JP6677815B2 - Hollow resin plate - Google Patents

Hollow resin plate Download PDF

Info

Publication number
JP6677815B2
JP6677815B2 JP2018547625A JP2018547625A JP6677815B2 JP 6677815 B2 JP6677815 B2 JP 6677815B2 JP 2018547625 A JP2018547625 A JP 2018547625A JP 2018547625 A JP2018547625 A JP 2018547625A JP 6677815 B2 JP6677815 B2 JP 6677815B2
Authority
JP
Japan
Prior art keywords
hollow resin
resin plate
hollow
thickness
lower edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547625A
Other languages
Japanese (ja)
Other versions
JPWO2018079432A1 (en
Inventor
孔也 田口
孔也 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Publication of JPWO2018079432A1 publication Critical patent/JPWO2018079432A1/en
Application granted granted Critical
Publication of JP6677815B2 publication Critical patent/JP6677815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/20Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、面内方向に複数の中空部を有する中空樹脂板に関する。より詳しくは、端末加工が施された中空樹脂板に関する。   The present invention relates to a hollow resin plate having a plurality of hollow portions in an in-plane direction. More specifically, the present invention relates to a hollow resin plate subjected to terminal processing.

中空樹脂板は、軽量で、取り扱いが容易なだけでなく、曲げ剛性や圧縮強度にも優れることから、箱材や梱包材などの物流用途、壁や天井用のパネル材などの建築用途、車両の内装材など、幅広い分野で利用されている。一般に、中空樹脂板は、長尺状又は大面積に形成したものを切断して所定の大きさにしているが、箱材や梱包材などの物流用途では、端部が切断したままの状態であると、梱包用バンドで結束した際に外縁部に白化や変形が発生しやすく、締め込み速度が速い場合には、摩擦により梱包用バンドが破損することもある。   Hollow resin sheets are not only lightweight and easy to handle, but also have excellent flexural rigidity and compressive strength, so they are used for logistics such as boxes and packing materials, architectural uses such as panel materials for walls and ceilings, and vehicles. It is used in a wide range of fields such as interior materials. In general, a hollow resin plate is cut into a predetermined size by cutting a long or large area, but in a logistics application such as a box material or a packing material, the end portion is kept cut. If so, whitening or deformation is likely to occur at the outer edge portion when bound by the packing band, and when the fastening speed is high, the packing band may be damaged by friction.

そこで、従来、梱包用バンドで結束された際の変形や変色或いはバンドのずれを防止するために、外周断面を傾斜部と膨出状凸部を有する略垂直状部で構成される形状にした中空樹脂板が提案されている(特許文献1参照)。一方、取り扱い性や美観を高めるために、端部に封止加工を施した中空樹脂板も提案されている(特許文献2〜4参照)。   Therefore, conventionally, in order to prevent deformation, discoloration, or displacement of the band when bound by the packing band, the outer peripheral cross section is formed to have a substantially vertical portion having an inclined portion and a bulging convex portion. A hollow resin plate has been proposed (see Patent Document 1). On the other hand, in order to enhance the handleability and the appearance, a hollow resin plate having an end portion sealed is also proposed (see Patent Documents 2 to 4).

例えば、特許文献2に記載の中空樹脂板は、加工面が側面視で略半円状の加熱型又は超音波ホーンを用いて2枚の表面材を湾曲させ、端面同士を接合することにより端部が封止されている。また、特許文献3に記載の端面処理方法では、円盤状の2つの回転体を用いて端部を封止している。更に、特許文献4に記載の中空樹脂板は、金型を用いて真空引きしながらプレスする方法により、全周に亘って端面が封止されている。   For example, the hollow resin plate described in Patent Literature 2 uses a heating die or an ultrasonic horn whose processing surface has a substantially semicircular shape in a side view, curves two surface materials, and joins the end surfaces to each other. Part is sealed. Further, in the end face processing method described in Patent Literature 3, the end is sealed using two disk-shaped rotating bodies. Further, the end face of the hollow resin plate described in Patent Document 4 is sealed over the entire circumference by a method of pressing while vacuuming using a mold.

特開2010−058482号公報JP 2010-058482 A 特開2006−103027号公報JP 2006-103027 A 特開2007−237419号公報JP 2007-237419 A 特開2013−240966号公報JP 2013-240966 A

特許文献1〜4に記載されているような中空樹脂板の端部加工は、梱包用バンドによる縁部の変形や白化の発生低減にある程度の効果は見込めるが、中空樹脂板の用途の拡大と共に、更なる性能向上が求められている。   The end processing of the hollow resin plate as described in Patent Documents 1 to 4 is expected to have a certain effect in reducing the deformation of the edge and the occurrence of whitening by the packing band, but with the expansion of the use of the hollow resin plate. Further improvement in performance is required.

そこで、本発明は、取り扱い性に優れ、梱包用バンドなどにより縁部に局所的負荷がかかった場合でも変形や白化が発生しにくい中空樹脂板を提供することを目的とする。   Therefore, an object of the present invention is to provide a hollow resin plate which is excellent in handleability and hardly deforms or whitens even when a local load is applied to the edge by a packing band or the like.

本発明に係る中空樹脂板は、面内方向に複数の中空部を有する中空樹脂板であって、少なくとも一の端部は、外観形状が上下対称で、かつ、厚さ方向における上下縁部が断面円弧状となるよう封止され、樹脂密度がその他の部分よりも150〜240%高くなっており、前記上下縁部は、JIS B0601:2013に規定される断面曲線(P)における最大値と最小値の差が0.5mm以下で、前記上下縁部の曲率半径R(mm)と板厚T(mm)との関係が下記数式1を満たすものである。
本発明の中空樹脂板は、複数の凸部及び/又は凹部がマトリクス状に形成された1又は2枚の樹脂シートからなるコア材と、前記コア材の両面に積層された表面材とで構成されていてもよく、その場合、前記封止された端部は、前記コア材及び/又は表面材の一部が内側に巻き込まれている。
The hollow resin plate according to the present invention is a hollow resin plate having a plurality of hollow portions in the in-plane direction, at least one end, the outer shape is vertically symmetric, and the upper and lower edges in the thickness direction. hermetically so that sealing such as arc-shaped cross section, the resin density has become 150 to 240 percent higher than the other portions, the upper and lower edges, JIS B0601: maximum in the cross section curve defined in 2013 (P) And the minimum value is 0.5 mm or less, and the relationship between the radius of curvature R (mm) of the upper and lower edges and the plate thickness T (mm) satisfies the following formula 1.
The hollow resin plate of the present invention includes a core material composed of one or two resin sheets in which a plurality of convex portions and / or concave portions are formed in a matrix, and a surface material laminated on both surfaces of the core material. In this case, the sealed end has a part of the core material and / or the surface material wound inside.

Figure 0006677815
Figure 0006677815

本発明において、「上下対称」とは、厚さ方向の中央面に対して面対称であることを示し、略対称の場合も含む。また、「縁部」は、平面部との境界部分及びその近傍の曲面部を指し、「断面円弧状」は、厚さ方向の断面が円弧状であることを示す。   In the present invention, “vertical symmetry” means plane symmetry with respect to the center plane in the thickness direction, and includes the case of substantially symmetry. Further, “edge” indicates a boundary portion with the plane portion and a curved surface portion in the vicinity thereof, and “arc cross section” indicates that the cross section in the thickness direction is arc.

本発明に係る他の中空樹脂板は、面内方向に複数の中空部を有する中空樹脂板であって、少なくとも一の端部は、外観形状が上下対称で、かつ、厚さ方向における上下縁部が断面円弧状となっており、前記上下縁部が断面円弧状の端部には、厚さ方向中央部に前記縁部に沿って延びる開口部が設けられており、断面円弧状の上下縁部は、曲率半径R(mm)と板厚T(mm)との関係が上記数式1を満たすものである。
その場合、前記開口部の幅W(mm)と板厚T(mm)との比(W/T)は、例えば0.4以下とすることができる。
本発明の中空樹脂板は、中空部も含む板全体を上下対称構造としてもよい。なお、ここでいう「上下対称構造」とは、厚さ方向の中央面に対して面対称の構造であることを示し、略対称の構造も含む
た、本発明の中空樹脂板は、複数の凸部及び/又は凹部がマトリクス状に形成された1又は2枚の樹脂シートからなるコア材と、前記コア材の両面に積層された表面材とで構成することもできる。
Another hollow resin plate according to the present invention is a hollow resin plate having a plurality of hollow portions in an in-plane direction, at least one end portion is vertically symmetrical in appearance, and has upper and lower edges in a thickness direction. The upper and lower edges are provided with an opening extending along the edge at the center in the thickness direction, and the upper and lower edges have an arcuate cross section. At the edge, the relationship between the radius of curvature R (mm) and the plate thickness T (mm) satisfies Equation 1 above.
In this case, the ratio (W / T) of the width W (mm) of the opening to the plate thickness T (mm) can be, for example, 0.4 or less.
In the hollow resin plate of the present invention, the entire plate including the hollow portion may have a vertically symmetric structure. The “vertical symmetric structure” here indicates a structure that is plane-symmetric with respect to the center plane in the thickness direction, and includes a substantially symmetric structure .
Also, the hollow resin plate of the present invention, a plurality of protrusions and / or the core material with a recess of one or two resin sheets are formed in a matrix, the surface material which is laminated on both surfaces of the core member It can also be composed of

本発明によれば、端部の外観形状を上下対称とすると共に、厚さ方向における上下縁部を断面円弧状とし、その曲率半径と板厚との関係を特定の範囲にしているため、取り扱い性に優れ、縁部に局所的負荷がかかった場合でも変形や白化が発生しにくい中空樹脂板を実現することができる。   According to the present invention, the outer shape of the end portion is vertically symmetrical, the upper and lower edges in the thickness direction are arc-shaped in cross section, and the relationship between the radius of curvature and the plate thickness is in a specific range. It is possible to realize a hollow resin plate which is excellent in property and hardly deforms or whitens even when a local load is applied to the edge.

A〜Cは本発明の第1の実施形態の中空樹脂板の構成例を示す図であり、Aは平面図、BはAに示すx−x線による断面図、Cは上下縁部の曲率半径Rと板厚Tとの関係を示す概念図である。1A to 1C are diagrams illustrating a configuration example of a hollow resin plate according to a first embodiment of the present invention, wherein A is a plan view, B is a cross-sectional view taken along line xx shown in A, and C is a curvature of upper and lower edges. FIG. 3 is a conceptual diagram illustrating a relationship between a radius R and a plate thickness T. 図1に示す中空樹脂板10に用いられる基材の構成例を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating a configuration example of a base material used for the hollow resin plate 10 illustrated in FIG. 1. 基材の他の構成例を示す分解斜視図である。It is an exploded perspective view showing other examples of composition of a substrate. 基材の他の構成例を示す分解斜視図である。It is an exploded perspective view showing other examples of composition of a substrate. 基材の他の構成例を示す分解斜視図である。It is an exploded perspective view showing other examples of composition of a substrate. 端末加工の一例を示す概略図である。It is the schematic which shows an example of terminal processing. 端末加工による端部2の巻き込みを示す概念図である。It is a conceptual diagram which shows the winding of the edge part 2 by terminal processing. Aは本発明の第2の実施形態の中空樹脂板の構成例を示す図であり、図1Aに示すx−x線による断面図に相当し、BはAに示す中空樹脂板20の開口部21の幅Wと板厚Tとの関係を示す概念図である。FIG. 1A is a diagram showing a configuration example of a hollow resin plate according to a second embodiment of the present invention, and corresponds to a cross-sectional view taken along line xx shown in FIG. 1A; It is a conceptual diagram which shows the relationship between width W of 21 and plate thickness T. 局所的負荷試験の方法を模式的に示す図である。It is a figure which shows the method of a local load test typically. 耐クリープ性試験の方法を模式的に示す図である。It is a figure which shows the method of a creep resistance test typically.

以下、本発明を実施するための形態について、添付の図面を参照して、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below.

(第1の実施形態)
先ず、本発明の第1の実施形態に係る中空樹脂板について説明する。図1A〜Cは本実施形態の中空樹脂板の構成例を示す図であり、図1Aは平面図、図1Bは図1Aに示すx−x線による断面図、図1Cは上下縁部の曲率半径Rと板厚Tとの関係を示す概念図である。
(First embodiment)
First, the hollow resin plate according to the first embodiment of the present invention will be described. 1A to 1C are diagrams showing a configuration example of a hollow resin plate of the present embodiment, FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line xx shown in FIG. 1A, and FIG. FIG. 3 is a conceptual diagram illustrating a relationship between a radius R and a plate thickness T.

[全体構成]
図1A,Bに示すように、本実施形態の中空樹脂板10は、中空構造を有する板状の樹脂成形体であり、面内方向に複数の中空部1a〜1cが形成されている。この中空樹脂板10は、例えば、複数の凸部及び/又は凹部がマトリクス状に形成された1又は2枚の樹脂シートからなるコア材3と、その両面に積層された表面材4,5とで構成することができる。
[overall structure]
As shown in FIGS. 1A and 1B, the hollow resin plate 10 of the present embodiment is a plate-shaped resin molded body having a hollow structure, and has a plurality of hollow portions 1a to 1c formed in an in-plane direction. The hollow resin plate 10 includes, for example, a core material 3 composed of one or two resin sheets in which a plurality of convex portions and / or concave portions are formed in a matrix, and surface materials 4 and 5 laminated on both surfaces thereof. Can be configured.

また、本実施形態の中空樹脂板10の少なくとも一の端部2は、外観形状が上下対称で、かつ、厚さ方向における上下縁部2a,2bが断面円弧状でとなっている。ここで、「上下対称」とは、厚さ方向の中央面に対して面対称であることを示し、完全に対称の場合だけでなく、略対称である場合も含む。また、「縁部」は、平面部との境界部分及びその近傍の曲面部を指し、「断面円弧状」は、厚さ方向の断面が円弧状であることを示す。   Further, at least one end 2 of the hollow resin plate 10 of the present embodiment is vertically symmetrical in outer appearance, and the upper and lower edges 2a, 2b in the thickness direction are arc-shaped in cross section. Here, "vertical symmetry" indicates plane symmetry with respect to the center plane in the thickness direction, and includes not only complete symmetry but also substantially symmetry. Further, “edge” indicates a boundary portion with the plane portion and a curved surface portion in the vicinity thereof, and “arc cross section” indicates that the cross section in the thickness direction is arc.

[中空部1a〜1c]
中空部1a〜1cは、面内方向に複数形成されていればよく、その形状や構成は特に限定されるものではない。例えば、面内方向に複数の独立中空部が相互に隣接して形成されていてもよく、それが厚さ方向に複数段積層されていてもよい。また、中空部は、任意の方向に連続し、端部が開放された構成でもよく、このような連続した開放中空部1cと独立中空部1a,1bの両方が形成されていてもよい。
[Hollow parts 1a to 1c]
The hollow portions 1a to 1c may be formed in a plurality in the in-plane direction, and their shapes and configurations are not particularly limited. For example, a plurality of independent hollow portions may be formed adjacent to each other in the in-plane direction, or may be stacked in a plurality of stages in the thickness direction. Further, the hollow portion may be configured to be continuous in an arbitrary direction and have an open end, and such a continuous open hollow portion 1c and independent hollow portions 1a and 1b may be formed.

なお、図1Bには、独立中空部1a,1bが規則的に配置されている例を示しているが、本発明はこれに限定されるものではなく、中空部1a〜1cが不規則に配置されていてもよい。また、独立中空部の形状も図1Bに示す略円錐台形状に限らず、略角錐台形状、略円柱状及び略角柱状など、各種形状を採用することができる。   Although FIG. 1B shows an example in which the independent hollow portions 1a and 1b are regularly arranged, the present invention is not limited to this, and the hollow portions 1a to 1c are irregularly arranged. It may be. Further, the shape of the independent hollow portion is not limited to the substantially truncated cone shape shown in FIG. 1B, and various shapes such as a substantially truncated pyramid shape, a substantially columnar shape, and a substantially prismatic shape can be adopted.

[端部2]
端部2について、上下縁部2a,2bの断面形状を円弧状にすると、梱包用バンドなどにより局所的負荷がかかった場合でも、応力が曲面に沿って分散し、上下縁部2a,2bに変形や白化が発生しにくくなる。加えて、端部2の外観形状を上下対称とすることで、局所的負荷が上側縁部2a及び下側縁部2bのどちらにかかった場合でも、同様に変形や白化の発生を抑制することが可能となるため、取り扱い性が向上する。
[End 2]
When the cross-sectional shape of the upper and lower edges 2a and 2b of the end 2 is arc-shaped, even when a local load is applied by a packing band or the like, the stress is dispersed along the curved surface, and the stress is distributed to the upper and lower edges 2a and 2b. Deformation and whitening hardly occur. In addition, by making the external shape of the end portion 2 vertically symmetric, even when a local load is applied to either the upper edge portion 2a or the lower edge portion 2b, the occurrence of deformation and whitening is similarly suppressed. Is possible, and the handling is improved.

ただし、端部2が前述した形状であっても、図1Cに示す上下縁部2a,2bの曲率半径R(mm)と板厚T(mm)との関係が、下記数式2を満たしていないと、局所的負荷による変形や白化を十分に防止することはできない。   However, even if the end 2 has the above-described shape, the relationship between the radius of curvature R (mm) and the plate thickness T (mm) of the upper and lower edges 2a and 2b shown in FIG. Then, deformation and whitening due to local load cannot be sufficiently prevented.

Figure 0006677815
Figure 0006677815

具体的には、上側縁部2a及び下側縁部2bの曲率直径2Rと板厚Tとの比(2R/T)が0.85未満の場合、製造時にコア材3の端部が過度に座屈し、中空樹脂板10の平面圧縮強度が低下したり、端部2に密度が低い部分ができたりする。その結果、上下縁部2a,2bに局所的負荷がかかると、変形や白化が発生しやすくなり、製品寿命が短くなる。特に、板厚Tとの関係において上下縁部2a,2bの曲率直径2Rがより小さいもの(例えば2R/T≦0.60)では、局所的負荷による応力を分散できず、上下縁部2a,2bの破損や梱包用バンドの切断が発生することがある。   Specifically, when the ratio (2R / T) of the curvature diameter 2R of the upper edge portion 2a and the lower edge portion 2b to the plate thickness T (2R / T) is less than 0.85, the end of the core material 3 is excessively formed during manufacturing. Buckling occurs, and the planar compressive strength of the hollow resin plate 10 is reduced, or a low density portion is formed at the end 2. As a result, when a local load is applied to the upper and lower edges 2a and 2b, deformation and whitening tend to occur, and the product life is shortened. Particularly, in the case where the curvature diameter 2R of the upper and lower edges 2a and 2b is smaller in relation to the plate thickness T (for example, 2R / T ≦ 0.60), the stress due to the local load cannot be dispersed, and the upper and lower edges 2a and 2b cannot be dispersed. 2b may be damaged or the packing band may be cut.

一方、上下縁部2a,2bの曲率直径2Rと板厚Tとの比(2R/T)が1.05を超えるものは、表面平滑性を維持することが難しく、製造過程において上下縁部2a,2bの表面、特に平面と曲面の境界部分に比較的大きな凹凸が形成されやすい。そして、上下縁部2a,2bにこのような凹凸があると、梱包用バンドで結束した際に、この凹凸部分に負荷が集中し、梱包用バンドに切断などの破損が発生する。   On the other hand, when the ratio (2R / T) of the curvature diameter 2R of the upper and lower edges 2a, 2b to the plate thickness T (2R / T) exceeds 1.05, it is difficult to maintain the surface smoothness, and in the manufacturing process, , 2b, relatively large irregularities are likely to be formed on the surface, particularly at the boundary between the plane and the curved surface. If the upper and lower edges 2a and 2b have such irregularities, when the package is bound by the packing band, the load is concentrated on the irregularities, and the packing band is damaged by cutting or the like.

また、表面材の上に、不織布、熱可塑性樹脂シート及び発泡性シートなどの樹脂系面材を積層せずに加工を行い、(2R/T)>1.05でかつ端部が封止された構造の中空樹脂板を得るためには、内側部分まで広い範囲に加工を施す必要がある。このような加工を行うと、端部に座屈が発生し、エンドクラッシュ物性(垂直圧縮応力)が低下するため、例えば箱やケースの側面に用いた場合、積み重ねた際に変形しやすくなる。なお、「エンドクラッシュ」は、段ボールシートなどの板状の材料を垂直に立てて端部から荷重を加えた場合の破壊強度を示す指標であり、例えばJIS Z 0403などに規定される方法で測定することができる。   In addition, processing is performed without laminating resin-based face materials such as a nonwoven fabric, a thermoplastic resin sheet, and a foamable sheet on the surface material, and (2R / T)> 1.05 and the ends are sealed. In order to obtain a hollow resin plate having such a structure, it is necessary to process a wide area up to the inner part. When such processing is performed, buckling occurs at the end portion, and end crush physical properties (vertical compressive stress) decrease. For example, when used on the side surface of a box or case, the end crush easily deforms when stacked. The “end crush” is an index indicating the breaking strength when a plate-like material such as a corrugated cardboard sheet is erected vertically and a load is applied from the end, and is measured, for example, by a method specified in JIS Z0403 or the like. can do.

そこで、本実施形態の中空樹脂板10では、端部2の外観形状を上下対称とし、更に、上下縁部2a,2bを断面円弧状とすると共に、その曲率半径R(mm)を、板厚Tとの関係において、上記数式2を満たす範囲とする。これにより、上下縁部2a,2bの表面平滑性を維持しつつ、局所的負荷に対する強度を高めることができる。   Therefore, in the hollow resin plate 10 of the present embodiment, the outer shape of the end portion 2 is vertically symmetrical, and the upper and lower edges 2a, 2b are arc-shaped in cross section, and the curvature radius R (mm) is determined by the plate thickness. In relation to T, the range satisfies Equation 2 above. Thereby, the strength against a local load can be increased while maintaining the surface smoothness of the upper and lower edges 2a, 2b.

なお、上下縁部2a,2bの曲率直径2Rと板厚Tとの比(2R/T)は、0.90〜0.98の範囲にすることが好ましい。これにより、端部2の外観や表面平滑性が向上すると共に、局所的負荷に対する強度を更に高めることができる。   The ratio (2R / T) between the curvature diameter 2R of the upper and lower edges 2a, 2b and the plate thickness T is preferably in the range of 0.90 to 0.98. Thereby, the appearance and surface smoothness of the end portion 2 are improved, and the strength against a local load can be further increased.

また、上下縁部2a,2bの表面平滑性については、JIS B0601:2013に規定される断面曲線(P)における最大値と最小値の差が0.5mm以下であることが好ましい。上下縁部2a,2bの表面平滑性を、この範囲にすることにより、梱包用バンドの破損抑制効果を更に向上させることができる。   Regarding the surface smoothness of the upper and lower edges 2a, 2b, it is preferable that the difference between the maximum value and the minimum value in the cross-sectional curve (P) specified in JIS B0601: 2013 is 0.5 mm or less. By setting the surface smoothness of the upper and lower edges 2a and 2b within this range, the effect of suppressing damage to the packing band can be further improved.

本実施形態の中空樹脂板10は、全ての端部を、外観が上下対称で、上下縁部が断面円弧状の形状にすることもできるが、少なくとも梱包用バンドなどにより局所的負荷がかかる部分を前述した要件を満たす端部2とすればよい。例えば、中空樹脂板10を複数枚組み合わせて使用する場合は、梱包用バンドなどによる局所的負荷が、1つの端部にしかかからないことがある。そのような場合は、局所的負荷がかかる一の端部のみ、外観形状が上下対称で、上下縁部が断面円弧状かつ曲率直径2Rと板厚Tとの比(2R/T)が0.85〜1.05である端部2にすればよい。   In the hollow resin plate 10 of the present embodiment, all the ends are vertically symmetrical in appearance, and the upper and lower edges may have an arcuate cross-sectional shape, but at least a portion to which a local load is applied by a packing band or the like. May be the end 2 satisfying the above-mentioned requirements. For example, when a plurality of hollow resin plates 10 are used in combination, a local load due to a packing band or the like may be applied to only one end. In such a case, only at one end where a local load is applied, the external shape is vertically symmetrical, the upper and lower edges are arc-shaped in cross section, and the ratio (2R / T) between the curvature diameter 2R and the plate thickness T is 0. The end 2 may be 85 to 1.05.

[内部構造]
本実施形態の中空樹脂板10は、端部2の外観形状だけでなく、内部構造についても、上下対称であることが好ましい。中空部1a〜1cも含む中空樹脂板10全体を上下対称構造とすることにより、表裏面の強度差をなくすことができるため、取り扱い性を更に向上させることができる。
[Internal structure]
The hollow resin plate 10 of the present embodiment is preferably vertically symmetric not only in the external shape of the end 2 but also in the internal structure. By making the entire hollow resin plate 10 including the hollow portions 1a to 1c into a vertically symmetric structure, a difference in strength between the front and back surfaces can be eliminated, so that the handleability can be further improved.

[樹脂密度]
図2に示すように、端部2が封止された構造にする場合、端部2の樹脂密度が、その他の部分よりも150〜240%高いことが好ましい。端部2の樹脂密度上昇率をこの範囲にすることで、クリープ変形耐性及びバンド破損抑制効果の両方を高めることができる。なお、端部2以外の部分と比較して、端部2の樹脂密度の上昇率が240%を超える場合、端末加工時に樹脂が外側に押し出されて、バンド破損の原因となるバリや段差が発生する虞がある。
[Resin density]
As shown in FIG. 2, when the end portion 2 has a sealed structure, it is preferable that the resin density of the end portion 2 is higher by 150 to 240% than other portions. By setting the resin density increase rate of the end portion 2 in this range, both the creep deformation resistance and the band breakage suppressing effect can be enhanced. When the rate of increase in the resin density of the end portion 2 exceeds 240% as compared with the portion other than the end portion 2, the resin is extruded outward at the time of terminal processing, and burrs and steps which cause band breakage are reduced. This may occur.

[製造方法]
本実施形態の中空樹脂板10は、例えば、熱可塑性樹脂からなるコア材と、その両面に積層された熱可塑性樹脂からなる表面材とで構成され、面内方向に複数の中空部を有する基材を、端末加工することにより得られる。具体的には、本実施形態の中空樹脂板10は、前述した基材の少なくとも一の端部を、外観が上下対称で、上下縁部が断面円弧状でかつ曲率半径R(mm)と板厚T(mm)との関係が上記数式2を満たす形状に加工することにより製造することができる。
[Production method]
The hollow resin plate 10 of the present embodiment includes, for example, a core material made of a thermoplastic resin and a surface material made of a thermoplastic resin laminated on both surfaces thereof, and has a plurality of hollow portions in an in-plane direction. The material is obtained by terminal processing. Specifically, in the hollow resin plate 10 of the present embodiment, at least one end of the above-described substrate is vertically symmetrical in appearance, the upper and lower edges are arc-shaped in cross section, and the radius of curvature R (mm) is equal to the plate. It can be manufactured by processing into a shape whose relationship with the thickness T (mm) satisfies the above mathematical formula 2.

<基材>
基材には、例えば、複数の凸部及び/又は凹部がマトリクス状に形成された1又は2枚の樹脂シートからなるコア材の両面に、表面材が積層された構成の板状樹脂成形体を使用することができる。
<Substrate>
The base material has, for example, a plate-like resin molded product in which a surface material is laminated on both surfaces of a core material formed of one or two resin sheets in which a plurality of convex portions and / or concave portions are formed in a matrix. Can be used.

基材を構成するコア材の材質は、熱可塑性樹脂であればよく、その種類や特性は特に限定されるものではない。熱可塑性樹脂の具体例としては、ポリエチレン(PE)、ポリプロピレン(PP)及びポリカーボネート(PC)などが挙げられるが、その中でも、加工性などの観点から、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、ホモポリプロピレン、ランダムポリプロピレン及びブロック状ポリプロピレンなどのオレフィン系樹脂が好ましい。   The material of the core material constituting the base material may be a thermoplastic resin, and its type and characteristics are not particularly limited. Specific examples of the thermoplastic resin include polyethylene (PE), polypropylene (PP), and polycarbonate (PC). Among them, low-density polyethylene, high-density polyethylene, linear Olefin-based resins such as low-density polyethylene, ultra-low-density polyethylene, homopolypropylene, random polypropylene and block polypropylene are preferred.

一方、表面材の材質も、熱可塑性樹脂であればよく、その種類や特性は特に限定されるものではないが、加工性などの観点から、前述したコア材と同様に、ポリオレフィン系樹脂が好ましい。なお、表面材の材質とコア材の材質は、同じでもよいし、異なっていてもよい。また、表面材の厚さは、特に限定されるものではなく、用途や目的に応じて適宜設定することができる。ただし、端部を封止する必要がある場合は、封止部の接着強度及び端部の剛性を確保するため、表面材の厚さを500μm以上とすることが好ましい。   On the other hand, the material of the surface material may be a thermoplastic resin, and its type and characteristics are not particularly limited, but from the viewpoint of processability and the like, a polyolefin-based resin is preferable, like the core material described above. . The material of the surface material and the material of the core material may be the same or different. Further, the thickness of the surface material is not particularly limited, and can be appropriately set according to the use or purpose. However, when it is necessary to seal the end portion, it is preferable that the thickness of the surface material be 500 μm or more in order to secure the adhesive strength of the sealing portion and the rigidity of the end portion.

図2〜5は中空樹脂板10に用いられる基材の構成例を示す分解斜視図である。具体的には、図2に示す基材6のように、複数の中空凸部31a,32aがマトリクス状に形成された2枚の樹脂シート31,32を、中空凸部31a,32aの先端同士を突き合わせるように溶着してコア材3とし、その両面に表面材4,5を積層した構成のものを使用することができる。   2 to 5 are exploded perspective views showing a configuration example of a base material used for the hollow resin plate 10. Specifically, as shown in the base material 6 shown in FIG. 2, two resin sheets 31 and 32 in which a plurality of hollow convex portions 31a and 32a are formed in a matrix are formed by joining the tips of the hollow convex portions 31a and 32a to each other. Are welded so as to abut each other to form a core material 3 and surface materials 4 and 5 are laminated on both surfaces thereof.

又は、図3に示す基材7のように、正六角柱状の中空部11aが縦方向及び横方向に規則的に配列形成されたハニカム構造の樹脂シート(コア材11)の両面に、表面材4,5を積層したものを用いることもできる。図2に示す基材6や図3に示す基材7のように上下対称構造のものを用いると、裏表面で強度差がなく、かつ、板面全体に亘って表面平滑性に優れた中空樹脂板を製造することができる。   Alternatively, like a base material 7 shown in FIG. 3, a surface material is provided on both surfaces of a resin sheet (core material 11) having a honeycomb structure in which regular hexagonal column-shaped hollow portions 11 a are regularly arranged in a vertical direction and a horizontal direction. What laminated | stacked 4 and 5 can also be used. When a material having a vertically symmetric structure such as the base material 6 shown in FIG. 2 or the base material 7 shown in FIG. 3 is used, there is no difference in strength on the back surface, and the hollow is excellent in surface smoothness over the entire plate surface. A resin plate can be manufactured.

一方、図4に示す基材8のように、凸部12aと凹部12bが交互に隣接して形成された1枚の樹脂シート(コア材12)の両面に、表面材4,5を積層したものを使用することもできる。また、図5に示す基材9のように、凸部13aと凹部13bが溝状に形成された樹脂シート(コア材13)の両面に、表面材4,5を積層したものを使用することもできる。   On the other hand, surface materials 4 and 5 are laminated on both surfaces of one resin sheet (core material 12) in which convex portions 12a and concave portions 12b are alternately formed adjacent to each other as in a base material 8 shown in FIG. Things can also be used. Further, as in the case of the base material 9 shown in FIG. 5, a resin sheet (core material 13) in which the convex portions 13a and the concave portions 13b are formed in a groove shape is used by laminating the surface materials 4 and 5 on both surfaces. Can also.

コア材3,11〜13に表面材4,5を積層する方法は、特に限定されるものではなく、熱融着の他、超音波融着、接着剤による接着、ラミネートなどの公知の方法を適用することができる。本実施形態の中空樹脂板10を製造する際に用いる基材は、長尺状又は大面積に形成した後、所定の大きさに切断したものでもよい。   The method of laminating the surface materials 4 and 5 on the core materials 3 and 11 to 13 is not particularly limited. In addition to heat fusion, a known method such as ultrasonic fusion, adhesion with an adhesive, or lamination may be used. Can be applied. The base material used when manufacturing the hollow resin plate 10 of the present embodiment may be formed into a long or large area and then cut into a predetermined size.

なお、本実施形態の中空樹脂板10に用いられる基材は、前述した図2〜5に示す構成に限定されるものではなく、面内方向に複数の中空部を有する樹脂板であればよい。また、本実施形態の中空樹脂板10に用いられる基材には、表面材4,5の上に、更に、熱可塑性樹脂シート、熱硬化性樹脂シート、発泡シート、不織布、紙又は織布などからなる面材が積層されていてもよい。   In addition, the base material used for the hollow resin plate 10 of the present embodiment is not limited to the configuration illustrated in FIGS. 2 to 5 described above, and may be any resin plate having a plurality of hollow portions in an in-plane direction. . The base material used for the hollow resin plate 10 of the present embodiment includes, on the surface materials 4 and 5, a thermoplastic resin sheet, a thermosetting resin sheet, a foam sheet, a nonwoven fabric, a paper or a woven fabric. May be laminated.

<端末加工>
基材の端末加工は、例えば、目的とする端面形状、即ち、外観が上下対称で、上下縁部が断面円弧状でかつ曲率半径R(mm)と板厚T(mm)との関係が上記数式2を満たす形状に対応する形状の凹部を有する金型を用いて行うことができる。図6は基材の端末加工方法の一例を示す概略図である。図6に示すように、側面視でU字状の凹部30aを有する金型30を用いて、基材6に端末加工を施す場合は、基材6の端部に加熱した金型30を押し当てて、凹部30aの形状を転写させる。
<Terminal processing>
The end processing of the base material is performed, for example, in a desired end surface shape, that is, the appearance is vertically symmetric, the upper and lower edges are arc-shaped in cross section, and the relationship between the radius of curvature R (mm) and the plate thickness T (mm) is as described above. It can be performed using a mold having a concave portion having a shape corresponding to the shape satisfying Expression 2. FIG. 6 is a schematic view showing an example of a method for processing a terminal of a base material. As shown in FIG. 6, when performing the terminal processing on the base material 6 using the mold 30 having the U-shaped concave portion 30 a in a side view, the heated mold 30 is pressed onto the end of the base material 6. Then, the shape of the concave portion 30a is transferred.

このとき、金型30のプレス距離(基材への押し込み距離)は、コア材及び表面材4,5の端部が厚さ方向の中央に向かって湾曲し、接合する長さとする。これにより、中空部1a〜1cを完全に潰すことなく、上側表面材4と下側表面材5とが接合し、封止された端部2を有する中空樹脂板10が形成される。このように端部2を封止すると、接合部の密度が高まり、加工前に比べて端面の目付(単位面積あたりの質量)が増加するため、端部の強度が向上する。 At this time, the pressing distance of the mold 30 (the pressing distance to the base material) is set to a length at which the ends of the core material 3 and the surface materials 4 and 5 are curved toward the center in the thickness direction and are joined. Thereby, the upper surface member 4 and the lower surface member 5 are joined without completely crushing the hollow portions 1a to 1c, and the hollow resin plate 10 having the sealed end 2 is formed. When the end portion 2 is sealed in this way, the density of the joined portion is increased, and the basis weight (mass per unit area) of the end surface is increased as compared with before the processing, so that the strength of the end portion is improved.

端末加工を施すと、コア材や表面材4,5の端部の一部が内側に巻き込まれる。図7は端末加工による端部2の巻き込みを示す概念図である。本実施形態の中空樹脂板10では、図7に示す加工前の基材6における加工される部分(断面円弧状の端面を構成する部分)の長さaと、加工後の端面の断面における弧の長さbとの差(a−b/2)を、内側に巻き込まれた長さ(巻き込み量L)とする。 When the terminal processing is performed, a part of the ends of the core material 3 and the surface materials 4 and 5 are wound inside. FIG. 7 is a conceptual diagram showing the winding of the end 2 by terminal processing. In the hollow resin plate 10 of the present embodiment, the length a of a portion to be processed (a portion forming an arc-shaped cross-sectional end face) of the base material 6 before processing shown in FIG. The difference (ab−2) from the length b is defined as the length (involved amount L) that is wound inward.

そして、基材の端末加工では、巻き込み量Lと板厚Tとの比(L/T)が0.1〜0.5の範囲になるようにすることが好ましい。巻き込み量Lと板厚Tとの比(L/T)をこの範囲にすることで、端部2の樹脂密度がその他の部分よりも150〜240%高くなり、クリープ変形耐性及びバンド破損抑制効果が共に優れた中空樹脂板が得られる。なお、巻き込み量Lと板厚Tとの比(L/T)は、0.11〜0.17の範囲とすることがより好ましく、これによりクリープ変形耐性及びバンド破損抑制の効果を更に向上させることができる。   In the terminal processing of the base material, it is preferable that the ratio (L / T) of the winding amount L and the plate thickness T be in the range of 0.1 to 0.5. By setting the ratio (L / T) between the entrainment amount L and the plate thickness T within this range, the resin density of the end portion 2 becomes 150 to 240% higher than the other portions, and the creep deformation resistance and band breakage suppressing effect are obtained. Is excellent in both cases. The ratio (L / T) of the winding amount L to the plate thickness T is more preferably in the range of 0.11 to 0.17, thereby further improving the creep deformation resistance and the effect of suppressing band breakage. be able to.

前述した端末加工において、金型30を基材6に押し当てる時間及び金型30の加熱温度などの端末加工条件は、基材の材質、構造及び厚さなどに応じて、適宜設定することができる。また、本実施形態の中空樹脂板10の製造では、同一形状の金型を複数個用意し、それを同時に動作させて、全ての端部を一度に加工してもよいが、1枚の基材を複数回にわけて加工することもできる。   In the above-described terminal processing, terminal processing conditions such as the time for pressing the mold 30 against the base material 6 and the heating temperature of the mold 30 can be appropriately set according to the material, structure, thickness, and the like of the base material. it can. In the manufacture of the hollow resin plate 10 of the present embodiment, a plurality of dies having the same shape may be prepared and operated at the same time to process all the ends at one time. The material can be processed several times.

多軸加工を行う場合は、電気制御されたサーボモータを用いて、金型30のプレス距離や移動速度、基材6への押し当て時間などを各軸間で同期させることが好ましい。サーボモータを用いることにより、空気圧や油圧によるシリンダ制御に比べて軸間の同期精度を高めることができるため、金型押し当て時の荷重斑をなくし、加工面の表面性や強度を向上させることができる。また、端末加工条件を電気的に制御すると、基材6に対する過負荷や荷重不足が起こりにくくなり、更に、荷重や金型30の位置を一定に保持できるため、加工品質が向上すると共に、ロット間や加工位置ごとのばらつきも低減する。   In the case of performing multi-axis machining, it is preferable to synchronize the press distance and the moving speed of the mold 30 and the time for pressing the substrate 6 between the axes using an electrically controlled servomotor. By using a servomotor, the synchronization accuracy between the axes can be improved compared to cylinder control using pneumatic or hydraulic pressure, eliminating load unevenness when pressing the mold and improving the surface properties and strength of the machined surface. Can be. In addition, when the terminal processing conditions are electrically controlled, overload and insufficient load on the base material 6 are less likely to occur, and the load and the position of the mold 30 can be kept constant. Variations between intervals and processing positions are also reduced.

なお、基材6の端末加工の方法は、前述した加熱金型を使用する方法に限定されるものではなく、例えば超音波ホーンを用いた超音波加工や、複数個に分割される金型を用いた加工など、公知の樹脂加工技術を適用することができ、基材6の厚さや形状などに応じて適宜選択することができる。また、超音波加工や複数の金型を用いた加工などにおいても、多軸加工を行う場合は、サーボモータを用いて各軸を電気的に制御することが好ましい。   In addition, the method of processing the terminal of the base material 6 is not limited to the method using the heating mold described above, and for example, ultrasonic processing using an ultrasonic horn or a mold divided into a plurality of pieces may be used. Known resin processing techniques, such as the processing used, can be applied, and can be appropriately selected according to the thickness and shape of the base material 6. Also, in the case of performing multi-axis machining in ultrasonic machining or machining using a plurality of dies, it is preferable to electrically control each axis using a servomotor.

以上詳述したように、本実施形態の中空樹脂板は、梱包用バンドなどにより局所的負荷がかかる端部を、外観形状が上下対称で、かつ、厚さ方向における上下縁部の断面が円弧状とし、更に、上下縁部の曲率半径Rを、板厚Tとの関係で特定の範囲にしているため、局所的負荷による縁部の変形や白化が発生しにくい。加えて、本実施形態の中空樹脂板は、表裏面の概念がなく、どちらの面に梱包用バンドをかけても同様に縁部の白化や変形を抑制できるため、表裏面で特性が異なる従来品に比べて、取り扱い性に優れている。   As described in detail above, the hollow resin plate of the present embodiment has an external shape that is vertically symmetrical in appearance and has a circular cross section at the upper and lower edges in the thickness direction. Since it has an arc shape, and further, the radius of curvature R of the upper and lower edges is in a specific range in relation to the plate thickness T, deformation and whitening of the edge due to local load hardly occur. In addition, the hollow resin plate of the present embodiment does not have the concept of the front and back surfaces, and the whitening and deformation of the edge can be similarly suppressed even if a packing band is applied to either surface, so that the characteristics differ between the front and back surfaces. It is easier to handle than products.

また、中空樹脂板の端部に密度が低い部分やコア材が座屈した部分が存在すると、瞬間的負荷がかかった場合に縁部が破損する虞があるが、上下対称構造のコア材を用いて製造された板全体が上下対称構造の中空樹脂板は、密度に斑がなく、接合部の樹脂量も多いため、瞬間的負荷に対しても縁部の変形や破損を防止することができる。これらに加えて、本実施形態の中空樹脂板は、端面が曲面で形成されているため、安全性の面でも優れており、触れたり、ぶつかったりした際に、他の物を破損させる心配も少ない。   In addition, if there is a low density portion or a buckled portion of the core material at the end of the hollow resin plate, the edge may be damaged when an instantaneous load is applied. Hollow resin plates manufactured using a vertically symmetrical structure have no unevenness in density and have a large amount of resin at the joints, which prevents edge deformation and breakage even under momentary loads. it can. In addition to these, the hollow resin plate of the present embodiment is also excellent in safety because the end surface is formed with a curved surface, and when touching or hitting, there is a concern that other objects may be damaged. Few.

(第2の実施形態)
次に、本実施形態の第2の実施形態に係る中空樹脂板について説明する。前述した第1の実施形態の中空樹脂板は、コア材及び表面材の端縁を接合して端部を封止しているが、本発明はこのような構成に限定されるものではなく、端部が開口していてもよい。
(Second embodiment)
Next, a hollow resin plate according to a second embodiment of the present embodiment will be described. Although the hollow resin plate of the first embodiment described above seals the ends by joining the edges of the core material and the surface material, the present invention is not limited to such a configuration. The end may be open.

図8Aは本実施形態の中空樹脂板の構成例を示す図であり、図1Aに示すx−x線による断面図に相当する。また、図8Bは、図8Aに示す中空樹脂板20の開口部21の幅Wと板厚Tとの関係を示す概念図である。なお、図8A,Bにおいては図1に示す中空樹脂板10の構成要素と同じものには同じ符号を付し、詳細な説明は省略する。   FIG. 8A is a diagram illustrating a configuration example of the hollow resin plate of the present embodiment, and corresponds to a cross-sectional view taken along line xx illustrated in FIG. 1A. FIG. 8B is a conceptual diagram showing the relationship between the width W and the plate thickness T of the opening 21 of the hollow resin plate 20 shown in FIG. 8A. 8A and 8B, the same components as those of the hollow resin plate 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

図8Aに示すように、本実施形態の中空樹脂板20は、上下縁部が断面円弧状の端部には、厚さ方向中央部に縁部22a,22bに沿って延びる開口部21が設けられている。なお、本実施形態の中空樹脂板20は、開口部21を有する点以外は、前述した第1の実施形態の中空樹脂板10と同じである。即ち、中空樹脂板20も、面内方向に複数の中空部を有し、少なくとも一の端部22は、外観形状が上下対称で、かつ、上下縁部22a,22bが断面円弧状となっており、この上下縁部22a,22bの曲率半径R(mm)と板厚T(mm)との関係が上記数式2を満たすものである。   As shown in FIG. 8A, in the hollow resin plate 20 of the present embodiment, an opening 21 extending along the edges 22 a and 22 b is provided at the center in the thickness direction at the end whose upper and lower edges have an arc-shaped cross section. Have been. Note that the hollow resin plate 20 of the present embodiment is the same as the hollow resin plate 10 of the above-described first embodiment except that it has an opening 21. That is, the hollow resin plate 20 also has a plurality of hollow portions in the in-plane direction, and at least one end portion 22 has a vertically symmetric outer shape, and the upper and lower edges 22a and 22b have an arc-shaped cross section. The relationship between the radius of curvature R (mm) of the upper and lower edges 22a and 22b and the plate thickness T (mm) satisfies the above equation (2).

本実施形態の中空樹脂板20は、前述した第1の実施形態の中空樹脂板10に比べて端部22の強度は低下するが、端末加工時に端部22にかかる負荷が小さいため、縁部22a,22bの表面平滑性は向上する。また、本実施形態の中空樹脂板20は、加工時におけるコア材の変形量が少ないため、中空樹脂板10に比べて座屈荷重が高くなる。   The strength of the end portion 22 of the hollow resin plate 20 of the present embodiment is lower than that of the hollow resin plate 10 of the above-described first embodiment, but the load applied to the end portion 22 at the time of terminal processing is small. The surface smoothness of 22a, 22b is improved. In addition, the hollow resin plate 20 of the present embodiment has a smaller buckling load than the hollow resin plate 10 because the amount of deformation of the core material during processing is small.

ただし、図8Bに示す開口部21の幅Wが広いと、上下縁部22a,22bの曲率半径R(mm)と板厚T(mm)との関係が、上記数式2を満たさなくなる虞がある。具体的には、開口部21の幅W(mm)と板厚T(mm)との比(W/T)が0.4を超えると、端末加工の際に、コア材が十分に変形せず、加工後に形状が復元することがある。そうすると、上下縁部22a,22bの曲率直径2R(mm)と板厚T(mm)と比(2R/T)が1.05を超えてしまい、局所的負荷により上下縁部22a,22bに変形や白化が生じたり、梱包用バンドに破損が生じたりする。   However, if the width W of the opening 21 shown in FIG. 8B is large, the relationship between the radius of curvature R (mm) of the upper and lower edges 22a, 22b and the plate thickness T (mm) may not satisfy the above-described formula (2). . Specifically, when the ratio (W / T) of the width W (mm) of the opening 21 to the plate thickness T (mm) exceeds 0.4, the core material is not sufficiently deformed at the time of terminal processing. The shape may be restored after processing. Then, the ratio (2R / T) between the curvature diameter 2R (mm) of the upper and lower edges 22a and 22b and the plate thickness T (mm) exceeds 1.05, and the upper and lower edges 22a and 22b are deformed by local load. Or whitening, or damage to the packing band.

よって、本実施形態の中空樹脂板20のように端部22に開口部21を設ける場合は、開口部21の幅W(mm)と板厚T(mm)との比(W/T)を0.4以下にすることが好ましい。これにより、局所的負荷による縁部の変形や白化を防止する効果を低減させずに、縁部の表面平滑性を向上させることができる。   Therefore, when the opening 21 is provided at the end 22 as in the hollow resin plate 20 of the present embodiment, the ratio (W / T) of the width W (mm) of the opening 21 to the plate thickness T (mm) is determined. It is preferred to be 0.4 or less. Thereby, the surface smoothness of the edge can be improved without reducing the effect of preventing the deformation and whitening of the edge due to the local load.

本実施形態の中空樹脂板20は、前述した第1の実施形態の中空樹脂板10と同様の方法で製造することができる。例えば、端末加工については、金型30でのプレス距離や移動速度、基材6への押し当て時間を調整することで、図8A,Bに示すような開口部21を有する中空樹脂板20が得られる。   The hollow resin plate 20 of the present embodiment can be manufactured by the same method as the hollow resin plate 10 of the above-described first embodiment. For example, for the terminal processing, the hollow resin plate 20 having the opening 21 as shown in FIGS. 8A and 8B is formed by adjusting the pressing distance and the moving speed of the mold 30 and the pressing time to the base material 6. can get.

なお、図8A,Bには、図2に示す基材6を用いて製造された例を示しているが、本発明はこれに限定されるものではなく、図3〜5に示すような他の構造の基材を用いて製造してもよく、その場合も同様の効果が得られる。また、本実施形態の中空樹脂板20に用いられる基材には、表面材4,5の上に、更に、熱可塑性樹脂シート、熱硬化性樹脂シート、発泡シート、紙、織布、不織布、金属板、金属メッシュ体及び金属酸化物板などからなる面材が積層されていてもよい。   FIGS. 8A and 8B show an example manufactured using the base material 6 shown in FIG. 2, but the present invention is not limited to this. It may be manufactured using a substrate having the above structure, and in that case, the same effect can be obtained. The base material used for the hollow resin plate 20 of the present embodiment includes, on the surface materials 4 and 5, a thermoplastic resin sheet, a thermosetting resin sheet, a foam sheet, paper, woven fabric, nonwoven fabric, A face material composed of a metal plate, a metal mesh body, a metal oxide plate and the like may be laminated.

本実施形態の中空樹脂板における上記以外の構成及び効果は、前述した第1の実施形態と同様である。   Other configurations and effects of the hollow resin plate of the present embodiment are the same as those of the above-described first embodiment.

以下、実施例及び比較例を挙げて、本発明の効果について具体的に説明する。   Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples.

(第1実施例)
本発明の第1実施例として、基材又は端末加工条件を変えて実施例1〜10及び比較例1〜4の中空樹脂板を製造し、その性能を評価した。
(First embodiment)
As the first example of the present invention, the hollow resin plates of Examples 1 to 10 and Comparative Examples 1 to 4 were manufactured by changing the base material or the terminal processing conditions, and the performance was evaluated.

<実施例1>
図2に示す構造の基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。その際、樹脂シート31,32には、ポリプロピレン樹脂からなり、目付が1500g/m、厚さが0.75mm、凸部が31a,32aの高さ20mmのものを用いた。また、表面材4,5には、目付が1000g/m、厚さが1.00mmのポリプロピレン樹脂シート用いた。
<Example 1>
The hollow resin plate of the first embodiment described above was manufactured using the base material having the structure shown in FIG. At that time, the resin sheets 31 and 32 were made of polypropylene resin, the basis weight was 1500 g / m 2 , the thickness was 0.75 mm, and the projections were 31a and 32a and the height was 20 mm. As the surface materials 4 and 5, a polypropylene resin sheet having a basis weight of 1000 g / m 2 and a thickness of 1.00 mm was used.

端末加工は、曲率半径(R)が19mmの凹部を有する金型を使用し、金型温度を185℃、基材が接触してから金型を押し込む距離(プレス距離)を14.5mm、金型を基材に近づける速度を30mm/分、基材に金型を接触させた状態で保持する時間(保持時間)を4.5秒として行った。   For the terminal processing, a mold having a concave portion having a curvature radius (R) of 19 mm is used. The mold temperature is 185 ° C., and the distance (press distance) of pressing the mold after the base material comes into contact is 14.5 mm. The speed at which the mold was brought close to the substrate was 30 mm / min, and the time (holding time) for holding the mold in contact with the substrate was 4.5 seconds.

前述した方法で作製した実施例1の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが20.1mm、曲率直径2Rと板厚Tとの比(2R/T)は0.98であった。The hollow resin plate of Example 1 produced by the method described above had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 20.1 mm, a curvature diameter 2R and a plate thickness T. The ratio (2R / T) was 0.98.

<実施例2>
図2に示す構造の基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。その際、樹脂シート31,32には、ポリカーボネート樹脂からなり、目付が1500g/m、厚さが0.72mm、凸部31a,32aの高さが20mmのものを用いた。また、表面材4,5には、目付が1000g/m、厚さが0.92mmのポリカーボネート樹脂シートを用いた。
<Example 2>
The hollow resin plate of the first embodiment described above was manufactured using the base material having the structure shown in FIG. At this time, the resin sheets 31 and 32 were made of a polycarbonate resin, the basis weight was 1500 g / m 2 , the thickness was 0.72 mm, and the height of the projections 31a and 32a was 20 mm. As the surface materials 4 and 5, a polycarbonate resin sheet having a basis weight of 1000 g / m 2 and a thickness of 0.92 mm was used.

端末加工は、実施例1と同じ金型を使用し、金型温度を310℃、プレス距離を14.5mm、金型を基材に近づける速度を20mm/分、金型の保持時間を5.0秒として行った。   The terminal processing uses the same mold as in Example 1, the mold temperature is 310 ° C., the press distance is 14.5 mm, the speed at which the mold approaches the base material is 20 mm / min, and the mold holding time is 5. It was performed at 0 seconds.

前述した方法で作製した実施例2の中空樹脂板は、目付が3500g/m、厚さが20.3mm、上下縁部の曲率直径2Rが19.9mm、曲率直径2Rと板厚Tとの比(2R/T)は0.98であった。The hollow resin plate of Example 2 produced by the method described above has a basis weight of 3500 g / m 2 , a thickness of 20.3 mm, a curvature diameter 2R of the upper and lower edges of 19.9 mm, a curvature diameter 2R and a plate thickness T. The ratio (2R / T) was 0.98.

<実施例3>
実施例1と同じ基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。実施例3では、曲率半径(R)が16mmの凹部を有する金型を使用し、端末加工の条件は、金型温度190℃、プレス距離15.0mm、金型を基材に近づける速度20mm/分、金型の保持時間4.5秒とした。
<Example 3>
Using the same base material as in Example 1, the above-described hollow resin plate of the first embodiment was manufactured. In Example 3, a mold having a concave portion with a radius of curvature (R) of 16 mm was used. The conditions for the terminal processing were a mold temperature of 190 ° C., a press distance of 15.0 mm, and a speed of bringing the mold closer to the base material at 20 mm / Minutes and a mold holding time of 4.5 seconds.

その結果、実施例3の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが17.4mm、曲率直径2Rと板厚Tとの比(2R/T)は0.85であった。As a result, the hollow resin plate of Example 3 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 17.4 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 0.85.

<実施例4>
実施例1と同じ基材を用いて、図1に示す構造の中空樹脂板を製造した。実施例4では、曲率半径(R)が22mmの凹部を有する金型を使用し、端末加工の条件は、金型温度185℃、プレス距離14.5mm、金型を基材に近づける速度30mm/分、金型の保持時間4.5秒とした。
<Example 4>
Using the same base material as in Example 1, a hollow resin plate having the structure shown in FIG. 1 was manufactured. In Example 4, a mold having a concave portion having a radius of curvature (R) of 22 mm was used. The conditions for the terminal processing were a mold temperature of 185 ° C., a press distance of 14.5 mm, and a speed of 30 mm / Minutes and a mold holding time of 4.5 seconds.

その結果、実施例4の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが21.5mm、曲率直径2Rと板厚Tとの比(2R/T)は1.05であった。As a result, the hollow resin plate of Example 4 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 21.5 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 1.05.

<実施例5>
図3に示す構造の基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。その際、コア材には、ポリプロピレン樹脂からなり、目付が1500g/m、厚さが0.75mm、中空部の高さが20mmのものを用いた。また、表面材4,5には、目付が1000g/m、厚さが1.00mmのポリプロピレン樹脂シートを用いた。
<Example 5>
Using the substrate having the structure shown in FIG. 3, the hollow resin plate of the first embodiment described above was produced. At that time, a core material made of a polypropylene resin, having a basis weight of 1500 g / m 2 , a thickness of 0.75 mm, and a height of a hollow portion of 20 mm was used. As the surface materials 4 and 5, a polypropylene resin sheet having a basis weight of 1000 g / m 2 and a thickness of 1.00 mm was used.

端末加工は、実施例1と同じ金型を使用し、金型温度を185℃、プレス距離を14.0mm、金型を基材に近づける速度を30mm/分、金型の保持時間を4.5秒として行った。   For the terminal processing, the same mold as in Example 1 was used. The mold temperature was 185 ° C., the press distance was 14.0 mm, the speed at which the mold approached the base material was 30 mm / min, and the mold holding time was 4. The test was performed for 5 seconds.

前述した方法で作製した実施例5の中空樹脂板は、目付が3500g/m、厚さが20.2mm、上下縁部の曲率直径2Rが19.7mm、曲率直径2Rと板厚Tとの比(2R/T)は0.97であった。The hollow resin plate of Example 5 produced by the method described above has a basis weight of 3500 g / m 2 , a thickness of 20.2 mm, a curvature diameter 2R of the upper and lower edges of 19.7 mm, a curvature diameter 2R and a plate thickness T. The ratio (2R / T) was 0.97.

<実施例6>
図2に示す構造の基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。その際、樹脂シート31,32には、ポリプロピレン樹脂からなり、目付が1000g/m、厚さが0.75mm、凸部31a,32aの高さが9mmのものを用いた。また、表面材4,5には、目付が750g/m、厚さが0.75mmのポリプロピレン樹脂シートを用いた。
<Example 6>
The hollow resin plate of the first embodiment described above was manufactured using the base material having the structure shown in FIG. At this time, the resin sheets 31 and 32 were made of polypropylene resin, the basis weight was 1000 g / m 2 , the thickness was 0.75 mm, and the height of the convex portions 31a and 32a was 9 mm. As the surface materials 4 and 5, a polypropylene resin sheet having a basis weight of 750 g / m 2 and a thickness of 0.75 mm was used.

端末加工は、曲率半径(R)が9mmの凹部を有する金型を使用し、金型温度を185℃、プレス距離を7.0mm、金型を基材に近づける速度を20mm/分、金型の保持時間を4.5秒として行った。   The terminal processing uses a mold having a concave part with a radius of curvature (R) of 9 mm. The mold temperature is 185 ° C., the press distance is 7.0 mm, the speed at which the mold approaches the base material is 20 mm / min. Was performed with a holding time of 4.5 seconds.

前述した方法で作製した実施例6の中空樹脂板は、目付が2500g/m、厚さが10.0mm、上下縁部の曲率直径2Rが9.7mm、曲率直径2Rと板厚Tとの比(2R/T)は0.97であった。The hollow resin plate of Example 6 produced by the method described above has a basis weight of 2500 g / m 2 , a thickness of 10.0 mm, a curvature diameter 2R of the upper and lower edges of 9.7 mm, a curvature diameter 2R and a plate thickness T. The ratio (2R / T) was 0.97.

<実施例7>
図2に示す構造の基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。その際、樹脂シート31,32には、ポリプロピレン樹脂からなり、目付が1500g/m、厚さが0.75mm、凸部31a,32aの高さが12mmのものを用いた。また、表面材4,5には、目付が1000g/m、厚さが1.00mmのポリプロピレン樹脂シートを用いた。
<Example 7>
The hollow resin plate of the first embodiment described above was manufactured using the base material having the structure shown in FIG. At that time, the resin sheets 31 and 32 were made of polypropylene resin, the basis weight was 1500 g / m 2 , the thickness was 0.75 mm, and the height of the projections 31a and 32a was 12 mm. As the surface materials 4 and 5, a polypropylene resin sheet having a basis weight of 1000 g / m 2 and a thickness of 1.00 mm was used.

端末加工は、曲率半径(R)が13mmの凹部を有する金型を使用し、金型温度を185℃、プレス距離を10mm、金型を基材に近づける速度を15mm/分、金型の保持時間を4.5秒として行った。   The terminal processing uses a mold having a concave part with a radius of curvature (R) of 13 mm, the mold temperature is 185 ° C., the press distance is 10 mm, the speed at which the mold approaches the base material is 15 mm / min, and the mold is held. The time was set at 4.5 seconds.

前述した方法で作製した実施例7の中空樹脂板は、目付が3500g/m、厚さが14.0mm、上下縁部の曲率直径2Rが13.5mm、曲率直径2Rと板厚Tとの比(2R/T)は0.96であった。The hollow resin plate of Example 7 produced by the method described above has a basis weight of 3500 g / m 2 , a thickness of 14.0 mm, a curvature diameter 2R of the upper and lower edges of 13.5 mm, a curvature diameter 2R and a thickness T. The ratio (2R / T) was 0.96.

<実施例8>
実施例1と同じ基材を用いて、前述した第2の実施形態の中空樹脂板を作製した。実施例8では、実施例1と同じ金型を使用し、端末加工の条件は、金型温度175℃、プレス距離12mm、金型を基材に近づける速度6.0mm/分、金型の保持時間3.0秒とした。
<Example 8>
Using the same base material as in Example 1, the above-described hollow resin plate of the second embodiment was manufactured. In Example 8, the same mold as that in Example 1 was used, and the conditions of the terminal processing were a mold temperature of 175 ° C., a press distance of 12 mm, a speed of approaching the mold to the base material of 6.0 mm / min, and holding of the mold. The time was set to 3.0 seconds.

その結果、実施例8の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが19.9mm、曲率直径2Rと板厚Tとの比(2R/T)は0.97であった。また、開口部の幅Wは8.2mmであり、開口部の幅Wと板厚Tとの比(W/T)は0.4であった。As a result, the hollow resin plate of Example 8 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 19.9 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 0.97. The width W of the opening was 8.2 mm, and the ratio (W / T) of the width W of the opening to the plate thickness T was 0.4.

<実施例9>
実施例1と同じ基材を用いて、前述した第2の実施形態の中空樹脂板を作製した。実施例9では、実施例1と同じ金型を使用し、端末加工の条件は、金型温度175℃、プレス距離13.5mm、金型を基材に近づける速度6.0mm/分、金型の保持時間3.0秒とした。
<Example 9>
Using the same base material as in Example 1, the above-described hollow resin plate of the second embodiment was manufactured. In Example 9, the same mold as that in Example 1 was used, and the conditions of the terminal processing were a mold temperature of 175 ° C., a press distance of 13.5 mm, a speed of approaching the mold to the base material of 6.0 mm / min, and a mold. Was 3.0 seconds.

その結果、実施例9の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが19.9mm、曲率直径2Rと板厚Tとの比(2R/T)は0.97であった。また、開口部の幅Wは6.15mmであり、開口部の幅Wと板厚Tとの比(W/T)は0.3であった。As a result, the hollow resin plate of Example 9 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 19.9 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 0.97. The width W of the opening was 6.15 mm, and the ratio (W / T) between the width W of the opening and the plate thickness T was 0.3.

<実施例10>
図2に示す構造の基材を用いて、前述した第1の実施形態の中空樹脂板を作製した。その際、樹脂シート31,32には、ポリプロピレン樹脂からなり、目付が1500g/m、厚さが0.75mm、凸部31a,32aの高さが20mmのものを用いた。また、表面材4,5には、目付が1000g/m、厚さが1.00mmのポリプロピレン樹脂シートを用いた。
<Example 10>
The hollow resin plate of the first embodiment described above was manufactured using the base material having the structure shown in FIG. At that time, the resin sheets 31 and 32 were made of polypropylene resin, the basis weight was 1500 g / m 2 , the thickness was 0.75 mm, and the height of the projections 31a and 32a was 20 mm. As the surface materials 4 and 5, a polypropylene resin sheet having a basis weight of 1000 g / m 2 and a thickness of 1.00 mm was used.

端末加工は、曲率半径(R)が19mmの凹部を有する金型を使用し、金型温度を185℃、プレス距離を9.0mm、金型を基材に近づける速度を30mm/分、金型の保持時間を5.0秒として行った。   The terminal processing uses a mold having a concave portion with a curvature radius (R) of 19 mm, a mold temperature of 185 ° C., a press distance of 9.0 mm, a speed of bringing the mold closer to the base material of 30 mm / min, and a mold. Was performed with a holding time of 5.0 seconds.

前述した方法で作製した実施例10の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが20.1mm、曲率直径2Rと板厚Tとの比(2R/T)は0.98であった。The hollow resin plate of Example 10 produced by the method described above has a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 20.1 mm, a curvature diameter 2R and a thickness T. The ratio (2R / T) was 0.98.

<比較例1>
実施例1と同じ基材を用いて、端部が封止された中空樹脂板を作製した。比較例1では、曲率半径(R)が16mmの凹部を有する金型を使用し、端末加工の条件は、金型温度200℃、プレス距離16.0mm、金型を基材に近づける速度30mm/分、金型の保持時間4.5秒とした。
<Comparative Example 1>
Using the same base material as in Example 1, a hollow resin plate whose end was sealed was produced. In Comparative Example 1, a mold having a concave portion with a radius of curvature (R) of 16 mm was used. The conditions for the terminal processing were a mold temperature of 200 ° C., a press distance of 16.0 mm, and a speed of 30 mm / Minutes and a mold holding time of 4.5 seconds.

その結果、比較例1の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが17.2mm、曲率直径2Rと板厚Tとの比(2R/T)は0.84であった。As a result, the hollow resin plate of Comparative Example 1 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 17.2 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 0.84.

<比較例2>
実施例1と同じ基材を用いて、端部が封止された中空樹脂板を作製した。比較例2では、曲率半径(R)が22mmの凹部を有する金型を使用し、端末加工の条件を、金型温度200℃、プレス距離16.0mm、金型を基材に近づける速度30mm/分、金型の保持時間4.5秒とした。
<Comparative Example 2>
Using the same base material as in Example 1, a hollow resin plate whose end was sealed was produced. In Comparative Example 2, a mold having a concave portion having a radius of curvature (R) of 22 mm was used, and the conditions of the terminal processing were set at a mold temperature of 200 ° C., a press distance of 16.0 mm, and a speed of bringing the mold closer to the base material at 30 mm / Minutes and a mold holding time of 4.5 seconds.

その結果、比較例2の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが21.7mm、曲率直径2Rと板厚Tとの比(2R/T)は1.06であった。As a result, the hollow resin plate of Comparative Example 2 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 21.7 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 1.06.

<比較例3>
実施例1と同じ基材を用いて、端部が開口した中空樹脂板を作製した。比較例3では、実施例1と同じ金型を使用し、端末加工の条件は、金型温度175℃、プレス距離8.0mm、金型を基材に近づける速度6.0mm/分、金型の保持時間3.0秒とした。
<Comparative Example 3>
Using the same base material as in Example 1, a hollow resin plate having an open end was manufactured. In Comparative Example 3, the same mold as that of Example 1 was used, and the conditions of the terminal processing were a mold temperature of 175 ° C., a press distance of 8.0 mm, a speed of approaching the mold to the base material of 6.0 mm / min, and a mold. Was 3.0 seconds.

その結果、比較例3の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが20.1mm、曲率直径2Rと板厚Tとの比(2R/T)は0.98であった。また、開口部の幅Wは12.3mmであり、開口部の幅Wと板厚Tとの比(W/T)は0.60であった。As a result, the hollow resin plate of Comparative Example 3 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 20.1 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 0.98. The width W of the opening was 12.3 mm, and the ratio (W / T) of the width W of the opening to the plate thickness T was 0.60.

<比較例4>
実施例1と同じ基材を用いて、端部が封止された中空樹脂板を作製した。比較例4では、実施例1と同じ金型を使用し、端末加工の条件は、金型温度200℃、プレス距離7.0mm、金型を基材に近づける速度20.0mm/分、金型の保持時間1.0秒とした。
<Comparative Example 4>
Using the same base material as in Example 1, a hollow resin plate whose end was sealed was produced. In Comparative Example 4, the same mold as in Example 1 was used, and the conditions of the terminal processing were a mold temperature of 200 ° C., a press distance of 7.0 mm, a speed of bringing the mold closer to the base material, 20.0 mm / min, and a mold. Was set to 1.0 second.

その結果、比較例4の中空樹脂板は、目付が3500g/m、厚さが20.5mm、上下縁部の曲率直径2Rが12.3mm、曲率直径2Rと板厚Tとの比(2R/T)は0.60であった。As a result, the hollow resin plate of Comparative Example 4 had a basis weight of 3500 g / m 2 , a thickness of 20.5 mm, a curvature diameter 2R of the upper and lower edges of 12.3 mm, and a ratio (2R) between the curvature diameter 2R and the plate thickness T. / T) was 0.60.

<評価>
実施例1〜10及び比較例1〜4の中空樹脂板を、以下の方法で評価した。なお、比較のため、参考例として、端末加工していない基材を用いて同様の評価を行った。
<Evaluation>
The hollow resin plates of Examples 1 to 10 and Comparative Examples 1 to 4 were evaluated by the following methods. For comparison, the same evaluation was performed as a reference example using a base material that had not been subjected to terminal processing.

(1)局所的負荷試験
図9は実施例及び比較例の中空樹脂板の局所的負荷試験の方法を模式的に示す図である。実施例及び比較例の中空樹脂板並びに参考例の基材を、幅50mm、長さ170mmに切断し、評価用試料50とした。そして、図9に示すように、試料50と台座51の間に梱包用バンド53を配置し、クランプ52で固定した。梱包用バンド53には、ポリプロピレン樹脂製で、幅15mm、厚さ0.6mmのものを使用した。
(1) Local load test FIG. 9 is a diagram schematically showing a local load test method for the hollow resin plates of the examples and the comparative examples. The hollow resin plates of the examples and comparative examples and the base material of the reference example were cut into a width of 50 mm and a length of 170 mm to obtain a sample 50 for evaluation. Then, as shown in FIG. 9, a packing band 53 was arranged between the sample 50 and the pedestal 51, and was fixed by the clamp 52. As the packing band 53, a band made of polypropylene resin and having a width of 15 mm and a thickness of 0.6 mm was used.

次に、梱包用バンド53の先端をロードセル54に取り付け、引張り速度を20mm/分にして、梱包用バンド53を上方向に引っ張り、試料50の縁部に150Nの荷重を加えた。その際、荷重が150Nに到達した時点で、クロスヘッドの動作を停止した。その後、試料50を取り外し、目視により端部の状態を確認した。その結果、縁部に白化又は変形が発生したものを×(不可)、白化及び変形のいずれも発生しなかったものを○(可)とした。   Next, the tip of the packing band 53 was attached to the load cell 54, the pulling speed was set to 20 mm / min, the packing band 53 was pulled upward, and a 150 N load was applied to the edge of the sample 50. At that time, when the load reached 150 N, the operation of the crosshead was stopped. Thereafter, the sample 50 was removed, and the state of the end was visually confirmed. As a result, x (impossible) was given when whitening or deformation occurred at the edge, and o (good) was given when neither whitening nor deformation occurred.

(2)バンド破損試験
引張り速度を200mm/分にした以外は、前述した局所的負荷試験と同様の方法で試料50の縁部に荷重を加え、試験後に、梱包用バンド53に破損が発生しているか否かを目視で確認した。その結果、切断などの破損が発生したものを×(不可)、発生なかったものを○(可)とした。
(2) Band breakage test A load was applied to the edge of the sample 50 in the same manner as in the above-mentioned local load test except that the pulling speed was set to 200 mm / min. After the test, the packing band 53 was broken. Was visually checked. As a result, those with breakage such as cutting were evaluated as x (impossible), and those without damage were evaluated as ○ (impossible).

(3)端部座屈強度
端部座屈強度の測定は、前述した局所的負荷試験と同様の試料及び装置を用いて行った。具体的には、梱包用バンド53の先端をロードセル54に取り付け、引張り速度を20mm/分にして、梱包用バンド53を上方向に引っ張り、端部が座屈するまで(上昇していた荷重が下降に転じるまで)負荷をかけた。そして、この方法で測定された荷重の最大値を座屈強度とした。
(3) End buckling strength The end buckling strength was measured using the same sample and device as in the local load test described above. Specifically, the tip of the packing band 53 is attached to the load cell 54, the pulling speed is set to 20 mm / min, and the packing band 53 is pulled upward until the end buckles (the load that has risen decreases. ). The maximum value of the load measured by this method was defined as the buckling strength.

以上の結果を下記表1及び表2にまとめて示す。   The above results are summarized in Tables 1 and 2 below.

Figure 0006677815
Figure 0006677815

Figure 0006677815
Figure 0006677815

表1に示すように、本発明の範囲内で作製した実施例1〜10の中空樹脂板は、局所的負荷をかけても、縁部の白化や梱包用バンドの破損は発生しなかった。各実施例の中でも上下縁部の曲率直径2Rと板厚Tとの比(2R/T)が0.90〜0.97の範囲のものは、特に端部の外観や表面平滑性が優れていた。   As shown in Table 1, the hollow resin plates of Examples 1 to 10 produced within the scope of the present invention did not cause whitening of the edges and damage of the packing band even when a local load was applied. Among the examples, those having a ratio (2R / T) of the curvature diameter 2R of the upper and lower edges to the plate thickness T (2R / T) in the range of 0.90 to 0.97 are particularly excellent in the appearance and surface smoothness of the end. Was.

これに対して、表2に示す比較例及び参考例は、局所的負荷をかけると、縁部の白化や梱包用バンドの破損が発生した。具体的には、比較例1は、上下縁部の曲率直径2Rと板厚Tとの比(2R/T)が0.85よりも小さいため、局所的負荷を分散できず、梱包用バンドに破損が発生した。一方、比較例2は、上下縁部の曲率直径2Rと板厚Tとの比(2R/T)が1.05を超えているため、縁部表面に凹凸が生じ、縁部の白化及び梱包用バンドの破損が発生した。   On the other hand, in the comparative example and the reference example shown in Table 2, when a local load was applied, whitening of the edges and breakage of the packing band occurred. Specifically, in Comparative Example 1, since the ratio (2R / T) between the curvature diameter 2R of the upper and lower edges and the plate thickness T (2R / T) was smaller than 0.85, the local load could not be dispersed, and Damage has occurred. On the other hand, in Comparative Example 2, since the ratio (2R / T) of the curvature diameter 2R of the upper and lower edges to the plate thickness T (2R / T) exceeded 1.05, unevenness was generated on the edge surface, and the edge was whitened and packed. Breakage of the band.

端部に開口部を有する比較例3は、開口部の幅Wと板厚との比(W/T)が0.4を超えているため、加工後に形状が復元して、上下縁部の曲率直径2Rと板厚Tとの比(2R/T)が1.4となっていた。その結果、梱包用バンドに破損が生じた。また、比較例は、(2R/T)=0.6であるため、局所的負荷を分散できず、端面に変形が発生した。なお、端末加工を施していない参考例では、縁部の白化及び梱包用バンドの破損が発生した。 In Comparative Example 3 having an opening at the end, the ratio (W / T) of the width W of the opening to the plate thickness (W / T) exceeded 0.4. The ratio (2R / T) between the curvature diameter 2R and the plate thickness T was 1.4. As a result, the packing band was damaged. In Comparative Example 4 , since (2R / T) = 0.6, the local load could not be distributed, and the end face was deformed. In the reference example in which the terminal processing was not performed, whitening of the edge portion and breakage of the packing band occurred.

以上の結果から、本発明によれば、取り扱い性に優れ、梱包用バンドなどにより縁部に局所的負荷がかかった場合でも変形や白化が発生しにくい中空樹脂板を実現できることが確認された。   From the above results, it was confirmed that according to the present invention, it is possible to realize a hollow resin plate which is excellent in handleability and hardly deforms or whitens even when a local load is applied to the edge by a packing band or the like.

(第2実施例)
本発明の第2実施例として、端部が封止されている実施例1〜7,10について、耐クリープ性を評価した。図10は耐クリープ性試験の方法を模式的に示す図である。図10に示すように、耐クリープ性は、クランプ52により試料50上に梱包用バンド53を固定し、その先端に10kgの錘55を取り付けたものを、60℃のドライオーブン内に24時間静置し、試験前後で負荷をかけた箇所の厚さを測定し、変形量を求めた。
(Second embodiment)
As a second example of the present invention, creep resistance was evaluated for Examples 1 to 7 and 10 in which the ends were sealed. FIG. 10 is a diagram schematically showing a creep resistance test method. As shown in FIG. 10, the creep resistance was determined by fixing a packing band 53 on a sample 50 by a clamp 52 and attaching a 10 kg weight 55 to the tip thereof in a dry oven at 60 ° C. for 24 hours. Before and after the test, the thickness of the portion where a load was applied was measured, and the amount of deformation was determined.

比較のため、参考例として、端末加工していない基材を用いて同様の評価を行った。その結果を下記表3に示す。なお、クリープ変形量が少ない試料ほど耐クリープ性が優れていることとなる。   For comparison, the same evaluation was performed as a reference example using a base material that had not been processed. The results are shown in Table 3 below. It should be noted that a sample having a smaller amount of creep deformation has better creep resistance.

Figure 0006677815
Figure 0006677815

表3に示すように、封止された端部の樹脂密度が、その他の部分よりも樹脂密度よりも150〜240%高い実施例1〜7の中空樹脂板は、耐クリープ性に優れていた。   As shown in Table 3, the hollow resin plates of Examples 1 to 7 in which the resin density of the sealed end portion was higher than the other portions by 150 to 240% than the other portions had excellent creep resistance. .

1a〜1c、11a 中空部
2、22 端部
2a、2b、22a、22b 縁部
31、32 樹脂シート
31a、32a、12a、13a 凸部
3、11〜13 コア材
4、5 表面材
6〜9 基材
10、20 中空樹脂板
12b、13b 凹部
21 開口部
30 金型
50 試料
51 台座
52 クランプ
53 梱包用バンド
54 ロードセル
55 錘
1a to 1c, 11a Hollow portion 2, 22 End 2a, 2b, 22a, 22b Edge 31, 32 Resin sheet 31a, 32a, 12a, 13a Convex portion 3, 11 to 13 Core material 4, 5 Surface material 6 to 9 Base material 10, 20 Hollow resin plate 12b, 13b Concave portion 21 Opening 30 Mold 50 Sample 51 Base 52 Clamp 53 Packing band 54 Load cell 55 Weight

Claims (6)

面内方向に複数の中空部を有する中空樹脂板であって、
少なくとも一の端部は、外観形状が上下対称で、かつ、厚さ方向における上下縁部が断面円弧状となるよう封止され、樹脂密度がその他の部分よりも150〜240%高くなっており、
前記上下縁部は、JIS B0601:2013に規定される断面曲線(P)における最大値と最小値の差が0.5mm以下で、
前記上下縁部の曲率半径R(mm)と板厚T(mm)との関係が下記数式(I)を満たす中空樹脂板。
Figure 0006677815
A hollow resin plate having a plurality of hollow portions in the in-plane direction,
At least one end, with the external shape is vertically symmetric, and the upper and lower edges in the thickness direction is locked so that sealing such as arc-shaped cross section, the resin density becomes 150 to 240% higher than the other portions Yes,
The difference between the maximum value and the minimum value in the cross-sectional curve (P) specified in JIS B0601: 2013 is 0.5 mm or less,
A hollow resin plate in which the relationship between the radius of curvature R (mm) of the upper and lower edges and the plate thickness T (mm) satisfies the following formula (I).
Figure 0006677815
複数の凸部及び/又は凹部がマトリクス状に形成された1又は2枚の樹脂シートからなるコア材と、A core material composed of one or two resin sheets in which a plurality of convex portions and / or concave portions are formed in a matrix,
前記コア材の両面に積層された表面材とで構成されており、And a surface material laminated on both sides of the core material,
前記封止された端部は、前記コア材及び/又は表面材の一部が内側に巻き込まれている請求項1に記載の中空樹脂板。2. The hollow resin plate according to claim 1, wherein a part of the core material and / or the surface material is wound inside the sealed end portion. 3.
面内方向に複数の中空部を有する中空樹脂板であって、
少なくとも一の端部は、外観形状が上下対称で、かつ、厚さ方向における上下縁部が断面円弧状となっており、
前記上下縁部が断面円弧状の端部には、厚さ方向中央部に前記縁部に沿って延びる開口部が設けられており、
断面円弧状の上下縁部は、曲率半径R(mm)と板厚T(mm)との関係が下記数式(I)を満たす中空樹脂板。
Figure 0006677815
A hollow resin plate having a plurality of hollow portions in the in-plane direction,
At least one end has an outer shape that is vertically symmetrical, and the upper and lower edges in the thickness direction are arc-shaped in cross section,
An opening extending along the edge at the center in the thickness direction is provided at an end of the upper and lower edges having an arc-shaped cross section,
The upper and lower edges having a circular arc cross section are hollow resin plates in which the relationship between the radius of curvature R (mm) and the plate thickness T (mm) satisfies the following formula (I).
Figure 0006677815
前記開口部の幅W(mm)と板厚T(mm)との比(W/T)が0.4以下である請求項に記載の中空樹脂板。 The hollow resin plate according to claim 3 , wherein a ratio (W / T) of a width W (mm) of the opening to a plate thickness T (mm) is 0.4 or less. 複数の凸部及び/又は凹部がマトリクス状に形成された1又は2枚の樹脂シートからなるコア材と、
前記コア材の両面に積層された表面材とで構成されている請求項3又は4に記載の中空樹脂板。
A core material composed of one or two resin sheets in which a plurality of convex portions and / or concave portions are formed in a matrix,
The hollow resin plate according to claim 3 or 4 , comprising a surface material laminated on both surfaces of the core material.
中空部も含む板全体が上下対称構造となっている請求項1〜のいずれか1項に記載の中空樹脂板。 The hollow resin plate according to any one of claims 1 to 5 , wherein the entire plate including the hollow portion has a vertically symmetric structure.
JP2018547625A 2016-10-26 2017-10-20 Hollow resin plate Active JP6677815B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016209410 2016-10-26
JP2016209410 2016-10-26
PCT/JP2017/037997 WO2018079432A1 (en) 2016-10-26 2017-10-20 Hollow resin plate

Publications (2)

Publication Number Publication Date
JPWO2018079432A1 JPWO2018079432A1 (en) 2019-09-19
JP6677815B2 true JP6677815B2 (en) 2020-04-08

Family

ID=62023398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547625A Active JP6677815B2 (en) 2016-10-26 2017-10-20 Hollow resin plate

Country Status (4)

Country Link
JP (1) JP6677815B2 (en)
KR (1) KR102363756B1 (en)
CN (1) CN109715382B (en)
WO (1) WO2018079432A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406810B2 (en) 2018-12-17 2023-12-28 岐阜プラスチック工業株式会社 Hollow structure and method for manufacturing hollow structure
AU2021214444A1 (en) * 2020-01-30 2022-09-15 Uniqco-Ip Pty Ltd Packaging sheeting and a method of manufacturing packaging sheeting

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546605B2 (en) * 1993-03-29 1996-10-23 株式会社新弘 End surface treatment method for hollow resin panels
JP4192138B2 (en) * 2004-10-01 2008-12-03 本田技研工業株式会社 Laminated sheet
KR100646512B1 (en) 2005-03-25 2006-11-14 삼성에스디아이 주식회사 Cylinder type secondary battery
JP2007237419A (en) 2006-03-06 2007-09-20 Kawakami Sangyo Co Ltd End face treatment method of hollow plate made of synthetic resin and end face treatment device therefor
JP5074096B2 (en) * 2006-05-18 2012-11-14 宇部日東化成株式会社 End-processed multilayer board and method for producing the same
JP4989206B2 (en) * 2006-12-11 2012-08-01 盟和産業株式会社 Laminate terminal processing method
FI119596B (en) 2007-08-24 2009-01-15 Konecranes Oyj Method for controlling the crane
JP5139144B2 (en) * 2008-04-30 2013-02-06 キョーラク株式会社 Laminated resin molded product and manufacturing method thereof
JP5189441B2 (en) * 2008-09-08 2013-04-24 宇部日東化成株式会社 Thermoplastic resin hollow plate
JP5413671B2 (en) * 2010-03-04 2014-02-12 トヨタ紡織株式会社 VEHICLE BOARD MEMBER AND VEHICLE BOARD MEMBER MANUFACTURING METHOD
JP5714021B2 (en) * 2010-10-13 2015-05-07 株式会社タカギセイコー Terminal processing method for resin laminated board member
JP5926612B2 (en) 2012-05-22 2016-05-25 岐阜プラスチック工業株式会社 Hollow structure manufacturing method, manufacturing apparatus, and end face sealing structure
WO2016133130A1 (en) * 2015-02-17 2016-08-25 コニカミノルタ株式会社 Sealed structure
US20160279899A1 (en) * 2015-03-23 2016-09-29 Khalifa University of Science, Technology & Research Lightweight composite lattice structures

Also Published As

Publication number Publication date
CN109715382A (en) 2019-05-03
CN109715382B (en) 2021-03-12
KR102363756B1 (en) 2022-02-15
KR20190065250A (en) 2019-06-11
JPWO2018079432A1 (en) 2019-09-19
WO2018079432A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
US11298913B2 (en) Energy-absorbing structure with defined multi-phasic crush properties
US10889095B2 (en) Lamination structure and a method for manufacturing the same
US20210299992A1 (en) Honeycomb, in particular deformable honeycomb, for lightweight components, corresponding production method, and sandwich component
JP6677815B2 (en) Hollow resin plate
US3642566A (en) Quasi-isotropic sandwich core
JP5993132B2 (en) Multiple glass fiber bonded high strength plastic back beam
CA2210217C (en) Composite panel
JP6016368B2 (en) Die for drawing
JP6659020B2 (en) Hollow laminated plate and method for treating its edge
KR20070095874A (en) Half closed thermoplastic honeycomb, their production process and equipment to produce
WO2019022988A1 (en) Packaging material having microsphere insulation members that expand towards one another
EP2980467A1 (en) Vacuum heat-insulating material
JP7398081B2 (en) hollow structure
KR101157424B1 (en) Method of producing curved surface honeycomb panel
JP6026112B2 (en) Resin structure
KR100519943B1 (en) Honeycomb core , mold for honeycomb core and manufacturing method of honeycomb core
JP6449022B2 (en) Laminated structure and terminal processing method of laminated structure
JP2013154388A (en) Die for drawing
JP7391358B2 (en) hollow structure
JP2007512490A (en) Energy absorption element
JPS6144631A (en) Honeycomb structure
WO2015079602A1 (en) Hollow structure
JPWO2021130872A5 (en)
WO2017104344A1 (en) Resin plate, resin plate manufacturing method, and insulating material unit using resin plates
US20130302547A1 (en) Microstructure for fusion bonded thermoplastic polymer material, and related methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190910

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250