JP6677860B2 - Method for producing negative electrode structure for zinc secondary battery - Google Patents

Method for producing negative electrode structure for zinc secondary battery Download PDF

Info

Publication number
JP6677860B2
JP6677860B2 JP2019546649A JP2019546649A JP6677860B2 JP 6677860 B2 JP6677860 B2 JP 6677860B2 JP 2019546649 A JP2019546649 A JP 2019546649A JP 2019546649 A JP2019546649 A JP 2019546649A JP 6677860 B2 JP6677860 B2 JP 6677860B2
Authority
JP
Japan
Prior art keywords
ldh
negative electrode
separator
zinc
retaining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019546649A
Other languages
Japanese (ja)
Other versions
JPWO2019069762A1 (en
Inventor
淳宣 松矢
淳宣 松矢
裕一 権田
裕一 権田
鬼頭 賢信
賢信 鬼頭
毅 八木
毅 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2019069762A1 publication Critical patent/JPWO2019069762A1/en
Application granted granted Critical
Publication of JP6677860B2 publication Critical patent/JP6677860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、亜鉛二次電池用の負極構造体の製造方法に関するものである。   The present invention relates to a method for manufacturing a negative electrode structure for a zinc secondary battery.

ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。   In a zinc secondary battery such as a nickel zinc secondary battery and an air zinc secondary battery, metallic zinc precipitates from the negative electrode in the form of dendrites during charging, reaches the positive electrode through the voids of the separator such as a nonwoven fabric, and as a result, It is known to cause a short circuit. Such a short circuit caused by the zinc dendrite repeatedly shortens the charge / discharge life.

上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。さらに、特許文献3(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。   To address the above problems, batteries have been proposed that include a layered double hydroxide (LDH) separator that blocks penetration of zinc dendrites while selectively allowing hydroxide ions to permeate. For example, Patent Document 1 (WO 2013/118561) discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel zinc secondary battery. Patent Document 2 (International Publication No. 2016/076047) discloses a separator structure including an LDH separator fitted or joined to a resin outer frame. It is disclosed that the material has a high density enough to have water impermeability. This document also discloses that the LDH separator can be combined with a porous substrate. Furthermore, Patent Document 3 (WO 2016/068884) discloses various methods for forming a dense LDH film on the surface of a porous substrate to obtain a composite material (LDH separator). In this method, a starting substance capable of giving a starting point of LDH crystal growth is uniformly attached to a porous substrate, and the porous substrate is subjected to hydrothermal treatment in a raw material aqueous solution to form a dense LDH film on the surface of the porous substrate. Is formed.

国際公開第2013/118561号WO 2013/118561 国際公開第2016/076047号International Publication No. 2016/076047 国際公開第2016/067884号International Publication No. WO 2016/068884

上述したようなLDHセパレータを用いてニッケル亜鉛電池等の亜鉛二次電池を構成した場合、亜鉛デンドライトによる短絡等を防止できる。そして、この効果を最大限に発揮させるためには、LDHセパレータで正極と負極を確実に隔離することが望まれる。特に、かかる構成を確保しながら、高電圧や大電流を得るために、複数の正極及び複数の負極を組み合わせて積層電池を容易に組み立てることができれば極めて好都合である。しかしながら、従来の亜鉛二次電池におけるLDHセパレータによる正極と負極の隔離は、LDHセパレータと電池容器とを液密性を確保するように樹脂枠や接着剤等を用いて巧妙かつ入念に封止接合することにより行われており、電池構成や製造工程が複雑化しやすかった。このような電池構成や製造工程の複雑化は積層電池を構成する場合にはとりわけ顕著なものとなりうる。これは積層電池を構成する複数の単電池の各々に対して液密性確保のための封止接合を行う必要があるためである。   When a zinc secondary battery such as a nickel zinc battery is configured using the LDH separator as described above, a short circuit or the like due to zinc dendrite can be prevented. In order to maximize this effect, it is desired that the positive electrode and the negative electrode be reliably separated by the LDH separator. In particular, it is very advantageous if a stacked battery can be easily assembled by combining a plurality of positive electrodes and a plurality of negative electrodes in order to obtain a high voltage and a large current while securing such a configuration. However, the separation of the positive electrode and the negative electrode by the LDH separator in the conventional zinc secondary battery is performed by skillfully and carefully sealing the LDH separator and the battery container using a resin frame or an adhesive so as to ensure liquid tightness. The battery configuration and the manufacturing process were likely to be complicated. Such complication of the battery configuration and the manufacturing process can be particularly remarkable when a laminated battery is configured. This is because it is necessary to perform sealing joining for ensuring liquid tightness for each of the plurality of cells constituting the stacked battery.

本発明者らは、今般、負極活物質層の全体を保液部材及びLDHセパレータで覆う又は包み込むことにより、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)に適した負極構造体を効率良く製造できるとの知見を得た。また、そのようにして作製された負極構造体を用いることで、LDHセパレータと電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製できるとの知見も得た。   The present inventors have recently proposed a negative electrode structure suitable for a zinc secondary battery (in particular, a laminated battery thereof) capable of preventing zinc dendrite extension by covering or enclosing the entire negative electrode active material layer with a liquid retaining member and an LDH separator. I learned that the body can be manufactured efficiently. In addition, by using the negative electrode structure manufactured in such a manner, complicated sealing joining between the LDH separator and the battery container is not required, and the zinc secondary battery capable of preventing zinc dendrite extension (particularly, the laminated battery ) Was found to be extremely easy to produce with high productivity.

したがって、本発明の目的は、 亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することを可能とする負極構造体を効率良く製造することにある。   Accordingly, an object of the present invention is to efficiently manufacture a negative electrode structure that enables extremely easy and high productivity of a zinc secondary battery (in particular, a laminated battery thereof) capable of preventing zinc dendrite extension. It is in.

本発明の一態様によれば、亜鉛二次電池用の負極構造体の製造方法であって、
(a)亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む四辺形状の負極活物質層の全体を、それよりも大きいサイズの四辺形状の保液部材で覆う又は包み込んで、第一積層体を得る工程と、
(b)前記第一積層体の全体を、1辺で折り曲げられた1枚の四辺形状の層状複水酸化物(LDH)セパレータ又は折り曲げられていない少なくとも2枚の四辺形状のLDHセパレータで、前記負極活物質層の外縁からはみ出した重なり部分を前記外縁の全域にわたって形成するように挟み込んで、第二積層体を得る工程と、
(c)前記折り曲げられた1枚のLDHセパレータを用いる場合は前記第二積層体の折り曲げられた辺と隣接する少なくとも1辺の外縁に属する重なり部分を封止して、あるいは前記折り曲げられていない2枚のLDHセパレータを用いる場合は前記第二積層体の互いに隣接する少なくとも2辺の外縁に属する重なり部分を封止して、結果として、互いに隣接する少なくとも2辺の外縁が閉じられた負極構造体を得る工程と、
を含む、方法が提供される。
According to one embodiment of the present invention, a method for producing a negative electrode structure for a zinc secondary battery,
(A) The whole of the quadrilateral negative electrode active material layer including at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy, and a zinc compound is covered with a quadrilateral liquid retaining member having a larger size. Or wrapping and obtaining a first laminate,
(B) the whole of the first laminate is a single layered double hydroxide (LDH) separator bent at one side or at least two unfolded quadrilateral LDH separators, A step of sandwiching the overlapping portion protruding from the outer edge of the negative electrode active material layer so as to form over the entire area of the outer edge, to obtain a second laminate,
(C) In the case of using one bent LDH separator, an overlapped portion belonging to at least one outer edge adjacent to the bent side of the second laminate is sealed, or is not bent. When two LDH separators are used, the overlapping portion belonging to at least two outer edges adjacent to each other of the second laminate is sealed, and as a result, a negative electrode structure in which at least two outer edges adjacent to each other are closed Obtaining a body;
A method is provided, comprising:

本発明の製造方法により製造される負極構造体の一例を示す斜視図である。It is a perspective view showing an example of the negative electrode structure manufactured by the manufacturing method of the present invention. 図1Aに示される負極構造体の層構成を示す模式断面図である。FIG. 1B is a schematic cross-sectional view illustrating a layer configuration of the negative electrode structure illustrated in FIG. 1A. 本発明による負極構造体の製造方法の一例を説明する工程流れ図である。3 is a process flowchart illustrating an example of a method for manufacturing a negative electrode structure according to the present invention. 本発明による負極構造体の製造方法の他の一例を説明する工程流れ図である。4 is a process flowchart illustrating another example of the method for manufacturing a negative electrode structure according to the present invention. 本発明の製造方法により製造される負極構造体の一例におけるLDHセパレータで覆われる領域を説明するための模式図である。It is a schematic diagram for explaining the area covered with the LDH separator in an example of the negative electrode structure manufactured by the manufacturing method of the present invention. 例1で用いた電気化学測定系を示す模式断面図である。FIG. 2 is a schematic sectional view showing the electrochemical measurement system used in Example 1. 例1の緻密性判定試験で使用された測定用密閉容器の分解斜視図である。FIG. 3 is an exploded perspective view of the closed container for measurement used in the denseness determination test of Example 1. 例1の緻密性判定試験で使用された測定系の模式断面図である。FIG. 2 is a schematic cross-sectional view of a measurement system used in a denseness determination test of Example 1. 例1で使用されたHe透過度測定系の一例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of a He transmittance measurement system used in Example 1. 図7Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。FIG. 7B is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 7A and its peripheral configuration. 例1において作製されたLDHセパレータの断面微構造を示すSEM画像である。4 is an SEM image showing a cross-sectional microstructure of the LDH separator manufactured in Example 1.

負極構造体の製造方法
本発明の方法は、亜鉛二次電池用の負極構造体の製造方法に関するものである。図1A及び1Bに負極構造体の一例が示される。図1A及び1Bに示される負極構造体10は、負極活物質層12と、負極活物質層12の全体を覆う又は包み込む保液部材14と、負極活物質層12及び保液部材14の全体を覆う又は包み込むLDHセパレータ16とを備える。負極活物質層12は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。なお、本明細書において「LDHセパレータ」は、LDHを含むセパレータであって、専らLDHの水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。このように、負極活物質層12の全体を保液部材14及びLDHセパレータ16で覆う又は包み込むことにより、LDHセパレータと電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することを可能とする負極構造体を提供することができる。
The manufacturing method of a negative electrode structure TECHNICAL FIELD This invention relates to the manufacturing method of the negative electrode structure for zinc secondary batteries. 1A and 1B show an example of the negative electrode structure. The negative electrode structure 10 shown in FIGS. 1A and 1B includes a negative electrode active material layer 12, a liquid retaining member 14 that covers or wraps the entire negative electrode active material layer 12, and an entire negative electrode active material layer 12 and liquid retaining member 14. And an LDH separator 16 to cover or envelop. The negative electrode active material layer 12 includes at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy, and a zinc compound. In this specification, the “LDH separator” is defined as a separator containing LDH, which selectively allows hydroxide ions to pass exclusively using the hydroxide ion conductivity of LDH. In this way, by covering or enclosing the entire negative electrode active material layer 12 with the liquid retaining member 14 and the LDH separator 16, complicated sealing joining between the LDH separator and the battery container is unnecessary, and zinc dendrite extension can be prevented. It is possible to provide a negative electrode structure that enables extremely simple and highly productive zinc secondary batteries (especially stacked batteries).

すなわち、前述のとおり、従来の亜鉛二次電池におけるLDHセパレータによる正極と負極の隔離は、LDHセパレータと電池容器とを液密性を確保するように樹脂枠や接着剤等を用いて巧妙かつ入念に封止接合することにより行われており、電池構成や製造工程が複雑化しやすかった。このような電池構成や製造工程の複雑化は積層電池を構成する場合にはとりわけ顕著なものとなりうる。この点、本発明の方法によって製造される負極構造体10においては、負極活物質層12の全体が保液部材14及びLDHセパレータ16で覆う又は包み込まれているので、負極構造体10自体で亜鉛デンドライトによる短絡等を防止できる機能を備えている。しかも、負極構造体10は負極活物質層12とLDHセパレータ16との間に保液部材14を備えるため、負極構造体10内に電解液を注入すれば、亜鉛二次電池の負極室を亜鉛デンドライト伸展を防止可能な形で簡便に構成することができる。したがって、本発明の方法によって製造される負極構造体10を亜鉛二次電池の作製に採用する場合、正極板と負極構造体を積層するだけでLDHセパレータによる正極と負極の隔離を実現することができる。とりわけ、複数の単電池を備えた積層電池を作製する際には、正極板と負極構造体を交互に積層するだけで所望の構成を実現することができる点で極めて有利といえる。これは、LDHセパレータで正極と負極を隔離するために従来行われていた巧妙かつ入念な封止接合が不要になるからである。   That is, as described above, the separation of the positive electrode and the negative electrode by the LDH separator in the conventional zinc secondary battery is subtle and careful using a resin frame, an adhesive, or the like so as to ensure liquid tightness between the LDH separator and the battery container. In this case, the battery structure and the manufacturing process are likely to be complicated. Such complication of the battery configuration and the manufacturing process can be particularly remarkable when a laminated battery is configured. In this regard, in the negative electrode structure 10 manufactured by the method of the present invention, since the entire negative electrode active material layer 12 is covered or wrapped by the liquid retaining member 14 and the LDH separator 16, the negative electrode structure 10 itself uses zinc. It has a function that can prevent short circuits and the like due to dendrite. Moreover, since the negative electrode structure 10 includes the liquid retaining member 14 between the negative electrode active material layer 12 and the LDH separator 16, if an electrolyte is injected into the negative electrode structure 10, the negative electrode chamber of the zinc secondary battery will It can be simply configured in a form that can prevent dendrite extension. Therefore, when the negative electrode structure 10 manufactured by the method of the present invention is used for manufacturing a zinc secondary battery, it is possible to realize the separation between the positive electrode and the negative electrode by the LDH separator simply by laminating the positive electrode plate and the negative electrode structure. it can. In particular, when a stacked battery including a plurality of unit cells is manufactured, it can be said that it is extremely advantageous in that a desired configuration can be realized only by alternately stacking the positive electrode plates and the negative electrode structures. This is because the necessity of a clever and elaborate sealing connection conventionally performed to separate the positive electrode and the negative electrode with the LDH separator is eliminated.

本発明による負極構造体の製造方法は、図2及び3に示されるように、(a)負極活物質層12の全体を保液部材14で覆う又は包み込んで第一積層体11を得る工程と、(b)第一積層体11の全体をLDHセパレータ16で挟み込んで第二積層体18を得る工程と、(c)第二積層体18の所定の外縁Sを封止して負極構造体を得る工程を含む。なお、図2に示される製造方法は折り曲げられた1枚のLDHセパレータ16が用いられる一方、図3に示される製造方法は折り曲げられていない少なくとも2枚のLDHセパレータ16が用いられる。いずれにしても、これらの図に示されるように、負極活物質層12の全体を保液部材14及びLDHセパレータ16で覆う又は包み込むことにより、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)に適した負極構造体10を効率良く製造することができる。以下、各工程について具体的に説明する。   The method for manufacturing a negative electrode structure according to the present invention includes, as shown in FIGS. 2 and 3, (a) a step of covering or wrapping the entire negative electrode active material layer 12 with a liquid retaining member 14 to obtain a first laminate 11. (B) a step of sandwiching the entire first laminate 11 with an LDH separator 16 to obtain a second laminate 18, and (c) sealing a predetermined outer edge S of the second laminate 18 to form a negative electrode structure. Obtaining step. The manufacturing method shown in FIG. 2 uses one bent LDH separator 16, while the manufacturing method shown in FIG. 3 uses at least two unfolded LDH separators 16. In any case, as shown in these figures, a zinc secondary battery (particularly a zinc secondary battery capable of preventing zinc dendrite extension can be prevented by covering or enclosing the entire negative electrode active material layer 12 with a liquid retaining member 14 and an LDH separator 16). The negative electrode structure 10 suitable for the laminated battery) can be efficiently manufactured. Hereinafter, each step will be specifically described.

(a)保液部材の積層による第一積層体の作製
工程(a)においては、図2及び3に示されるように、負極活物質層12の全体を保液部材14で覆う又は包み込んで第一積層体11を得る(図中(a)を参照)。負極活物質層12は四辺形状(典型的には四角形状)であるが、保液部材14は負極活物質層12よりも大きいサイズの四辺形状(典型的には四角形状)である。このため、負極活物質層12の全体を保液部材14で覆う又は包み込むことができる。このように、負極活物質層12の全体を保液部材14が取り囲むことで、電解液が負極構造体10内に注入された場合に、負極活物質層12の周囲に電解液を常時望ましく保持することが可能となる。すなわち、負極活物質層12とLDHセパレータ16との間に電解液を万遍なく存在させることができ、負極活物質層12とLDHセパレータ16との間における水酸化物イオンの授受を効率良く行うことができる。
(A) Production of First Laminated Body by Lamination of Liquid Retaining Member In the step (a), as shown in FIGS. 2 and 3, the entire negative electrode active material layer 12 is covered or wrapped with the liquid retaining member 14, and One laminated body 11 is obtained (see (a) in the figure). The negative electrode active material layer 12 has a quadrilateral shape (typically a square shape), but the liquid retaining member 14 has a quadrilateral shape (typically a quadrilateral shape) larger than the negative electrode active material layer 12. Therefore, the entire negative electrode active material layer 12 can be covered or wrapped by the liquid retaining member 14. As described above, since the liquid retaining member 14 surrounds the entire negative electrode active material layer 12, the electrolyte is always desirably held around the negative electrode active material layer 12 when the electrolyte is injected into the negative electrode structure 10. It is possible to do. That is, the electrolytic solution can be uniformly present between the negative electrode active material layer 12 and the LDH separator 16, and the transfer of hydroxide ions between the negative electrode active material layer 12 and the LDH separator 16 can be performed efficiently. be able to.

負極活物質層12は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。すなわち、亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属及び酸化亜鉛の混合物がより好ましい。負極活物質層12はゲル状に構成してもよいし、電解液と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。   The negative electrode active material layer 12 includes at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy, and a zinc compound. That is, zinc may be contained in any form of zinc metal, a zinc compound, and a zinc alloy as long as it has electrochemical activity suitable for a negative electrode. Preferable examples of the negative electrode material include zinc oxide, zinc metal, calcium zincate and the like, and a mixture of zinc metal and zinc oxide is more preferable. The negative electrode active material layer 12 may be formed in a gel state, or may be mixed with an electrolytic solution to form a negative electrode mixture. For example, a gelled negative electrode can be easily obtained by adding an electrolytic solution and a thickener to the negative electrode active material. Examples of the thickener include polyvinyl alcohol, polyacrylate, CMC, alginic acid, and the like. Polyacrylic acid is preferable because of its excellent chemical resistance to strong alkalis.

亜鉛合金として、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。例えば、インジウムを0.01〜0.1質量%、ビスマスを0.005〜0.02質量%、アルミニウムを0.0035〜0.015質量%を含む亜鉛合金が水素ガス発生の抑制効果があるので好ましい。とりわけ、インジウムやビスマスは放電性能を向上させる点で有利である。亜鉛合金の負極への使用は、アルカリ性電解液中での自己溶解速度を遅くすることで、水素ガス発生を抑制して安全性を向上できる。   As the zinc alloy, a zinc alloy containing no mercury and lead, which is known as a non-melonized zinc alloy, can be used. For example, a zinc alloy containing 0.01 to 0.1% by mass of indium, 0.005 to 0.02% by mass of bismuth, and 0.0035 to 0.015% by mass of aluminum has an effect of suppressing hydrogen gas generation. It is preferred. In particular, indium and bismuth are advantageous in improving discharge performance. When a zinc alloy is used for a negative electrode, by reducing the rate of self-dissolution in an alkaline electrolyte, hydrogen gas generation can be suppressed and safety can be improved.

負極材料の形状は特に限定されないが、粉末状とすることが好ましく、それにより表面積が増大して大電流放電に対応可能となる。好ましい負極材料の平均粒径は、亜鉛合金の場合、短径で3〜100μmの範囲であり、この範囲内であると表面積が大きいことから大電流放電への対応に適するとともに、電解液及びゲル化剤と均一に混合しやすく、電池組み立て時の取り扱い性も良い。   Although the shape of the negative electrode material is not particularly limited, it is preferably in the form of a powder, whereby the surface area increases and it becomes possible to cope with a large current discharge. The average particle size of the preferred negative electrode material is, in the case of a zinc alloy, a short diameter in the range of 3 to 100 μm. It is easy to mix uniformly with the agent and has good handleability during battery assembly.

負極活物質層12が集電体13を伴っているのが好ましい。すなわち、負極活物質層12にはそれと接する集電体13が設けられるのが好ましい。特に、集電体13は負極活物質層12の1辺から延出する集電体延出部13aを有するのが好ましい。この場合、工程(a)が、集電体延出部13aの先端部分を保液部材14で覆わない又は包み込まないように行われることが望まれる。これは、集電体延出部13aの先端部分を保液部材14及びLDHセパレータ16で覆われない露出部分とし、この露出部分を介して集電体13(特に集電体延出部13a)を負極端子に望ましく接続可能とするためである。   It is preferable that the negative electrode active material layer 12 has a current collector 13. That is, the negative electrode active material layer 12 is preferably provided with the current collector 13 in contact with the negative electrode active material layer 12. In particular, the current collector 13 preferably has a current collector extension 13 a extending from one side of the negative electrode active material layer 12. In this case, it is desired that the step (a) is performed so that the liquid retaining member 14 does not cover or enclose the distal end portion of the current collector extension 13a. This is because the end portion of the current collector extension 13a is an exposed portion that is not covered with the liquid retaining member 14 and the LDH separator 16, and the current collector 13 (particularly, the current collector extension 13a) passes through the exposed portion. Is desirably connected to the negative electrode terminal.

負極集電体13の好ましい例としては、銅箔、銅エキスパンドメタル、銅パンチングメタルが挙げられるが、より好ましくは銅エキスパンドメタルである。この場合、例えば、銅エキスパンドメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極/負極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。   Preferable examples of the negative electrode current collector 13 include copper foil, copper expanded metal, and copper punched metal, and more preferably copper expanded metal. In this case, for example, a mixture comprising zinc oxide powder and / or zinc powder and, if desired, a binder (for example, polytetrafluoroethylene particles) is coated on a copper expanded metal, and a negative electrode comprising a negative electrode / anode current collector Plates can be preferably made. At this time, it is also preferable to press the dried negative electrode plate (that is, the negative electrode / negative electrode current collector) to prevent the electrode active material from falling off and to improve the electrode density.

保液部材14は電解液を保持可能な部材であれば特に限定されないが、シート状の部材であるのが好ましい。保液部材の好ましい例としては不織布、吸水性樹脂、保液性樹脂、多孔シート、各種スペーサが挙げられるが、特に好ましくは、低コストで性能の良い負極構造体10を作製できる点で不織布である。保液部材14は0.01〜0.20mmの厚さを有するのが好ましく、より好ましくは0.02〜0.20mmであり、さらに好ましくは0.02〜0.15mmであり、特に好ましくは0.02〜0.10mmであり、最も好ましくは0.02〜0.06mmである。上記範囲内の厚さであると、負極構造体10の全体サイズを無駄無くコンパクトに抑えながら、保液部材14内に十分な量の電解液を保持させることができる。保液部材14は負極活物質層12よりも大きいサイズの四辺形状(典型的には四角形状)であればよく、LDHセパレータ16(又は折り曲げられたLDHセパレータ16)と同じサイズであってもよい。   The liquid retaining member 14 is not particularly limited as long as it can retain the electrolytic solution, but is preferably a sheet-shaped member. Preferred examples of the liquid retaining member include a nonwoven fabric, a water-absorbing resin, a liquid retaining resin, a porous sheet, and various spacers. Particularly preferred is a nonwoven fabric in that a low-cost, high-performance negative electrode structure 10 can be produced. is there. The liquid retaining member 14 preferably has a thickness of 0.01 to 0.20 mm, more preferably 0.02 to 0.20 mm, still more preferably 0.02 to 0.15 mm, and particularly preferably. It is 0.02 to 0.10 mm, most preferably 0.02 to 0.06 mm. When the thickness is within the above range, a sufficient amount of the electrolyte can be held in the liquid retaining member 14 while keeping the entire size of the negative electrode structure 10 compact without waste. The liquid retaining member 14 may have a quadrilateral shape (typically a rectangular shape) larger than the negative electrode active material layer 12, and may have the same size as the LDH separator 16 (or the bent LDH separator 16). .

保液部材14がシート状の部材である場合、その枚数は片面につき典型的には1(両面では向かい合う2枚又は折り曲げられた1枚)であるが、2以上であってもよい。例えば、数枚重ねの保液部材14で負極活物質層12の全体を覆う又は包み込む構成としてもよい。   When the liquid retaining member 14 is a sheet-like member, the number thereof is typically one per side (two opposing or bent ones on both sides), but may be two or more. For example, a configuration may be employed in which several layers of the liquid retaining members 14 cover or wrap the entire negative electrode active material layer 12.

(b)LDHセパレータの積層による第二積層体の作製
工程(b)においては、図2及び3に示されるように、第一積層体11の全体をLDHセパレータ16で挟み込んで第二積層体18を得る。このとき、LDHセパレータ16での第一積層体11の挟み込みは、図2(b)に示されるように、1辺で折り曲げられた1枚のLDHセパレータ16を用いて行ってもよいし、あるいは図3(b)に示されるように折り曲げられていない少なくとも2枚のLDHセパレータ16を用いて行ってもよい。LDHセパレータ16も、負極活物質層12及び保液部材14と同様、四辺形状(典型的には四角形状)である。いずれの方法においても、LDHセパレータ16での第一積層体11の挟み込みは、負極活物質層12の外縁からはみ出したLDHセパレータ16の重なり部分を外縁の全域にわたって形成するように行われる。こうすることで、後続の封止工程(c)でLDHセパレータ16同士(それらの間に保液部材14を介在させてもよい)の封止を行うための余剰部分が確保される。
(B) Production of Second Laminate by Laminating LDH Separator In the step (b), as shown in FIGS. 2 and 3, the entire first laminate 11 is sandwiched by the LDH separator 16 and the second laminate 18 is formed. Get. At this time, the sandwiching of the first laminate 11 between the LDH separators 16 may be performed by using one LDH separator 16 bent at one side, as shown in FIG. 2B. As shown in FIG. 3B, the process may be performed using at least two LDH separators 16 that are not bent. The LDH separator 16 also has a quadrilateral shape (typically a square shape), like the negative electrode active material layer 12 and the liquid retaining member 14. In any method, the first laminate 11 is sandwiched between the LDH separators 16 so as to form an overlapping portion of the LDH separator 16 protruding from the outer edge of the negative electrode active material layer 12 over the entire outer edge. By doing so, a surplus portion for sealing the LDH separators 16 (the liquid retaining member 14 may be interposed therebetween) in the subsequent sealing step (c) is secured.

本発明の好ましい態様によれば、図2(b)及び(c)に示されるように、第一積層体11の全体を、1辺Fで折り曲げられた1枚のLDHセパレータ16で、負極活物質層12の外縁からはみ出した重なり部分を外縁の全域にわたって形成するように挟み込んで、第二積層体18を得る。この場合、工程(b)は、(i)1枚のLDHセパレータ16を折り曲げる工程と、(ii)折り曲げられた1枚のLDHセパレータ16で負極活物質層12及び保液部材14の全体を挟み込む工程とを含みうる。こうすることで、後続の工程(c)において封止すべき辺の数を減らすことができる点で、製造効率を向上させることができる。この点、高分子材料製の多孔質基材を含むLDHセパレータ16は、フレキシブル性に富むが故に折り曲げやすいため、特に有利である。LDHセパレータ16は四辺形状(典型的には四角形状)であるが、半分に折り曲げた場合に第一積層体11の被覆に適したサイズとなるようにLDHセパレータ16は長尺状に構成されるのが好ましい。なお、上記折り曲げは、LDHセパレータ16に含まれるLDHの折り曲げによる破損の可能性を低減するために、LDHセパレータ16の折り曲げ断面が丸みを帯びるように行われるのが好ましい。   According to a preferred embodiment of the present invention, as shown in FIGS. 2B and 2C, the whole of the first laminate 11 is negatively activated by one LDH separator 16 bent at one side F. The second laminated body 18 is obtained by sandwiching the overlapping portion protruding from the outer edge of the material layer 12 so as to form over the entire outer edge. In this case, the step (b) includes (i) a step of bending one LDH separator 16 and (ii) sandwiching the whole of the negative electrode active material layer 12 and the liquid retaining member 14 between the bent one LDH separator 16. And a step. By doing so, the number of sides to be sealed in the subsequent step (c) can be reduced, so that manufacturing efficiency can be improved. In this regard, the LDH separator 16 including a porous base material made of a polymer material is particularly advantageous because it is easy to bend because of its high flexibility. The LDH separator 16 has a quadrangular shape (typically, a quadrangular shape), but the LDH separator 16 is configured to be long so as to have a size suitable for covering the first laminate 11 when folded in half. Is preferred. Note that the bending is preferably performed so that the bending cross section of the LDH separator 16 is rounded in order to reduce the possibility of the LDH included in the LDH separator 16 being broken.

本発明の別の好ましい態様によれば、図3(b)及び(c)に示されるように、第一積層体11の全体を、折り曲げられていない少なくとも2枚の四辺形状のLDHセパレータ16で、負極活物質層12の外縁からはみ出した重なり部分を外縁の全域にわたって形成するように挟み込んで、第二積層体18を得てもよい。この場合、工程(b)は、折り曲げられていない2枚のLDHセパレータ16で、負極活物質層12及び保液部材14の全体を挟み込むことを含みうる。この場合には、単なる平面状のLDHセパレータ16を用いればよい点で、製造を簡便に行うことができる。LDHセパレータ16は四辺形状(典型的には四角形状)であるが、折り曲げられてないため、そのままで第一積層体11の被覆に適したサイズとなるように構成すればよい。   According to another preferred embodiment of the present invention, as shown in FIGS. 3B and 3C, the entire first laminated body 11 is formed by at least two unfolded quadrilateral LDH separators 16. Alternatively, the second stacked body 18 may be obtained by sandwiching the overlapping portion protruding from the outer edge of the negative electrode active material layer 12 so as to form over the entire outer edge. In this case, the step (b) may include sandwiching the whole of the negative electrode active material layer 12 and the liquid retaining member 14 between two unfolded LDH separators 16. In this case, the production can be easily performed in that a simple planar LDH separator 16 may be used. The LDH separator 16 has a quadrilateral shape (typically, a quadrilateral shape), but is not bent, and thus may be configured to have a size suitable for covering the first laminate 11 as it is.

いずれの態様においても、工程(b)は、重なり部分を構成するLDHセパレータ16の間に、保液部材14の外周部分を挟み込むように行ってもよい。こうすることで、後続の工程(c)における第二積層体18の所定の外縁の封止を熱溶着又は超音波溶着により、効果的に行うことができる。すなわち、LDHセパレータ16同士を直接的に熱溶着又は超音波溶着するよりも、LDHセパレータ16同士をそれらの間に熱溶着性の保液部材14を介在させて間接的に熱溶着又は超音波溶着する方が、保液部材14自体の熱溶着性を利用できる結果、より効果的な封止を行うことができる。すなわち、保液部材14の封止されるべき端部をあたかもホットメルト接着剤かのごとく利用することができる。この場合における保液部材11の好ましい例としては不織布、特に熱可塑性樹脂(例えばポリエチレン、ポリプロピレン)製の不織布が挙げられる。この態様においては、保液部材14のサイズはLDHセパレータ16(又は折り曲げられたLDHセパレータ16)と同じサイズであることができ、LDHセパレータ16の外縁と保液部材14の外縁とは一致するものでありうる。   In any of the embodiments, the step (b) may be performed such that the outer peripheral portion of the liquid retaining member 14 is interposed between the LDH separators 16 constituting the overlapping portion. By doing so, the predetermined outer edge of the second laminated body 18 in the subsequent step (c) can be effectively sealed by heat welding or ultrasonic welding. That is, the LDH separators 16 are indirectly heat-welded or ultrasonic-welded by interposing the heat-welding liquid retaining member 14 between the LDH separators 16 rather than directly heat-welding or ultrasonic-welding the LDH separators 16 to each other. This makes it possible to utilize the heat welding property of the liquid retaining member 14 itself, resulting in more effective sealing. That is, the end of the liquid retaining member 14 to be sealed can be used as if it were a hot melt adhesive. A preferable example of the liquid retaining member 11 in this case is a nonwoven fabric, particularly a nonwoven fabric made of a thermoplastic resin (for example, polyethylene or polypropylene). In this embodiment, the size of the liquid retaining member 14 can be the same size as the LDH separator 16 (or the bent LDH separator 16), and the outer edge of the LDH separator 16 and the outer edge of the liquid retaining member 14 match. It can be.

集電体延出部13aの先端部分を保液部材14で覆わない又は包み込まない場合、工程(b)は、集電体延出部13aの先端部分をLDHセパレータ16で挟み込まないように行われるのが好ましく、その結果、集電体延出部13aの先端部分が保液部材14及びLDHセパレータ16で覆われない露出部分をなすものとなる。これにより露出部分を介して集電体13(特に集電体延出部13a)を負極端子(図示せず)に望ましく接続することができる。この場合、図4に示されるように、LDHセパレータ16が負極活物質層12の集電体延出部13a側の端部を十分に隠すように所定のマージンM(例えば1〜5mmの間隔)を伴って覆う又は包み込むのが好ましい。こうすることで、負極活物質層12の集電体延出部13a側の端部又はその近傍からの亜鉛デンドライトの伸展をより効果的に防止することができる。   When the tip portion of the current collector extension 13a is not covered or wrapped with the liquid retaining member 14, the step (b) is performed so that the tip portion of the current collector extension 13a is not sandwiched by the LDH separator 16. As a result, the end portion of the current collector extension 13a forms an exposed portion that is not covered with the liquid retaining member 14 and the LDH separator 16. Thereby, the current collector 13 (particularly, the current collector extension 13a) can be desirably connected to the negative electrode terminal (not shown) via the exposed portion. In this case, as shown in FIG. 4, a predetermined margin M (for example, an interval of 1 to 5 mm) is set so that the LDH separator 16 sufficiently covers the end of the negative electrode active material layer 12 on the side of the current collector extension 13a. It is preferred to cover or envelop with. By doing so, it is possible to more effectively prevent the zinc dendrite from extending from the end of the negative electrode active material layer 12 on the current collector extension 13a side or the vicinity thereof.

LDHセパレータ16はLDHと多孔質基材とを含む(典型的にはそれらから構成される)のが好ましく、LDHセパレータ16は水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDHセパレータとして機能するように)LDHが多孔質基材の孔を塞いでいるのが好ましい。多孔質基材は高分子材料製であるのが好ましく、LDHが高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDHセパレータ16の各種好ましい態様については後に詳述するものとする。   The LDH separator 16 preferably comprises (typically consists of) LDH and a porous substrate, and the LDH separator 16 is designed to exhibit hydroxide ion conductivity and gas impermeability (hence, Preferably, the LDH blocks the pores of the porous substrate (to function as an LDH separator exhibiting hydroxide ion conductivity). The porous substrate is preferably made of a polymer material, and it is particularly preferable that LDH is incorporated over the entire region in the thickness direction of the polymer material porous substrate. Various preferable aspects of the LDH separator 16 will be described later in detail.

LDHセパレータ16の枚数は片面につき典型的には1(両面では向かい合う2枚又は折り曲げられた1枚)であるが、2以上であってもよい。例えば、数枚重ねのLDHセパレータ16で第一積層体11の全体を覆う又は包み込む構成としてもよい。   The number of LDH separators 16 is typically one per side (two opposing or folded ones on both sides), but may be two or more. For example, a configuration may be employed in which several layers of LDH separators 16 cover or wrap the entire first stacked body 11.

(c)第二積層体の所定の外縁の封止
工程(c)においては、図2及び3に示されるように、第二積層体18の所定の辺の外縁に属する重なり部分を封止して、互いに隣接する少なくとも2辺の外縁が閉じられた負極構造体10を得る。ここで、「互いに隣接する少なくとも2辺」とはある1辺の一端が他の1辺の一端と接していることを意味する。また、「外縁が閉じられた」とは外縁が折り曲げられた形態であってもよいし、外縁が封止された形態であってもよい。いずれにしても、第二積層体18の互いに隣接する少なくとも2辺の外縁(これはLDHセパレータ16の外縁でもある)が閉じられることで、亜鉛二次電池に搭載された場合に、負極活物質層12を正極から確実に隔離することができ、当該外縁からの亜鉛デンドライトの伸展を効果的に防止することができる。例えば、折り曲げられた1枚のLDHセパレータ16を用いる場合は、図2(c)に示されるように、第二積層体18の折り曲げられた辺Fと隣接する少なくとも1辺の外縁S(あるいはS及びS’)に属する重なり部分を封止する。なお、図中の外縁S’は閉じても閉じられなくてもよい辺を意味する。一方、折り曲げられていない2枚のLDHセパレータ16を用いる場合には、図3(c)に示されるように第二積層体18の互いに隣接する少なくとも2辺S(あるいはS及びS’)の外縁に属する重なり部分を封止する。もっとも、集電体延出部13aを設ける場合には、集電体延出部13aの延出を可能とするため、封止が行われる辺S(あるいはS及びS’)は集電体延出部13aと重ならない辺であることが望まれる。いずれの手法にしても、結果として、互いに隣接する少なくとも2辺の外縁が閉じられた負極構造体10が得られる。
(C) Sealing a predetermined outer edge of the second laminate In the step (c), as shown in FIGS. 2 and 3, an overlapping portion belonging to an outer edge of a predetermined side of the second laminate 18 is sealed. Thus, the negative electrode structure 10 in which at least two outer edges adjacent to each other are closed is obtained. Here, “at least two sides adjacent to each other” means that one end of one side is in contact with one end of another side. Further, "the outer edge is closed" may be a shape in which the outer edge is bent or a shape in which the outer edge is sealed. In any case, when the outer edge of at least two sides (which is also the outer edge of the LDH separator 16) of the second stacked body 18 adjacent to each other is closed, the negative electrode active material is mounted on the zinc secondary battery. The layer 12 can be reliably isolated from the positive electrode, and the extension of zinc dendrites from the outer edge can be effectively prevented. For example, when one folded LDH separator 16 is used, as shown in FIG. 2C, at least one outer edge S (or S) adjacent to the folded side F of the second laminate 18 is used. And overlapping portions belonging to S ′) are sealed. Note that the outer edge S ′ in the figure means a side that may or may not be closed. On the other hand, when two unfolded LDH separators 16 are used, as shown in FIG. 3C, the outer edges of at least two sides S (or S and S ′) of the second stacked body 18 adjacent to each other. The overlapping portion belonging to is sealed. However, in the case where the current collector extending portion 13a is provided, the side S (or S and S ') on which the sealing is performed is formed by the current collector extending portion so that the current collector extending portion 13a can be extended. It is desired that the side does not overlap with the protrusion 13a. In either case, as a result, the negative electrode structure 10 in which at least two outer edges adjacent to each other are closed is obtained.

図2に示されるように、工程(b)が(i)1枚のLDHセパレータ16を折り曲げる工程と(ii)折り曲げられた1枚のLDHセパレータ16で負極活物質層12及び保液部材14の全体を挟み込む工程とを含む態様においては、工程(c)は、第二積層体18の折り曲げられた辺Fと隣接する少なくとも1辺S(あるいはS及びS’)の外縁に属する重なり部分を封止することを含むのが好ましい。必要に応じて、工程(c)は、第二積層体18の折り曲げられた辺Fと隣接する2辺の外縁S,S’に属する重なり部分を封止するように行われてもよく、その場合、3辺の外縁が閉じられた(それ故亜鉛デンドライトの伸展をより効果的に防止可能な)負極構造体を得ることができる。   As shown in FIG. 2, the step (b) includes (i) a step of bending one LDH separator 16 and (ii) a step of bending the negative electrode active material layer 12 and the liquid retaining member 14 by one bent LDH separator 16. In an embodiment including a step of sandwiching the whole, the step (c) includes sealing an overlapping portion belonging to an outer edge of at least one side S (or S and S ′) adjacent to the folded side F of the second laminate 18. Preferably, it includes stopping. If necessary, the step (c) may be performed so as to seal an overlapping portion belonging to two outer edges S and S ′ adjacent to the folded side F of the second laminate 18, In this case, it is possible to obtain a negative electrode structure in which three outer edges are closed (thus, the extension of zinc dendrite can be more effectively prevented).

一方、図3に示されるように、工程(b)が折り曲げられていない2枚のLDHセパレータ16で負極活物質層12及び保液部材14の全体を挟み込むことを含む態様においては、工程(c)は第二積層体18の互いに隣接する少なくとも2辺S,S(あるいはS,S及びS’)の外縁に属する重なり部分を封止する工程を含むのが好ましい。必要に応じて、工程(c)は、第二積層体18の3辺S,S,S’の外縁に属する重なり部分を封止するものであってもよく、その場合、3辺の外縁が閉じられた(それ故亜鉛デンドライトの伸展をより効果的に防止可能な)負極構造体を得ることができる。   On the other hand, as shown in FIG. 3, in an embodiment in which the step (b) includes sandwiching the whole of the negative electrode active material layer 12 and the liquid retaining member 14 between two unfolded LDH separators 16, ) Preferably includes a step of sealing an overlapping portion belonging to an outer edge of at least two sides S, S (or S, S and S ′) adjacent to each other of the second laminate 18. If necessary, the step (c) may be a step of sealing an overlapping portion belonging to the outer edges of the three sides S, S, S ′ of the second laminated body 18, in which case the outer edges of the three sides are sealed. It is possible to obtain a closed anode structure (which can more effectively prevent the extension of zinc dendrite).

いずれの形態においても、封止はいかなる手法によって行ってもよく、特に限定されない。封止手法の好ましい例としては、接着剤、熱溶着、超音波溶着、接着テープ、封止テープ、及びそれらの組合せが挙げられる。熱溶着及び超音波溶着は市販のヒートシーラー等を用いて行えばよいが、この場合、前述したように、重なり部分を構成するLDHセパレータ16の間に保液部材14の外周部分を挟み込むようにして熱溶着及び超音波溶着を行うのが、より効果的な封止を行える点で好ましい。一方、接着剤、接着テープ及び封止テープは市販品を用いればよいが、アルカリ電解液中での劣化を防ぐため、耐アルカリ性を有する樹脂を含むものが好ましい。かかる観点から、好ましい接着剤の例としては、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤、及び変成シリコーン樹脂系接着剤が挙げられ、中でもエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点でより好ましい。エポキシ樹脂系接着剤の製品例としては、エポキシ接着剤Hysol(登録商標)(Henkel製)が挙げられる。   In any case, sealing may be performed by any method, and there is no particular limitation. Preferred examples of the sealing method include an adhesive, heat welding, ultrasonic welding, an adhesive tape, a sealing tape, and a combination thereof. The heat welding and the ultrasonic welding may be performed using a commercially available heat sealer or the like. In this case, as described above, the outer peripheral portion of the liquid retaining member 14 is sandwiched between the LDH separators 16 constituting the overlapping portion. It is preferable to perform heat welding and ultrasonic welding in order to achieve more effective sealing. On the other hand, as the adhesive, the adhesive tape, and the sealing tape, commercially available products may be used, but those containing a resin having alkali resistance are preferable in order to prevent deterioration in an alkaline electrolyte. From this viewpoint, examples of preferred adhesives include epoxy resin-based adhesives, natural resin-based adhesives, modified olefin resin-based adhesives, and modified silicone resin-based adhesives, among which epoxy resin-based adhesives are resistant. It is more preferable because it is particularly excellent in alkalinity. An example of a product of the epoxy resin-based adhesive is an epoxy adhesive Hysol (registered trademark) (manufactured by Henkel).

こうして得られる負極構造体10は互いに隣接する少なくとも2辺の外縁が閉じられたものであるが、これは逆に言えば、負極構造体10の外縁の1辺又は2辺は開放されていてもよいことを意味する。例えば、負極構造体10の外縁の上端1辺を開放させておいても、亜鉛二次電池作製時にその上端1辺に電解液が達しないように液を注入すれば、当該上端1辺には電解液が無いことになるため、液漏れや亜鉛デンドライト伸展の問題を回避することができる。これに関連して、負極構造体10は、その中に電解液をも入れた状態で密閉容器内に正極とともに収容されることにより、密閉型亜鉛二次電池の主要構成部品として機能しうる。このため、密閉性は最終的に収容されることになる密閉容器において確保すれば足りるので、負極構造体10自体は上部開放型の簡素な構成であることができる。また、負極構造体10の外縁の1辺を開放させておくことで、そこから集電体延出部13aを延出させることもできる。集電体延出部13aを延出させるための開放された外縁1辺は、上部開放部を与える上端1辺であってもよいし、それ以外の外縁1辺であってもよい。   The negative electrode structure 10 obtained in this manner has at least two outer edges adjacent to each other closed, but conversely, even if one or two sides of the outer edge of the negative electrode structure 10 are open. Means good. For example, even if one side of the upper end of the outer edge of the negative electrode structure 10 is left open, if a liquid is injected so that the electrolytic solution does not reach the one side of the upper end during the manufacture of the zinc secondary battery, the upper side of the upper end is Since there is no electrolytic solution, problems of liquid leakage and zinc dendrite extension can be avoided. In this regard, the negative electrode structure 10 can function as a main component of the sealed zinc secondary battery by being housed together with the positive electrode in a sealed container with the electrolyte also contained therein. For this reason, it is only necessary to ensure the hermeticity in a sealed container that is to be finally accommodated, so that the negative electrode structure 10 itself can have a simple structure with an open top. In addition, by opening one side of the outer edge of the negative electrode structure 10, the current collector extension 13a can be extended therefrom. One open side of the outer edge for extending the current collector extension portion 13a may be one side of the upper end providing the upper open portion, or may be one side of the other outer edge.

LDHセパレータ
LDHセパレータ16は層状複水酸化物(LDH)を含むセパレータであり、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。すなわち、LDHセパレータ16は水酸化物イオン伝導セパレータとしての機能を呈する。好ましいLDHセパレータ16はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ16はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献2及び3に記載されるように、水中で測定対象物の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献2及び3に記載されるように、測定対象物の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDHセパレータ16がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ16が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性又はガス透過性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ16は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDHセパレータ16は水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。
LDH Separator The LDH separator 16 is a separator containing a layered double hydroxide (LDH) and, when incorporated in a zinc secondary battery, separates the positive electrode plate and the negative electrode plate so as to conduct hydroxide ions. . That is, the LDH separator 16 functions as a hydroxide ion conductive separator. Preferred LDH separators 16 are gas impermeable and / or water impermeable. In other words, it is preferable that the LDH separator 16 be dense enough to have gas impermeability and / or water impermeability. In this specification, "having gas impermeability" means that helium gas is brought into contact with one surface side of an object to be measured in water at a differential pressure of 0.5 atm as described in Patent Documents 2 and 3. This means that no bubbles due to helium gas are generated from the other side. Further, in the present specification, “having water impermeability” means, as described in Patent Literatures 2 and 3, that water that has contacted one surface side of a measurement target does not transmit to the other surface side. . That is, the fact that the LDH separator 16 has gas impermeability and / or water impermeability means that the LDH separator 16 has a high degree of denseness that is impervious to gas or water, It is not a permeable porous film or other porous material. By doing so, the LDH separator 16 selectively passes only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. For this reason, the configuration is extremely effective in physically preventing penetration of the separator by zinc dendrite generated during charging and preventing short circuit between the positive and negative electrodes. Since the LDH separator 16 has hydroxide ion conductivity, it is possible to efficiently transfer necessary hydroxide ions between the positive electrode plate and the negative electrode plate to realize a charge / discharge reaction in the positive electrode plate and the negative electrode plate. Can be.

LDHセパレータ16は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。He透過度が10cm/min・atm以下であるセパレータは、電解液中においてZnの透過(典型的には亜鉛イオン又は亜鉛酸イオンの透過)を極めて効果的に抑制することができる。このように本態様のセパレータは、Zn透過が顕著に抑制されることで、亜鉛二次電池に用いた場合に亜鉛デンドライトの成長を効果的に抑制できるものと原理的に考えられる。He透過度は、セパレータの一方の面にHeガスを供給してセパレータにHeガスを透過させる工程と、He透過度を算出して水酸化物イオン伝導セパレータの緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータに加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもHガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、セパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する例1の評価7に示される手順に従って好ましく行うことができる。The LDH separator 16 preferably has a He permeability per unit area of 10 cm / min · atm or less, more preferably 5.0 cm / min · atm or less, and still more preferably 1.0 cm / min · atm or less. . A separator having a He permeability of 10 cm / min · atm or less can extremely effectively suppress permeation of Zn (typically, permeation of zinc ions or zincate ions) in the electrolytic solution. As described above, it is considered that the separator of this embodiment is capable of effectively suppressing the growth of zinc dendrites when used in a zinc secondary battery, because the permeation of Zn is significantly suppressed. The He permeability is obtained through a step of supplying He gas to one surface of the separator to allow the He gas to pass through the separator, and a step of calculating the He permeability to evaluate the denseness of the hydroxide ion conductive separator. Measured. The He permeability is calculated by the formula of F / (P × S) using the permeation amount F of the He gas per unit time, the differential pressure P applied to the separator when the He gas permeates, and the membrane area S through which the He gas passes. calculate. By performing gas permeability evaluation using He gas as described above, it is possible to evaluate the presence / absence of denseness at a very high level. As a result, substances other than hydroxide ions (particularly, zinc dendrite growth) It is possible to effectively evaluate a high degree of denseness such as not transmitting (causing Zn) as much as possible (transmitting only a trace amount). This is because the He gas has the smallest structural unit among various kinds of atoms or molecules that can constitute the gas, and has very low reactivity. That is, He forms He gas with He atoms alone without forming molecules. In this regard, since the hydrogen gas is composed of H 2 molecules, the gas constituent unit is smaller for He atoms alone. In the first place, H 2 gas is dangerous because it is a combustible gas. Then, by employing the index of the He gas permeability defined by the above-described formula, it is possible to easily perform an objective evaluation of denseness regardless of various sample sizes and differences in measurement conditions. Thus, it can be simply, safely and effectively evaluated whether or not the separator has a sufficiently high density suitable for a separator for a zinc secondary battery. The measurement of the He transmittance can be preferably performed according to the procedure shown in Evaluation 7 of Example 1 described later.

一般的に知られているように、LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2−を含む。また、LDHはその固有の性質に起因して優れたイオン伝導性を有する。As is generally known, an LDH is composed of a plurality of hydroxide basic layers and an intermediate layer interposed between the plurality of hydroxide basic layers. The hydroxide basic layer is mainly composed of a metal element (typically, a metal ion) and an OH group. Intermediate layer of LDH is composed of anionic and H 2 O. The anion is a monovalent or higher valent anion, preferably a monovalent or divalent ion. Preferably, anions in the LDH is OH - containing and / or CO 3 2- and. LDH also has excellent ionic conductivity due to its inherent properties.

一般的に、LDHは、M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4であり、mは0以上である)の基本組成式で代表されるものとして知られている。上記基本組成式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An−は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2−が挙げられる。したがって、上記基本組成式において、M2+がMg2+を含み、M3+がAl3+を含み、An−がOH及び/又はCO 2−を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1〜0.4であるが、好ましくは0.2〜0.35である。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数である。もっとも、上記基本組成式は、一般にLDHに関して代表的に例示される「基本組成」の式にすぎず、構成イオンを適宜置き換え可能なものである。例えば、上記基本組成式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn−の係数x/nは適宜変更されてよい。Typically, LDH is, 2 O (wherein M 2+ 1-x M 3+ x (OH) 2 A n- x / n · mH, M 2+ is a divalent cation, M 3+ is a trivalent is a cation, a n-is the n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, m is the base composition formula is 0 or more) It is known as being represented. In the above basic composition formula, M 2+ may be any divalent cation, but preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ . M 3+ can be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , more preferably Al 3+ . A n- may be any anion, preferred examples OH - and CO 3 2- and the like. Accordingly, in the above basic formula, M 2+ comprises Mg 2+, M 3+ comprises Al 3+, A n-is OH - and / or CO preferably contains 3 2-. n is an integer of 1 or more, preferably 1 or 2. x is from 0.1 to 0.4, preferably from 0.2 to 0.35. m is any number meaning the number of moles of water and is a real number greater than or equal to 0, typically greater than 0 or greater than or equal to 1. However, the above basic composition formula is merely a formula of “basic composition” typically exemplified for LDH, and the constituent ions can be appropriately replaced. For example, it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.

例えば、LDHの水酸化物基本層は、Ni、Ti、OH基、及び場合により不可避不純物で構成されてもよい。LDHの中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層を主としてNi、Ti及びOH基で構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHにはアルカリ溶液に溶出しやすいと考えられる元素(例えばAl)が意図的又は積極的に添加されていないためと考えられる。そうでありながらも、本態様のLDHは、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1−xTi4+ (OH)n− 2x/n・mHO(式中、An−はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+やTi4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。For example, the hydroxide base layer of the LDH may be composed of Ni, Ti, OH groups and possibly unavoidable impurities. The LDH intermediate layer is composed of anions and H 2 O, as described above. Although the alternating layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known layered structure of the LDH, the LDH of the present embodiment mainly includes the hydroxide basic layer of the LDH mainly composed of Ni, By being composed of Ti and OH groups, excellent alkali resistance can be exhibited. Although the reason is not clear, it is considered that an element (for example, Al) which is considered to be easily eluted into the alkaline solution is not intentionally or positively added to the LDH of this embodiment. Nevertheless, the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery. Ni in the LDH can take the form of nickel ions. The nickel ions in the LDH are typically considered to be Ni 2+ , but are not particularly limited since there may be other valences such as Ni 3+ . Ti in LDH can take the form of titanium ions. The titanium ion in the LDH is typically considered to be Ti 4+ , but is not particularly limited because there may be other valences such as Ti 3+ . The unavoidable impurities are optional elements that can be unavoidably mixed in the production method, and can be mixed into the LDH from, for example, a raw material or a base material. As described above, since the valences of Ni and Ti are not always known, it is impractical or impossible to strictly specify LDH by a general formula. If it is assumed that the hydroxide basic layer is mainly composed of Ni 2+ , Ti 4+ and OH groups, the corresponding LDH is represented by the general formula: Ni 2 + 1 -x Ti 4+ x (OH) 2 An - 2x / n · mH 2 O ( wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 <x <1, preferably 0.01 ≦ x ≦ 0.5, m is a real number of 0 or more, typically more than 0 or 1 or more). However, the above general formula should be interpreted as “basic composition”, and other elements or ions (other valences of the same element) are not so large that elements such as Ni 2+ and Ti 4+ do not impair the basic properties of LDH. (Including a number of elements or ions or elements or ions which can be unavoidably mixed in the production process).

あるいは、LDHの水酸化物基本層は、Ni、Al、Ti及びOH基を含むものであってもよい。中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層をNi、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHは、従来はアルカリ溶液に溶出しやすいと考えられていたAlが、Ni及びTiとの何らかの相互作用によりアルカリ溶液に溶出しにくくなるためと考えられる。そうでありながらも、本態様のLDHは、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。もっとも、水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてNi、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Ni、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1−x−yAl3+ Ti4+ (OH)n− (x+2y)/n・mHO(式中、An−はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。Alternatively, the hydroxide base layer of the LDH may contain Ni, Al, Ti and OH groups. Intermediate layer, as described above, composed of an anion and H 2 O. Although the alternating layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known layered structure of the LDH, the LDH of the present embodiment is formed by converting the hydroxide basic layer of the LDH to Ni, Al , And a predetermined element or ion containing Ti and OH groups can exhibit excellent alkali resistance. The reason for this is not necessarily clear, but it is believed that the LDH of this embodiment is because Al, which was conventionally thought to be easily eluted into an alkaline solution, is less likely to elute into an alkaline solution due to some interaction with Ni and Ti. Can be Nevertheless, the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery. Ni in the LDH can take the form of nickel ions. The nickel ions in the LDH are typically considered to be Ni 2+ , but are not particularly limited since there may be other valences such as Ni 3+ . Al in the LDH can take the form of aluminum ions. The aluminum ion in the LDH is typically considered to be Al 3+ , but is not particularly limited because there may be other valences. Ti in LDH can take the form of titanium ions. The titanium ion in the LDH is typically considered to be Ti 4+ , but is not particularly limited because there may be other valences such as Ti 3+ . The hydroxide basic layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups. However, the basic hydroxide layer preferably contains Ni, Al, Ti and OH groups as main constituent elements. That is, it is preferable that the hydroxide basic layer be mainly composed of Ni, Al, Ti and OH groups. Thus, the hydroxide base layer is typically composed of Ni, Al, Ti, OH groups and possibly unavoidable impurities. The unavoidable impurities are optional elements that can be unavoidably mixed in the production method, and can be mixed into the LDH from, for example, a raw material or a base material. As described above, since the valences of Ni, Al, and Ti are not always known, it is impractical or impossible to exactly specify LDH by a general formula. If mainly Ni 2+ hydroxide base layer, Al 3+, when assumed to consist of Ti 4+ and OH groups, corresponding LDH has the general formula: Ni 2+ 1-x-y Al 3+ x Ti 4+ y (OH) 2 a n- (x + 2y) / n · mH 2 O ( wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 <x <1, preferably 0.01 ≦ x ≦ 0.5, 0 <y <1, preferably 0.01 ≦ y ≦ 0.5, 0 <x + y <1, m is 0 or more, typically 0 Greater than or equal to one or more real numbers). However, the above general formula should be interpreted as the “basic composition”, and other elements or ions (of the same element) to the extent that elements such as Ni 2+ , Al 3+ , and Ti 4+ do not impair the basic characteristics of LDH. (Including elements or ions of other valences or elements or ions which can be inevitably mixed in the production process).

多孔質基材は透水性及びガス透過性を有し、それ故亜鉛二次電池に組み込まれた場合に、電解液がLDHに到達可能となることはいうまでもないが、多孔質基材があることでLDHセパレータ16により安定に水酸化物イオンを保持することも可能となる。また、多孔質基材により強度を付与できるため、LDHセパレータ16を薄くして低抵抗化を図ることもできる。   The porous substrate has water permeability and gas permeability, and therefore, when incorporated in a zinc secondary battery, needless to say, the electrolyte can reach the LDH. This allows the LDH separator 16 to stably hold hydroxide ions. Further, since the strength can be given by the porous base material, the LDH separator 16 can be made thinner to reduce the resistance.

前述したとおり、LDHセパレータ16はLDHと多孔質基材とを含む(典型的にはそれらから構成される)のが好ましく、LDHセパレータ16は水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDHセパレータとして機能するように)LDHが多孔質基材の孔を塞いでいるのが好ましい。多孔質基材は高分子材料製であるのが好ましく、LDHが高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDHセパレータ16の厚さは、好ましくは5〜200μmであり、より好ましくは5〜100μm、さらに好ましくは5〜30μmである。   As mentioned above, the LDH separator 16 preferably comprises (typically consists of) LDH and a porous substrate, such that the LDH separator 16 exhibits hydroxide ion conductivity and gas impermeability. Preferably, the LDH blocks the pores of the porous substrate (so that it functions as an LDH separator exhibiting hydroxide ion conductivity). The porous substrate is preferably made of a polymer material, and it is particularly preferable that LDH is incorporated over the entire region in the thickness direction of the polymer material porous substrate. The thickness of the LDH separator 16 is preferably 5 to 200 μm, more preferably 5 to 100 μm, and still more preferably 5 to 30 μm.

多孔質基材は高分子材料で構成されるのが好ましい。高分子多孔質基材には、1)フレキシブル性を有する(それ故薄くしても割れにくい)、2)気孔率を高くしやすい、3)伝導率を高くしやすい(気孔率を高めながら厚さを薄くできるため)、4)製造及びハンドリングしやすいといった利点がある。また、上記1)のフレキシブル性に由来する利点を活かして、5)高分子材料製の多孔質基材を含むLDHセパレータ16を簡単に折り曲げる又は封止接合することができ、それにより前述したように負極構造体10の外縁の少なくとも1辺が閉じた状態を容易に形成できるとの利点もある(折り曲げの場合には外縁1辺の封止工程を減らせるとの利点ももたらす)。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。特に好ましい高分子材料は、耐熱水性、耐酸性及び耐アルカリ性に優れ、しかも低コストである点から、ポリプロピレン、ポリエチレン等のポリオレフィンであり、最も好ましくはポリプロピレンである。多孔質基材が高分子材料で構成される場合、LDH層が多孔質基材の厚さ方向の全域にわたって組み込まれている(例えば多孔質基材内部の大半又はほぼ全部の孔がLDHで埋まっている)のが特に好ましい。この場合における高分子多孔質基材の好ましい厚さは、5〜200μmであり、より好ましくは5〜100μm、さらに好ましくは5〜30μmである。このような高分子多孔質基材として、リチウム電池用セパレータとして市販されているような微多孔膜を好ましく用いることができ、あるいは市販のセロハンも使用可能である。   The porous substrate is preferably composed of a polymer material. Polymer porous substrates have the following features: 1) they have flexibility (thus, they are hard to crack even when they are thin); 2) they tend to increase porosity; and 3) they tend to increase conductivity (thickness while increasing porosity). 4) It is advantageous in that it is easy to manufacture and handle. In addition, taking advantage of the advantage derived from the flexibility of 1), 5) the LDH separator 16 including the porous substrate made of a polymer material can be easily bent or sealed and joined, as described above. In addition, there is also an advantage that a state in which at least one side of the outer edge of the negative electrode structure 10 is closed can be easily formed (in the case of bending, there is also an advantage that the step of sealing the outer edge 1 side can be reduced). Preferred examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrofluorinated fluororesin (tetrafluorinated resin: PTFE, etc.), cellulose, nylon, polyethylene and any combination thereof. Is mentioned. All of the various preferable materials described above have alkali resistance as a resistance to the electrolyte of the battery. Particularly preferred polymer materials are polyolefins such as polypropylene and polyethylene, and most preferably polypropylene, because they are excellent in hot water resistance, acid resistance and alkali resistance, and are low in cost. When the porous substrate is composed of a polymer material, the LDH layer is incorporated over the entire area in the thickness direction of the porous substrate (for example, most or almost all pores inside the porous substrate are filled with LDH. Is particularly preferred. The preferred thickness of the polymer porous substrate in this case is 5 to 200 μm, more preferably 5 to 100 μm, and still more preferably 5 to 30 μm. As such a polymer porous substrate, a microporous membrane commercially available as a lithium battery separator can be preferably used, or a commercially available cellophane can also be used.

多孔質基材は、最大100μm以下の平均気孔径を有するのが好ましく、より好ましくは最大50μm以下であり、例えば、典型的には0.001〜1.5μm、より典型的には0.001〜1.25μm、さらに典型的には0.001〜1.0μm、特に典型的には0.001〜0.75μm、最も典型的には0.001〜0.5μmである。これらの範囲内とすることで多孔質基材に所望の透水性、及び支持体としての強度を確保しながら、ガス不透過性を呈する程に緻密なLDHセパレータを形成することができる。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡画像をもとに気孔の最長距離を測長することにより行うことができる。この測定に用いる電子顕微鏡画像の倍率は20000倍以上であり、得られた全ての気孔径をサイズ順に並べて、その平均値から近い順に上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得ることができる。測長には、SEMのソフトウェアの測長機能や画像解析ソフト(例えば、Photoshop、Adobe社製)等を用いることができる。   The porous substrate preferably has an average pore size of at most 100 μm or less, more preferably at most 50 μm or less, for example, typically from 0.001 to 1.5 μm, more typically from 0.001 to 1.5 μm. 1.21.25 μm, more typically 0.001 to 1.0 μm, particularly typically 0.001 to 0.75 μm, most typically 0.001 to 0.5 μm. By setting the content within these ranges, a LDH separator dense enough to exhibit gas impermeability can be formed while securing desired water permeability and strength as a support for the porous substrate. In the present invention, the average pore diameter can be measured by measuring the longest distance of pores based on an electron microscope image of the surface of the porous substrate. The magnification of the electron microscope image used for this measurement is 20000 times or more, and all the obtained pore diameters are arranged in size order, and the upper 15 points and the lower 15 points are arranged in order from the average value to a total of 30 points per visual field. The average value of the two visual fields can be calculated to obtain the average pore diameter. For the length measurement, a length measurement function of SEM software, image analysis software (for example, Photoshop, manufactured by Adobe), or the like can be used.

多孔質基材は、10〜60%の気孔率を有するのが好ましく、より好ましくは15〜55%、さらに好ましくは20〜50%である。これらの範囲内とすることで多孔質基材に所望の透水性、及び支持体としての強度を確保しながら、ガス不透過性を呈する程に緻密なLDHセパレータを形成することができる。多孔質基材の気孔率はアルキメデス法により好ましく測定することができる。もっとも、多孔質基材が高分子材料で構成され、LDHが多孔質基材の厚さ方向の全域にわたって組み込まれている場合、多孔質基材の気孔率は30〜60%が好ましく、より好ましくは40〜60%である。   The porous substrate preferably has a porosity of 10 to 60%, more preferably 15 to 55%, and still more preferably 20 to 50%. By setting the content within these ranges, a LDH separator dense enough to exhibit gas impermeability can be formed while securing desired water permeability and strength as a support for the porous substrate. The porosity of the porous substrate can be preferably measured by the Archimedes method. However, when the porous substrate is composed of a polymer material and the LDH is incorporated throughout the thickness of the porous substrate, the porosity of the porous substrate is preferably 30 to 60%, more preferably. Is 40 to 60%.

LDHセパレータ16の製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料(すなわちLDHセパレータ)の製造方法(例えば特許文献1〜3を参照)の諸条件を適宜変更することにより作製することができる。例えば、(1)多孔質基材を用意し、(2)多孔質基材に酸化チタンゾル或いはアルミナ及びチタニアの混合ゾルを塗布して熱処理することで酸化チタン層或いはアルミナ・チタニア層を形成させ、(3)ニッケルイオン(Ni2+)及び尿素を含む原料水溶液に多孔質基材を浸漬させ、(4)原料水溶液中で多孔質基材を水熱処理して、LDH含有機能層を多孔質基材上及び/又は多孔質基材中に形成させることにより、LDH含有機能層及び複合材料(すなわちLDHセパレータ)を製造することができる。特に、上記工程(2)において酸化チタン層或いはアルミナ・チタニア層を多孔質基材に形成することで、LDHの原料を与えるのみならず、LDH結晶成長の起点として機能させて多孔質基材の表面に高度に緻密化されたLDH含有機能層をムラなく均一に形成することができる。また、上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。The method of manufacturing the LDH separator 16 is not particularly limited, and is manufactured by appropriately changing various conditions of a known method of manufacturing an LDH-containing functional layer and a composite material (that is, an LDH separator) (for example, see Patent Documents 1 to 3). can do. For example, (1) a porous substrate is prepared, and (2) a titanium oxide layer or an alumina / titania layer is formed by applying a titanium oxide sol or a mixed sol of alumina and titania to the porous substrate and performing a heat treatment. (3) The porous substrate is immersed in a raw material aqueous solution containing nickel ions (Ni 2+ ) and urea, and (4) the porous substrate is hydrothermally treated in the raw material aqueous solution to form an LDH-containing functional layer on the porous substrate. By forming it on and / or in a porous substrate, an LDH-containing functional layer and a composite material (that is, an LDH separator) can be produced. In particular, by forming a titanium oxide layer or an alumina / titania layer on the porous substrate in the above step (2), not only is the raw material of LDH provided, but also the starting point of LDH crystal growth is used to form the porous substrate. A highly dense LDH-containing functional layer can be uniformly formed on the surface without unevenness. In addition, the presence of urea in the above step (3) causes the pH value to rise due to the generation of ammonia in the solution utilizing the hydrolysis of urea, and the coexisting metal ions form hydroxides. Can obtain LDH. Further, since carbon dioxide is generated in the hydrolysis, LDH in which the anion is a carbonate ion type can be obtained.

特に、多孔質基材が高分子材料で構成され、機能層が多孔質基材の厚さ方向の全域にわたって組み込まれている複合材料(すなわちLDHセパレータ)を作製する場合、上記(2)におけるアルミナ及びチタニアの混合ゾルの基材への塗布を、混合ゾルを基材内部の全体又は大部分に浸透させるような手法で行うのが好ましい。こうすることで最終的に多孔質基材内部の大半又はほぼ全部の孔をLDHで埋めることができる。好ましい塗布手法の例としては、ディップコート、ろ過コート等が挙げられ、特に好ましくはディップコートである。ディップコート等の塗布回数を調整することで、混合ゾルの付着量を調整することができる。ディップコート等により混合ゾルが塗布された基材は、乾燥させた後、上記(3)及び(4)の工程を実施すればよい。   In particular, when producing a composite material (that is, an LDH separator) in which the porous substrate is composed of a polymer material and the functional layer is incorporated over the entire area in the thickness direction of the porous substrate, the alumina in the above (2) is used. It is preferable to apply the mixed sol of titania and titania to the substrate in such a manner that the mixed sol penetrates all or most of the inside of the substrate. By doing so, most or almost all pores inside the porous substrate can be finally filled with LDH. Examples of preferred coating methods include dip coating and filtration coating, and dip coating is particularly preferred. By adjusting the number of times of dip coating or the like, the amount of the mixed sol to be applied can be adjusted. The substrate on which the mixed sol has been applied by dip coating or the like may be dried and then subjected to the steps (3) and (4).

亜鉛二次電池
本発明の方法により製造される負極構造体は亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、正極と、負極構造体と、電解液とを備え、LDHセパレータを介して正極と負極活物質層が互いに隔離される、亜鉛二次電池が提供される。本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。特に、ニッケル亜鉛二次電池及び亜鉛空気二次電池が好ましい。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
Zinc secondary battery The negative electrode structure manufactured by the method of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferred embodiment of the present invention, there is provided a zinc secondary battery including a positive electrode, a negative electrode structure, and an electrolytic solution, wherein the positive electrode and the negative electrode active material layer are separated from each other via an LDH separator. . The zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and using an electrolytic solution (typically, an aqueous alkali metal hydroxide solution). Therefore, it can be a nickel zinc secondary battery, a silver zinc oxide secondary battery, a manganese zinc secondary battery, a zinc air secondary battery, and other various alkaline zinc secondary batteries. Particularly, a nickel zinc secondary battery and a zinc air secondary battery are preferable. For example, it is preferable that the positive electrode contains nickel hydroxide and / or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel zinc secondary battery. Alternatively, the positive electrode may be an air electrode, whereby the zinc secondary battery may form a zinc air secondary battery.

本発明に用いることが可能なLDHセパレータを以下の例によってさらに具体的に説明する。   The LDH separator that can be used in the present invention will be described more specifically by the following examples.

例1
高分子多孔質基材を用いて、Ni、Al及びTi含有LDHを含むLDHセパレータを以下の手順により作製し、評価した。
Example 1
Using a polymer porous substrate, an LDH separator containing an LDH containing Ni, Al and Ti was prepared by the following procedure and evaluated.

(1)高分子多孔質基材の準備
気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリプロピレン製多孔質基材を、2.0cm×2.0cmの大きさになるように切り出した。
(1) Preparation of Polymeric Porous Substrate A commercially available polypropylene porous substrate having a porosity of 50%, an average pore diameter of 0.1 μm, and a thickness of 20 μm was prepared to have a size of 2.0 cm × 2.0 cm. Cut out.

(2)高分子多孔質基材へのアルミナ・チタニアゾルコート
無定形アルミナ溶液(Al−ML15、多木化学株式会社製)と酸化チタンゾル溶液(M6、多木化学株式会社製)をTi/Al(モル比)=2となるように混合して混合ゾルを作製した。混合ゾルを、上記(1)で用意された基材へディップコートにより塗布した。ディップコートは、混合ゾル100mlに基材を浸漬させてから垂直に引き上げ、90℃の乾燥機中で5分間乾燥させることにより行った。
(2) Alumina-titania sol coating on polymer porous substrate Amorphous alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) and titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) were converted to Ti / Al ( (Mole ratio) = 2 to prepare a mixed sol. The mixed sol was applied to the substrate prepared in the above (1) by dip coating. The dip coating was performed by immersing the substrate in 100 ml of the mixed sol, vertically lifting the substrate, and drying the substrate in a dryer at 90 ° C. for 5 minutes.

(3)原料水溶液の作製
原料として、硝酸ニッケル六水和物(Ni(NO・6HO、関東化学株式会社製、及び尿素((NHCO、シグマアルドリッチ製)を用意した。0.015mol/Lとなるように、硝酸ニッケル六水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=16の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(3) Preparation of raw material aqueous solution As raw materials, nickel nitrate hexahydrate (Ni (NO 3 ) 2 .6H 2 O, manufactured by Kanto Chemical Co., Ltd., and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) are prepared. Nickel nitrate hexahydrate was weighed and placed in a beaker so as to have a concentration of 0.015 mol / L, and ion-exchanged water was added thereto to make a total volume of 75 ml. Urea weighed at a ratio of urea / NO 3 (molar ratio) = 16 was added thereto, and further stirred to obtain a raw material aqueous solution.

(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度120℃で24時間水熱処理を施すことにより基材表面と内部にLDHの形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、LDHを多孔質基材中に組み込まれた形で得た。こうしてLDHセパレータを得た。
(4) Film formation by hydrothermal treatment Both a raw material aqueous solution and a dip-coated substrate were sealed in a Teflon (registered trademark) sealed container (autoclave container, internal capacity 100 ml, stainless steel jacket on the outside). At this time, the substrate was floated and fixed from the bottom of a Teflon (registered trademark) closed container, and was horizontally set so that the solution was in contact with both surfaces of the substrate. Thereafter, by performing a hydrothermal treatment at a hydrothermal temperature of 120 ° C. for 24 hours, LDH was formed on the surface and inside of the substrate. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain LDH in a form incorporated in the porous substrate. Thus, an LDH separator was obtained.

(5)評価
得られたLDHセパレータに対して以下に示される各種評価を行った。
(5) Evaluation Various evaluations shown below were performed on the obtained LDH separator.

評価1:LDHセパレータの同定
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10〜70°の測定条件で、LDHセパレータの結晶相を測定してXRDプロファイルを得た。得られたXRDプロファイルについて、JCPDSカードNO.35−0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。
Evaluation 1 : Identification of LDH Separator The crystal phase of the LDH separator was measured with an X-ray diffractometer (Rigaku RINT TTR III) under the following conditions: voltage: 50 kV, current value: 300 mA, measurement range: 10 to 70 °. To obtain an XRD profile. Regarding the obtained XRD profile, the JCPDS card NO. Identification was performed using a diffraction peak of LDH (hydrotalcite compound) described in 35-0964.

評価2:微構造の観察
LDHセパレータの表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察した。また、イオンミリング装置(日立ハイテクノロジーズ社製、IM4000によって、LDHセパレータの断面研磨面を得た後に、この断面研磨面の微構造を表面微構造の観察と同様の条件でSEMにより観察した。
Evaluation 2 : Observation of microstructure The surface microstructure of the LDH separator was observed using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. In addition, after a cross-section polished surface of the LDH separator was obtained by using an ion milling apparatus (IM4000, manufactured by Hitachi High-Technologies Corporation), the microstructure of the cross-section polished surface was observed by SEM under the same conditions as the observation of the surface microstructure.

評価3:元素分析評価(EDS)
クロスセクションポリッシャ(CP)により、LDHセパレータの断面研磨面が観察できるように研磨した。FE−SEM(ULTRA55、カールツァイス製)により、LDHセパレータの断面イメージを10000倍の倍率で1視野取得した。この断面イメージの基材表面のLDH膜と基材内部のLDH部分(点分析)についてEDS分析装置(NORAN System SIX、サーモフィッシャーサイエンティフィック製)により、加速電圧15kVの条件にて、元素分析を行った。
Evaluation 3 : Elemental analysis evaluation (EDS)
The cross-section polisher (CP) was polished so that the cross-section polished surface of the LDH separator could be observed. One field of view of a cross-sectional image of the LDH separator was obtained at a magnification of 10,000 times by FE-SEM (ULTRA55, manufactured by Carl Zeiss). The elemental analysis of the LDH film on the substrate surface and the LDH portion (point analysis) inside the substrate in the cross-sectional image was performed by an EDS analyzer (NORAN System SIX, manufactured by Thermo Fisher Scientific) under the conditions of an acceleration voltage of 15 kV. went.

評価4:耐アルカリ性評価
6mol/Lの水酸化カリウム水溶液に酸化亜鉛を溶解させて、0.4mol/Lの濃度で酸化亜鉛を含む5mol/Lの水酸化カリウム水溶液を得た。こうして得られた水酸化カリウム水溶液15mlをテフロン(登録商標)製密閉容器に入れた。1cm×0.6cmのサイズのLDHセパレータを密閉容器の底に設置し、蓋を閉めた。その後、70℃で3週間(すなわち504時間)又は7週間(すなわち1176時間)保持した後、LDHセパレータを密閉容器から取り出した。取り出したLDHセパレータに対して、室温で1晩乾燥させた。得られた試料をSEMによる微構造観察およびXRDによる結晶構造観察を行った。
Evaluation 4 : Evaluation of Alkali Resistance Zinc oxide was dissolved in a 6 mol / L aqueous potassium hydroxide solution to obtain a 5 mol / L aqueous potassium hydroxide solution containing zinc oxide at a concentration of 0.4 mol / L. 15 ml of the aqueous potassium hydroxide solution thus obtained was placed in a Teflon (registered trademark) sealed container. An LDH separator having a size of 1 cm × 0.6 cm was placed at the bottom of the closed container, and the lid was closed. Then, after keeping at 70 ° C. for 3 weeks (ie, 504 hours) or 7 weeks (ie, 1176 hours), the LDH separator was removed from the sealed container. The removed LDH separator was dried at room temperature overnight. The obtained sample was subjected to microstructure observation by SEM and crystal structure observation by XRD.

評価5:イオン伝導率の測定
電解液中でのLDHセパレータの伝導率を図5に示される電気化学測定系を用いて以下のようにして測定した。LDHセパレータ試料Sを両側から厚み1mmシリコーンパッキン40で挟み、内径6mmのPTFE製フランジ型セル42に組み込んだ。電極46として、#100メッシュのニッケル金網をセル42内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液44として、6MのKOH水溶液をセル42内に充填した。電気化学測定システム(ポテンショ/ガルバノスタッド−周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz〜0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片をLDHセパレータ試料Sの抵抗とした。上記同様の測定をLDH膜の付いていない多孔質基材のみに対しても行い、多孔質基材のみの抵抗も求めた。LDHセパレータ試料Sの抵抗と基材のみの抵抗の差をLDH膜の抵抗とした。LDH膜の抵抗と、LDHの膜厚及び面積を用いて伝導率を求めた。
Evaluation 5 : Measurement of Ionic Conductivity The conductivity of the LDH separator in the electrolytic solution was measured as follows using the electrochemical measurement system shown in FIG. The LDH separator sample S was sandwiched between both sides by a silicone packing 40 having a thickness of 1 mm and assembled into a flange type cell 42 made of PTFE having an inner diameter of 6 mm. As the electrode 46, a nickel wire mesh of # 100 mesh was assembled into the cell 42 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm. The cell 42 was filled with a 6 M KOH aqueous solution as the electrolytic solution 44. Using an electrochemical measurement system (potentiometer / galvano stud-frequency response analyzer, Model 1287A and Model 1255B manufactured by Solartron), measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz, an applied voltage of 10 mV, and a real axis intercept. Is the resistance of the LDH separator sample S. The same measurement as above was performed only on the porous substrate without the LDH film, and the resistance of only the porous substrate was also determined. The difference between the resistance of the LDH separator sample S and the resistance of the substrate alone was defined as the resistance of the LDH film. The conductivity was determined using the resistance of the LDH film and the thickness and area of the LDH.

評価6:緻密性判定試験
LDHセパレータがガス不透過性を呈する程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図6A及び6Bに示されるように、蓋の無いアクリル容器130と、このアクリル容器130の蓋として機能しうる形状及びサイズのアルミナ治具132とを用意した。アクリル容器130にはその中にガスを供給するためのガス供給口130aが形成されている。また、アルミナ治具132には直径5mmの開口部132aが形成されており、この開口部132aの外周に沿って試料載置用の窪み132bが形成されてなる。アルミナ治具132の窪み132bにエポキシ接着剤134を塗布し、この窪み132bにLDHセパレータ試料136を載置してアルミナ治具132に気密かつ液密に接着させた。そして、LDHセパレータ試料136が接合されたアルミナ治具132を、アクリル容器130の開放部を完全に塞ぐようにシリコーン接着剤138を用いて気密かつ液密にアクリル容器130の上端に接着させて、測定用密閉容器140を得た。この測定用密閉容器140を水槽142に入れ、アクリル容器130のガス供給口130aを圧力計144及び流量計146に接続して、ヘリウムガスをアクリル容器130内に供給可能に構成した。水槽142に水143を入れて測定用密閉容器140を完全に水没させた。このとき、測定用密閉容器140の内部は気密性及び液密性が十分に確保されており、LDHセパレータ試料136の一方の側が測定用密閉容器140の内部空間に露出する一方、LDHセパレータ試料136の他方の側が水槽142内の水に接触している。この状態で、アクリル容器130内にガス供給口130aを介してヘリウムガスを測定用密閉容器140内に導入した。圧力計144及び流量計146を制御してLDHセパレータ試料136内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、LDHセパレータ試料136から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった場合に、LDHセパレータ試料136はガス不透過性を呈する程に高い緻密性を有するものと判定した。
Evaluation 6 : Density Judgment Test A densification judgment test was performed as follows to confirm that the LDH separator had such a high degree of gas impermeability. First, as shown in FIGS. 6A and 6B, an acrylic container 130 without a lid and an alumina jig 132 having a shape and a size capable of functioning as a lid of the acrylic container 130 were prepared. The acrylic container 130 has a gas supply port 130a for supplying a gas therein. An opening 132a having a diameter of 5 mm is formed in the alumina jig 132, and a sample mounting recess 132b is formed along the outer periphery of the opening 132a. An epoxy adhesive 134 was applied to the depression 132b of the alumina jig 132, and the LDH separator sample 136 was placed in the depression 132b, and was adhered to the alumina jig 132 in a gas-tight and liquid-tight manner. Then, the alumina jig 132 to which the LDH separator sample 136 is bonded is air-tightly and liquid-tightly adhered to the upper end of the acrylic container 130 using a silicone adhesive 138 so as to completely cover the open portion of the acrylic container 130, A closed container for measurement 140 was obtained. The closed container for measurement 140 was placed in a water tank 142, and the gas supply port 130 a of the acrylic container 130 was connected to a pressure gauge 144 and a flow meter 146 so that helium gas could be supplied into the acrylic container 130. Water 143 was placed in the water tank 142, and the closed container for measurement 140 was completely submerged. At this time, the airtightness and liquid tightness of the inside of the measurement closed container 140 are sufficiently ensured, and one side of the LDH separator sample 136 is exposed to the internal space of the measurement closed container 140, while the LDH separator sample 136 is exposed. Is in contact with the water in the water tank 142. In this state, helium gas was introduced into the acrylic container 130 through the gas supply port 130a into the sealed container 140 for measurement. By controlling the pressure gauge 144 and the flow meter 146, the differential pressure between the inside and outside of the LDH separator sample 136 becomes 0.5 atm (that is, the pressure applied to the side in contact with the helium gas becomes 0.5 atm higher than the water pressure applied to the opposite side). Then, it was observed whether or not bubbles of helium gas were generated in the water from the LDH separator sample 136. As a result, in the case where generation of bubbles due to the helium gas was not observed, it was determined that the LDH separator sample 136 had high density enough to exhibit gas impermeability.

評価7:He透過測定
He透過性の観点からLDHセパレータの緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図7A及び図7Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたLDHセパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
Evaluation 7 : He Permeation Measurement A He permeation test was performed as follows to evaluate the denseness of the LDH separator from the viewpoint of He permeability. First, the He transmittance measurement system 310 shown in FIGS. 7A and 7B was constructed. In the He permeability measuring system 310, He gas from a gas cylinder filled with He gas is supplied to a sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and the LDH held in the sample holder 316 The separator 318 is configured to be transmitted from one surface to the other surface and discharged.

試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、LDHセパレータ318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、LDHセパレータ318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。   The sample holder 316 has a structure provided with a gas supply port 316a, a closed space 316b, and a gas discharge port 316c, and was assembled as follows. First, an adhesive 322 was applied along the outer periphery of the LDH separator 318 and attached to a jig 324 (made of ABS resin) having an opening at the center. Gaskets made of butyl rubber are disposed as sealing members 326a and 326b at the upper and lower ends of the jig 324, and supporting members 328a and 328b (made of PTFE) provided with openings formed of flanges from outside the sealing members 326a and 326b. ). Thus, the sealed space 316b was partitioned by the LDH separator 318, the jig 324, the sealing member 326a, and the support member 328a. The support members 328a and 328b were tightly fastened to each other by the fastening means 330 using screws so that the He gas did not leak from a portion other than the gas outlet 316c. The gas supply pipe 334 was connected via a joint 332 to the gas supply port 316a of the sample holder 316 thus assembled.

次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持されたLDHセパレータ318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1〜30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時にLDHセパレータに加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05〜0.90atmの範囲内となるように供給された。Next, He gas was supplied to the He permeability measuring system 310 via the gas supply pipe 334, and was passed through the LDH separator 318 held in the sample holder 316. At this time, the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314. After transmitting He gas for 1 to 30 minutes, the He permeability was calculated. The calculation of the He permeability is performed by calculating the permeation amount F of the He gas per unit time F (cm 3 / min), the differential pressure P (atm) applied to the LDH separator when the He gas passes, and the film area S (cm) through which the He gas passes. 2 ) was calculated by the formula of F / (P × S). The He gas permeation amount F (cm 3 / min) was read directly from the flow meter 314. The gauge pressure read from the pressure gauge 312 was used as the differential pressure P. The He gas was supplied such that the differential pressure P was in the range of 0.05 to 0.90 atm.

(6)評価結果
評価結果は以下のとおりであった。
‐評価1:得られたXRDプロファイルから、LDHセパレータに含まれる結晶相はLDH(ハイドロタルサイト類化合物)であることが同定された。
‐評価2:LDHセパレータの断面微構造のSEM画像は図8に示されるとおりであった。図8から分かるように、LDHが多孔質基材の厚さ方向の全域にわたって組み込まれていること、すなわち多孔質基材の孔が万遍なくLDHで埋まっていることが観察された。
‐評価3:EDS元素分析の結果、LDHセパレータから、LDH構成元素であるC、Al、Ti及びNiが検出された。すなわち、Al、Ti及びNiは水酸化物基本層の構成元素である一方、CはLDHの中間層を構成する陰イオンであるCO 2−に対応する。
‐評価4:70℃の水酸化カリウム水溶液に3週間ないし7週間浸漬させた後においても、LDHセパレータの微構造に変化はみられなかった。
‐評価5:LDHセパレータの伝導率は2.0mS/cmであった。
‐評価6:LDHセパレータはガス不透過性を呈する程に高い緻密性を有することが確認された。
‐評価7:LDHセパレータのHe透過度は0.0cm/min・atmであった。
(6) Evaluation results The evaluation results were as follows.
-Evaluation 1: From the obtained XRD profile, it was identified that the crystal phase contained in the LDH separator was LDH (hydrotalcite compound).
-Evaluation 2: The SEM image of the cross-sectional microstructure of the LDH separator was as shown in FIG. As can be seen from FIG. 8, it was observed that LDH was incorporated over the entire area in the thickness direction of the porous substrate, that is, that the pores of the porous substrate were uniformly filled with LDH.
-Evaluation 3: As a result of EDS elemental analysis, C, Al, Ti and Ni, which are LDH constituent elements, were detected from the LDH separator. That is, Al, Ti and Ni are constituent elements of the hydroxide basic layer, while C corresponds to CO 3 2- which is an anion constituting the LDH intermediate layer.
-Evaluation 4: No change was observed in the microstructure of the LDH separator even after immersion in an aqueous potassium hydroxide solution at 70 ° C. for 3 to 7 weeks.
-Evaluation 5: The conductivity of the LDH separator was 2.0 mS / cm.
-Evaluation 6: It was confirmed that the LDH separator had high density enough to exhibit gas impermeability.
-Evaluation 7: The He permeability of the LDH separator was 0.0 cm / min · atm.

Claims (14)

亜鉛二次電池用の負極構造体の製造方法であって、
(a)亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む四辺形状の負極活物質層の全体を、それよりも大きいサイズの四辺形状の保液部材で覆う又は包み込んで、第一積層体を得る工程と、
(b)前記第一積層体の全体を、1辺で折り曲げられた1枚の四辺形状の層状複水酸化物(LDH)セパレータ又は折り曲げられていない少なくとも2枚の四辺形状のLDHセパレータで、前記負極活物質層の外縁からはみ出した重なり部分を前記外縁の全域にわたって形成するように挟み込んで、第二積層体を得る工程と、
(c)前記折り曲げられた1枚のLDHセパレータを用いる場合は前記第二積層体の折り曲げられた辺と隣接する少なくとも1辺の外縁に属する重なり部分を封止して、あるいは前記折り曲げられていない2枚のLDHセパレータを用いる場合は前記第二積層体の互いに隣接する少なくとも2辺の外縁に属する重なり部分を封止して、結果として、互いに隣接する少なくとも2辺の外縁が閉じられた負極構造体を得る工程と、
を含む、方法。
A method for producing a negative electrode structure for a zinc secondary battery,
(A) The whole of the quadrilateral negative electrode active material layer including at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy, and a zinc compound is covered with a quadrilateral liquid retaining member having a larger size. Or wrapping and obtaining a first laminate,
(B) the whole of the first laminate is a single layered double hydroxide (LDH) separator bent at one side or at least two unfolded quadrilateral LDH separators, A step of sandwiching the overlapping portion protruding from the outer edge of the negative electrode active material layer so as to form over the entire area of the outer edge, to obtain a second laminate,
(C) In the case of using one bent LDH separator, an overlapped portion belonging to at least one outer edge adjacent to the bent side of the second laminate is sealed, or is not bent. When two LDH separators are used, the overlapping portion belonging to at least two outer edges adjacent to each other of the second laminate is sealed, and as a result, a negative electrode structure in which at least two outer edges adjacent to each other are closed Obtaining a body;
Including, methods.
前記保液部材が不織布である、請求項1に記載の方法。   The method according to claim 1, wherein the liquid retaining member is a nonwoven fabric. 工程(b)が、1枚の前記LDHセパレータを折り曲げる工程と、該折り曲げられた1枚のLDHセパレータで前記負極活物質層及び前記保液部材の全体を挟み込む工程とを含み、かつ、工程(c)が、前記第二積層体の折り曲げられた辺と隣接する少なくとも1辺の外縁に属する重なり部分を封止することを含む、請求項1又は2に記載の方法。   Step (b) includes a step of bending one LDH separator, and a step of sandwiching the entire negative electrode active material layer and the liquid retaining member between the bent one LDH separator, and 3. The method according to claim 1 or 2, wherein c) comprises sealing an overlapping portion belonging to at least one outer edge adjacent to the folded side of the second laminate. 工程(b)における前記折り曲げが、前記LDHセパレータの折り曲げ断面が丸みを帯びるように行われる、請求項3に記載の方法。   The method according to claim 3, wherein the bending in the step (b) is performed such that a bent cross section of the LDH separator is rounded. 工程(c)が、前記第二積層体の折り曲げられた辺と隣接する2辺の外縁に属する重なり部分を封止するように行われる、請求項3又は4に記載の方法。   The method according to claim 3 or 4, wherein step (c) is performed so as to seal an overlapped portion belonging to two outer edges adjacent to the folded side of the second laminate. 工程(b)が、折り曲げられていない2枚の前記LDHセパレータで、前記負極活物質層及び前記保液部材の全体を挟み込むことを含み、かつ、工程(c)が前記第二積層体の互いに隣接する少なくとも2辺の外縁に属する重なり部分を封止する工程を含む、請求項1又は2に記載の方法。   The step (b) includes sandwiching the entirety of the negative electrode active material layer and the liquid retaining member between the two unfolded LDH separators, and the step (c) includes the step of: 3. The method according to claim 1 or 2, comprising the step of sealing overlapping portions belonging to at least two adjacent outer edges. 工程(c)が、前記第二積層体の3辺の外縁に属する重なり部分を封止する、請求項6に記載の方法。   The method according to claim 6, wherein step (c) seals an overlapping portion belonging to three outer edges of the second laminate. 前記封止が、接着剤、熱溶着、超音波溶着、接着テープ及び封止テープからなる群から選択される少なくとも1種により行われる、請求項1〜7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, wherein the sealing is performed by at least one selected from the group consisting of an adhesive, heat welding, ultrasonic welding, an adhesive tape, and a sealing tape. 工程(b)が、前記重なり部分を構成する前記LDHセパレータの間に、前記保液部材の外周部分を挟み込むように行われ、かつ、工程(c)における前記封止が熱溶着又は超音波溶着により行われる、請求項1〜8のいずれか一項に記載の方法。   Step (b) is performed so as to sandwich an outer peripheral portion of the liquid retaining member between the LDH separators constituting the overlapping portion, and the sealing in step (c) is performed by heat welding or ultrasonic welding. The method according to claim 1, wherein the method is performed by: 前記LDHセパレータがLDHと多孔質基材とを含み、前記LDHセパレータが水酸化物イオン伝導性及びガス不透過性を呈するように前記LDHが前記多孔質基材の孔を塞いでいる、請求項1〜9のいずれか一項に記載の方法。   The LDH separator includes an LDH and a porous substrate, and the LDH blocks pores of the porous substrate such that the LDH separator exhibits hydroxide ion conductivity and gas impermeability. The method according to any one of claims 1 to 9. 前記多孔質基材が高分子材料製である、請求項10に記載の方法。   The method according to claim 10, wherein the porous substrate is made of a polymer material. 前記LDHが前記多孔質基材の厚さ方向の全域にわたって組み込まれている、請求項11に記載の方法。   The method according to claim 11, wherein the LDH is incorporated throughout the thickness of the porous substrate. 前記負極活物質層が集電体を伴っており、前記集電体が前記負極活物質層の1辺から延出する集電体延出部を有し、
工程(a)が、前記集電体延出部の先端部分を前記保液部材で覆わない又は包み込まないように行われ、かつ、工程(b)が、前記集電体延出部の先端部分を前記LDHセパレータで挟み込まないように行われ、その結果、前記集電体延出部の先端部分が前記保液部材及び前記LDHセパレータで覆われない露出部分をなす、請求項1〜12のいずれか一項に記載の方法。
The negative electrode active material layer is accompanied by a current collector, the current collector has a current collector extending portion extending from one side of the negative electrode active material layer,
Step (a) is performed so that the distal end portion of the current collector extension is not covered or wrapped with the liquid retaining member, and step (b) is performed at the distal end of the current collector extension. Is carried out so as not to be sandwiched by the LDH separator, and as a result, a tip portion of the current collector extension portion forms an exposed portion that is not covered by the liquid retaining member and the LDH separator. The method according to claim 1.
前記封止が行われる辺が、前記集電体延出部と重ならない辺である、請求項13に記載の方法。

The method according to claim 13, wherein the side on which the sealing is performed is a side that does not overlap with the current collector extension.

JP2019546649A 2017-10-03 2018-09-26 Method for producing negative electrode structure for zinc secondary battery Active JP6677860B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017193644 2017-10-03
JP2017193644 2017-10-03
PCT/JP2018/035659 WO2019069762A1 (en) 2017-10-03 2018-09-26 Method of manufacturing negative electrode structure for zinc secondary battery

Publications (2)

Publication Number Publication Date
JPWO2019069762A1 JPWO2019069762A1 (en) 2020-04-02
JP6677860B2 true JP6677860B2 (en) 2020-04-08

Family

ID=65994691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019546649A Active JP6677860B2 (en) 2017-10-03 2018-09-26 Method for producing negative electrode structure for zinc secondary battery

Country Status (2)

Country Link
JP (1) JP6677860B2 (en)
WO (1) WO2019069762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210111708A (en) 2020-03-03 2021-09-13 기초과학연구원 Fabrication Method of Anode for Zinc-Ion Battery and Anode for Zinc-Ion Battery manufactured Therefrom and Aqueous Zinc-Ion Battery comprising the Same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020003246T5 (en) 2019-08-06 2022-03-31 Ngk Insulators, Ltd. ALKALINE SECONDARY BATTERY AND ALKALINE SECONDARY BATTERY MODULE
JP7315676B2 (en) 2019-08-06 2023-07-26 日本碍子株式会社 battery module
DE112020004526T5 (en) 2019-09-25 2022-06-09 Ngk Insulators, Ltd. Air Electrode/Separator Assembly and Zinc Air Secondary Battery
CN111562193A (en) * 2020-05-14 2020-08-21 惠州亿纬锂能股份有限公司 Evaluation method for liquid retention effect of material for lithium ion battery
CN113871558A (en) * 2020-06-30 2021-12-31 松山湖材料实验室 Closed metal negative electrode, winding type battery and preparation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127534A (en) * 1978-03-27 1979-10-03 Japan Storage Battery Co Ltd Closed silver oxide cell
JPS5590078A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Ni-zn battery
JPS6378460A (en) * 1986-09-19 1988-04-08 Sanyo Electric Co Ltd Nickel zinc storage battery
JPH0360759U (en) * 1989-10-17 1991-06-14
JP6244174B2 (en) * 2013-11-08 2017-12-06 株式会社日本触媒 Anion conducting membrane and battery
EP3358654B1 (en) * 2015-11-16 2020-08-26 NGK Insulators, Ltd. Electrode cartridge and zinc secondary cell using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210111708A (en) 2020-03-03 2021-09-13 기초과학연구원 Fabrication Method of Anode for Zinc-Ion Battery and Anode for Zinc-Ion Battery manufactured Therefrom and Aqueous Zinc-Ion Battery comprising the Same

Also Published As

Publication number Publication date
WO2019069762A1 (en) 2019-04-11
JPWO2019069762A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP6723473B2 (en) Zinc secondary battery
JP6677860B2 (en) Method for producing negative electrode structure for zinc secondary battery
JP6993422B2 (en) Negative electrode structure for zinc secondary battery
US10700328B2 (en) Nickel-zinc battery cell pack and battery pack using same
KR101691338B1 (en) Secondary cell using hydroxide-ion-conductive ceramic separator
WO2017086278A1 (en) Electrode cartridge and zinc secondary cell using same
JP7095991B2 (en) Zinc-air battery Cell pack and battery assembly using it
JP6993246B2 (en) Zinc secondary battery
JPWO2019124270A1 (en) LDH separator and zinc secondary battery
JP2018026205A (en) Negative electrode structure and zinc secondary battery including the same
CN111615759A (en) LDH separator and zinc secondary battery
JP7017445B2 (en) Negative electrode structure for zinc secondary battery
JP6997019B2 (en) Zinc secondary battery
WO2019124214A1 (en) Ldh separator and zinc secondary battery
WO2019124213A1 (en) Ldh separator and zinc secondary battery
US11239489B2 (en) Zinc secondary battery
WO2019124212A1 (en) Ldh separator and zinc secondary cell
WO2022113434A1 (en) Zinc secondary battery
JP2017016901A (en) Zinc air cell
WO2018078738A1 (en) Nickel zinc battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150