets or cesium droplets in the first opening whose lower part is sealed with the second single crystal sapphire substrate,
Then, in the vacuum chamber, the third single crystal sapphire substrate was irradiated on the upper surface of the first single crystal sapphire substrate, and the bonding surface of both substrates was irradiated with a fast atom beam of argon in vacuum, and then the vacuum chamber was irradiated with neon and argon. A method of manufacturing a gas cell, which comprises forming a mixed gas atmosphere, bonding at room temperature, and sealing the upper portion of the opening.
請求項1又は2記載のガスセルを備えることを特徴とする原子センサ。 Atoms sensor comprising: a gas cell according to claim 1 or 2, wherein.
JP2018543834A 2016-10-07 2017-09-21 Gas cells, atomic clocks and atomic sensors Active JP6685565B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016198702 2016-10-07
JP2016198702 2016-10-07
PCT/JP2017/034155 WO2018066377A1 (en) 2016-10-07 2017-09-21 Gas cell, atomic clock, and atomic sensor

Publications (2)

Publication Number Publication Date
JPWO2018066377A1 JPWO2018066377A1 (en) 2019-04-18
JP6685565B2 true JP6685565B2 (en) 2020-04-22

Family

ID=61831459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018543834A Active JP6685565B2 (en) 2016-10-07 2017-09-21 Gas cells, atomic clocks and atomic sensors

Country Status (2)

Country Link
JP (1) JP6685565B2 (en)
WO (1) WO2018066377A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187723A (en) * 2020-06-04 2021-12-13 日本電気硝子株式会社 Glass for atomic cells, atomic cell, and method for producing atomic cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019413A1 (en) * 1990-06-01 1991-12-12 Research Corporation Technologies, Inc. An improved frequency standard using an atomic stream of optically cooled atoms
JP2791429B2 (en) * 1996-09-18 1998-08-27 工業技術院長 Room-temperature bonding of silicon wafers
US6215366B1 (en) * 1999-05-05 2001-04-10 Kernco, Inc. Metallic cell for optically activated atomic frequency standards
JP3631410B2 (en) * 2000-03-28 2005-03-23 アンリツ株式会社 Gas cell type atomic oscillator
JP3774782B2 (en) * 2003-05-14 2006-05-17 富士通メディアデバイス株式会社 Manufacturing method of surface acoustic wave device
US8526000B1 (en) * 2012-05-29 2013-09-03 Honeywell International Inc. Atomic sensor physics package with integrated transmissive and reflective portions along light paths
JP6036230B2 (en) * 2012-11-30 2016-11-30 株式会社リコー Method for producing alkali metal cell and method for producing atomic oscillator
JP6435617B2 (en) * 2014-03-20 2018-12-12 セイコーエプソン株式会社 Atomic cell, quantum interference device, atomic oscillator and electronic equipment

Also Published As

Publication number Publication date
WO2018066377A1 (en) 2018-04-12
JPWO2018066377A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US20110187464A1 (en) Apparatus and methods for alkali vapor cells
US7666485B2 (en) Alkali metal-wax micropackets for alkali metal handling
Liew et al. Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide
JP6031787B2 (en) Method for manufacturing atomic oscillator
US9498777B2 (en) Cells having cavities and the manufacture and use of the same
JP2018528605A (en) Gas cell for atomic sensor and gas cell filling method
EP2674820B1 (en) Atomic sensor physics package with integrated transmissive and reflective portions along light paths and relative method of production
JP2009283526A (en) Method of manufacturing gas cell, and gas cell
JP6685565B2 (en) Gas cells, atomic clocks and atomic sensors
EP3112315B1 (en) Method for filling csac absorption cells with high-purity alkali metal
JP6160065B2 (en) Alkali metal cell, atomic oscillator and method for producing alkali metal cell
JP6179277B2 (en) Method for producing alkali metal cell and method for producing atomic oscillator
US20070221326A1 (en) Silicon Carbide Bonding
JP6036230B2 (en) Method for producing alkali metal cell and method for producing atomic oscillator
Radhakrishnan et al. Alkali metal-wax micropackets for chip-scale atomic clocks
WO2022018951A1 (en) Atomic cell, and method for manufacturing same
Kim et al. Encapsulated MEMS resonators—A technology path for MEMS into frequency control applications
Hirai et al. Low temperature, wafer-level process of alkali-metal vapor cells for micro-fabricated atomic clocks
Liew et al. Micromachined alkali atom vapor cells for chip-scale atomic clocks
GB2585647A (en) Vapour cell
JP6248572B2 (en) Method for producing alkali metal cell and method for producing atomic oscillator
Karlen et al. MEMS atomic vapor cells sealed by Cu-Cu thermocompression bonding
CN103744283A (en) Alkali metal resonator and manufacturing method thereof
Terashima et al. Microfabrication of Cs-filled MEMS cell using sequential plasma activated bonding
Gorecki et al. Towards the realization of the first European MEMS atomic clock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6685565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250