JP6679873B2 - Micro particle holder - Google Patents

Micro particle holder Download PDF

Info

Publication number
JP6679873B2
JP6679873B2 JP2015199726A JP2015199726A JP6679873B2 JP 6679873 B2 JP6679873 B2 JP 6679873B2 JP 2015199726 A JP2015199726 A JP 2015199726A JP 2015199726 A JP2015199726 A JP 2015199726A JP 6679873 B2 JP6679873 B2 JP 6679873B2
Authority
JP
Japan
Prior art keywords
holding
fine particles
holding portion
substrate
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015199726A
Other languages
Japanese (ja)
Other versions
JP2016183954A (en
Inventor
聡文 最上
聡文 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2016183954A publication Critical patent/JP2016183954A/en
Application granted granted Critical
Publication of JP6679873B2 publication Critical patent/JP6679873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微小粒子を含む液体から前記微小粒子を保持可能な装置に関する。特に本発明は、前記微小粒子を保持した保持部間で確実に分画/密閉可能な装置に関する。   The present invention relates to a device capable of holding microparticles from a liquid containing microparticles. In particular, the present invention relates to a device capable of reliably fractionating / sealing between holding units holding the fine particles.

近年、血液などの体液や、臓器などの組織を溶液に懸濁もしくは分散して得られる組織標本試料や細胞培養液などから細胞を選択的に分離回収し、当該分離回収した細胞を基礎研究や臨床診断、治療へ応用する研究が進められている。例えば、がん患者より採取した血液から腫瘍細胞(Circulating Tumor Cell、以下CTC)を採取し、当該細胞について形態学的分析、組織型分析や遺伝子分析を行ない、前記分析により得られた知見に基づき治療方針を判断する研究が進められている。   In recent years, cells have been selectively separated and collected from body fluids such as blood and tissues or tissue culture samples obtained by suspending or dispersing tissues such as organs in a solution. Research is being conducted to apply it to clinical diagnosis and treatment. For example, a tumor cell (Circulating Tumor Cell, hereinafter CTC) is collected from blood collected from a cancer patient, and morphological analysis, tissue type analysis, and gene analysis are performed on the cell, and based on the findings obtained by the analysis. Research to determine treatment policy is ongoing.

引用文献1には、細胞を保持可能な保持部を設けた細胞保持手段と、誘電泳動力により前記保持部に細胞を保持させるための一対の電極とを備えた細胞保持装置を用いて、試料中に含まれる細胞を前記保持部内へ効率的に保持させた後、前記保持部の開口部をミネラルオイル等の疎水性の液体で覆って各保持部を分画/密閉することで、当該密閉された保持部内での遺伝子解析を行なうこと、また前記解析後の溶液を採取することが開示されている。しかしながら、本方法は細胞保持手段の表面を介して、前記保持部に収容された溶液同士が連通するおそれがあり、結果のコンタミネーションが発生するおそれがあった。   Reference 1 uses a cell holding device provided with a holding portion capable of holding cells, and a cell holding device provided with a pair of electrodes for holding cells in the holding portion by a dielectrophoretic force. After the cells contained therein are efficiently retained in the holding part, the opening of the holding part is covered with a hydrophobic liquid such as mineral oil to fractionate / seal each holding part to achieve the sealing. It is disclosed that the gene analysis is carried out in the holding unit, and that the solution after the analysis is collected. However, in this method, the solutions contained in the holding part may communicate with each other via the surface of the cell holding means, and the resulting contamination may occur.

保持部を分画/密閉する別の方法として、特許文献2には、試料中に含まれる細胞を誘電泳動力を用いて保持部内に保持させた後、シリコーン樹脂製の膜を前記保持部の開口部に接合することで、各保持部を分画/密閉する方法が開示されている。しかしながら特許文献2で開示の方法では密閉された保持部から溶液を採取できないという問題点がある。   As another method of fractionating / sealing the holding part, Patent Document 2 discloses that cells contained in a sample are held in the holding part by using dielectrophoretic force, and then a silicone resin film is applied to the holding part. A method of fractionating / sealing each holding part by joining the holding parts is disclosed. However, the method disclosed in Patent Document 2 has a problem that the solution cannot be collected from the sealed holding portion.

保持部を分画/密閉する、さらに別の方法として、特許文献3には、アモルファスフッ素樹脂で形成した疎水性の上面および側壁を有した保持部を設けた保持手段において、前記各保持部に1個ずつビーズを収容した後、フッ素溶媒等の疎水性溶媒で前記各保持部を分画/密閉する方法が開示されている。しかしながら引用文献3で開示の方法は、微小粒子(細胞)を保持部へ保持させる方法として重力により保持部へ沈降させる方法を採用している。従って、保持部に保持されなかった微小粒子(細胞)を保持部に保持させるには、当該微小粒子(細胞)を含む溶液を回収し、再度保持手段へ導入する必要があるため、作業工程が増大する問題点があった。   As still another method of fractionating / sealing the holding portion, Patent Document 3 discloses a holding means provided with a holding portion having a hydrophobic upper surface and a side wall formed of amorphous fluororesin, in which each holding portion is provided. A method is disclosed in which, after accommodating the beads one by one, the respective holding parts are fractionated / sealed with a hydrophobic solvent such as a fluorine solvent. However, the method disclosed in the cited document 3 adopts a method in which the microparticles (cells) are settled by the gravity to the holding section as a method of holding the fine particles (cells) in the holding section. Therefore, in order to hold the microparticles (cells) not held in the holding part in the holding part, it is necessary to collect the solution containing the microparticles (cells) and re-introduce it into the holding means. There was a growing problem.

細胞保持手段を疎水性の膜で覆う方法として、特許文献4には、細胞を1つだけ保持可能な保持部を設けた保持手段において、前記保持部の内面をフルオロカーボン膜または酸化シリコン膜で覆うことで、前記保持部に収容された細胞を容易に回収できる旨、開示されている。しかしながら引用文献4で開示の方法も、引用文献3と同様、微小粒子(細胞)を保持部へ保持させる方法として重力により保持部へ沈降させる方法を採用しており、引用文献3と同様な問題点を有していた。さらに引用文献4で開示の方法は、保持部の内面をフルオロカーボン膜または酸化シリコン膜で覆う一方、保持手段の表面は撥水性または疎水性を有していると前記保持部への細胞の保持が困難となることから、親水性と疎水性の中間の性質を有する酸化シリコン膜で覆っている。そのため各保持部を確実に分画/密閉させることは困難であった。   As a method of covering the cell holding means with a hydrophobic film, in Patent Document 4, in a holding means provided with a holding portion capable of holding only one cell, the inner surface of the holding portion is covered with a fluorocarbon film or a silicon oxide film. By doing so, it is disclosed that the cells contained in the holding section can be easily recovered. However, the method disclosed in the cited document 4 also adopts a method in which the microparticles (cells) are settled to the holding part by gravity as a method of holding the microparticles (cells) in the holding part, similarly to the cited document 3, and the same problem as the cited document 3 Had a point. Further, according to the method disclosed in the cited document 4, when the inner surface of the holding portion is covered with a fluorocarbon film or a silicon oxide film, while the surface of the holding means has water repellency or hydrophobicity, the cells can be held in the holding portion. Since it becomes difficult, it is covered with a silicon oxide film having an intermediate property between hydrophilicity and hydrophobicity. Therefore, it is difficult to reliably fractionate / close each holding portion.

WO2011/149032号WO2011 / 149032 特開2012−034641号公報JP 2012-034641A WO2012/121310号WO2012 / 121310 WO2005/069001号WO2005 / 069001

本発明の課題は、微小粒子を保持可能な保持部を設けた基板を備えた保持装置において、前記微小粒子を保持した各保持部を確実に分画/密閉し、かつ前記保持部内の溶液を採取可能な装置を提供することにある。   An object of the present invention is to provide a holding device provided with a substrate provided with a holding unit capable of holding fine particles, in which each holding unit holding the fine particles is reliably fractionated / sealed, and a solution in the holding unit is retained. It is to provide a device capable of collecting.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。   In order to solve the above problems, the inventors of the present invention have earnestly studied, and as a result, arrived at the present invention.

すなわち本発明の第一の態様は、微小粒子を保持可能な保持部を設けた基板を備えた微小粒子保持装置であって、前記基板の表面は撥水性樹脂で処理される一方、前記保持部の内面は実質的に撥水性樹脂の膜が形成されないよう処理されている、前記装置である。   That is, a first aspect of the present invention is a fine particle holding device provided with a substrate provided with a holding portion capable of holding fine particles, wherein the surface of the substrate is treated with a water-repellent resin while the holding portion is provided. The inner surface of the device is treated so that a water-repellent resin film is not substantially formed.

また本発明の第二の態様は、撥水性樹脂がフッ素樹脂である、前記第一の態様に記載の装置である。   A second aspect of the present invention is the apparatus according to the first aspect, wherein the water repellent resin is a fluororesin.

さらに本発明の第三の態様は、以下の(1)から(4)の工程を含む、前記第一または第二の態様に記載の装置を用いた、微小粒子解析方法である。
(1)微小粒子を含む水溶液を前記第一または第二の態様に記載の装置に備えた基板へ導入する工程
(2)前記微小粒子を基板に設けた保持部へ保持する工程
(3)前記微小粒子を保持した保持部を疎水性溶媒を用いて密閉する工程
(4)前記密閉された保持部に保持された微小粒子の表面または内部に存在する特定物質を解析する工程
さらに本発明の第四の態様は、以下の(1)から(5)の工程を含む、前記第一または第二の態様に記載の装置を用いた、微小粒子回収方法である。
(1)微小粒子を含む水溶液を前記第一または第二の態様に記載の装置に備えた基板へ導入する工程
(2)前記微小粒子を基板に設けた保持部へ保持する工程
(3)前記微小粒子を保持した保持部を疎水性溶媒を用いて密閉する工程
(4)前記密閉された保持部に保持された微小粒子の表面または内部に存在する特定物質を解析する工程
(5)(4)の解析後、前記密閉された保持部内の微小粒子または微小粒子を含む水溶液を回収する工程
また本発明の第五の態様は、前記(2)の工程を誘電泳動力を利用して行なう、前記第三または第四の態様に記載の方法である。
Furthermore, a third aspect of the present invention is a method for analyzing microparticles, which includes the following steps (1) to (4) and uses the apparatus according to the first or second aspect.
(1) A step of introducing an aqueous solution containing fine particles into a substrate provided in the apparatus according to the first or second aspect (2) A step of holding the fine particles in a holding portion provided on the substrate (3) The above The step of sealing the holding part holding the fine particles with a hydrophobic solvent (4) the step of analyzing a specific substance present on the surface or inside of the fine particles held by the closed holding part. A fourth aspect is a method for recovering fine particles using the apparatus according to the first or second aspect, which includes the following steps (1) to (5).
(1) A step of introducing an aqueous solution containing fine particles into a substrate provided in the apparatus according to the first or second aspect (2) A step of holding the fine particles in a holding portion provided on the substrate (3) The above Step (4) of sealing the holding part holding the microparticles with a hydrophobic solvent, step (5) (4) of analyzing a specific substance existing on the surface or inside of the microparticles held by the closed holding part After the analysis of step 1), the step of recovering the fine particles or the aqueous solution containing the fine particles in the sealed holding portion. In a fifth aspect of the present invention, the step (2) is performed by utilizing dielectrophoretic force. The method according to the third or fourth aspect.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の保持装置で保持部に保持する微小粒子の一例として、赤血球や白血球などの血液細胞、がん細胞、臓器組織などの生体試料や、樹脂ビーズ、セラミックス粉体、金属微粒子があげられる。なお本発明の保持装置は、微小粒子を保持した保持部を密閉後、前記微小粒子の表面または内部に存在する特定物質を解析するため、前記保持部で保持された微小粒子の移動を制限する必要がある。制限の方法は、微小粒子の性状に応じて適切な方法を採用すればよい。微小粒子が磁性体の場合は保持部(基板)に磁界を印加することで保持すればよい。微小粒子が電荷を有していれば保持部(基板)に電界を印加することで保持すればよい。微小粒子が細胞等の誘電体であれば、保持部を挟むように設けた電極に交流電荷を印加することで誘電泳動力を用いて保持部に保持すればよい。微小粒子がその表面にタンパク質を有している場合は、当該タンパク質の受容体や当該タンパク質に対する抗体を保持部に固定化し、タンパク質−受容体相互作用や抗原抗体反応を利用して当該保持部へ導入すればよい。微小粒子がその表面に官能基を有している場合は、当該官能基と特異的に結合可能なリガンドを保持部に固定化し、当該特異的結合を利用して当該保持部へ導入すればよい。またこれらの導入に加え、保持部自体に微細な孔を形成することで、保持部に保持した微小粒子の移動を物理的に制限させてもよい。   Examples of the fine particles held in the holding unit by the holding device of the present invention include blood cells such as red blood cells and white blood cells, biological samples such as cancer cells and organ tissues, resin beads, ceramic powder, and metal fine particles. Note that the holding device of the present invention, after sealing the holding portion holding the fine particles, analyzes the specific substance existing on the surface or inside of the fine particles, and thus restricts the movement of the fine particles held by the holding portion. There is a need. As a limiting method, an appropriate method may be adopted depending on the properties of the fine particles. When the fine particles are magnetic, they may be held by applying a magnetic field to the holding portion (substrate). If the fine particles have an electric charge, they may be held by applying an electric field to the holding portion (substrate). If the fine particles are a dielectric substance such as cells, it is sufficient to apply an AC electric charge to the electrodes provided so as to sandwich the holding portion and hold the holding portion in the holding portion using the dielectrophoretic force. When the microparticle has a protein on its surface, a receptor for the protein or an antibody against the protein is immobilized on the holding part, and the protein-receptor interaction or antigen-antibody reaction is used to move to the holding part. Just install it. When the microparticles have a functional group on their surface, a ligand capable of specifically binding to the functional group may be immobilized on the holding part and introduced into the holding part by utilizing the specific binding. . In addition to these introductions, the movement of the fine particles held in the holding portion may be physically restricted by forming fine holes in the holding portion itself.

なお微小粒子や分散させる液体の導電率が低い(例えば細胞を含む液体や導電率1mS/cm以下(好ましくは200μS/cm以下)の微小粒子を含んだ液体)の場合、誘電泳動力を用いて保持部へ導入させると、保持部に微小粒子を効率的に導入させることができる点で好ましい。誘電泳動力を用いる場合、具体的には、交流電圧を印加することで誘電泳動を発生させ、保持部内へ微小粒子を導入すればよい。印加する交流電圧は、保持部内の微小粒子の充放電が周期的に繰り返される波形を有した交流電圧であると好ましく、微小粒子が細胞であれば周波数を100kHzから3MHzの間とし、電界強度を1×10から5×10V/mの間とすると特に好ましい(WO2011/149032号および特開2012−013549号公報参照)。 When the electric conductivity of the fine particles or the liquid to be dispersed is low (for example, a liquid containing cells or a liquid containing fine particles having an electric conductivity of 1 mS / cm or less (preferably 200 μS / cm or less)), dielectrophoretic force is used. It is preferable to introduce the fine particles into the holding portion because the fine particles can be efficiently introduced into the holding portion. When the dielectrophoretic force is used, specifically, dielectrophoresis is generated by applying an AC voltage, and the fine particles may be introduced into the holding portion. The AC voltage to be applied is preferably an AC voltage having a waveform in which charging / discharging of the microparticles in the holding part is periodically repeated. If the microparticles are cells, the frequency is between 100 kHz and 3 MHz, and the electric field strength is It is particularly preferable to set it in the range of 1 × 10 5 to 5 × 10 5 V / m (see WO 2011/149032 and JP 2012-013549 A).

本発明の微小粒子保持装置は、微小粒子を保持可能な保持部を設けた基板の表面が撥水性樹脂で処理されていることを特徴としている。撥水性樹脂としては、フッ素樹脂、シリコーン樹脂等、撥水性を有する樹脂の中から適宜選択すればよい。中でもフッ素樹脂が高い撥水性、および高い耐久性を有する点で、基板表面を処理する撥水性樹脂として好ましい。撥水性樹脂による基板表面の処理方法としては、撥水性樹脂を刷毛などで直接基板に塗布する方法や、撥水性樹脂を基板に滴下後、スピンコートにより基板全体に展開させる方法が例示できる。なお撥水性樹脂による基板表面の処理は、微小粒子を含む水溶液を収容した保持部を疎水性溶媒によって密閉可能な疎水性が、基板表面に付与されるよう処理すればよく、必ずしも基板表面全体に撥水性樹脂の膜を形成させる必要はなく、基板表面に撥水性樹脂の膜が斑状に形成されていてもよい。また撥水性樹脂による処理を保持部内面まで行なうと、当該保持部内空間の撥水性が高まり、微小粒子の保持が困難となるおそれがあるため、撥水性樹脂で基板を処理する際は、保持部内面は実質的に撥水性樹脂の膜が形成されないよう処理するとよい。   The fine particle holding device of the present invention is characterized in that the surface of the substrate provided with the holding portion capable of holding the fine particles is treated with a water-repellent resin. The water-repellent resin may be appropriately selected from water-repellent resins such as fluororesins and silicone resins. Among them, the fluororesin is preferable as the water-repellent resin for treating the surface of the substrate because it has high water repellency and high durability. Examples of the method of treating the surface of the substrate with the water-repellent resin include a method of directly applying the water-repellent resin to the substrate with a brush or the like, and a method of dropping the water-repellent resin onto the substrate and then spreading it over the entire substrate by spin coating. Note that the treatment of the substrate surface with the water-repellent resin may be performed so that the holding portion containing the aqueous solution containing fine particles can be sealed with a hydrophobic solvent so that the substrate surface is rendered hydrophobic. It is not necessary to form the film of the water-repellent resin, and the film of the water-repellent resin may be unevenly formed on the surface of the substrate. Further, if the treatment with the water-repellent resin is performed up to the inner surface of the holding portion, the water repellency of the inner space of the holding portion may be increased, which may make it difficult to hold the fine particles. The inner surface may be treated so that a water-repellent resin film is not substantially formed.

本明細書において、実質的に撥水性樹脂の膜が形成されないとは、保持部の側面と基板表面とが接する領域、および保持部の側面と底面とが接する領域以外には撥水性樹脂の膜が形成されないことを意味する。保持部の側面と基板表面とが接する領域、および保持部の側面と底面とが接する領域は、保持部の貫通孔の直径および深さ、ならびに処理に用いる撥水性樹脂の材質により変わり得る。例えば、貫通孔(保持部)の直径が30から50μm、貫通孔(保持部)の深さが30から50μmであって、処理に用いる撥水性樹脂がフッ素樹脂の場合、
保持部の側面と基板表面とが接する領域は、保持部の側面において当該側面と基板表面との接線から保持部の底面方向に保持部の深さの5%以下の領域となり、
保持部の側面と底面とが接する領域は、保持部の側面において当該側面と底面との接線から基板表面方向に保持部の深さの5%以下の領域、および保持部の底面において当該底面と前記側面との接線から当該底面の中心方向に当該底面の半径の10%以下の領域かつ保持部の底面積の20%以下の領域となる。
In the present specification, the term "water-repellent resin film is not substantially formed" means that the water-repellent resin film is formed in a region other than the region where the side surface of the holding portion contacts the substrate surface and the region where the side surface of the holding portion contacts the bottom surface. Is not formed. The area where the side surface of the holding portion contacts the substrate surface and the area where the side surface of the holding portion contacts the bottom surface may vary depending on the diameter and depth of the through hole of the holding portion and the material of the water-repellent resin used for the treatment. For example, when the diameter of the through hole (holding portion) is 30 to 50 μm, the depth of the through hole (holding portion) is 30 to 50 μm, and the water-repellent resin used for the treatment is a fluororesin,
The region where the side surface of the holding portion contacts the substrate surface is an area of 5% or less of the depth of the holding portion in the bottom surface direction of the holding portion from the tangent line between the side surface and the substrate surface on the side surface of the holding portion,
The area where the side surface and the bottom surface of the holding portion contact each other is 5% or less of the depth of the holding portion in the substrate surface direction from the tangent line between the side surface and the bottom surface on the side surface of the holding portion, and the bottom surface of the holding portion with the bottom surface. The area is 10% or less of the radius of the bottom surface and 20% or less of the bottom area of the holding portion in the center direction of the bottom surface from the tangent to the side surface.

本発明の微小粒子保持装置は、保持部に微小粒子を保持した後、疎水性溶媒を用いて前記保持部を密閉することで、微小粒子の表面または内部に存在する特定物質を解析することができる。さらに前記解析後、前記保持部に保持された微小粒子または前記微小粒子を含む水溶液を回収することもできる。保持部を密閉させるのに用いる疎水性溶媒は、保持部に保持された溶液(水溶液)に対しては親和性を有しない一方、基板表面の処理に用いた撥水性樹脂とは親和性を有する溶媒であればよく、一例としてミネラルオイル等のオイル類や、フッ素溶媒があげられる。なお前記保持部を密閉する方法として、疎水性溶媒の代わりに、前記基板の表面と密着可能なシートを用いてもよい。前記シートの一例として光透過性を有したシリコーンゴムがあげられる。なおシートを用いた密閉方法は、微小粒子の表面または内部に存在する特定物質を解析する目的であれば有用な密閉方法であるが、保持部に保持された微小粒子または前記微小粒子を含む水溶液を回収する目的に対しては好ましくない密閉方法である。なぜなら、シートによる密閉を解除する(シートを基板表面から剥がす)際に、保持部に保持された水溶液が蒸発したり、シート側に剥ぎ取られたりするおそれがあるためである。   The microparticle holding device of the present invention can analyze a specific substance existing on the surface or inside of the microparticles by holding the microparticles in the holding part and then sealing the holding part with a hydrophobic solvent. it can. Further, after the analysis, the fine particles held in the holding unit or the aqueous solution containing the fine particles can be recovered. The hydrophobic solvent used to seal the holding part has no affinity for the solution (aqueous solution) held by the holding part, but has an affinity for the water-repellent resin used for the treatment of the substrate surface. Any solvent may be used, and examples thereof include oils such as mineral oil and fluorine solvents. As a method of sealing the holding portion, a sheet that can be in close contact with the surface of the substrate may be used instead of the hydrophobic solvent. An example of the sheet is a silicone rubber having optical transparency. The sealing method using the sheet is a useful sealing method for the purpose of analyzing a specific substance existing on the surface or inside of the microparticles, but the microparticles held in the holding part or an aqueous solution containing the microparticles. This is an unfavorable sealing method for the purpose of recovering. This is because, when the sealing by the sheet is released (the sheet is peeled from the substrate surface), the aqueous solution held by the holding portion may be evaporated or may be peeled off on the sheet side.

微小粒子の表面または内部に存在する特定物質は、当該微小粒子表面または内部に存在する、目的とする微小粒子を特定させるための物質であり、微小粒子が細胞の場合は、酵素等のタンパク質や、DNA、RNA等の遺伝子が例示できる。解析方法の一例として、特定物質と蛍光物質とを結合させ、当該蛍光物質から発する蛍光を直接観察する方法がある。なお前記結合様式は、共有結合、静電気力による結合、抗原−抗体結合、リガンド−レセプター結合、ビオチン−アビジン結合、ヌクレオチド間のハイブリダイゼーション等の中から特定物質の態様を考慮し、適宜選択すればよい。なお特定物質が酵素の場合は、特定物質と蛍光基質とを反応させて得られた蛍光を観察する方法を用いてもよい。また特定物質が遺伝子の場合は、当該遺伝子の一部領域を含む核酸を増幅させた後(または増幅と同時に)、当該増幅した核酸を蛍光等で検出する方法を用いてもよい。微小粒子または前記微小粒子を含む水溶液を回収する際は、回収対象の保持部へ直接チップやピペットを挿入して回収してもよいし、密閉に用いた疎水性溶媒を除去してから前記回収操作を行なってもよい。また、PLOS ONE、10、e0130418(2015)に記載の方法を用いて回収してもよい。本方法は、微小粒子を保持可能な保持部を設けた基板であって、貫通孔(保持部)の直径が30μm、貫通孔(保持部)の深さが40μmの保持部を備えた基板の保持部に保持された、採取の標的である、がん細胞を、内径30μmのガラス製キャピラリーを備えた細胞採取装置により吸引することで選択的に採取することができる方法である。なお本方法によれば、隣接する保持部に保持された、採取の標的ではない白血球細胞を同時に吸引することはない。   The specific substance existing on the surface or inside of the microparticles is a substance existing on the surface or inside of the microparticles for specifying the target microparticles.When the microparticles are cells, proteins such as enzymes and , Genes such as DNA and RNA can be exemplified. As an example of the analysis method, there is a method of binding a specific substance and a fluorescent substance and directly observing fluorescence emitted from the fluorescent substance. The binding mode may be appropriately selected from covalent bond, electrostatic bond, antigen-antibody bond, ligand-receptor bond, biotin-avidin bond, hybridization between nucleotides, etc. in consideration of the mode of the specific substance. Good. When the specific substance is an enzyme, a method of observing fluorescence obtained by reacting the specific substance with a fluorescent substrate may be used. When the specific substance is a gene, a method of amplifying a nucleic acid containing a partial region of the gene (or simultaneously with the amplification) and then detecting the amplified nucleic acid by fluorescence or the like may be used. When recovering the microparticles or the aqueous solution containing the microparticles, a chip or a pipette may be directly inserted into the holding part to be recovered, or the hydrophobic solvent used for sealing may be removed before the recovery. You may perform the operation. Moreover, you may collect using the method as described in PLOS ONE, 10, e0130418 (2015). The present method is for a substrate provided with a holding portion capable of holding fine particles, the substrate having a holding portion having a through hole (holding portion) having a diameter of 30 μm and a through hole (holding portion) having a depth of 40 μm. This is a method in which cancer cells, which are held in the holding unit and are targets for collection, can be selectively collected by aspirating with a cell collection device equipped with a glass capillary having an inner diameter of 30 μm. According to this method, white blood cells that are not targets for collection held by adjacent holding units are not sucked at the same time.

本発明の微小粒子保持装置の一例を図1に示す。図1に示す微小粒子保持装置1は、
貫通孔11aを有した平板状の絶縁体11と、
平板状のスペーサ12と、
絶縁体11およびスペーサ12を上下方向に密着して挟むよう設けた電極基板21・22と、
電極基板21・22同士を接続する導線30と、
電極基板21・22に信号を印加する信号発生器40と、
を備えている(なお以降、絶縁体11と電極基板21とを合わせた態様を保持基板10という)。電極基板22には導入口22aおよび導入口22bを設けている。貫通孔11aおよび絶縁体11の下部に密着して設けた電極基板21により保持部50が構成され、導入口22aから細胞を含む液体を導入すると、貫通部12aを通じて保持部50へ微小粒子が導入される。なお電極基板22はスペーサ12上部に密着して設けており、導入口22aから導入した、細胞を含む液体の飛散や蒸発を防止している。また保持部50に保持した細胞の回収を容易にするため、電極基板22はスペーサ12から取り外し可能な構造となっている。
An example of the fine particle holding device of the present invention is shown in FIG. The fine particle holding device 1 shown in FIG.
A plate-shaped insulator 11 having a through hole 11a,
A flat spacer 12,
Electrode substrates 21 and 22 provided so as to vertically sandwich the insulator 11 and the spacer 12 in close contact with each other;
A conductive wire 30 connecting the electrode substrates 21 and 22 to each other,
A signal generator 40 for applying a signal to the electrode substrates 21 and 22,
(Hereinafter, a mode in which the insulator 11 and the electrode substrate 21 are combined is referred to as a holding substrate 10). The electrode substrate 22 has an inlet 22a and an inlet 22b. The holding portion 50 is configured by the electrode substrate 21 provided in close contact with the through hole 11a and the lower portion of the insulator 11, and when a liquid containing cells is introduced from the introduction port 22a, fine particles are introduced into the holding portion 50 through the penetration portion 12a. To be done. The electrode substrate 22 is provided in close contact with the upper portion of the spacer 12 to prevent the liquid containing cells introduced from the inlet 22a from scattering and evaporating. Further, the electrode substrate 22 has a structure that can be removed from the spacer 12 in order to facilitate the recovery of the cells held in the holding unit 50.

本発明は、微小粒子を保持可能な保持部を設けた基板を備えた微小粒子保持装置であって、前記基板の表面は撥水性樹脂で処理される一方、前記保持部の内面は実質的に撥水性樹脂の膜が形成されないよう処理されていることを特徴としている。本発明の装置は、前記保持部へ微小粒子を保持させた後、疎水性溶媒を導入することで前記保持部を確実に分画/密閉させることができる。従って、その後の解析工程(酵素反応、抗原抗体反応、核酸増幅反応等)において保持部間のコンタミネーションを防ぐことができる。さらに、分画/密閉された保持部から微小粒子または微小粒子を含む水溶液を回収することができる。   The present invention is a fine particle holding device provided with a substrate provided with a holding portion capable of holding fine particles, wherein the surface of the substrate is treated with a water-repellent resin while the inner surface of the holding portion is substantially It is characterized in that it is treated so that a film of water-repellent resin is not formed. In the device of the present invention, after holding the fine particles in the holding part, the holding part can be reliably fractionated / sealed by introducing the hydrophobic solvent. Therefore, in the subsequent analysis step (enzyme reaction, antigen-antibody reaction, nucleic acid amplification reaction, etc.), contamination between the holding parts can be prevented. Further, it is possible to collect the fine particles or the aqueous solution containing the fine particles from the holding unit that is fractionated / sealed.

本発明の微小粒子保持装置の一例を示した図。(A)は分解図を、(B)は正面図を、それぞれ表わす。The figure which showed an example of the microparticle holding | maintenance apparatus of this invention. (A) shows an exploded view and (B) shows a front view. 実施例4および比較例1で行なった、本発明の微小粒子保持装置を用いた細胞解析方法の各工程を示した図。The figure which showed each process of the cell analysis method using the microparticle holding | maintenance apparatus of this invention performed in Example 4 and the comparative example 1. 実施例4の結果を示した図。(A)および(B)は実施例1で作製した本発明の微小粒子保持装置(保持部の直径30μm)の明視野像および蛍光像であり、(C)および(D)は実施例2で作製した本発明の微小粒子保持装置(保持部の直径100μm)の明視野像および蛍光像である。The figure which showed the result of Example 4. (A) and (B) are a bright field image and a fluorescent image of the microparticle holding device of the present invention (holding portion diameter 30 μm) produced in Example 1, and (C) and (D) are in Example 2. 3A and 3B are a bright-field image and a fluorescent image of the produced microparticle holding device of the present invention (holding portion diameter 100 μm). 比較例1の結果を示した図。(A)および(B)は比較例1で作製した微小粒子保持装置(保持部の直径30μm)の明視野像および蛍光像であり、(C)および(D)は比較例1で作製した微小粒子保持装置(保持部の直径100μm)の明視野像および蛍光像である。The figure which showed the result of the comparative example 1. (A) and (B) are a bright field image and a fluorescent image of the fine particle holding device (holding portion diameter: 30 μm) produced in Comparative Example 1, and (C) and (D) are minute images produced in Comparative Example 1. 3 is a bright field image and a fluorescence image of a particle holding device (holding portion diameter 100 μm). 実施例5で行なった、本発明の微小粒子保持装置を用いた細胞解析、および標的細胞の採取方法の各工程を示した図。FIG. 6 is a diagram showing each step of the cell analysis using the microparticle holding device of the present invention performed in Example 5 and the method of collecting target cells. 実施例5の結果を示した図。(A)から(C)は標的細胞採取前の明視野像、蛍光像および細胞核染色像であり、(D)から(F)は標的細胞採取後の明視野像、蛍光像および細胞核染色像である。The figure which showed the result of Example 5. (A) to (C) are bright field images, fluorescent images and cell nucleus staining images before collecting target cells, and (D) to (F) are bright field images, fluorescent images and cell nucleus staining images after collecting target cells. is there. 実施例6で行なった、シリコーンゴムシートにより保持部を密閉する方法を用いた細胞解析、および標的細胞の採取方法の各工程を示した図。FIG. 6 is a diagram showing each step of cell analysis using a method of sealing a holding portion with a silicone rubber sheet and a method of collecting target cells performed in Example 6.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は当該例に限定されるものではない。   Hereinafter, the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the examples.

実施例1 微小粒子保持装置の作製(保持部の直径30μm)
以下に示す方法で、図1に示す微小粒子保持装置1を作製した。
(1)電極基板21(縦70mm×横38mm×厚さ1mmのガラス基板にITOを成膜したもの)のITO成膜面に、スピンコーターを用いて30μmの膜厚になるようレジスト(エポキシ系のネガ型レジスト)を塗布した。
(2)1分間自然乾燥後、ホットプレートを用いてプリベーク(95℃、3分間)した。
(3)縦50mm×横30mmのエリアに、間隔が50μmで、縦1000個×横600個のアレイ状に並べた、直径30μmの貫通孔パターンを描いた露光用フォトマスクを用いて、UV露光機でレジストを露光し、現像液で現像した。なお露光時間と現像時間は、貫通孔の深さがレジストの膜厚と等しい30μmになるように調整し、電極基板21のITO成膜面が露出するようにした。
(4)ホットプレートを用いてポストベーク(180℃、30分)することで、レジスト構造を固めた。これにより、電極基板21の上部に貫通孔11aを有した絶縁体11を設けた、保持部50を設けた保持基板10を得た。
(5)(4)で得られた保持基板10の絶縁体11側表面(絶縁体11上面)に、フッ素樹脂コーティング剤であるフロロサーフFS−1000シリーズ(フロロテクノロジー製)を1mL滴下し、スピンコーターを用いて回転数300rpmで5秒、続いて回転数1500rpmで5秒回転することで撥水性樹脂による処理を行なった。
(6)撥水性樹脂による処理後、ホットプレートを用いて100℃で120分間ベークを行ない、揮発成分を揮発させた。撥水性樹脂による処理後の絶縁体11表面の水接触角は約110度と、処理前の値(90度未満)と比較し撥水性が向上していることを確認した。なお撥水性樹脂による処理後の絶縁体膜表面(絶縁体11上面)に対しエネルギー分散型X線分析(EDS)マッピング測定を行なった結果、絶縁体膜表面(絶縁体11上面)に対し、フッ素樹脂の膜が全体ではなく斑状に形成されていたが、本発明を実施するにおいて支障はない。また撥水性樹脂による処理後の保持部内面に対し同様にEDSマッピング測定を行なった結果、保持部内面で確認されたフッ素樹脂の膜は、保持部の側面において当該側面と底面との接線から基板表面方向に1μm(保持部深さの約3%)の領域、および保持部の底面において当該底面と前記側面との接線から当該底面の中心方向に1.4μm(当該底面の半径の約9%、保持部底面積の約18%)の領域のみであった。従って本処理法では、保持部内部は実質的に撥水性樹脂の膜が形成されないよう処理しているといえる。
(7)撥水性樹脂で処理した保持基板10の上部にスペーサ12を積層し圧着させた。スペーサ12は縦3.5mm×横10mmの貫通部12aを設けた厚さ1.0mmのシリコンゴム製の平板であり、表面は粘着性があるため、圧着することで各部品を密着させることができる。なお貫通部12a内に存在する保持部50(貫通孔11a)の数は約22000個である。
(8)スペーサ12の上部に電極基板22を積層し圧着させた。なお電極基板22には導入口22aおよび導入口22bとを設けており、貫通部12a内に存在する保持部50(貫通孔11a)へ液体を導入/排出させることができる。
(9)電極基板21・22と信号発生器40との間を導線で30で接続することで、図1に示す微小粒子保持装置1を作製した。
Example 1 Preparation of microparticle holding device (holding portion diameter 30 μm)
The fine particle holding device 1 shown in FIG. 1 was produced by the method described below.
(1) A resist (epoxy type) is applied to the ITO film formation surface of the electrode substrate 21 (length 70 mm × width 38 mm × thickness 1 mm glass substrate on which ITO is formed) using a spin coater so as to have a film thickness of 30 μm. Negative resist).
(2) After natural drying for 1 minute, prebaking (95 ° C., 3 minutes) was performed using a hot plate.
(3) UV exposure using an exposure photomask in which a through hole pattern with a diameter of 30 μm is drawn, which is arranged in an array of 1000 in length × 600 in width in an area of 50 μm in length × 30 mm in width with an interval of 50 μm. The resist was exposed with a machine and developed with a developing solution. The exposure time and the development time were adjusted so that the depth of the through hole was 30 μm, which is equal to the film thickness of the resist, so that the ITO film formation surface of the electrode substrate 21 was exposed.
(4) The resist structure was solidified by post-baking (180 ° C., 30 minutes) using a hot plate. As a result, the holding substrate 10 provided with the holding portion 50, in which the insulator 11 having the through hole 11a was provided on the electrode substrate 21, was obtained.
(5) 1 mL of Fluorosurf FS-1000 series (manufactured by Fluorotechnology), which is a fluororesin coating agent, is dropped on the surface of the holding substrate 10 obtained in (4) on the side of the insulator 11 (the upper surface of the insulator 11) and the spin coater Was rotated at a rotation speed of 300 rpm for 5 seconds and subsequently at a rotation speed of 1500 rpm for 5 seconds to perform the treatment with the water-repellent resin.
(6) After the treatment with the water-repellent resin, baking was performed using a hot plate at 100 ° C. for 120 minutes to volatilize the volatile components. It was confirmed that the water contact angle of the surface of the insulator 11 after the treatment with the water-repellent resin was about 110 degrees, which was improved compared with the value before the treatment (less than 90 degrees). Energy dispersive X-ray analysis (EDS) mapping measurement was performed on the surface of the insulator film (upper surface of the insulator 11) after the treatment with the water-repellent resin. Although the resin film was formed in a patchy shape instead of the whole, there is no problem in carrying out the present invention. Further, as a result of performing the EDS mapping measurement on the inner surface of the holding portion after the treatment with the water-repellent resin in the same manner, the fluororesin film confirmed on the inner surface of the holding portion shows the substrate on the side surface of the holding portion from the tangent line between the side surface and the bottom surface. A region of 1 μm in the surface direction (about 3% of the depth of the holding portion) and 1.4 μm in the center direction of the bottom surface from the tangent line between the bottom surface and the side surface at the bottom surface of the holding portion (about 9% of the radius of the bottom surface. , About 18% of the bottom area of the holding portion). Therefore, it can be said that in this treatment method, the inside of the holding portion is treated so that the film of the water-repellent resin is not substantially formed.
(7) The spacer 12 was laminated on the upper part of the holding substrate 10 treated with the water-repellent resin and pressure-bonded. The spacer 12 is a flat plate made of silicon rubber having a thickness of 1.0 mm and provided with a through portion 12a having a length of 3.5 mm and a width of 10 mm. Since the surface of the spacer 12 has an adhesive property, each component can be brought into close contact with each other by pressure bonding. it can. The number of holding portions 50 (through holes 11a) existing in the through portion 12a is about 22,000.
(8) The electrode substrate 22 was laminated on the spacer 12 and pressure-bonded. The electrode substrate 22 is provided with an inlet 22a and an inlet 22b so that the liquid can be introduced / discharged to / from the holding portion 50 (through hole 11a) existing in the through portion 12a.
(9) By connecting the electrode substrates 21 and 22 and the signal generator 40 with a conducting wire 30, the fine particle holding device 1 shown in FIG. 1 was produced.

実施例2 微小粒子保持装置の作製(保持部の直径100μm)
以下に示す方法で、図1に示す微小粒子保持装置1を作製した。
(1)実施例1(1)および(2)に記載の方法でレジストを塗布した電極基板21の縦50mm×横30mmのエリアに、間隔が200μmで、縦250個×横150個のアレイ状に並べた、直径100μmの貫通孔パターンを描いた露光用フォトマスクを用いて、UV露光機でレジストを露光し、現像液で現像した。なお露光時間と現像時間は、貫通孔の深さがレジストの膜厚と等しい30μmになるように調整し、電極基板21のITO成膜面が露出するようにした。
(2)ホットプレートを用いてポストベーク(180℃、30分)することで、レジスト構造を固めた。これにより、電極基板21の上部に貫通孔11aを有した絶縁体11を設けた、保持部50を設けた保持基板10を得た。
(3)実施例1(5)および(6)に記載の方法で撥水性樹脂による処理を行なった。本処理により、実施例1と同様、基板(絶縁体11)表面は撥水性樹脂による処理がされているが、保持部内部は実質的に撥水性樹脂の膜が形成されないよう処理されている。
(4)撥水性樹脂で処理した保持基板10の上部にスペーサ12を積層し圧着させた。スペーサ12は縦3.5mm×横10mmの貫通部12aを設けた厚さ1.0mmのシリコンゴム製の平板であり、表面は粘着性があるため、圧着することで各部品を密着させることができる。なお貫通部12a内に存在する保持部50(貫通孔11a)の数は約1375個である。
(5)スペーサ12の上部に電極基板22を積層し圧着させた。なお電極基板22には導入口22aおよび導入口22bとを設けており、貫通部12a内に存在する保持部50(貫通孔11a)へ液体を導入/排出させることができる。
(6)電極基板21・22と信号発生器40との間を導線で30で接続することで、図1に示す微小粒子保持装置1を作製した。
Example 2 Preparation of microparticle holding device (holding portion diameter 100 μm)
The fine particle holding device 1 shown in FIG. 1 was produced by the method described below.
(1) In the area of 50 mm in length × 30 mm in width of the electrode substrate 21 coated with the resist according to the method described in Example 1 (1) and (2), the array shape is 250 μm × 150 width × 200 μm. The resist was exposed by a UV exposure machine using the photomask for exposure in which a through-hole pattern having a diameter of 100 μm was arranged, and was developed with a developing solution. The exposure time and the development time were adjusted so that the depth of the through hole was 30 μm, which is equal to the film thickness of the resist, so that the ITO film formation surface of the electrode substrate 21 was exposed.
(2) The resist structure was solidified by post-baking (180 ° C., 30 minutes) using a hot plate. As a result, the holding substrate 10 provided with the holding portion 50, in which the insulator 11 having the through hole 11a was provided on the electrode substrate 21, was obtained.
(3) The treatment with the water-repellent resin was performed by the method described in Example 1 (5) and (6). By this treatment, the surface of the substrate (insulator 11) is treated with a water-repellent resin as in Example 1, but the inside of the holding portion is treated so that a film of the water-repellent resin is not substantially formed.
(4) The spacer 12 was laminated on the holding substrate 10 treated with the water-repellent resin and pressure-bonded thereto. The spacer 12 is a flat plate made of silicon rubber having a thickness of 1.0 mm and provided with a through portion 12a having a length of 3.5 mm and a width of 10 mm. Since the surface of the spacer 12 is adhesive, it is possible to bring the parts into close contact by crimping. it can. The number of holding parts 50 (through holes 11a) existing in the through part 12a is about 1375.
(5) The electrode substrate 22 was laminated on the spacer 12 and pressure-bonded. The electrode substrate 22 is provided with an inlet 22a and an inlet 22b so that the liquid can be introduced / discharged to / from the holding portion 50 (through hole 11a) existing in the through portion 12a.
(6) By connecting the electrode substrates 21 and 22 and the signal generator 40 with a lead wire 30, the fine particle holding device 1 shown in FIG. 1 was produced.

実施例3 微小粒子保持装置を用いた細胞保持
実施例1および2で作製した微小粒子保持装置1を用いて、以下に示す方法で、細胞保持を試みた。
(1)ヒト転移性膵臓がん細胞であるAsPC−1細胞を、10%FBS、2mM グルタミンおよび1mMピルビン酸を含むRPMI−1640培地を用いて、37℃、5% CO条件下で培養した。
(2)細胞がサブコンフルエントに達した後にPBS(リン酸緩衝生理食塩水)で洗浄し、トリプシン−EDTAを用いて個々の細胞がばらばらになるよう細胞を剥がした。
(3)処理した細胞を遠心し(25℃で200×g、5分)、上澄みを捨てた後、0.1%のウシ血清アルブミン(BSA)、および0.01(v/v)%のTween 20を添加した300mMのマンニトール水溶液に懸濁し、1×10個/mLの細胞密度になるよう、細胞懸濁液を調製した。
(4)(3)で調製した細胞懸濁液55μLを、電極基板22の導入口22aよりシリンジを用いて導入し(導入細胞数:約5500個)、信号発生器40により電圧20Vpp、周波数1MHzの矩形波交流電圧を電極基板21・22へ3分間印加した。
Example 3 Cell Retention Using Microparticle Retention Device Using the microparticle retention device 1 produced in Examples 1 and 2, cell retention was attempted by the method described below.
(1) Human metastatic pancreatic cancer cells AsPC-1 cells were cultured under RPMI-1640 medium containing 10% FBS, 2 mM glutamine and 1 mM pyruvic acid at 37 ° C. under 5% CO 2 conditions. .
(2) After the cells reached subconfluence, they were washed with PBS (phosphate buffered saline), and trypsin-EDTA was used to remove the cells so that the individual cells were separated.
(3) The treated cells were centrifuged (200 xg at 25 ° C, 5 minutes), the supernatant was discarded, and then 0.1% bovine serum albumin (BSA) and 0.01 (v / v)% were added. The cells were suspended in a 300 mM mannitol aqueous solution containing Tween 20 to prepare a cell suspension having a cell density of 1 × 10 5 cells / mL.
(4) 55 μL of the cell suspension prepared in (3) was introduced from the inlet 22a of the electrode substrate 22 using a syringe (the number of introduced cells: about 5,500), and the signal generator 40 generated a voltage of 20 Vpp and a frequency of 1 MHz. The rectangular wave AC voltage of was applied to the electrode substrates 21 and 22 for 3 minutes.

結果、実施例1で作製した微小粒子保持装置1の保持部50には、細胞が1個ずつ保持されていることを確認した。また、実施例2で作製した微小粒子保持装置1の保持部50には、細胞が複数個ずつ保持されていることを確認した。   As a result, it was confirmed that cells were held one by one in the holding unit 50 of the microparticle holding device 1 manufactured in Example 1. In addition, it was confirmed that a plurality of cells were held in the holding unit 50 of the microparticle holding device 1 manufactured in Example 2.

実施例4 微小粒子保持装置を用いた細胞解析(撥水性樹脂処理あり)
実施例3に記載した方法で保持部50に保持した細胞を、以下に示す方法で細胞解析を試みた。なお本実施例の操作の流れを図2に示す。
(1)実施例3に記載した方法で保持部50にAsPC−1細胞60を保持(図2(1))した後、引き続き信号発生器40により交流電圧(電圧20Vpp、周波数1MHzの矩形波)を電極基板21・22へ印加しながら、収容部へ0.01(w/v)%のポリ−L−リジン(接着物質80)を含む300mMマンニトール水溶液を導入した後、交流電圧の印加を停止し、3分間静置した(図2(2))。
(2)微小粒子保持装置1内の溶液を吸引除去後、すぐに導入口22aからPBSを細胞診断チップに導入し、微小粒子保持装置1内にある余剰のポリ−L−リジンを洗浄することで、微細孔内へ細胞を静電気的に接着させた。なお、ポリ−L−リジンの作用により、細胞60は微細孔内に静電気的に接着しているため、前記洗浄操作により保持部50から脱離することはない。
(3)微小粒子保持装置1内の溶液を吸引除去後、導入口22aから10μMのProteoGREENTM−gGlu(五稜化学製)を含むPBSを収容部内に導入し、1分間室温で静置した。なおProteoGREENTM−gGluはがん細胞が有する酵素活性により分解し蛍光を発することで、がん細胞を選択的に検出することが可能な蛍光イメージング試薬90である(図2(3))。
(4)微小粒子保持装置1内の溶液を吸引除去後、導入口22aからミネラルオイル100を導入することで保持部50を密閉した(図2(4))。
(5)室温で60分間静置することで、がん細胞が有する酵素と蛍光イメージング試薬90との酵素反応を進行させて、発生した蛍光91を光学検出器2(オリンパス製倒立型リサーチ顕微鏡IX71)を通じて、CMOSカメラで撮像した(図2(5))。
Example 4 Cell analysis using a microparticle holding device (with water-repellent resin treatment)
The cells retained in the retaining unit 50 by the method described in Example 3 were subjected to cell analysis by the method described below. The operation flow of this embodiment is shown in FIG.
(1) After holding the AsPC-1 cells 60 in the holding unit 50 by the method described in Example 3 (FIG. 2 (1)), the signal generator 40 continues to generate an alternating voltage (voltage 20 Vpp, rectangular wave of frequency 1 MHz). While applying 300mM mannitol aqueous solution containing 0.01 (w / v)% poly-L-lysine (adhesive substance 80) to the accommodating part while applying the electrode substrate 21/22, the application of AC voltage is stopped. Then, it was allowed to stand for 3 minutes (Fig. 2 (2)).
(2) Immediately after removing the solution in the microparticle holding device 1 by suction, introduce PBS into the cytodiagnostic chip from the introduction port 22a to wash the excess poly-L-lysine in the microparticle holding device 1. Then, the cells were electrostatically adhered into the micropores. Since the cells 60 are electrostatically adhered to the inside of the micropores by the action of poly-L-lysine, they are not detached from the holder 50 by the washing operation.
(3) After removing the solution in the microparticle holding device 1 by suction, PBS containing 10 μM ProteoGREEN -gGlu (manufactured by Goryo Chemical Co., Ltd.) was introduced from the inlet 22a into the accommodating portion, and allowed to stand at room temperature for 1 minute. ProteoGREEN -gGlu is a fluorescent imaging reagent 90 capable of selectively detecting cancer cells by being decomposed by an enzyme activity of cancer cells and emitting fluorescence (FIG. 2 (3)).
(4) After the solution in the fine particle holding device 1 was removed by suction, the holding part 50 was sealed by introducing the mineral oil 100 from the introduction port 22a (FIG. 2 (4)).
(5) By standing at room temperature for 60 minutes, the enzyme reaction between the enzyme possessed by the cancer cells and the fluorescent imaging reagent 90 proceeds, and the generated fluorescence 91 is detected by the optical detector 2 (Olympus inverted research microscope IX71). ) Through a CMOS camera (Fig. 2 (5)).

結果を図3に示す。明視野像(図3(A)および(C))から、実施例1および2で作製した微小粒子保持装置1における各保持部内の水溶液は互いに分画されていることがわかる。また蛍光像(図3(B)および(D))から、実施例1および2で作製した微小粒子保持装置1のがん細胞が保持された保持部において当該細胞由来の蛍光を確認した。なお図3(B)および(D)において、がん細胞が保持された保持部内の蛍光強度に差がみられるが、保持部に保持されたがん細胞が有する酵素活性や細胞膜状態の違いに起因すると推定される。以上の結果から、基板(絶縁体11)表面を撥水性樹脂で処理する一方、保持部50の内面は実質的に撥水性樹脂の膜が形成されないよう処理することで、各保持部内の水溶液は互いに分画され、目的とする細胞の選別を確実に行なえることがわかる。   The results are shown in FIG. From the bright field images (FIGS. 3 (A) and 3 (C)), it can be seen that the aqueous solutions in the holding parts of the microparticle holding device 1 produced in Examples 1 and 2 are fractionated from each other. In addition, from the fluorescence images (FIGS. 3B and 3D), the fluorescence derived from the cells was confirmed in the holding portion holding the cancer cells of the microparticle holding device 1 produced in Examples 1 and 2. 3 (B) and 3 (D), there is a difference in the fluorescence intensity in the holding part in which the cancer cells are held. However, due to the difference in the enzyme activity and the cell membrane state of the cancer cells held in the holding part. It is presumed to be the cause. From the above results, the surface of the substrate (insulator 11) is treated with the water-repellent resin, while the inner surface of the holding portion 50 is treated so that the film of the water-repellent resin is not substantially formed. It can be seen that the cells are fractionated from each other and the target cells can be reliably selected.

比較例1 微小粒子保持装置を用いた細胞解析(撥水性樹脂処理なし)
実施例1および2で作製した微小粒子保持装置1のうち、実施例1(5)および(6)に記載の撥水性樹脂による処理を行なわなかったものについて、実施例4と同様な細胞解析を試みた。
Comparative Example 1 Cell analysis using a microparticle holding device (without water-repellent resin treatment)
Among the microparticle holding devices 1 produced in Examples 1 and 2, those not treated with the water-repellent resin described in Examples 1 (5) and (6) were subjected to the same cell analysis as in Example 4. I tried.

結果を図4に示す。明視野像(図4(A)および(C))から、比較例1で作製した微小粒子保持装置1における保持部内の液体が絶縁膜11表面を介して互いに連通している箇所が複数確認できた。また蛍光像(図3(B)および(D))から、比較例1で作製した微小粒子保持装置1における保持部に保持されたがん細胞由来の蛍光が絶縁膜11表面を介して隣接する保持部へ拡散している様子が確認できた。以上の結果から、基板(絶縁体11)表面を撥水性樹脂で処理しないと、各保持部内の水溶液の分画が不十分となり、目的とする細胞の選別が困難となるおそれがあることがわかる。   The results are shown in Fig. 4. From the bright-field images (FIGS. 4 (A) and 4 (C)), it is possible to confirm a plurality of locations where the liquid in the holding portion of the microparticle holding device 1 manufactured in Comparative Example 1 communicates with each other through the surface of the insulating film 11. It was Further, from the fluorescence images (FIGS. 3B and 3D), the fluorescence derived from the cancer cells held in the holding part of the microparticle holding device 1 produced in Comparative Example 1 is adjacent via the surface of the insulating film 11. It was confirmed that it was spreading to the holding part. From the above results, it can be seen that unless the surface of the substrate (insulator 11) is treated with a water-repellent resin, the fractionation of the aqueous solution in each holding part becomes insufficient, and it may be difficult to select the target cells. .

実施例5 微小粒子保持装置を用いた細胞解析後の標的細胞の採取(撥水性樹脂処理あり)
実施例1で作製した微小粒子保持装置を用いて、実施例3に記載した方法で保持部50に保持した細胞60を、以下に示す方法で細胞解析後、標的細胞の採取を試みた。なお本実施例の操作の流れを図5に示す。
(1)実施例3に記載した方法で保持部50に細胞60を保持(図5(1))した後、引き続き信号発生器40により交流電圧(電圧20Vpp、周波数1MHzの矩形波)を電極基板21・22へ印加しながら、収容部へ0.01(w/v)%のポリ−L−リジン(接着物質80)を含む300mMマンニトール水溶液を導入した後、交流電圧の印加を停止し、3分間静置した(図5(2))。
(2)微小粒子保持装置1内の溶液を吸引除去後、すぐに導入口22aからPBSを細胞診断チップに導入し、微小粒子保持装置1内にある余剰のポリ−L−リジンを洗浄することで、微細孔内へ細胞を静電気的に接着させた。なお、ポリ−L−リジンの作用により、細胞は微細孔内に静電気的に接着しているため、前記洗浄操作により保持部50から脱離することはない。
(3)微小粒子保持装置1内の溶液を吸引除去後、導入口22aから10μMのProteoGREENTM−gGlu(五稜化学製)および10μg/mLのHoechst33342(同仁化学研究所社製)を含むPBSを収容部内に導入し、1分間室温で静置した。なおProteoGREENTM−gGluはがん細胞が有する酵素活性により分解し蛍光を発することで、がん細胞を選択的に検出することが可能な蛍光イメージング試薬90である。またHoechst33342は生きた細胞の細胞核を染色する試薬である(図5(3))。
(4)微小粒子保持装置1内の溶液を吸引除去後、導入口22aからフロリナートTM FC−40(3M製)(フッ素溶媒110)を導入することで保持部50を密閉した。なおフロリナートTM FC−40は不活性なフッ素溶媒である(図5(4))。
(5)室温で60分間静置することで、がん細胞が有する酵素と蛍光イメージング試薬90との酵素反応を進行させて、発生した蛍光91を光学検出器2(オリンパス製倒立型リサーチ顕微鏡IX71)を通じて、CMOSカメラで撮像した(図5(5))。
(6)微小粒子保持装置1の電極基板22をスペーサ12から取り外し、PLOS ONE、10、e0130418(2015)に記載の細胞採取方法で標的細胞を採取した(図5(6))。
Example 5 Collection of target cells after cell analysis using microparticle holding device (with water-repellent resin treatment)
Using the microparticle holding device produced in Example 1, cells 60 held in holding unit 50 by the method described in Example 3 were analyzed by the method described below, and then target cells were tried to be collected. The operation flow of this embodiment is shown in FIG.
(1) After holding the cells 60 in the holding unit 50 by the method described in Example 3 (FIG. 5 (1)), the signal generator 40 continuously applies an alternating voltage (voltage 20 Vpp, rectangular wave of frequency 1 MHz) to the electrode substrate. After applying a 300 mM mannitol aqueous solution containing 0.01 (w / v)% poly-L-lysine (adhesive substance 80) to the accommodating portion while applying 21.22, the application of the AC voltage was stopped, and 3 It was allowed to stand for a minute (FIG. 5 (2)).
(2) Immediately after removing the solution in the microparticle holding device 1 by suction, introduce PBS into the cytodiagnostic chip from the introduction port 22a to wash the excess poly-L-lysine in the microparticle holding device 1. Then, the cells were electrostatically adhered into the micropores. Since the cells are electrostatically adhered to the inside of the fine pores by the action of poly-L-lysine, they are not detached from the holding part 50 by the washing operation.
(3) After suction-removing the solution in the microparticle holding device 1, a PBS containing 10 μM of ProteoGREEN -gGlu (manufactured by Goryo Kagaku) and 10 μg / mL of Hoechst 33342 (manufactured by Dojindo Laboratories) is accommodated from the inlet 22a. It was introduced into the chamber and left at room temperature for 1 minute. In addition, ProteoGREEN -gGlu is a fluorescent imaging reagent 90 capable of selectively detecting cancer cells by being decomposed by an enzyme activity of cancer cells and emitting fluorescence. Hoechst33342 is a reagent that stains the cell nucleus of living cells (FIG. 5 (3)).
(4) After the solution in the fine particle holding device 1 was removed by suction, the holding part 50 was sealed by introducing Fluorinert TM FC-40 (manufactured by 3M) (fluorine solvent 110) from the inlet 22a. Fluorinert FC-40 is an inert fluorine solvent (FIG. 5 (4)).
(5) By standing at room temperature for 60 minutes, the enzyme reaction between the enzyme possessed by the cancer cells and the fluorescent imaging reagent 90 proceeds, and the generated fluorescence 91 is detected by the optical detector 2 (Olympus inverted research microscope IX71). ) Through a CMOS camera (Fig. 5 (5)).
(6) The electrode substrate 22 of the microparticle holding device 1 was removed from the spacer 12, and target cells were collected by the cell collection method described in PLOS ONE, 10, e0130418 (2015) (FIG. 5 (6)).

結果を図6に示す。明視野像(図6(A))から、各保持部内の水溶液は互いに分画されていることがわかる。また蛍光像(図6(B))から、がん細胞が保持された保持部において当該細胞由来の蛍光を確認した。なお図6(B)において、がん細胞が保持された保持部内の蛍光強度に差がみられるが、保持部に保持されたがん細胞が有する酵素活性や細胞膜状態の違いに起因すると推定される。例えば酵素活性の高い(蛍光強度が大きい)がん細胞を標的細胞61とし、内径30μmのガラスキャピラリー120を備えた細胞採取装置を用いて吸引採取を試みたところ、標的細胞61を吸引して採取することができた。一方、隣接する保持部に保持された、標的でない細胞62は前記細胞採取装置により吸引されることはなかった(図6(D)、(E)、(F))。なお吸引採取した標的細胞は、スライドガラスに吐出することで、顕微鏡により視認することができた。以上の結果から、基板(絶縁体11)表面を撥水性樹脂で処理する一方、保持部50の内面は実質的に撥水性樹脂の膜が形成されないよう処理することで、各保持部内の水溶液は互いに分画され、各保持部内の解析結果の各保持部間でのコンタミネーションを防止することができ、目的とする細胞の選別を確実に行なうことができる。さらに、特開2012−034641号公報(特許文献2)に記載の方法で各保持部を分画/密閉する場合には不可能であった、各保持部内での解析結果より選別した、標的細胞の選択的な採取も本発明では行なうことができる。   Results are shown in FIG. From the bright field image (FIG. 6 (A)), it can be seen that the aqueous solutions in the respective holding parts are fractionated from each other. Further, from the fluorescence image (FIG. 6 (B)), fluorescence derived from the cancer cells was confirmed in the holding portion holding the cancer cells. In FIG. 6 (B), although there is a difference in the fluorescence intensity in the holding part in which the cancer cells are held, it is presumed that it is caused by the difference in the enzyme activity and the cell membrane state of the cancer cells held in the holding part. It For example, when cancer cells having high enzyme activity (high fluorescence intensity) are used as target cells 61 and an attempt is made to perform suction collection using a cell collection device equipped with a glass capillary 120 having an inner diameter of 30 μm, the target cells 61 are collected by suction. We were able to. On the other hand, the non-target cells 62 held by the adjacent holding portions were not sucked by the cell collecting device (FIGS. 6D, 6E, and 6F). The target cells collected by suction could be visualized by a microscope by discharging them onto a slide glass. From the above results, the surface of the substrate (insulator 11) is treated with the water-repellent resin, while the inner surface of the holding portion 50 is treated so that the film of the water-repellent resin is not substantially formed. It is possible to prevent the contamination of the analysis results in the respective holding units between the respective holding units, and it is possible to reliably select the target cells. Furthermore, target cells selected from the analysis results in each holding part, which was impossible when the holding parts were fractionated / sealed by the method described in JP 2012-034641 A (Patent Document 2), The selective collection of is also possible in the present invention.

実施例6 微小粒子保持装置を用いた細胞解析後の標的細胞の採取(シリコーンゴムシートを用いて保持孔を密閉)
実施例1で作製した微小粒子保持装置を用いて、実施例3に記載した方法で保持部50に保持した細胞60を、以下に示す方法で細胞解析後、標的細胞の採取を試みた。なお本実施例の操作の流れを図7に示す。
(1)実施例3に記載した方法で保持部50に細胞60を保持(図7(1))した後、引き続き信号発生器40により交流電圧(電圧20Vpp、周波数1MHzの矩形波)を電極基板21・22へ印加しながら、収容部へ0.01(w/v)%のポリ−L−リジン(接着物質80)を含む300mMマンニトール水溶液を導入した後、交流電圧の印加を停止し、3分間静置した(図7(2))。
(2)微小粒子保持装置1内の溶液を吸引除去後、すぐに導入口22aからPBSを細胞診断チップに導入し、微小粒子保持装置1内にある余剰のポリ−L−リジンを洗浄することで、微細孔内へ細胞を静電気的に接着させた。なお、ポリ−L−リジンの作用により、細胞は微細孔内に静電気的に接着しているため、前記洗浄操作により保持部50から脱離することはない。
(3)微小粒子保持装置1内の溶液を吸引除去後、導入口22aから10μMのProteoGREENTM−gGlu(五稜化学製)を含むPBSを収容部内に導入し、1分間室温で静置した。(図7(3))。
(4)微小粒子保持装置1内の溶液を吸引除去後、微小粒子保持装置1から電極基板22およびスペーサ12を取り外し、すぐさま、ポリジメチルシロキサン(PDMS)で作成した厚さ1mmのシリコーンゴムシート130を保持部50の表面に押し付けた(図7(4))。
(5)室温で60分間静置することで、がん細胞が有する酵素と蛍光イメージング試薬90との酵素反応を進行させて、発生した蛍光91を光学検出器2(オリンパス製倒立型リサーチ顕微鏡IX71)を通じて、CMOSカメラで撮像した(図7(5))。
(6)シリコーンゴムシート130を保持部50から取り外し、PLOS ONE、10、e0130418(2015)に記載の細胞採取方法で、酵素活性の高い(蛍光強度が大きい)がん細胞である標的細胞61の採取を試みた(図7(6))。しかしながら、保持部50内の液体がすぐに蒸発したため、標的細胞61の採取はできなかった。
Example 6 Collection of target cells after cell analysis using microparticle holding device (holding holes sealed with silicone rubber sheet)
Using the microparticle holding device produced in Example 1, cells 60 held in holding unit 50 by the method described in Example 3 were analyzed by the method described below, and then target cells were tried to be collected. The operation flow of this embodiment is shown in FIG.
(1) After holding the cells 60 in the holding part 50 by the method described in Example 3 (FIG. 7 (1)), an AC voltage (voltage 20 Vpp, rectangular wave of frequency 1 MHz) is continuously applied by the signal generator 40 to the electrode substrate. After applying a 300 mM mannitol aqueous solution containing 0.01 (w / v)% poly-L-lysine (adhesive substance 80) to the accommodating portion while applying 21.22, the application of the AC voltage was stopped, and 3 It was allowed to stand for a minute (FIG. 7 (2)).
(2) Immediately after removing the solution in the microparticle holding device 1 by suction, introduce PBS into the cytodiagnostic chip from the introduction port 22a to wash the excess poly-L-lysine in the microparticle holding device 1. Then, the cells were electrostatically adhered into the micropores. Since the cells are electrostatically adhered to the inside of the fine pores by the action of poly-L-lysine, they are not detached from the holding part 50 by the washing operation.
(3) After removing the solution in the microparticle holding device 1 by suction, PBS containing 10 μM ProteoGREEN -gGlu (manufactured by Goryo Chemical Co., Ltd.) was introduced from the inlet 22a into the accommodating portion, and allowed to stand at room temperature for 1 minute. (FIG. 7 (3)).
(4) After the solution in the fine particle holding device 1 is removed by suction, the electrode substrate 22 and the spacer 12 are removed from the fine particle holding device 1 and immediately, a 1 mm thick silicone rubber sheet 130 made of polydimethylsiloxane (PDMS). Was pressed against the surface of the holding part 50 (FIG. 7 (4)).
(5) By standing at room temperature for 60 minutes, the enzyme reaction between the enzyme possessed by the cancer cells and the fluorescent imaging reagent 90 proceeds, and the generated fluorescence 91 is detected by the optical detector 2 (Olympus inverted research microscope IX71). ) Through a CMOS camera (FIG. 7 (5)).
(6) The silicone rubber sheet 130 is removed from the holding part 50, and the target cells 61, which are cancer cells with high enzyme activity (high fluorescence intensity), are collected by the cell collection method described in PLOS ONE, 10, e0130418 (2015). An attempt was made to collect (Fig. 7 (6)). However, the target cells 61 could not be collected because the liquid in the holding section 50 immediately evaporated.

1:微小粒子保持装置
10:保持基板
11:絶縁体
11a:貫通孔
12:スペーサ
12a:貫通部
21・22:電極基板
22a:導入口
22b:排出口
30:導線
40:信号発生器
50:保持部
60:細胞
61:標的細胞
62:標的でない細胞
70:誘電泳動力
80:接着物質
90:蛍光イメージング試薬
91:蛍光
100:ミネラルオイル
110:フッ素溶媒
120:ガラス製キャピラリー
130:シリコーンゴムシート
2:光学検出器
1: Microparticle holding device 10: Holding substrate 11: Insulator 11a: Through hole 12: Spacer 12a: Through portion 21/22: Electrode substrate 22a: Inlet port 22b: Discharge port 30: Conductor 40: Signal generator 50: Hold Part 60: Cell 61: Target cell 62: Non-target cell 70: Dielectrophoretic force 80: Adhesive substance 90: Fluorescence imaging reagent 91: Fluorescence 100: Mineral oil 110: Fluorine solvent 120: Glass capillary 130: Silicone rubber sheet 2: Optical detector

Claims (5)

電極基板に、貫通孔を有した絶縁体を積層してなる、微小粒子を保持可能な保持部を設けた基板を備えた微小粒子保持装置であって、前記絶縁体上面、前記絶縁体の上面と前記絶縁体の側面とが接する領域および前記絶縁体の側面と前記電極基板の上面とが接する領域のみに撥水性樹脂の膜が形成されていることを特徴とする前記装置。 A fine particle holding device comprising a substrate provided with a holding portion capable of holding fine particles , which is formed by laminating an insulator having a through hole on an electrode substrate , wherein the insulator upper surface and the insulator upper surface are provided. It said apparatus characterized by said insulating body sides are in contact area and the insulator side face and the only water-repellent resin region and the upper surface of the electrode substrate is in contact with film is formed with. 撥水性樹脂がフッ素樹脂である、請求項1に記載の装置。 The device according to claim 1, wherein the water-repellent resin is a fluororesin. 以下の(1)から(4)の工程を含む、請求項1または2に記載の装置を用いた、微小粒子解析方法。
(1)微小粒子を含む水溶液を請求項1または2に記載の装置に備えた基板へ導入する工程
(2)前記微小粒子を基板に設けた保持部へ保持する工程
(3)前記微小粒子を保持した保持部を疎水性溶媒を用いて密閉する工程
(4)前記密閉された保持部に保持された微小粒子の表面または内部に存在する特定物質を解析する工程
A method for analyzing microparticles, which uses the apparatus according to claim 1 or 2, which includes the following steps (1) to (4).
(1) A step of introducing an aqueous solution containing fine particles into a substrate provided in the apparatus according to claim 1 or 2 (2) A step of holding the fine particles in a holding portion provided on the substrate (3) The fine particles The step of sealing the retained holder with a hydrophobic solvent (4) the step of analyzing a specific substance present on the surface or inside of the microparticles retained by the sealed holder
以下の(1)から(5)の工程を含む、請求項1または2に記載の装置を用いた、微小粒子回収方法。
(1)微小粒子を含む水溶液を請求項1または2に記載の装置に備えた基板へ導入する工程
(2)前記微小粒子を基板に設けた保持部へ保持する工程
(3)前記微小粒子を保持した保持部を疎水性溶媒を用いて密閉する工程
(4)前記密閉された保持部に保持された微小粒子の表面または内部に存在する特定物質を解析する工程
(5)(4)の解析後、前記密閉された保持部内の微小粒子または微小粒子を含む水溶液を回収する工程
A method for recovering fine particles using the apparatus according to claim 1 or 2, which includes the following steps (1) to (5).
(1) A step of introducing an aqueous solution containing fine particles into a substrate provided in the apparatus according to claim 1 or 2 (2) A step of holding the fine particles in a holding portion provided on the substrate (3) The fine particles Step (4) of sealing the retained holding section with a hydrophobic solvent (4) Analyzing a specific substance present on the surface or inside of the microparticles retained by the sealed retaining section (5) (4) After that, the step of recovering the fine particles or the aqueous solution containing the fine particles in the sealed holding portion.
前記(2)の工程を誘電泳動力を利用して行なう、請求項3または4に記載の方法。 The method according to claim 3 or 4, wherein the step (2) is performed by using dielectrophoretic force.
JP2015199726A 2015-03-26 2015-10-07 Micro particle holder Active JP6679873B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015064740 2015-03-26
JP2015064740 2015-03-26

Publications (2)

Publication Number Publication Date
JP2016183954A JP2016183954A (en) 2016-10-20
JP6679873B2 true JP6679873B2 (en) 2020-04-15

Family

ID=57242837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199726A Active JP6679873B2 (en) 2015-03-26 2015-10-07 Micro particle holder

Country Status (1)

Country Link
JP (1) JP6679873B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893877B2 (en) * 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
WO2008063135A1 (en) * 2006-11-24 2008-05-29 Agency For Science, Technology And Research Apparatus for processing a sample in a liquid droplet and method of using the same
JPWO2011149032A1 (en) * 2010-05-26 2013-07-25 東ソー株式会社 Biological sample fixing device
CN105842435B (en) * 2010-12-03 2019-03-05 塞普莱有限公司 The microanalysis of cell function
CN103415774B (en) * 2011-03-08 2014-09-24 独立行政法人科学技术振兴机构 Bead sealing method, method for detecting target molecule, array, kit, and target molecule detection device
JP2014233208A (en) * 2013-05-30 2014-12-15 独立行政法人理化学研究所 Well plate for cell and analysis method of cell secretion substance

Also Published As

Publication number Publication date
JP2016183954A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
CN108977343B (en) Micro-fluidic chip for cell separation and capture based on dielectrophoresis principle
CN104583420B (en) It is prepared by nucleic acid samples
JP4093740B2 (en) Fine particle sorting microchip and fine particle sorting device
US8932447B2 (en) Ex-vivo multi-dimensional system for the separation and isolation of cells, vesicles, nanoparticles, and biomarkers
WO2011149032A1 (en) Biological-sample affixing device
KR100507454B1 (en) Method for separating material using dielectrophoretic force
US20110192726A1 (en) Device and method for detection of analyte from a sample
WO2012002515A1 (en) Particle fixing structure and particle analysis device
JP2021509265A (en) Methods and Devices for Detection of Multiple Analyzes from Biological Samples
TWI360655B (en) Apparatus and methods for detecting nucleic acid i
JP5720129B2 (en) Particle fixing structure, particle analysis apparatus, and analysis method
JP2021509266A (en) Methods and Devices for Detecting and Quantifying Cell-Free DNA Fragments
JP2012013550A (en) Particle fixing structure, particle analyzing device, and analyzing method
CN114933967A (en) Nano-electroporation device based on single cell array and application thereof
Ha et al. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology
JP6421589B2 (en) Fine particle capture device
JP6679873B2 (en) Micro particle holder
JP2012013551A (en) Particle fixing structure, particle analyzing device, and analyzing method
CN218811788U (en) Microfluidic chip and system
KR101213972B1 (en) Electrode Device for Cell Manipulation, Fabrication Method of Electrode Device for Cell Manipulation and Method for Cell Manipulation
WO2019003230A1 (en) Devices and methods for flow control using electro-osmotic flow
JP2021019513A (en) Method for analyzing target particles
KR101165860B1 (en) Apparatus and methods for detecting nucleic acid in biological samples
JP6686357B2 (en) Cell recovery method
Soundappa Elango Development of a dielectrophoretic chip for single cell electrorotation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151