JP2021019513A - Method for analyzing target particles - Google Patents

Method for analyzing target particles Download PDF

Info

Publication number
JP2021019513A
JP2021019513A JP2019136690A JP2019136690A JP2021019513A JP 2021019513 A JP2021019513 A JP 2021019513A JP 2019136690 A JP2019136690 A JP 2019136690A JP 2019136690 A JP2019136690 A JP 2019136690A JP 2021019513 A JP2021019513 A JP 2021019513A
Authority
JP
Japan
Prior art keywords
particles
target
target particles
cells
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019136690A
Other languages
Japanese (ja)
Inventor
惇 野口
Atsushi Noguchi
惇 野口
瑠依 畑下
Rui Hatashita
瑠依 畑下
篤史 森本
Atsushi Morimoto
篤史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019136690A priority Critical patent/JP2021019513A/en
Publication of JP2021019513A publication Critical patent/JP2021019513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a method of easily and quickly recovering target cells contained in a sample with high efficiency without requiring special skills to accurately acquire the information of the collected target cells.SOLUTION: The problem is solved by introducing a sample containing target particles into a holding part, collecting the target particles held in the holding part together with contaminating particles contained in the sample after holding the target particles in the holding part, and analyzing the properties of the target particles in the presence of the recovered contaminating particles.SELECTED DRAWING: None

Description

本発明は、試料中に含まれる標的粒子の解析方法に関する。特に本発明は、試料中に含まれる標的粒子を保持部に保持させた後、保持された前記粒子を回収し、解析する方法に関する。 The present invention relates to a method for analyzing target particles contained in a sample. In particular, the present invention relates to a method in which target particles contained in a sample are held in a holding portion, and then the held particles are recovered and analyzed.

近年、血液などの体液および、臓器などの組織を構成する細胞を対象とした基礎研究、ならびに前記細胞を解析することで臨床診断、治療へ応用する研究が進められている。例えば、がん患者より採取した血液から腫瘍細胞(Circulating Tumor Cell、以下CTC)を対象に当該細胞について形態学的分析、組織型分析や遺伝子解析を行ない、前記解析により得られた知見に基づき、治療方針の決定や治療中における病態変化を判断する研究が進められている。特にCTCに代表されるような血液中に含まれる希少細胞の解析は、夾雑となる血液細胞が含まれている中で、前記希少細胞の情報や機能を個々に明らかにできる技術が求められている。 In recent years, basic research on body fluids such as blood and cells constituting tissues such as organs, and research on application to clinical diagnosis and treatment by analyzing the cells have been promoted. For example, tumor cells (Circulating Tumor Cell, hereinafter referred to as CTC) are subjected to morphological analysis, histological analysis and genetic analysis from blood collected from cancer patients, and based on the findings obtained by the above analysis. Research is underway to determine treatment policies and to determine changes in pathological conditions during treatment. In particular, analysis of rare cells contained in blood, such as CTC, requires a technique that can individually clarify the information and functions of the rare cells in the presence of contaminating blood cells. There is.

標的細胞を個々に解析するための当該細胞の回収手段として、FACS(Fluorescence−Activated Cell Sorting)、光ピンセット、誘電泳動、マイクロマニピュレーションを用いた方法などが知られている(特許文献1から2、非特許文献1から3)。しかしながらFACSは、標的細胞の確実な選別が困難であり、またソーティング/単離操作により細胞が損傷するため、解析結果に影響を及ぼす可能性がある。光ピンセット、誘電泳動、マイクロマニピュレーションを利用した回収では、細胞を平板基板やマイクロサイズのウェルに捕捉し、当該捕捉した細胞について形状、光学的情報の解析が行なえる。また前記捕捉した標的細胞を回収することで、遺伝子解析などの性状解析が行なえる。しかしながらこれらの方法においても、例えばマイクロピペットなどの回収手段を操作する、精密な位置制御機構が必要であったり、回収操作が煩雑で技術的な熟練が必要であったり、回収に時間を要するなどといった課題が依然として存在している。 As a means for recovering the target cells for individual analysis of the target cells, a method using FACS (Fluorescence-Activated Cell Sorting), optical tweezers, dielectrophoresis, micromanipulation and the like are known (Patent Documents 1 and 2, Non-Patent Documents 1 to 3). However, FACS makes it difficult to reliably select target cells, and the sorting / isolation operation damages the cells, which may affect the analysis results. In recovery using optical tweezers, dielectrophoresis, and micromanipulation, cells can be captured on a flat substrate or a micro-sized well, and the shape and optical information of the captured cells can be analyzed. Further, by collecting the captured target cells, property analysis such as gene analysis can be performed. However, even in these methods, recovery means such as a micropipette are operated, a precise position control mechanism is required, the recovery operation is complicated and technical skill is required, and recovery takes time. Such issues still exist.

特開2009−002696号公報JP-A-2009-002696 特表2012−507733号公報Japanese Patent Publication No. 2012-507733

Fu,AY.et al.,Nature Biotechnology,17,1109−1111(1999)Fu, AY. et al. , Nature Biotechnology, 17, 11091-1111 (1999) Hellmich,W.et al.,Electrophoresis,26,3689−3696(2005)Hellmic, W. et al. et al. , Electrophoresis, 26, 3689-3696 (2005) Voldman,J.,Annual Review of Biomedical Engineering,8,425−454(2006)Voldman, J. Mol. , Annual Review of Biomedical Engineering, 8,425-454 (2006)

本発明の課題は、特別の熟練を要することなく、試料中に含まれる標的細胞を簡便、迅速かつ高効率に回収し、当該回収した標的細胞の情報を正確に取得する方法を提供することにある。 An object of the present invention is to provide a method for recovering target cells contained in a sample easily, quickly and highly efficiently without requiring special skill, and accurately acquiring information on the recovered target cells. is there.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。 In order to solve the above problems, the present inventors have reached the present invention as a result of repeated diligent studies.

すなわち本発明は以下[1]から[7]に記載の態様を包含する:
[1](1)標的粒子を含む試料を保持部に導入し、当該標的粒子を前記保持部に保持させる工程と、(2)保持された標的粒子を回収手段で回収する工程と、(3)回収した標的粒子の性状を解析する工程と、を含む試料中に含まれる標的粒子の解析方法において、(2)の工程が前記標的粒子と前記保持部に保持された試料中に含まれる夾雑粒子とを同時に回収する工程であって、(3)の工程が回収した夾雑粒子の存在下での標的粒子の性状解析を含む工程である、前記解析方法。
That is, the present invention includes the aspects described in [1] to [7] below:
[1] (1) A step of introducing a sample containing the target particles into the holding portion and holding the target particles in the holding portion, and (2) a step of recovering the held target particles by a recovery means, (3). ) In the step of analyzing the properties of the recovered target particles and the method of analyzing the target particles contained in the sample containing the target particles, the step (2) is the contamination contained in the target particles and the sample held in the holding portion. The analysis method, which is a step of simultaneously recovering the particles, and the step (3) includes a property analysis of the target particles in the presence of the recovered contaminant particles.

[2](2)の工程が、標的粒子の純度が20%から80%となるように回収する工程である、前記[1]に記載の方法。 [2] The method according to the above [1], wherein the step (2) is a step of recovering the target particles so that the purity of the target particles is 20% to 80%.

[3]保持部が、試料中に含まれる標的粒子および夾雑粒子を保持可能な凹部である、前記[1]または[2]に記載の方法。 [3] The method according to [1] or [2] above, wherein the holding portion is a recess capable of holding target particles and contaminant particles contained in the sample.

[4](1)の工程が、標的粒子を含む試料を当該試料中に含まれる標的粒子および夾雑粒子を保持可能な凹部を複数設けた粒子保持装置に導入し、前記保持装置に設けた凹部のうち少なくとも5%の凹部に複数の粒子を保持させる工程であり、(2)の工程が前記複数の粒子を保持した凹部のうち、標的粒子および夾雑粒子をそれぞれ一つ以上保持した凹部から回収手段で回収する工程である、前記[3]に記載の方法。 [4] The step (1) introduces a sample containing target particles into a particle holding device provided with a plurality of recesses capable of holding the target particles and contaminant particles contained in the sample, and the recesses provided in the holding device. The step is to hold a plurality of particles in at least 5% of the recesses, and the step (2) recovers from the recesses holding one or more target particles and one or more contaminant particles among the recesses holding the plurality of particles. The method according to the above [3], which is a step of collecting by means.

[5](3)の工程が夾雑粒子存在下での標的粒子の性状解析結果から夾雑粒子単独での性状解析結果を差し引く工程である、前記[1]から[4]に記載の方法。 [5] The method according to [1] to [4] above, wherein the step (3) is a step of subtracting the property analysis result of the contaminant particle alone from the property analysis result of the target particle in the presence of the contaminant particle.

[6]標的粒子が生体材料からなる粒子である、前記[1]から[5]に記載の方法。 [6] The method according to the above [1] to [5], wherein the target particle is a particle made of a biomaterial.

[7](3)の工程における性状解析が、生体材料からなる粒子が有する核酸の塩基配列解析である、前記[6]に記載の方法。 [7] The method according to [6] above, wherein the property analysis in the step (3) is a base sequence analysis of nucleic acid contained in particles made of a biomaterial.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において粒子とは、溶液中に単独または凝集状態で分散する不溶性物質のことをいう。具体例としては、ビーズ、粉砕用ボール、クロマトグラフィー用分離剤、吸着剤といった工業材料からなる粒子や、細胞、ウイルス、オルガネラ、小胞といった生体材料からなる粒子があげられる。特に本発明は、前記生体材料からなる粒子の解析に好ましい方法である。 In the present invention, the particles refer to insoluble substances that are dispersed alone or in an aggregated state in a solution. Specific examples include particles made of industrial materials such as beads, crushing balls, chromatographic separators, and adsorbents, and particles made of biomaterials such as cells, viruses, organelles, and vesicles. In particular, the present invention is a preferred method for the analysis of particles made of the biomaterial.

標的粒子が前述した生体材料からなる粒子である場合の、本発明における標的粒子を含む試料の一例としては、全血、希釈血液、血清、血漿、髄液、臍帯血、成分採血液、尿、唾液、精液、糞便、痰、羊水、腹水、腹腔洗浄液などの生体試料や、肝臓、肺、脾臓、腎臓、皮膚、腫瘍、リンパ節などの組織の一片を懸濁させた組織懸濁液や、前記生体試料または前記組織懸濁液より分離して得られる前記生体試料または前記組織由来の細胞を含む画分や、あらかじめ単離した細胞の培養液、があげられる。このうち生体試料または組織由来の細胞を含む画分の一例として、生体試料や組織懸濁液を密度勾配形成用媒体の上に重層後、密度勾配遠心して得られる画分があげられる。 When the target particle is a particle made of the above-mentioned biological material, examples of the sample containing the target particle in the present invention include whole blood, diluted blood, serum, plasma, spinal fluid, umbilical cord blood, component blood sampling, urine, and the like. Biological samples such as saliva, semen, feces, sputum, sheep water, ascites, and peritoneal lavage fluid, and tissue suspensions in which pieces of tissue such as liver, lung, spleen, kidney, skin, tumor, and lymph nodes are suspended. Examples thereof include a fraction containing cells derived from the biological sample or tissue obtained by separating from the biological sample or tissue suspension, and a culture solution of cells isolated in advance. Among these, as an example of a fraction containing cells derived from a biological sample or tissue, there is a fraction obtained by layering a biological sample or tissue suspension on a medium for forming a density gradient and then centrifuging the density gradient.

標的粒子を含む試料が血液試料である場合の、標的粒子の一例としては、血液循環腫瘍細胞(CTC)などの腫瘍細胞、循環血液内皮細胞(CEC)、循環血管内皮細胞(CEP)、循環胎児細胞(CFC)、抗原特異的T細胞、各種幹細胞があげられる。一方、夾雑粒子は前述した標的粒子以外の粒子であり、具体的には、血液試料中に含まれる細胞である白血球、赤血球、血小板および小胞、ならびにこれら細胞または前述した標的粒子由来のデブリがあげられる。なお本明細書における血液試料は、全血、血清、血漿、臍帯血、成分採血液といった血液検体に限らず、当該血液検体を生理食塩水などで希釈した試料や、当該血液検体より分離して得られる、前記血液検体由来の細胞を含む画分も、血液試料に含まれる。 When the sample containing the target particles is a blood sample, examples of the target particles include tumor cells such as blood circulating tumor cells (CTC), circulating blood endothelial cells (CEC), circulating vascular endothelial cells (CEP), and circulating fetal cells. Examples include cells (CFC), antigen-specific T cells, and various stem cells. On the other hand, the contaminating particles are particles other than the above-mentioned target particles, and specifically, leukocytes, erythrocytes, platelets and vesicles, which are cells contained in the blood sample, and debris derived from these cells or the above-mentioned target particles. can give. The blood sample in the present specification is not limited to blood samples such as whole blood, serum, plasma, umbilical cord blood, and component blood sample, but the blood sample is diluted with physiological saline or the like, or separated from the blood sample. The obtained fraction containing cells derived from the blood sample is also included in the blood sample.

本発明における保持部は、試料中に含まれる標的粒子および夾雑粒子を保持可能な形状であればよく、単に平面であってもよいし、凹凸があってもよい。前記保持部を凹凸とする場合の形状(平面図における形状)は、標的粒子および夾雑粒子を保持できれば特に限定はなく、円形であってもよく、楕円形であってもよく、正方形、ひし形、平行四辺形、六角形、八角形といった多角形であってもよい。また、凹多角形や、凸多角形も前記多角形に含まれる。 The holding portion in the present invention may have a shape that can hold the target particles and the contaminating particles contained in the sample, and may be simply flat or uneven. The shape (shape in the plan view) when the holding portion is uneven is not particularly limited as long as it can hold the target particles and the contaminating particles, and may be circular, elliptical, square, rhombus, or the like. It may be a polygon such as a parallelogram, a hexagon, or an octagon. Further, a concave polygon and a convex polygon are also included in the polygon.

保持部が標的粒子および夾雑粒子を保持可能な凹部である場合、当該凹部の大きさは、回収対象である標的粒子および夾雑粒子の大きさや形状に応じ適宜選択すればよいが、前記凹部の大きさを、前記標的粒子および前記夾雑粒子がそれぞれ少なくとも一つ以上保持可能な大きさとすると、標的粒子を含む粒子集団が容易に回収できる点で好ましい。例えば標的粒子がCTC(直径:10から25μm程度)であり、夾雑粒子が白血球(直径:5から20μm程度)である場合は、前記凹部を直径30μmから100μmの大きさとすると好ましい。深さは、保持された細胞が観察できる程度が好ましく、例えば5〜100μmが好ましく、5〜30μmがより好ましい。 When the holding portion is a recess capable of holding the target particles and the contaminant particles, the size of the recess may be appropriately selected according to the size and shape of the target particles and the contaminant particles to be collected, but the size of the recess is large. It is preferable that the target particles and the contaminated particles have a size that can hold at least one of the target particles, because the particle group containing the target particles can be easily recovered. For example, when the target particles are CTC (diameter: about 10 to 25 μm) and the contaminating particles are leukocytes (diameter: about 5 to 20 μm), it is preferable that the recesses have a diameter of 30 μm to 100 μm. The depth is preferably such that the retained cells can be observed, for example, 5 to 100 μm, more preferably 5 to 30 μm.

本発明において、標的粒子を含む試料を保持部へ導入する方法には特に限定はなく、単に保持部に標的粒子を含む試料を導入するだけでもよいし、試料を導入した後に遠心力を利用して保持部へ強制的に粒子を保持させてもよい。中でも試料を導入した後に、誘電泳動力を利用して保持部へ粒子を保持させる方法は、効率的に粒子を保持できる点で好ましい。 In the present invention, the method for introducing the sample containing the target particles into the holding portion is not particularly limited, and the sample containing the target particles may be simply introduced into the holding portion, or centrifugal force is used after introducing the sample. The particles may be forcibly held by the holding portion. Above all, the method of holding the particles in the holding portion by using the dielectrophoretic force after introducing the sample is preferable in that the particles can be held efficiently.

本発明において、標的粒子を含む試料を、複数の凹部(保持部)を設けた粒子保持装置に導入する場合、当該凹部に保持される粒子の数には特に制限はない。すなわち、試料を導入した後の粒子保持装置に設けた凹部の中に、粒子が一つも保持されてない凹部が含まれていてもよく、粒子を複数保持した凹部が含まれていてもよい。ただし、粒子の検出や回収を効率的および/または迅速的に行なう観点からは、粒子の密度が高い方が、すなわち粒子を保持する凹部の数や複数粒子を保持する凹部の数が多い方が好ましい。特に粒子保持装置に設けた凹部の総数の5%以上に複数粒子が保持されているとよく、40%以上に保持されていると好ましく、60%以上に保持されていると特に好ましい。 In the present invention, when a sample containing target particles is introduced into a particle holding device provided with a plurality of recesses (holding portions), the number of particles held in the recesses is not particularly limited. That is, the recesses provided in the particle holding device after the sample is introduced may include recesses in which no particles are held, or recesses in which a plurality of particles are held. However, from the viewpoint of efficient and / or rapid particle detection and recovery, the higher the particle density, that is, the larger the number of recesses that hold the particles and the larger the number of recesses that hold multiple particles. preferable. In particular, it is preferable that a plurality of particles are held in 5% or more of the total number of recesses provided in the particle holding device, preferably 40% or more, and particularly preferably 60% or more.

保持部に保持された標的粒子および夾雑粒子は、光ピンセット、誘電泳動力を発生させる手段、マイクロマニピュレーションなどの回収手段を用いて回収すればよい。前記回収は、標的細胞と夾雑細胞とを同時に回収する方法である限り、特に限定はない。一例として、マイクロマニピュレーターを用いる場合には、マイクロマニピュレーターを固定して粒子を回収してもよいし、マイクロマニピュレーターを移動させながら連続的に回収してもよい。また、保持部が標的粒子および夾雑粒子を保持可能な凹部である場合、標的粒子および夾雑粒子をそれぞれ一つ以上保持した単一の凹部から回収してもよく、標的粒子のみを保持した一つ以上の凹部および夾雑粒子のみを保持した一つ以上の凹部から連続的に回収してもよく、これら回収を組み合わせてもよい。ただし、操作の簡便性の観点からは、単一の凹部から回収する方が好ましく、また、操作の簡便性と性状解析の精度を両立する観点から、回収した粒子に含まれる標的粒子の割合(標的粒子の純度)が20%から80%となるよう、回収するのが好ましい。 The target particles and contaminant particles held in the holding portion may be recovered by using recovery means such as optical tweezers, a means for generating dielectrophoretic force, and micromanipulation. The recovery is not particularly limited as long as it is a method for simultaneously recovering target cells and contaminating cells. As an example, when a micromanipulator is used, the particles may be collected by fixing the micromanipulator, or may be continuously collected while moving the micromanipulator. Further, when the holding portion is a recess that can hold the target particles and the contaminating particles, it may be recovered from a single recess that holds one or more of the target particles and the contaminating particles, and one that holds only the target particles. It may be continuously recovered from the above recesses and one or more recesses holding only the contaminant particles, or these recoverys may be combined. However, from the viewpoint of ease of operation, it is preferable to collect from a single recess, and from the viewpoint of achieving both convenience of operation and accuracy of property analysis, the ratio of target particles contained in the collected particles ( It is preferable to recover the target particles so that the purity) is 20% to 80%.

本発明における、標的粒子の性状解析方法には特に限定はなく、一例としてMALDI−TOF/MS(マトリックス支援レーザー脱離イオン化飛行時間型質量分析計)などを用いた質量分析法、マイクロアレイなどを用いたハイブリダイゼーション法があげられる。標的粒子が細胞などの生体材料からなる粒子である場合、標的粒子の性状解析方法としては、次世代シーケンサーなどを用いた塩基配列解析や、質量分析装置を用いたプロテオーム解析・メタボロミクス解析が例示できる。なお本発明では、標的粒子とともに夾雑粒子も回収するため、当該標的粒子の性状を解析する際、解析方法によっては、同時に回収した夾雑粒子の性状解析結果と重なった結果を得る可能性がある。したがって、前記夾雑粒子の性状解析結果を差し引ける解析方法とすると、標的粒子の性状を明確に解析できる点で好ましい。 The method for analyzing the properties of target particles in the present invention is not particularly limited, and as an example, a mass spectrometry method using MALDI-TOF / MS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometer), a microarray, or the like is used. There is a hybridization method that has been used. When the target particle is a particle made of a biological material such as a cell, as a method for analyzing the properties of the target particle, base sequence analysis using a next-generation sequencer or the like, proteomics analysis / metabolomics analysis using a mass spectrometer can be exemplified. .. In the present invention, since the contaminating particles are recovered together with the target particles, when analyzing the properties of the target particles, there is a possibility that a result overlapping with the property analysis result of the contaminating particles collected at the same time may be obtained depending on the analysis method. Therefore, it is preferable to use an analysis method in which the property analysis result of the contaminated particles can be subtracted because the properties of the target particles can be clearly analyzed.

本発明は、標的粒子を含む試料を保持部に導入し当該標的粒子を前記保持部に保持させる工程と保持された標的粒子を回収手段で回収する工程と回収した標的粒子の性状を解析する工程と、を含む試料中に含まれる標的粒子の解析方法において、前記回収工程が前記標的粒子と前記保持部に保持された試料中に含まれる夾雑粒子とを同時に回収する工程であり、前記性状解析工程が回収した夾雑粒子の存在下での標的粒子の性状解析を含む工程であることを特徴としている。本発明により、性状解析対象の標的粒子を回収する際、従来のような煩雑で時間のかかる一粒子単位での標的粒子の回収が不要となるため、回収のための特別の熟練を要することなく、標的粒子の性状を解析できる。 In the present invention, a step of introducing a sample containing target particles into a holding portion and holding the target particles in the holding portion, a step of recovering the held target particles by a recovery means, and a step of analyzing the properties of the recovered target particles. In the method for analyzing the target particles contained in the sample containing, the recovery step is a step of simultaneously recovering the target particles and the contaminating particles contained in the sample held in the holding portion, and the property analysis. The process is characterized in that the process includes property analysis of the target particles in the presence of the recovered contaminant particles. According to the present invention, when recovering the target particles to be subjected to property analysis, it is not necessary to recover the target particles in units of one particle, which is complicated and time-consuming as in the conventional case, so that no special skill for recovery is required. , The properties of the target particles can be analyzed.

本発明で利用可能な、保持部を複数設けた粒子保持装置の一態様を示す分解図である。It is an exploded view which shows one aspect of the particle holding apparatus provided with a plurality of holding parts, which can be used in this invention. 図1に示した装置の正面図である。It is a front view of the apparatus shown in FIG. 回収手段による、図1および図2に示した装置で保持した粒子の回収を示す図である。It is a figure which shows the recovery of the particle held by the apparatus shown in FIG. 1 and FIG. 2 by the recovery means. 実施例4の結果を示す図である。It is a figure which shows the result of Example 4. FIG.

以下、図面を用いて本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明で利用可能な、保持部を複数設けた粒子保持装置を図1に示す。また図1に示した装置の正面図を図2に示す。 FIG. 1 shows a particle holding device provided with a plurality of holding portions, which can be used in the present invention. A front view of the device shown in FIG. 1 is shown in FIG.

図1および図2に示す粒子保持装置100は、貫通孔11aを有した平板状の遮光部材11と、貫通孔12aを有した平板状の絶縁体12と、導入口21、排出口22および貫通部23を有した平板状のスペーサー20とからなる粒子導入保持手段と、前記粒子導入保持手段を上下方向に密着して挟むよう設けた電極基板31・32と、電極基板31・32同士を接続する導線40と、電極基板31・32に信号を印加する信号発生器50と、を備えている。遮光部材11が有する貫通孔11aと絶縁体12が有する貫通孔12aとは互いに同一の寸法および形状であり、かつそれぞれの貫通孔の位置が一致するよう遮光部材11および絶縁体12を設けている。貫通孔11a、貫通孔12aおよび遮光部材11の下部に密着して設けた電極基板31により保持部60が構成され、導入口21から標的粒子を含む試料を導入すると、貫通部23を通じて保持部60へ粒子が導入される。電極基板32はスペーサー20上部に密着して設けており、導入口21から導入した標的粒子を含む試料の飛散や蒸発を防止している。なお保持部60に保持した粒子の回収を容易にするため、電極基板32はスペーサー20から取り外し可能な構造となっている。 The particle holding device 100 shown in FIGS. 1 and 2 includes a flat plate-shaped light-shielding member 11 having a through hole 11a, a flat plate-shaped insulator 12 having a through hole 12a, an introduction port 21, a discharge port 22, and a through hole. The particle introduction and holding means composed of the flat plate-shaped spacer 20 having the portion 23, the electrode substrates 31 and 32 provided so as to sandwich the particle introduction and holding means in the vertical direction, and the electrode substrates 31 and 32 are connected to each other. A lead wire 40 and a signal generator 50 for applying a signal to the electrode substrates 31 and 32 are provided. The light-shielding member 11 and the insulator 12 are provided so that the through-hole 11a of the light-shielding member 11 and the through-hole 12a of the insulator 12 have the same dimensions and shapes, and the positions of the through-holes are the same. .. The holding portion 60 is formed by the electrode substrate 31 provided in close contact with the through hole 11a, the through hole 12a, and the lower part of the light-shielding member 11, and when a sample containing target particles is introduced from the introduction port 21, the holding portion 60 passes through the through portion 23. Particles are introduced into. The electrode substrate 32 is provided in close contact with the upper part of the spacer 20 to prevent scattering and evaporation of a sample containing target particles introduced from the introduction port 21. The electrode substrate 32 has a structure that can be removed from the spacer 20 in order to facilitate the recovery of the particles held in the holding portion 60.

次に、図1および図2に示した粒子保持装置100を用いた、本発明の解析方法の一例を説明する。 Next, an example of the analysis method of the present invention using the particle holding device 100 shown in FIGS. 1 and 2 will be described.

(1)標的粒子保持工程
導入口21から標的粒子70を含む試料を粒子保持装置100に導入し、標的粒子70および前記試料に含まれる夾雑粒子80を、保持部60へ保持させる。なお図1および図2に示す粒子保持装置100では、標的粒子70および夾雑粒子80を保持部60へ保持させる際、誘電泳動力300を利用して導入できる。具体的には、信号発生器50から電極基板31・32へ交流電圧を印加することで誘電泳動力300を発生させ、保持部60に標的粒子70および夾雑粒子80を保持させる。標的粒子が生体材料からなる粒子である細胞の場合、信号発生器50から電極基板31・32へ印加する交流電圧は、保持部60に保持された標的粒子(細胞)70の充放電が周期的に繰り返される波形を有した交流電圧とすると好ましく、周波数を100kHzから3MHzまでの間とし、電界強度を1×10から5×10V/mまでの間とすると特に好ましい(WO2011/149032号および特開2012−013549号公報参照)。
(1) Target particle holding step A sample containing the target particles 70 is introduced into the particle holding device 100 from the introduction port 21, and the target particles 70 and the contaminating particles 80 contained in the sample are held in the holding portion 60. In the particle holding device 100 shown in FIGS. 1 and 2, when the target particles 70 and the contaminating particles 80 are held by the holding portion 60, the dielectrophoretic force 300 can be used for introduction. Specifically, an AC voltage is applied from the signal generator 50 to the electrode substrates 31 and 32 to generate a dielectrophoretic force 300, and the holding portion 60 holds the target particles 70 and the contaminating particles 80. When the target particle is a cell made of a biological material, the AC voltage applied from the signal generator 50 to the electrode substrates 31 and 32 is periodically charged and discharged by the target particle (cell) 70 held in the holding unit 60. It is preferable that the AC voltage has a waveform that repeats the above, and it is particularly preferable that the frequency is between 100 kHz and 3 MHz and the electric field strength is between 1 × 10 5 and 5 × 10 5 V / m (WO2011 / 149032). And Japanese Patent Application Laid-Open No. 2012-013549).

誘電泳動力300を利用して粒子を保持部60へ保持させる場合、粒子保持装置100に導入する、標的粒子70を含む試料は、誘電泳動力300で粒子を移動可能な分散媒に標的粒子70を分散させた試料とする必要がある。前記分散媒の例として、マンニトール、キシリトール、グルコース、スクロース等の糖類を含んだ水溶液や、当該水溶液に塩化カルシウムや塩化マグネシウム等の電解質、および/またはBSA(ウシ血清アルブミン)等のタンパク質をさらに含んだ水溶液があげられる。特に、標的粒子が細胞などの生体材料からなる粒子の場合、等張液となる濃度に調製した糖溶液を用いると、当該粒子へのダメージが少なくなる点で好ましい。 When the particles are held in the holding unit 60 by using the dielectrophoretic force 300, the sample containing the target particles 70 introduced into the particle holding device 100 is a dispersion medium in which the particles can be moved by the dielectrophoretic force 300. It is necessary to prepare a sample in which As an example of the dispersion medium, an aqueous solution containing saccharides such as mannitol, xylitol, glucose and sucrose, an electrolyte such as calcium chloride and magnesium chloride, and / or a protein such as BSA (bovine serum albumin) are further contained in the aqueous solution. An aqueous solution can be given. In particular, when the target particles are particles made of a biomaterial such as cells, it is preferable to use a sugar solution prepared to have a concentration of an isotonic solution in that damage to the particles is reduced.

試料中に含まれる標的粒子の濃度に特に制限はないが、粒子保持装置100に設けた保持部60のうち、少なくとも一部の保持部60に、標的粒子70および夾雑粒子80をそれぞれ一つ以上保持される濃度とすると、効率的に粒子を検出および回収できる点で好ましい。図1および図2に示す粒子保持装置100の場合、粒子保持装置100に導入する粒子数を、粒子保持装置100に設けた保持部60の数の50%以上とするとよく、保持部60の数の2倍以上とすると好ましく、保持部60の数の3倍以上とするとより好ましい。例えば、標的粒子を血液試料1mL中に数個から数十個程度しか存在しない希少細胞(CTCなど)とする場合、粒子保持装置100に設けた保持部60の数の50%以上の粒子を導入することで、標的粒子である希少細胞および夾雑粒子である白血球をそれぞれ一つ以上保持した凹部を存在せしめることができる。 The concentration of the target particles contained in the sample is not particularly limited, but one or more target particles 70 and one or more contaminant particles 80 are provided in at least a part of the holding portions 60 provided in the particle holding device 100. A retained concentration is preferable in that particles can be detected and recovered efficiently. In the case of the particle holding device 100 shown in FIGS. 1 and 2, the number of particles introduced into the particle holding device 100 may be 50% or more of the number of holding portions 60 provided in the particle holding device 100, and the number of holding portions 60. It is preferably twice or more, and more preferably three times or more the number of holding portions 60. For example, when the target particles are rare cells (CTC or the like) in which only a few to several tens of particles are present in 1 mL of a blood sample, 50% or more of the number of holding portions 60 provided in the particle holding device 100 is introduced. By doing so, it is possible to make a recess that holds at least one rare cell as a target particle and one or more leukocytes as a contaminating particle.

保持部60へ保持された標的粒子70や夾雑粒子80の再流出を防止するため、当該粒子を接着可能な試薬を用いて保持部60に固定させてもよい。粒子が細胞である場合の接着試薬の一例として、ポリ−L−リジン、コラーゲン、BAM(細胞膜修飾剤、油化産業社製)があげられる。なお保持部60への粒子固定は、予め保持部60を前記接着試薬で被覆してから標的粒子を含む試料を導入し、保持部60への当該粒子の保持とともに保持部60に固定させてもよく、保持部60へ粒子を保持させてから前記接着試薬を導入し、保持された粒子を保持部60に固定させてもよい。 In order to prevent the target particles 70 and the contaminant particles 80 held in the holding portion 60 from re-flowing out, the particles may be fixed to the holding portion 60 using an adhesive reagent. Examples of the adhesive reagent when the particles are cells include poly-L-lysine, collagen, and BAM (cell membrane modifier, manufactured by Yuka Sangyo Co., Ltd.). The particles can be fixed to the holding portion 60 by coating the holding portion 60 with the adhesive reagent in advance, introducing a sample containing the target particles, holding the particles in the holding portion 60, and fixing the particles to the holding portion 60. Often, the adhesive reagent may be introduced after the particles are held in the holding portion 60, and the held particles may be fixed in the holding portion 60.

(2)保持された粒子の回収工程
保持部60に保持された標的粒子70および夾雑粒子80を、回収手段400を用いて同時に回収する(図3)。図3では、粒子保持装置100に設けた電極基板32を取り外したのち、回収手段であるマイクロマニピュレーター400を利用して保持部60に保持された粒子を吸引後、あらかじめ用意した回収チューブなどに吐出して前記粒子を回収する。
(2) Recovery Step of Retained Particles The target particles 70 and the contaminating particles 80 held in the holding unit 60 are simultaneously recovered by using the recovery means 400 (FIG. 3). In FIG. 3, after removing the electrode substrate 32 provided in the particle holding device 100, the particles held in the holding portion 60 are sucked by using the micromanipulator 400 which is a collecting means, and then discharged into a recovery tube or the like prepared in advance. Then, the particles are collected.

なお粒子回収にあたり、保持部60に保持された標的粒子70および/または夾雑粒子80を、これら粒子が有する特徴に基づき識別してもよい。例えば、
明視野像、蛍光画像、化学発光画像といった標的粒子の光学的特徴に基づき識別する場合は、光学検出器や光学顕微鏡などの光学測定器を用いて検出すればよく、
標的粒子の弾性や粘性といった特徴に基づき識別する場合は、超音波顕微鏡などの超音波測定器を用いて検出すればよく、
放射性同位元素を標識した標的粒子など標的粒子の放射化学的特徴に基づき識別する場合は、シンチレーション検出器などの放射線検出器を用いて検出すればよく、
標的粒子の熱応答性や熱物性に基づき識別する場合は、当該熱応答性や熱物性を検出可能な装置を用いて検出すればよい。
In collecting the particles, the target particles 70 and / or the contaminating particles 80 held in the holding unit 60 may be identified based on the characteristics of these particles. For example
When identifying based on the optical characteristics of the target particle such as a bright-field image, a fluorescence image, or a chemiluminescent image, the detection may be performed using an optical measuring instrument such as an optical detector or an optical microscope.
When identifying based on the characteristics such as elasticity and viscosity of the target particle, it may be detected using an ultrasonic measuring instrument such as an ultrasonic microscope.
When identifying based on the radiochemical characteristics of target particles such as target particles labeled with radioisotopes, detection may be performed using a radiation detector such as a scintillation detector.
When identifying based on the thermal responsiveness and thermal physical characteristics of the target particles, the thermal responsiveness and thermal physical characteristics may be detected using a detectable device.

また前記標的粒子および/または前記夾雑粒子の識別を行なう際に、これら粒子が有する特徴に基づいて粒子を標識する操作を行なってから検出しても良い。一例として、粒子が生体材料からなる粒子の場合には、抗原−抗体、レセプター−ホルモン、レセプター−リガンド、レクチン−糖鎖(炭水化物)、FcレセプターまたはマウスIgG−Protein A、アビジン−ビオチン、ストレプトアビジン−ビオチンおよびウイルス−レセプターなどの相互作用を利用して標的粒子および/または夾雑粒子を識別できる。具体例として、標的粒子が細胞の場合には、当該細胞をDAPI(4’,6−DiAmidino−2−PhenylIndole)などの核酸標識試薬や、PE(フィコエリスリン)などの蛍光物質を結合した抗体を用いて標識し、蛍光顕微鏡200を用いて検出すればよい(図2)。 Further, when identifying the target particles and / or the contaminating particles, the particles may be labeled based on the characteristics of these particles before detection. As an example, when the particle is a particle made of biological material, antigen-antibody, receptor-hormone, receptor-ligand, lectin-sugar chain (carbohydrate), Fc receptor or mouse IgG-Protein A, avidin-biotin, streptavidin Interactions such as-biotin and virus-receptors can be used to identify target and / or contaminant particles. As a specific example, when the target particle is a cell, the cell is bound with a nucleic acid labeling reagent such as DAPI (4', 6-DiAmidino-2-PhenylIndole) or a fluorescent substance such as PE (phycoerythrin). It may be labeled with a fluorescence microscope 200 and detected with a fluorescence microscope 200 (FIG. 2).

本発明では、保持部60に保持された標的粒子70と夾雑粒子80とを同時に回収することで、特別な熟練や煩雑な操作を必要とせずに、簡便かつ迅速に標的粒子を回収できる。本工程は、標的細胞70と夾雑細胞80を同時に回収できる方法であれば、特に限定はない。一例として、
(I)図3に示すように、マイクロマニピュレーター400を用いて一つの保持部に保持された一つ以上の標的粒子70および一つ以上の夾雑粒子80を同時に回収してもよいし、
(II)複数の保持部60に保持された標的粒子70および夾雑粒子80を、マイクロマニピュレーター400を移動させながら連続的に回収してもよい。
なお操作の簡便性の観点からは、前記(I)の回収方法が好ましい。また後述する標的粒子の性状解析の観点から、本工程で回収する標的粒子70と夾雑粒子80との比率は、回収する総粒子数に対する標的粒子70の割合(標的粒子70の純度)が20%から80%となるように回収すると好ましい。
In the present invention, by simultaneously collecting the target particles 70 and the contaminating particles 80 held in the holding unit 60, the target particles can be easily and quickly recovered without requiring special skill or complicated operation. This step is not particularly limited as long as it is a method capable of simultaneously recovering the target cells 70 and the contaminating cells 80. As an example,
(I) As shown in FIG. 3, one or more target particles 70 and one or more contaminant particles 80 held in one holding portion may be simultaneously collected by using a micromanipulator 400.
(II) The target particles 70 and the contaminating particles 80 held by the plurality of holding portions 60 may be continuously collected while moving the micromanipulator 400.
From the viewpoint of ease of operation, the recovery method (I) described above is preferable. Further, from the viewpoint of property analysis of the target particles described later, the ratio of the target particles 70 to the contaminant particles 80 recovered in this step is 20% of the ratio of the target particles 70 to the total number of particles to be recovered (purity of the target particles 70). It is preferable to collect the particles so as to be 80%.

(3)標的粒子の性状解析工程
保持部60から回収した標的粒子70の性状解析を、同時に回収した夾雑粒子80の存在下で行なう。なお前記解析結果を、夾雑粒子80単独での性状解析結果で差し引くと、標的粒子70の性状を明確に解析できるため、好ましい。
(3) Property Analysis Step of Target Particles The property analysis of the target particles 70 recovered from the holding unit 60 is performed in the presence of the contaminating particles 80 recovered at the same time. It is preferable to subtract the analysis result from the property analysis result of the contaminant particle 80 alone because the property of the target particle 70 can be clearly analyzed.

標的粒子を含む試料が血中循環腫瘍細胞(CTC)を含む血液試料である場合の好ましい解析方法の一例を以下に説明する。
(i)保持部60から回収したCTC(標的粒子)および白血球(夾雑粒子)を含む試料に対して、全ゲノム増幅やライブラリー調製を行ない、次世代シーケンサーを用いて遺伝子変異を検出する。
(ii)別途(i)と同様な方法で、白血球単独の遺伝子変異を検出する。
(iii)(i)で検出した遺伝子変異から(ii)で検出した遺伝子変異を差し引くことで、CTC単独の遺伝子変異を検出する。
An example of a preferable analysis method when the sample containing the target particles is a blood sample containing blood circulating tumor cells (CTC) will be described below.
(I) Whole-genome amplification and library preparation are performed on a sample containing CTC (target particles) and leukocytes (contamination particles) collected from the holding unit 60, and gene mutations are detected using a next-generation sequencer.
(Ii) Separately, the gene mutation of leukocyte alone is detected by the same method as in (i).
(Iii) By subtracting the gene mutation detected in (ii) from the gene mutation detected in (i), the gene mutation of CTC alone is detected.

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1 白血球とがん細胞株との遺伝子変異の比較
以下に示す方法で、健常者白血球の集団およびがん細胞株の集団から、それぞれ遺伝子変異を検出した。
Example 1 Comparison of gene mutations between leukocytes and cancer cell lines Gene mutations were detected in a population of healthy leukocytes and a population of cancer cell lines by the methods shown below.

(1)インフォームドコンセントを得て取得した健常者血液0.5mLに、塩化アンモニウムを主成分とする赤血球破砕液を7.5mL添加し、室温で5分間静置することで赤血球を破砕した。その後、900×gで5分間遠心分離して上清を除去後、細胞ペレットをPBS(リン酸緩衝生理食塩水)に再懸濁することで洗浄した。 (1) 7.5 mL of erythrocyte crushing solution containing ammonium chloride as a main component was added to 0.5 mL of healthy person blood obtained by obtaining informed consent, and the erythrocytes were crushed by allowing to stand at room temperature for 5 minutes. Then, the cells were washed by centrifugation at 900 × g for 5 minutes to remove the supernatant, and then resuspending the cell pellet in PBS (phosphate buffered saline).

(2)(1)で取得した細胞懸濁液を、900×gで5分間遠心分離し、上清を除去した。残った細胞ペレットを、1%(w/v)ホルムアルデヒドを含むPBS(以下、「細胞固定試薬」とも表記)1mLに懸濁し、10分間静置することで細胞を固定した。その後、600×gで5分間遠心分離して上清を除去後、細胞ペレットをPBSに再懸濁することで洗浄した。 (2) The cell suspension obtained in (1) was centrifuged at 900 × g for 5 minutes, and the supernatant was removed. The remaining cell pellet was suspended in 1 mL of PBS containing 1% (w / v) formaldehyde (hereinafter, also referred to as "cell fixation reagent"), and the cells were fixed by allowing to stand for 10 minutes. Then, the cells were washed by centrifugation at 600 × g for 5 minutes to remove the supernatant, and then resuspending the cell pellet in PBS.

(3)24穴マイクロプレートで培養した肺がん細胞株(H1975株)をトリプシンで剥離し、マイクロチューブに回収した。600×gで5分間遠心分離して上清を除去後、細胞ペレットをPBSに再懸濁することで洗浄した。 (3) A lung cancer cell line (H1975 strain) cultured on a 24-well microplate was exfoliated with trypsin and collected in a microtube. After centrifuging at 600 xg for 5 minutes to remove the supernatant, the cell pellet was washed by resuspending in PBS.

(4)(2)で取得した白血球懸濁液、および(3)で取得したがん細胞株懸濁液から、NucleoSpin Tissue(タカラバイオ社製)を用いて、それぞれゲノムDNAを抽出した。 (4) Genomic DNA was extracted from the leukocyte suspension obtained in (2) and the cancer cell line suspension obtained in (3) using NucleoSpin Tissue (manufactured by Takara Bio Inc.).

(5)(4)で取得した各ゲノムDNAに対して、Ion AmpliSeq Cancer Hotspot Panel v2(以下、CHPv2)およびIon AmpliSeq Library Kit Plus(いずれもThermo Fisher Scientific社製)を用いたライブラリー調製を行ない、Ion S5(Thermo Fisher Scientific社製)を用いて遺伝子変異解析を実施した。 (5) For each genomic DNA obtained in (4), Ion AmpliSeq Cancer Hotspot Panel v2 (hereinafter, CHPv2) and Ion AmpliSeq Library Kit Plus (both prepared by Thermo Fisher Scientific) were used. , Ion S5 (manufactured by Thermo Fisher Scientific) was used for gene mutation analysis.

表1に、健常者白血球の集団およびがん細胞株の集団からそれぞれ検出した、Frequency 10%以上の変異を示す。4番染色体(chr4)55,141,055位(PDGFRA遺伝子)のA/G変異や、5番染色体(chr5)112,175,770位(APC遺伝子)のG/A変異などは、白血球とがん細胞株の両者から共通して検出された。一方、4番染色体(chr4)55,152,040位(PDGFRA遺伝子)のC/T変異や、7番染色体(chr7)55,249,063位(EGFR遺伝子)のG/A変異などは、がん細胞株からのみ検出されており、当該がん細胞株(H1975株)に特有の遺伝子変異であることが分かる。 Table 1 shows the mutations of Frequency 10% or more detected in the population of healthy leukocytes and the population of cancer cell lines, respectively. A / G mutations at positions 55,141,055 (PDGFRA gene) on chromosome 4 (chr4) and G / A mutations at positions 112,175,770 (APC gene) on chromosome 5 (chr5) are caused by leukocytes. It was commonly detected in both cell lines. On the other hand, the C / T mutation at positions 55,152,040 (PDGFRA gene) on chromosome 4 (chr4) and the G / A mutation at positions 55,249,063 (EGFR gene) on chromosome 7 (chr7) are It is detected only in the chromosomal cell line, and it can be seen that it is a gene mutation peculiar to the cancer cell line (H1975 strain).

実施例2 異種細胞混合試料からの遺伝子解析(その1)
以下に示す方法で、健常者白血球とがん細胞株との混合試料から、がん細胞株の遺伝子変異を検出した。
Example 2 Gene analysis from a mixed heterologous cell sample (Part 1)
Gene mutations in cancer cell lines were detected in a mixed sample of healthy leukocytes and cancer cell lines by the method shown below.

(1)インフォームドコンセントを得て取得した健常者血液3mLを、塩化アンモニウムを主成分とする赤血球破砕液で90mLまでメスアップし、室温で5分間静置することで赤血球を破砕した。その後、900×gで5分間遠心分離して上清を除去後、細胞ペレットをPEG−BSA(BSAとして0.1%(w/v))および280mMキシリトールを含む溶液(以下、「PEG−BSAキシリトール溶液」とも表記)で懸濁することで洗浄した。当該洗浄操作を3回繰り返した。 (1) 3 mL of healthy person blood obtained by obtaining informed consent was scalpel-up to 90 mL with an erythrocyte crushing solution containing ammonium chloride as a main component, and allowed to stand at room temperature for 5 minutes to crush erythrocytes. Then, after centrifuging at 900 × g for 5 minutes to remove the supernatant, the cell pellet was subjected to a solution containing PEG-BSA (0.1% (w / v) as BSA) and 280 mM xylitol (hereinafter, “PEG-BSA”). It was washed by suspending it with "xylitol solution"). The cleaning operation was repeated 3 times.

(2)24穴マイクロプレートで培養した肺がん細胞株(H1975株)をトリプシンで剥離し、マイクロチューブに回収した。600×gで5分間遠心分離を行なって上清を除去し、細胞ペレットを細胞培養培地1mLに再懸濁することで洗浄した。 (2) A lung cancer cell line (H1975 strain) cultured on a 24-well microplate was exfoliated with trypsin and collected in a microtube. The supernatant was removed by centrifugation at 600 xg for 5 minutes, and the cell pellet was washed by resuspending in 1 mL of cell culture medium.

(3)(2)で取得したがん細胞株懸濁液を600×gで5分間遠心分離して上清を除去後、細胞ペレットを塩化アンモニウムを主成分とする赤血球破砕液1mLで懸濁し、室温で5分間静置することで赤血球を破砕した。その後、900×gで5分間遠心分離して上清を除去後、細胞ペレットをPEG−BSAキシリトール溶液で懸濁することで洗浄した。当該洗浄操作を3回繰り返した。 (3) The cancer cell line suspension obtained in (2) was centrifuged at 600 × g for 5 minutes to remove the supernatant, and then the cell pellet was suspended in 1 mL of an erythrocyte crushing solution containing ammonium chloride as a main component. The erythrocytes were crushed by allowing them to stand at room temperature for 5 minutes. Then, after centrifuging at 900 × g for 5 minutes to remove the supernatant, the cell pellet was washed by suspending it in a PEG-BSA xylitol solution. The cleaning operation was repeated 3 times.

(4)(1)で取得した白血球懸濁液、および(3)で取得したがん細胞株懸濁液を、それぞれ図1および図2に示す粒子保持装置100に導入した。信号発生器50から電極基板31・32に交流電圧(1MHz、20Vp−p)を10分間印加することで、誘電泳動力300により前記装置が有する保持部60に白血球またはがん細胞株を保持させ、白血球を保持した保持装置、およびがん細胞を保持した保持装置を調製した。本実施例で用いた粒子保持装置100は、直径30μmの貫通孔12aを複数有した絶縁体12と直径30μmの貫通孔11aを複数有した遮光性のクロム膜(遮光部材11)と電極基板31とを上から絶縁体12−遮光部材11−電極基板31の順に密着して設け、さらに絶縁体12の上面に試料の導入口21、排出口22および貫通部23を有する厚さ1mmのスペーサー20を、スペーサー20の上面に電極基板32を、それぞれ密着して設けてなる装置である。なお貫通孔11a/12aおよび電極基板31により、直径30μm、深さ40μmからなる標的粒子70および夾雑粒子80を保持可能な保持部60が約30万個形成されている。 (4) The leukocyte suspension obtained in (1) and the cancer cell line suspension obtained in (3) were introduced into the particle retention device 100 shown in FIGS. 1 and 2, respectively. By applying an AC voltage (1 MHz, 20 Vp-p) from the signal generator 50 to the electrode substrates 31 and 32 for 10 minutes, the dielectrophoretic force 300 causes the holding portion 60 of the device to hold the leukocyte or cancer cell line. , A retention device that retained white blood cells, and a retention device that retained cancer cells were prepared. The particle holding device 100 used in this embodiment includes an insulator 12 having a plurality of through holes 12a having a diameter of 30 μm, a light-shielding chrome film (light-shielding member 11) having a plurality of through holes 11a having a diameter of 30 μm, and an electrode substrate 31. A spacer 20 having a thickness of 1 mm, which is provided in the order of the insulator 12-the light-shielding member 11-the electrode substrate 31 from the top, and further has a sample introduction port 21, a discharge port 22 and a penetration portion 23 on the upper surface of the insulator 12. Is a device in which an electrode substrate 32 is provided in close contact with each other on the upper surface of the spacer 20. The through holes 11a / 12a and the electrode substrate 31 form about 300,000 holding portions 60 capable of holding the target particles 70 and the contaminant particles 80 having a diameter of 30 μm and a depth of 40 μm.

(5)導入口21から、0.01%(w/v)ポリ−L−リジンを含む280mMキシリトール水溶液を、前記交流電圧を印加しながら導入し、3分間静置後、前記交流電圧の印加を停止し、排出口22から前記水溶液を吸引除去した。 (5) A 280 mM xylitol aqueous solution containing 0.01% (w / v) poly-L-lysine is introduced from the introduction port 21 while applying the AC voltage, allowed to stand for 3 minutes, and then the AC voltage is applied. Was stopped, and the aqueous solution was sucked and removed from the discharge port 22.

(6)導入口21から細胞固定試薬を導入し、10分間静置することで細胞を固定した。その後、排出口22から細胞固定試薬を吸引除去し、導入口21からPBS−T(Phosphate buffered saline with Tween20)を導入することで、残留した細胞固定試薬を洗浄した。 (6) The cell-fixing reagent was introduced from the introduction port 21 and allowed to stand for 10 minutes to fix the cells. Then, the cell-fixing reagent was aspirated and removed from the discharge port 22, and PBS-T (Phosphate buffered saline with Tween 20) was introduced from the introduction port 21 to wash the remaining cell-fixing reagent.

(7)導入口21から95%(w/v)エタノールを含む水溶液(以下、膜透過試薬)を導入し、10分間静置することで細胞の膜透過処理を行なった。その後、排出口22から細胞固定試薬を吸引除去し、導入口21からPBS−Tを導入することで、残留した膜透過試薬を洗浄した。 (7) An aqueous solution containing 95% (w / v) ethanol (hereinafter referred to as a membrane permeation reagent) was introduced from the introduction port 21 and allowed to stand for 10 minutes to perform membrane permeation treatment of cells. Then, the cell-fixing reagent was aspirated and removed from the discharge port 22, and PBS-T was introduced from the introduction port 21 to wash the residual membrane permeation reagent.

(8)導入口21からDAPI(4’,6−DiAmidino−2−PhenylIndole)(同仁化学研究所社製)を混合した細胞染色試薬850μLを導入し、20分静置することで細胞を標識した。その後、排出口22から細胞染色試薬を吸引除去し、導入口21からPBS−Tを導入することで、残留した細胞染色試薬を洗浄した。 (8) 850 μL of a cell staining reagent mixed with DAPI (4', 6-DiAmidino-2-Phenyl Industry) (manufactured by Dojin Chemical Research Institute) was introduced from the introduction port 21, and the cells were labeled by allowing to stand for 20 minutes. .. Then, the cell staining reagent was aspirated and removed from the discharge port 22, and PBS-T was introduced from the introduction port 21 to wash the remaining cell staining reagent.

(9)蛍光顕微鏡200(Olympus社製IX71)を用いて、保持部60に保持されたDAPI陽性細胞(白血球またはがん細胞株)を検出後、図3に示すように、吸引手段であるマイクロマニピュレーター400を用いて、上面の電極基板32を取り外した粒子保持装置100の保持部60に保持された白血球またはがん細胞株を吸引した。吸引した白血球またはがん細胞株を、がん細胞数:白血球数の比が1:1または1:2となるよう0.2mLマイクロチューブヘ吐出して混合することで、異種細胞混合試料を調製した。 (9) After detecting DAPI-positive cells (white blood cells or cancer cell lines) held in the holding portion 60 using a fluorescence microscope 200 (IX71 manufactured by Olympus Corporation), as shown in FIG. 3, micro is a suction means. Using the manipulator 400, the leukocyte or cancer cell line held in the holding portion 60 of the particle holding device 100 from which the electrode substrate 32 on the upper surface was removed was aspirated. A heterologous cell mixed sample is prepared by discharging the aspirated leukocyte or cancer cell line into a 0.2 mL microtube so that the ratio of cancer cell number: leukocyte count is 1: 1 or 1: 2 and mixing them. did.

(10)Ampli1 WGAキット(シリコン バイオシステムズ社製)を用いて、混合試料中の細胞の全ゲノム増幅を実施した。その後、取得した全ゲノム増幅産物に対して、CHPv2およびIon AmpliSeq Library Kit Plus(いずれもThermo Fisher Scientific社製)によるライブラリー調製を行ない、Ion S5(Thermo Fisher Scientific社製)を用いて遺伝子変異を解析した。 (10) Whole genome amplification of cells in a mixed sample was performed using an Ampli1 WGA kit (manufactured by Silicon Biosystems). Then, for the obtained whole genome amplification product, a library was prepared by CHPv2 and Ion AmpliSeq Library Kit Plus (both manufactured by Thermo Fisher Scientific), and Ion S5 (manufactured by Thermo Fisher Scientific) was used. Analyzed.

(11)(10)で検出された混合試料の遺伝子変異から、実施例1で健常者白血球集団からの遺伝子変異解析により検出した遺伝子変異(すなわち表1中、「変異の有無(白血球)」欄に丸がついている変異)を差し引くことで、がん細胞株(H1975株)特有の変異を検出した。 (11) From the gene mutation of the mixed sample detected in (10), the gene mutation detected by the gene mutation analysis from the healthy subject leukocyte population in Example 1 (that is, in Table 1, "presence or absence of mutation (leukocyte)" column By subtracting the mutation with a circle in, a mutation peculiar to the cancer cell line (H1975 strain) was detected.

表2に、実施例1で見出したがん細胞株(H1975株)特有の遺伝子変異(Frequency 10%以上)の検出結果を示す。なお本実施例では、異種細胞混合試料の調製をそれぞれ6回実施しており、各調製ごとの結果をaからf欄で示している。がん細胞株と白血球とを1:1で回収した試料(がん細胞の純度50%)では、6回調製したうちの3回で、実施例1で見出したがん細胞株(H1975株)特有の遺伝子変異を検出できた。また、がん細胞株と白血球とを1:2で回収した試料(がん細胞の純度33%)であっても、6回調製したうちの1回で、実施例1で見出したがん細胞株(H1975株)特有の遺伝子変異を検出できた。 Table 2 shows the detection results of the gene mutation (Frequency 10% or more) peculiar to the cancer cell line (H1975 strain) found in Example 1. In this example, the heterologous cell mixed sample was prepared 6 times each, and the results for each preparation are shown in columns a to f. In the sample in which the cancer cell line and the leukocyte were recovered 1: 1 (cancer cell purity 50%), the cancer cell line (H1975 strain) found in Example 1 was prepared 3 times out of 6 times. A peculiar gene mutation could be detected. Further, even in a sample in which a cancer cell line and leukocytes were recovered at a ratio of 1: 2 (cancer cell purity 33%), the cancer cells found in Example 1 were used once out of six preparations. A gene mutation peculiar to the strain (H1975 strain) could be detected.

以上の結果から、試料中に含まれる標的粒子(がん細胞)を解析する際、当該標的粒子を前記試料中に含まれる夾雑粒子(白血球)と混合した状態で回収しても、当該混合状態での性状解析結果から、夾雑粒子(白血球)単独での性状解析結果を差し引くことで、標的粒子(がん細胞)を解析できることがわかる。 From the above results, when analyzing the target particles (cancer cells) contained in the sample, even if the target particles are collected in a state of being mixed with the contaminating particles (white blood cells) contained in the sample, the mixed state is obtained. It can be seen that the target particles (cancer cells) can be analyzed by subtracting the property analysis results of the contaminating particles (white blood cells) alone from the property analysis results of.

実施例3 異種細胞混合試料からの遺伝子解析(その2)
実施例2より、標的粒子と夾雑粒子との混合試料の性状解析結果から、標的粒子を解析できることがわかったことから、標的粒子の純度が実施例2より低い試料であっても、標的粒子を解析できるか、検証した。
Example 3 Gene analysis from a mixed heterologous cell sample (Part 2)
From Example 2, it was found that the target particles could be analyzed from the property analysis results of the mixed sample of the target particles and the contaminating particles. Therefore, even if the sample has a lower purity than that of Example 2, the target particles can be used. It was verified whether it could be analyzed.

(1)インフォームドコンセントを得て取得した健常者血液0.5mLに、塩化アンモニウムを主成分とする赤血球破砕液を7.5mL添加し、室温で5分間静置することで赤血球を破砕した。その後、900×gで5分間遠心分離して上清を除去し、細胞ペレットをPBSに再懸濁することで洗浄した。 (1) 7.5 mL of erythrocyte crushing solution containing ammonium chloride as a main component was added to 0.5 mL of healthy person blood obtained by obtaining informed consent, and the erythrocytes were crushed by allowing to stand at room temperature for 5 minutes. The cells were then washed by centrifugation at 900 xg for 5 minutes to remove the supernatant and resuspending the cell pellet in PBS.

(2)24穴マイクロプレートで培養した肺がん細胞株(H1975株)をトリプシンで剥離し、マイクロチューブに回収した。600×gで5分間遠心分離して上清を除去し、細胞ペレットを細胞培養用培地1mLに再懸濁することで洗浄した。 (2) A lung cancer cell line (H1975 strain) cultured on a 24-well microplate was exfoliated with trypsin and collected in a microtube. The supernatant was removed by centrifugation at 600 xg for 5 minutes, and the cell pellet was washed by resuspending in 1 mL of cell culture medium.

(3)(1)で取得した白血球懸濁液および(2)で取得したがん細胞株懸濁液を、それぞれ900×gで5分間遠心分離し、上清を除去した。残った各細胞ペレットを、細胞固定試薬1mLに懸濁し、5分間静置することで細胞を固定した。その後、600×gで5分間遠心分離して上清を除去し、細胞ペレットをPBSに懸濁することで洗浄した。 (3) The leukocyte suspension obtained in (1) and the cancer cell line suspension obtained in (2) were centrifuged at 900 × g for 5 minutes, respectively, and the supernatant was removed. Each of the remaining cell pellets was suspended in 1 mL of the cell fixation reagent and allowed to stand for 5 minutes to fix the cells. The supernatant was then removed by centrifugation at 600 xg for 5 minutes and the cell pellet was washed by suspension in PBS.

(4)(3)の各細胞懸濁液を600×gで5分間遠心分離した後、上清を除去し、膜透過試薬1mLに懸濁して、5分間静置することで細胞の膜透過処理を行なった。その後、600×gで5分間、室温で遠心分離して上清を除去し、細胞ペレットをPBSに懸濁することで洗浄した。 (4) After each cell suspension of (3) is centrifuged at 600 × g for 5 minutes, the supernatant is removed, suspended in 1 mL of a membrane permeation reagent, and allowed to stand for 5 minutes to permeate the cell membrane. Processing was performed. The cells were then washed by centrifugation at 600 xg for 5 minutes at room temperature to remove the supernatant and suspending the cell pellet in PBS.

(5)(4)の各細胞懸濁液を600×gで5分間遠心分離した後、上清を除去し、DAPIを混合した細胞染色液1mLに懸濁して、20分静置することで細胞を標識した。その後、600×gで5分間、室温で遠心分離して上清を除去し、細胞ペレットをPBSに懸濁することで洗浄した。 (5) After centrifuging each cell suspension of (4) at 600 × g for 5 minutes, the supernatant is removed, suspended in 1 mL of a cell stain mixed with DAPI, and allowed to stand for 20 minutes. The cells were labeled. The cells were then washed by centrifugation at 600 xg for 5 minutes at room temperature to remove the supernatant and suspending the cell pellet in PBS.

(6)(5)の各細胞懸濁液を600×gで5分間遠心分離した後、上清を除去し、300mMマンニトール溶液へ懸濁した。得られた白血球懸濁液およびがん細胞株懸濁液の一部を回収して、蛍光顕微鏡を用いたセルカウントに基づき細胞数を算出した。当該算出結果に基づき、がん細胞数:白血球数が1:1または1:5となるよう、各懸濁液中の白血球とがん細胞株とを混合することで、異種細胞混合試料を調製した。 (6) Each cell suspension of (5) was centrifuged at 600 × g for 5 minutes, the supernatant was removed, and the suspension was suspended in a 300 mM mannitol solution. A part of the obtained leukocyte suspension and cancer cell line suspension was collected, and the number of cells was calculated based on the cell count using a fluorescence microscope. Based on the calculation result, a heterologous cell mixed sample is prepared by mixing the white blood cells in each suspension with the cancer cell line so that the number of cancer cells: the number of white blood cells is 1: 1 or 1: 5. did.

(7)実施例2の(10)および(11)に記載の方法に従い、(6)の異種細胞混合試料から標的細胞(がん細胞株(H1975株))特有の変異を検出した。 (7) According to the methods described in (10) and (11) of Example 2, mutations specific to the target cell (cancer cell line (H1975 strain)) were detected from the heterologous cell mixed sample of (6).

表3に、実施例1で見出したがん細胞株(H1975株)特有の遺伝子変異(Frequency 10%以上)の検出結果を示す。なお本実施例では、異種細胞混合試料の調製を2回実施しており、各調製ごとの結果をaおよびb欄で示している。がん細胞数:白血球数が1:1となるよう混合した試料(がん細胞株の純度50%)では、2回調製したうちの1回で、実施例1で見出したがん細胞株(H1975株)特有の遺伝子変異を検出できた。一方、がん細胞数:白血球数が1:5となるよう混合した試料(がん細胞株の純度17%)では、実施例1で見出したがん細胞株(H1975株)特有の遺伝子変異は検出できなかった。 Table 3 shows the detection results of the gene mutation (Frequency 10% or more) peculiar to the cancer cell line (H1975 strain) found in Example 1. In this example, the heterologous cell mixed sample was prepared twice, and the results for each preparation are shown in columns a and b. Cancer cell number: In the sample mixed so that the white blood cell count was 1: 1 (purity of the cancer cell line 50%), one of the two prepared samples was the cancer cell line found in Example 1 (cancer cell line). A gene mutation peculiar to the H1975 strain could be detected. On the other hand, in the sample mixed so that the number of cancer cells: the number of white blood cells was 1: 5 (purity of the cancer cell line 17%), the gene mutation peculiar to the cancer cell line (H1975 strain) found in Example 1 was found. Could not be detected.

以上の結果から、標的粒子(がん細胞)の解析を夾雑粒子(白血球)と混合した状態で行なう場合、前記混合試料中の標的粒子の純度が20%未満であると、標的粒子の解析が困難となるおそれがあることがわかる。 From the above results, when the target particles (cancer cells) are analyzed in a state of being mixed with the contaminating particles (white blood cells), if the purity of the target particles in the mixed sample is less than 20%, the analysis of the target particles can be performed. It turns out that it can be difficult.

実施例4 粒子導入数と保持部への粒子保持数との関係
粒子を含む試料を図1および図2に示す粒子保持装置100に導入する際の、導入する前記粒子数と保持部60への前記粒子の保持数との関係を確認した。
Example 4 Relationship between the number of particles introduced and the number of particles held in the holding unit When a sample containing particles is introduced into the particle holding device 100 shown in FIGS. 1 and 2, the number of particles to be introduced and the number of particles held in the holding unit 60 are introduced. The relationship with the number of retained particles was confirmed.

(1)インフォームドコンセントを得て取得した健常者血液3mLを、塩化アンモニウムを主成分とする赤血球破砕液で90mLまでメスアップし、室温で5分間静置することで赤血球を破砕した。その後、900×gで5分間遠心分離して上清を除去し、細胞ペレットをPEG−BSA洗浄液30mLで再懸濁した。 (1) 3 mL of healthy person blood obtained by obtaining informed consent was scalpel-up to 90 mL with an erythrocyte crushing solution containing ammonium chloride as a main component, and allowed to stand at room temperature for 5 minutes to crush erythrocytes. Then, the cells were centrifuged at 900 × g for 5 minutes to remove the supernatant, and the cell pellet was resuspended in 30 mL of PEG-BSA washing solution.

(2)再懸濁液を600×gで5分間遠心分離して上清を除去し、細胞ペレットをPEG−BSAキシリトール溶液30mLで再懸濁することで洗浄した。当該洗浄操作を3回繰り返した。 (2) The resuspension was centrifuged at 600 × g for 5 minutes to remove the supernatant, and the cell pellet was washed by resuspending with 30 mL of PEG-BSA xylitol solution. The cleaning operation was repeated 3 times.

(3)(2)で取得した細胞懸濁液を、導入細胞数が10万個から200万個となるよう、それぞれ調製し、当該調製した細胞懸濁液を、図1および図2に示す粒子保持装置100に導入した。導入後、信号発生器50から電極基板31・32に交流電圧(1MHz、20Vp−p)を10分間印加することで、誘電泳動力300により前記装置が有する保持部60に細胞を保持させた。本実施例で用いた粒子保持装置100は、実施例2(4)に記載の装置と同じである。 (3) The cell suspension obtained in (2) was prepared so that the number of introduced cells was 100,000 to 2 million, and the prepared cell suspensions are shown in FIGS. 1 and 2. It was introduced into the particle holding device 100. After the introduction, an AC voltage (1 MHz, 20 Vpp) was applied from the signal generator 50 to the electrode substrates 31 and 32 for 10 minutes, so that the cells were held in the holding portion 60 of the device by the dielectrophoretic force 300. The particle holding device 100 used in this embodiment is the same as the device described in Example 2 (4).

(4)実施例2の(5)から(8)に記載の方法に従い、細胞の固定、膜透過および標識を行なった。 (4) Cell fixation, membrane permeation and labeling were carried out according to the methods described in Examples 2 (5) to (8).

(5)蛍光顕微鏡200(Olympus社製IX71)を用いて、各保持部60に保持された細胞を全て検出し、各保持部60に保持されている細胞の数を計測した。 (5) Using a fluorescence microscope 200 (IX71 manufactured by Olympus Corporation), all the cells held in each holding part 60 were detected, and the number of cells held in each holding part 60 was measured.

図4に、粒子保持装置100に導入した細胞数と、各保持部60に保持された細胞数との関係を示す。粒子保持装置100に20万個以上の細胞(すなわち、保持部60の数(30万個)の50%以上)を導入すれば、保持部60の5%以上に複数の細胞を保持できることが分かる。また、粒子保持装置100に68万個以上の細胞(すなわち、保持部60の数の2倍以上)を導入すると保持部60の40%以上に、100万個以上の細胞(すなわち、保持部60の数の3倍以上)を導入すると保持部60の60%以上に、それぞれ複数の細胞を保持できることが分かる。 FIG. 4 shows the relationship between the number of cells introduced into the particle holding device 100 and the number of cells held in each holding portion 60. It can be seen that if 200,000 or more cells (that is, 50% or more of the number of holding units 60 (300,000)) are introduced into the particle holding device 100, a plurality of cells can be held in 5% or more of the holding parts 60. .. Further, when 680,000 or more cells (that is, twice or more the number of the holding parts 60) are introduced into the particle holding device 100, 1 million or more cells (that is, the holding part 60) are introduced into 40% or more of the holding parts 60. It can be seen that a plurality of cells can be retained in 60% or more of the retention unit 60 by introducing (three times or more of the number of cells).

粒子保持装置100に20万個以上の細胞(すなわち、保持部60の数(30万個)の50%以上)を導入する場合、一つ以上の細胞を保持する凹部の割合は約50%であることから、細胞が保持されている凹部のうち、その10%以上に複数の細胞が保持されていることが分かる。例えば、血液試料中に含まれるCTCを標的粒子とする場合、CTCの数は一般的に1mLあたり数個から数十個の範囲となるため、細胞が保持されている凹部のうち、その10%以上に複数の細胞が保持されていれば、標的粒子であるCTCと夾雑粒子である白血球をそれぞれ一つ以上保持した凹部が存在し得る。 When 200,000 or more cells (that is, 50% or more of the number of holding portions 60 (300,000)) are introduced into the particle holding device 100, the ratio of the recesses that hold one or more cells is about 50%. From this, it can be seen that a plurality of cells are retained in 10% or more of the recesses in which the cells are retained. For example, when CTC contained in a blood sample is used as a target particle, the number of CTCs generally ranges from several to several tens per mL, and therefore 10% of the recesses in which cells are retained. If a plurality of cells are retained, there may be recesses that retain one or more of CTC, which is a target particle, and leukocyte, which is a contaminating particle.

実施例5 標的細胞の検出率
以下に示す方法で、健常者白血球(夾雑細胞)とがん細胞株(標的細胞)との混合試料からの標的細胞検出を試みた。
Example 5 Detection rate of target cells An attempt was made to detect target cells from a mixed sample of healthy leukocytes (contamination cells) and cancer cell lines (target cells) by the method shown below.

(1)インフォームドコンセントを得て取得した健常者血液3mLに、肺がん細胞株(PC9株)約200個を添加してスパイク検体を調製した。前記スパイク検体を、塩化アンモニウムを主成分とする赤血球破砕液で90mLまでメスアップし、室温で5分間静置することで赤血球を破砕した。その後、900×gで5分間遠心分離して上清を除去し、細胞ペレットをPEG−BSA洗浄液30mLで再懸濁した。 (1) Approximately 200 lung cancer cell lines (PC9 strain) were added to 3 mL of healthy subject blood obtained by obtaining informed consent to prepare a spike sample. The spike sample was scalpel-up to 90 mL with an erythrocyte crushing solution containing ammonium chloride as a main component, and allowed to stand at room temperature for 5 minutes to crush the erythrocytes. Then, the cells were centrifuged at 900 × g for 5 minutes to remove the supernatant, and the cell pellet was resuspended in 30 mL of PEG-BSA washing solution.

(2)再懸濁液を600×gで5分間遠心分離した後、上清を除去し、細胞ペレットをPEG−BSAキシリトール溶液30mLで再懸濁することで洗浄した。当該洗浄操作を3回繰り返した。 (2) The resuspension was centrifuged at 600 × g for 5 minutes, the supernatant was removed, and the cell pellet was washed by resuspending with 30 mL of PEG-BSA xylitol solution. The cleaning operation was repeated 3 times.

(3)(2)で取得した細胞懸濁液を、導入細胞数が2万5千個または100万個となるよう、それぞれ調製し、当該調製した細胞懸濁液を、実施例4(3)に記載の方法に従い、保持部60へ保持させた。 (3) The cell suspension obtained in (2) was prepared so that the number of introduced cells was 25,000 or 1 million, respectively, and the prepared cell suspension was used in Example 4 (3). ), The holding unit 60 was used to hold the cells.

(4)実施例2の(5)から(7)に示した方法に従い、細胞の固定および膜透過を行なった。 (4) Cell fixation and membrane permeation were performed according to the methods shown in (5) to (7) of Example 2.

(5)導入口21から、抗サイトケラチンマウス抗体(Miltenyi Biotec社製)を混合した細胞標識試薬850μLを導入し、30分静置することでがん細胞を標識した。その後、排出口22から細胞標識試薬を吸引除去し、導入口21からPBS−Tを導入することで、残留した細胞標識試薬を洗浄した。 (5) 850 μL of a cell labeling reagent mixed with an anti-cytokeratin mouse antibody (manufactured by Miltenyi Biotec) was introduced from the introduction port 21, and the cells were allowed to stand for 30 minutes to label cancer cells. Then, the cell labeling reagent was aspirated and removed from the discharge port 22, and PBS-T was introduced from the introduction port 21 to wash the residual cell labeling reagent.

(6)導入口21から、Alexa Fluor 488標識抗マウスIgG1抗体(Thermo Fisher Science社製)、PE(フィコエリスリン)標識抗CD45抗体(Beckman−Coulter製)およびDAPI(同仁化学研究所社製)を混合した細胞染色試薬850μLを導入し、20分静置することで細胞を染色した。その後、排出口22から細胞染色試薬を吸引除去し、導入口21からPBS−Tを導入することで、残留した細胞染色試薬を洗浄した。 (6) From the inlet 21, Alexa Fluor 488-labeled anti-mouse IgG1 antibody (manufactured by Thermo Fisher Science), PE (phycoerythrin) -labeled anti-CD45 antibody (manufactured by Beckman-Coulter) and DAPI (manufactured by Dojin Chemical Research Institute). 850 μL of the cell staining reagent mixed with the above was introduced, and the cells were stained by allowing to stand for 20 minutes. Then, the cell staining reagent was aspirated and removed from the discharge port 22, and PBS-T was introduced from the introduction port 21 to wash the remaining cell staining reagent.

(7)蛍光顕微鏡200(Olympus社製IX71)を用いて、保持部60に保持された標的粒子70および夾雑粒子80全てを検出し、以下の基準で、保持部60に保持されている標的粒子および夾雑粒子の数を計測した。
標的粒子(がん細胞株):DAPIで染色され(細胞核を有し)、Alexa Fluor 488で染色され(サイトケラチンを発現し)、かつPEでは染色されない(CD45を発現しない)細胞
夾雑粒子(白血球):DAPIで染色され(細胞核を有し)、PEで染色され(CD45を発現する)、かつAlexa Fluor 488では染色されない(サイトケラチンを発現しない)細胞
表4に、粒子保持装置100に導入した細胞数と、標的粒子(がん細胞株)の検出率の関係を示す。ここで検出率とは、(1)で健常者血液に添加したがん細胞株の数((3)の懸濁液調製時の希釈を加味した数)に対する、(7)で検出されたがん細胞数の割合を表す。粒子保持装置への導入細胞数に関わらず、希少な標的細胞を高い検出率で検出できることが分かる。
(7) Using a fluorescence microscope 200 (IX71 manufactured by Olympus Corporation), all the target particles 70 and the contaminant particles 80 held in the holding unit 60 are detected, and the target particles held in the holding unit 60 are based on the following criteria. And the number of contaminant particles was counted.
Target particles (cancer cell line): Cell contaminating particles (leukocytes) stained with DAPI (having cell nuclei), stained with Alexa Fluor 488 (expressing cytokeratin), and not stained with PE (not expressing CD45). ): Cells stained with DAPI (having cell nuclei), stained with PE (expressing CD45) and not stained with Alexa Fluor 488 (not expressing cytokeratin), introduced into particle retention device 100 on Table 4. The relationship between the number of cells and the detection rate of target particles (cancer cell lines) is shown. Here, the detection rate is the number detected in (7) with respect to the number of cancer cell lines added to the blood of healthy subjects in (1) (the number including the dilution in the suspension preparation of (3)). Represents the percentage of cells. It can be seen that rare target cells can be detected with a high detection rate regardless of the number of cells introduced into the particle retention device.

100:粒子保持装置
11:遮光部材
12:絶縁体
11a・12a:貫通孔
20:スペーサー
21:導入口
22:排出口
23:貫通部
31・32:電極基板
40:導線
50:信号発生器
60:保持部
70:標的粒子
80:夾雑粒子
200:蛍光顕微鏡
300:誘電泳動力
400:吸引手段(マイクロマニピュレーター)
100: Particle holding device 11: Light-shielding member 12: Insulators 11a and 12a: Through hole 20: Spacer 21: Introductory port 22: Discharge port 23: Penetrating part 31 and 32: Electrode substrate 40: Conductor 50: Signal generator 60: Holding part 70: Target particles 80: Contaminating particles 200: Fluorescence microscope 300: Dielectrophoretic force 400: Aspiration means (micromanipulator)

Claims (7)

(1)標的粒子を含む試料を保持部に導入し、当該標的粒子を前記保持部に保持させる工程と、
(2)保持された標的粒子を回収手段で回収する工程と、
(3)回収した標的粒子の性状を解析する工程と、
を含む試料中に含まれる標的粒子の解析方法において、
(2)の工程が、前記標的粒子と前記保持部に保持された試料中に含まれる夾雑粒子とを同時に回収する工程であって、
(3)の工程が、回収した夾雑粒子の存在下での標的粒子の性状解析を含む工程である、
前記解析方法。
(1) A step of introducing a sample containing target particles into a holding portion and holding the target particles in the holding portion.
(2) A step of recovering the retained target particles by a recovery means and
(3) The process of analyzing the properties of the recovered target particles and
In the method of analyzing the target particles contained in the sample containing
The step (2) is a step of simultaneously recovering the target particles and the contaminating particles contained in the sample held in the holding portion.
The step (3) is a step including property analysis of the target particles in the presence of the recovered contaminant particles.
The analysis method.
(2)の工程が、標的粒子の純度が20%から80%となるように回収する工程である、請求項1に記載の方法。 The method according to claim 1, wherein the step (2) is a step of recovering the target particles so that the purity of the target particles is 20% to 80%. 保持部が、試料中に含まれる標的粒子および夾雑粒子を保持可能な凹部である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the holding portion is a recess capable of holding target particles and contaminant particles contained in the sample. (1)の工程が、標的粒子を含む試料を、当該試料中に含まれる標的粒子および夾雑粒子を保持可能な凹部を複数設けた粒子保持装置に導入し、前記保持装置に設けた凹部のうち少なくとも5%の凹部に複数の粒子を保持させる工程であり、
(2)の工程が前記複数の粒子を保持した凹部のうち、標的粒子および夾雑粒子をそれぞれ一つ以上保持した凹部から回収手段で回収する工程である、請求項3に記載の方法。
In the step (1), the sample containing the target particles is introduced into a particle holding device provided with a plurality of recesses capable of holding the target particles and the contaminating particles contained in the sample, and among the recesses provided in the holding device. It is a step of holding a plurality of particles in a recess of at least 5%.
The method according to claim 3, wherein the step (2) is a step of recovering the target particles and the contaminating particles from the recesses holding one or more of the plurality of particles by the collecting means.
(3)の工程が、夾雑粒子存在下での標的粒子の性状解析結果から、夾雑粒子単独での性状解析結果を差し引く工程である、請求項1から4に記載の方法。 The method according to claims 1 to 4, wherein the step (3) is a step of subtracting the property analysis result of the contaminating particles alone from the property analysis result of the target particles in the presence of the contaminating particles. 標的粒子が生体材料からなる粒子である、請求項1から5に記載の方法。 The method according to claims 1 to 5, wherein the target particle is a particle made of a biomaterial. (3)の工程における性状解析が、生体材料からなる粒子が有する核酸の塩基配列解析である、請求項6に記載の方法。 The method according to claim 6, wherein the property analysis in the step (3) is a base sequence analysis of nucleic acid contained in particles made of a biomaterial.
JP2019136690A 2019-07-25 2019-07-25 Method for analyzing target particles Pending JP2021019513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136690A JP2021019513A (en) 2019-07-25 2019-07-25 Method for analyzing target particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136690A JP2021019513A (en) 2019-07-25 2019-07-25 Method for analyzing target particles

Publications (1)

Publication Number Publication Date
JP2021019513A true JP2021019513A (en) 2021-02-18

Family

ID=74572912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136690A Pending JP2021019513A (en) 2019-07-25 2019-07-25 Method for analyzing target particles

Country Status (1)

Country Link
JP (1) JP2021019513A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138658A (en) * 2012-01-05 2013-07-18 Hitachi Chemical Co Ltd Cell trapping device
JP2018028457A (en) * 2016-08-16 2018-02-22 東ソー株式会社 Method and device for collecting target particle
JP2018059935A (en) * 2016-10-06 2018-04-12 アークレイ株式会社 Method of collecting rare cell
JP2019060869A (en) * 2017-09-26 2019-04-18 東ソー株式会社 Factor related to cancer transfer forming ability and prognosis prediction method of cancer patient using the factor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138658A (en) * 2012-01-05 2013-07-18 Hitachi Chemical Co Ltd Cell trapping device
JP2018028457A (en) * 2016-08-16 2018-02-22 東ソー株式会社 Method and device for collecting target particle
JP2018059935A (en) * 2016-10-06 2018-04-12 アークレイ株式会社 Method of collecting rare cell
JP2019060869A (en) * 2017-09-26 2019-04-18 東ソー株式会社 Factor related to cancer transfer forming ability and prognosis prediction method of cancer patient using the factor

Similar Documents

Publication Publication Date Title
Magnusson et al. Clinical-scale cell-surface-marker independent acoustic microfluidic enrichment of tumor cells from blood
US20110129931A1 (en) Microfluidic system for detecting a biological entity in a sample
US20180231555A1 (en) Systems and methods for isolating target particles and their use in diagnostic, prognostic, and therapeutic methods
CN103353476A (en) Ex-vivo multi-dimensional system for the separation and isolation of cells, vesicles, nanoparticles and biomarkers
JP2014533509A (en) Method, apparatus and kit for obtaining and analyzing cells
JP2004530877A (en) Method and apparatus for using optical forces for particle identification, characterization and / or sorting
US8900843B2 (en) Kit and method for the capture of tumor cells
Thomas et al. Image‐based sorting and negative dielectrophoresis for high purity cell and particle separation
TWI616534B (en) Method and device for purifying and separating blood circulation tumor cells using non-contact and automatic identification
Radfar et al. Single-cell analysis of circulating tumour cells: enabling technologies and clinical applications
JP6617516B2 (en) Method for detecting target cells contained in blood sample
Suzuki et al. Mechanical low-pass filtering of cells for detection of circulating tumor cells in whole blood
JP6686768B2 (en) Cell separation and collection method
Genshaft et al. Clinical implementation of single-cell RNA sequencing using liver fine needle aspirate tissue sampling and centralized processing captures compartment specific immuno-diversity
JP6686361B2 (en) Specimen preparation method for cell recovery
JP6822006B2 (en) Target particle recovery method and recovery device
JP6572547B2 (en) Fine particle recovery device
JP6421589B2 (en) Fine particle capture device
US20200016606A1 (en) Apparatus for performing contactless optically-induced dielectrophoresis for separation of circulating tumor cells
JP2021019513A (en) Method for analyzing target particles
JP2018059935A (en) Method of collecting rare cell
JP7413692B2 (en) Pretreatment method for samples containing cells
JP2018157812A (en) Detection method of cells included in sample
JP7443762B2 (en) How to retain cells contained in the sample
US20220349007A1 (en) Method of Culturing and Analyzing at Least One Cell in a Microchamber Configured to Allow for Optical Inspection of the at Least One Cell, a Device for Use in the Method, a System and a Computer Program for Performing One or More of the Steps of the Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231017