JP6676415B2 - Flavanone polymer having an effect of washing out fats and oils - Google Patents

Flavanone polymer having an effect of washing out fats and oils Download PDF

Info

Publication number
JP6676415B2
JP6676415B2 JP2016043781A JP2016043781A JP6676415B2 JP 6676415 B2 JP6676415 B2 JP 6676415B2 JP 2016043781 A JP2016043781 A JP 2016043781A JP 2016043781 A JP2016043781 A JP 2016043781A JP 6676415 B2 JP6676415 B2 JP 6676415B2
Authority
JP
Japan
Prior art keywords
glycoside
flavanone
polymer
oils
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016043781A
Other languages
Japanese (ja)
Other versions
JP2017158452A (en
Inventor
明幸 横山
明幸 横山
純 牛久
純 牛久
孝博 大平
孝博 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Holdings Ltd
Original Assignee
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Holdings Ltd filed Critical Suntory Holdings Ltd
Priority to JP2016043781A priority Critical patent/JP6676415B2/en
Publication of JP2017158452A publication Critical patent/JP2017158452A/en
Application granted granted Critical
Publication of JP6676415B2 publication Critical patent/JP6676415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Alcoholic Beverages (AREA)

Description

本発明は、特定の構造を有するフラバノン重合体、その製造方法、及び当該重合体の利用に関する。本発明は、特に、油脂の洗い流し効果を有するフラバノン重合体などに関する。   The present invention relates to a flavanone polymer having a specific structure, a method for producing the same, and use of the polymer. The present invention particularly relates to a flavanone polymer having an effect of washing out fats and oils.

特許文献1においては、種々のポリフェノール類の重合体が合成されており、そのリパーゼ阻害活性が確認されている。   In Patent Document 1, polymers of various polyphenols have been synthesized, and their lipase inhibitory activities have been confirmed.

特開2008−253256号公報JP 2008-253256 A

油脂を含む飲食品を摂取すると、その油脂が口腔中に残存し、不快な感じを与える。そしてその油脂が蓄積すると、不快感は増大する。したがって、食事によってもたらされる油脂を口から洗い流すことが求められる。水などの飲料を飲用すれば当該油脂をある程度口から洗い流すことはできるが、必ずしも十分ではない。   When a food or drink containing fats and oils is ingested, the fats and fats remain in the oral cavity and give an unpleasant feeling. And when the fats and oils accumulate, discomfort increases. Therefore, it is required to wash out the fats and oils brought by meals from the mouth. If a drink such as water is drunk, the fats and oils can be washed out from the mouth to some extent, but this is not always sufficient.

この点、特許文献1の実施例においては、フラボノイド配糖体を酸化重合させて重合体を製造しているが、その重合体では油脂の洗い流し効果が得られないことを本発明者は確認している。   In this regard, in the example of Patent Document 1, the flavonoid glycoside is oxidatively polymerized to produce a polymer, but the present inventor has confirmed that the polymer does not have an effect of washing out fats and oils. ing.

なお、特許文献1には、形式上、配糖体でないフラボノイドを酸化重合して得られる重合体も記載されているかのように見えるが、そのようなものの製造はされておらず、しかも特許文献1に記載の条件ではその製造は非常に困難であったと考えられる。なぜなら、糖が付加されていないフラボノイドは、水への溶解性が著しく悪く、さらには、均一に原料が溶解していない状態では、特許文献1に記載の重合のための酵素反応を適切に行うことができないからである。また、そのようなフラバノンの酵素反応は、水を溶媒として用いる製造場においては取り扱いが非常に困難である。   In addition, although it seems that Patent Literature 1 also describes a polymer obtained by oxidative polymerization of a flavonoid that is not a glycoside, such a polymer is not manufactured, and furthermore, Patent Literature 1 discloses that It is considered that the production was very difficult under the conditions described in 1. The reason is that the flavonoid to which no sugar is added has extremely poor solubility in water, and further, when the raw materials are not uniformly dissolved, the enzyme reaction for polymerization described in Patent Document 1 is appropriately performed. Because they cannot do it. Further, such an enzymatic reaction of flavanone is very difficult to handle in a production site using water as a solvent.

本発明の課題は、油脂を口から洗い流す能力を有する新たな素材、及びその製造方法を提供することである。   An object of the present invention is to provide a new material having an ability to wash fats and oils from the mouth, and a method for producing the same.

本発明者は、かかる課題について鋭意検討した結果、特許文献1に記載されている重合体、例えば、ナリンギン重合体には、油脂の洗い流し効果が認められなかったものの、ナリンギン等のフラバノン配糖体を酸化重合工程とグリコシド結合加水分解工程に付すことによって得られた重合体が、当該効果の点で優れていることを見出した。   The present inventors have conducted intensive studies on such problems, and as a result, although the polymer described in Patent Document 1, for example, a naringin polymer did not show the effect of washing out fats and oils, a flavanone glycoside such as naringin was found. Was subjected to an oxidative polymerization step and a glycosidic bond hydrolysis step, and found to be excellent in this effect.

すなわち、本発明は以下のものに関するが、これらに限定されない。
1.糖がグリコシド結合していない、又は部分的に糖がグリコシド結合しているフラバノン重合体であって、少なくとも一種のフラバノン配糖体又はそれを含む原料を、任意の順序で、同時又は逐次的に酸化重合工程と、グリコシド結合加水分解工程とに付すことにより得られる重合体。
2.前記配糖体が、ナリンゲニン配糖体、又はナリンゲニン配糖体とヘスペレチン配糖体との組合せである、1に記載の重合体。
3.前記フラバノン配糖体の糖部分が、ペントース及びヘキソースから選択される単糖であるか、又はそれらから選択される単糖が互いにグリコシド結合した二糖若しくはそれより重合度の高い糖である、1又は2に記載の重合体。
4.ナリンゲニン配糖体がナリンギンである、2又は3に記載の重合体。
5.ヘスペレチン配糖体が、ヘスペリジン及び/又はα−モノグルコシルヘスペリジンである、2〜4のいずれか1項に記載の重合体。
6.酸化重合工程がラッカーゼ又はペルオキシダーゼの存在下で行われ、グリコシド結合加水分解工程がβ−グルコシダーゼの存在下で行われる、1〜6のいずれか1項に記載の重合体。
7.使用されるβ−グルコシダーゼの、ラッカーゼ又はペルオキシダーゼに対する重量比が、1/40以上である、6に記載の重合体。
8.グリコシド結合加水分解工程が、10〜70℃で行われる、6又は7に記載の重合体。
9.酸化重合工程が10〜70℃で行われる、6〜8のいずれか1項に記載の重合体。
10.油脂を分散させる、水又は水溶液の能力を向上させることができる、1〜9のいずれか1項に記載の重合体。
11.糖がグリコシド結合していない、又は部分的に糖がグリコシド結合しているフラバノン重合体の製造方法であって、少なくとも一種のフラバノン配糖体又はそれを含む原料を、任意の順序で、同時又は逐次的に酸化重合工程と、グリコシド結合加水分解工程とに付すことを含む、前記製造方法。
12.前記フラバノン配糖体が、ナリンゲニン配糖体、又はナリンゲニン配糖体とヘスペレチン配糖体との組合せである、11に記載の方法。
13.前記フラバノン配糖体の糖部分が、ペントース及びヘキソースから選択される単糖であるか、又はそれらから選択される単糖が互いにグリコシド結合した二糖若しくはそれより重合度の高い糖である、11又は12に記載の方法。
14.ナリンゲニン配糖体がナリンギンである、12又は13に記載の方法。
15.ヘスペレチン配糖体が、ヘスペリジン及び/又はα−モノグルコシルヘスペリジンである、12〜14のいずれか1項に記載の方法。
16.酸化重合工程がラッカーゼ又はペルオキシダーゼの存在下で行われ、グリコシド結合加水分解工程がβ−グルコシダーゼの存在下で行われる、11〜15のいずれか1項に記載の方法。
17.使用されるβ−グルコシダーゼの、ラッカーゼ又はペルオキシダーゼに対する重量比が、1/40以上である、16に記載の方法。
18.グリコシド結合加水分解工程が、10〜70℃で行われる、16又は17に記載の方法。
19.酸化重合工程が10〜70℃で行われる、16〜18のいずれか1項に記載の方法。
20.糖がグリコシド結合していない、又は部分的に糖がグリコシド結合しているフラバノン重合体。
21.1〜10及び20のいずれか1項に記載の重合体を含有する、飲食品。
22.アルコール飲料である、21に記載の飲食品。
23.1〜10及び20のいずれか1項に記載の重合体を含有する、口中の油脂の洗い流し用食品組成物。
24.以下に示す表示のいずれかを付した、23に記載の食品組成物。
That is, the present invention relates to the following, but is not limited thereto.
1. A flavanone polymer in which a sugar is not glycoside-linked or in which a sugar is partly glycoside-bonded, and at least one flavanone glycoside or a raw material containing the same, in any order, simultaneously or sequentially. A polymer obtained by performing an oxidative polymerization step and a glycosidic bond hydrolysis step.
2. 2. The polymer according to 1, wherein the glycoside is naringenin glycoside or a combination of naringenin glycoside and hesperetin glycoside.
3. The saccharide portion of the flavanone glycoside is a monosaccharide selected from pentose and hexose, or a disaccharide in which the monosaccharides selected from them are glycoside-bonded to each other or a saccharide having a higher degree of polymerization than 1 Or the polymer according to 2.
4. 4. The polymer according to 2 or 3, wherein the naringenin glycoside is naringin.
5. The polymer according to any one of claims 2 to 4, wherein the hesperetin glycoside is hesperidin and / or α-monoglucosyl hesperidin.
6. The polymer according to any one of claims 1 to 6, wherein the oxidative polymerization step is performed in the presence of laccase or peroxidase, and the glycosidic bond hydrolysis step is performed in the presence of β-glucosidase.
7. 7. The polymer according to 6, wherein the weight ratio of β-glucosidase to laccase or peroxidase used is 1/40 or more.
8. 8. The polymer according to 6 or 7, wherein the glycosidic bond hydrolysis step is performed at 10 to 70 ° C.
9. The polymer according to any one of 6 to 8, wherein the oxidative polymerization step is performed at 10 to 70 ° C.
10. The polymer according to any one of 1 to 9, which can improve the ability of water or an aqueous solution to disperse fats and oils.
11. A method for producing a flavanone polymer in which a sugar is not glycoside-linked or in which a sugar is partially glycoside-bonded, wherein at least one flavanone glycoside or a raw material containing the same is simultaneously or in any order. The above-described production method, which comprises sequentially performing an oxidative polymerization step and a glycosidic bond hydrolysis step.
12. 12. The method according to 11, wherein the flavanone glycoside is naringenin glycoside or a combination of naringenin glycoside and hesperetin glycoside.
13. The sugar portion of the flavanone glycoside is a monosaccharide selected from pentose and hexose, or a disaccharide in which the monosaccharides selected from these are glycoside-bonded to each other or a sugar having a higher degree of polymerization than 11 Or the method of 12.
14. 14. The method according to 12 or 13, wherein the naringenin glycoside is naringin.
15. The method according to any one of claims 12 to 14, wherein the hesperetin glycoside is hesperidin and / or α-monoglucosyl hesperidin.
16. 16. The method according to any one of 11 to 15, wherein the oxidative polymerization step is performed in the presence of laccase or peroxidase, and the glycosidic bond hydrolysis step is performed in the presence of β-glucosidase.
17. 17. The method according to 16, wherein the weight ratio of β-glucosidase to laccase or peroxidase used is 1/40 or more.
18. The method according to 16 or 17, wherein the glycosidic bond hydrolysis step is performed at 10 to 70 ° C.
19. The method according to any one of claims 16 to 18, wherein the oxidative polymerization step is performed at 10 to 70 ° C.
20. A flavanone polymer in which the sugar is not glycoside-linked or in which the sugar is partially glycoside-linked.
21. A food or drink comprising the polymer according to any one of 21.1 to 10 and 20.
22. 22. The food or drink according to 21, which is an alcoholic beverage.
23. A food composition for washing away fats and oils in the mouth, comprising the polymer according to any one of 1 to 10 and 20.
24. 24. The food composition according to 23, having any of the following indications.

「油っこい食事に合う」、「食事の油を洗い流す」、「口中の油ギレがよい」、「油をさっぱりさせる」、或いはこれらと同視できる表示。   "Fit with oily meals", "Rinse off meal oils", "Good oil grease in mouth", "Refresh oil", or display that can be regarded as the same.

本発明の重合体は、油脂を口から洗い流す優れた能力を有する。また、本発明の重合体の製造方法では、水溶性が比較的高いフラバノン配糖体を原料として用いるため、水中で実施することが可能であり、したがって、当該方法は飲食品の製造に適している。   The polymer of the present invention has an excellent ability to wash fats and oils from the mouth. In addition, in the method for producing a polymer of the present invention, since a water-soluble flavanone glycoside is used as a raw material, the method can be carried out in water. I have.

図1は、油脂分散状態の評価に用いられる容器を示す。FIG. 1 shows a container used for evaluating the state of dispersion of fats and oils. 図2は、油脂分散状態の評価における振盪方法を示す。FIG. 2 shows a shaking method in the evaluation of the dispersed state of fats and oils. 図3は、油脂分散状態の試験の際に、試験液の液面を上から見て得られた画像を示し、これは、分散レベル1(分散状態が悪い)に対応する典型的な分散状態を示す。黒色部分が油滴である。FIG. 3 shows an image obtained when the test surface of the test solution is viewed from above when testing the fat and oil dispersion state, which is a typical dispersion state corresponding to dispersion level 1 (poor dispersion state). Is shown. Black portions are oil droplets. 図4は、油脂分散の試験の際に、試験液の液面を上から見て得られた画像を示し、これは、分散レベル2(分散状態が良い)に対応する典型的な分散状態を示す。黒色部分が油滴である。FIG. 4 shows an image obtained when the level of the test liquid is observed from the top during the test of the dispersion of fats and oils, which shows a typical dispersion state corresponding to dispersion level 2 (good dispersion state). Show. Black portions are oil droplets. 図5は、油脂分散の試験の際に、試験液の液面を上から見て得られた画像を示し、これは、分散レベル3(分散状態が非常に良い)に対応する典型的な分散状態を示す。黒色部分が油滴である。FIG. 5 shows an image obtained when the level of the test liquid was observed from the top during the test of the dispersion of fats and oils, which shows a typical dispersion corresponding to dispersion level 3 (very good dispersion state). Indicates the status. Black portions are oil droplets.

(原料に用いるフラバノン配糖体)
フラボノイドは広く知られた物質であり、フラバノン、フラボン、カルコン、フラバノール、フラボノール、イソフラボン、アントシアニジンなどのグループに分類され、天然には、各フラボノイドに糖が結合したフラボノイド配糖体の形態で存在することが多い。
(Flavanone glycoside used as raw material)
Flavonoids are widely known substances, are classified into groups such as flavanone, flavone, chalcone, flavanol, flavonol, isoflavone, anthocyanidin, etc., and naturally exist in the form of flavonoid glycosides in which a sugar is bonded to each flavonoid. Often.

本発明の重合体は、上記の種々のフラボノイドの内のフラバノンの配糖体を原料として使用して製造することができる。具体的には、本発明の重合体は、少なくとも一種のフラバノン配糖体又はそれを含む原料を、任意の順序で、同時又は逐次的に酸化重合工程と、グリコシド結合加水分解工程とに付すことにより得ることができる。   The polymer of the present invention can be produced by using a glycoside of flavanone among the above various flavonoids as a raw material. Specifically, the polymer of the present invention is obtained by simultaneously or sequentially subjecting at least one flavanone glycoside or a raw material containing the same to an oxidative polymerization step and a glycosidic bond hydrolysis step. Can be obtained by

原料として用いられるフラバノン配糖体の例としては、ブチン、エリオジクチオール、ヘスペレチン、ホモエリオジクチオール、ナリンゲニン、ピノセムブリン、サクラネチン、イソサクラネチン、又はステルビンの配糖体等が挙げられる。   Examples of flavanone glycosides used as a raw material include glycosides of butyne, eriodictyol, hesperetin, homoeriodictyol, naringenin, pinosembulin, sacranetin, isosacranetin, and sterubin.

好ましいフラバノン配糖体は、以下の式(I)の構造を有するフラバノン配糖体である。   Preferred flavanone glycosides are flavanone glycosides having the structure of formula (I) below.

(I)
(式中、R及びRは、各々独立して、水素原子、ヒドロキシ基又はメトキシ基であり、Rはグリコシド結合した糖部分である。)。式(I)のフラバノン配糖体は、好ましくは、ナリンゲニン配糖体及び/又はヘスペレチン配糖体である。
(I)
(In the formula, R 1 and R 2 are each independently a hydrogen atom, a hydroxy group or a methoxy group, and R 3 is a glycoside-linked sugar moiety.) The flavanone glycoside of the formula (I) is preferably a naringenin glycoside and / or a hesperetin glycoside.

フラバノン配糖体の糖部分は、好ましくは、ペントース及びヘキソースから選択される単糖であるか、又はそれらから選択される単糖が互いにグリコシド結合した二糖若しくはそれより重合度の高い糖(例えばオリゴ糖)である。ペントースの例として、フルクトース、キシロース、リキソース、アラビノース、アピオースなどが挙げられる。また、ヘキソースの例として、グルコース、ガラクトース、ラムノース、マンノース、ソルビトール、myo−イノシトール、フコース、ハマメロース、グルクロン酸、ガラクツロン酸などが挙げられる。   The saccharide moiety of the flavanone glycoside is preferably a monosaccharide selected from pentose and hexose, or a disaccharide in which the monosaccharides selected from them are glycoside-linked to each other or a saccharide having a higher degree of polymerization (for example, Oligosaccharide). Examples of pentoses include fructose, xylose, lyxose, arabinose, apiose and the like. Examples of hexose include glucose, galactose, rhamnose, mannose, sorbitol, myo-inositol, fucose, hammerose, glucuronic acid, galacturonic acid and the like.

本発明の原料として、より好ましいフラバノン配糖体は、ナリンゲニン配糖体、又はナリンゲニン配糖体とヘスペレチン配糖体との組合せである。当該組合せは、混合物であってもよい。ナリンゲニン配糖体は、ナリンゲニンより水への溶解性が明らかに高く、さらに、ナリンゲニン配糖体とヘスペレチン配糖体を組み合わせると、より水への溶解性が高まり、製造上での取り扱いに優れ、適切に酵素反応を行うことができる。   A more preferred flavanone glycoside as a raw material of the present invention is naringenin glycoside or a combination of naringenin glycoside and hesperetin glycoside. The combination may be a mixture. Naringenin glycosides have a clearly higher solubility in water than naringenin.Furthermore, when a naringenin glycoside and a hesperetin glycoside are combined, the solubility in water is increased, and handling in production is excellent, The enzyme reaction can be appropriately performed.

本発明において、好ましいナリンゲニン配糖体はナリンギンである。また、好ましいヘスペレチン配糖体は、ヘスペリジン及び/又はα−モノグルコシルヘスペリジンである。α−モノグルコシルヘスペリジンは、ヘスペリジンを糖転移酵素で処理して得られる、ヘスペリジン分子中のグルコースの4位にα−グルコースが結合した構造を有する化合物であり、その構造は以下のとおりである。   In the present invention, a preferred naringenin glycoside is naringin. Further, a preferred hesperetin glycoside is hesperidin and / or α-monoglucosyl hesperidin. α-Monoglucosyl hesperidin is a compound obtained by treating hesperidin with a glycosyltransferase and having a structure in which α-glucose is bonded to the 4-position of glucose in a hesperidin molecule. The structure is as follows.

ナリンゲニン配糖体とヘスペレチン配糖体の組合せの例は、ナリンギンとヘスペリジンとの組合せであり、代表例としてゆずポリフェノール(東洋製糖株式会社)が挙げられる。これは、ナリンゲニン配糖体の一つであるナリンギン約90重量%とヘスペレチン配糖体の一つであるα−モノグルコシルヘスペリジン約10重量%とを含有し、水に対する溶解性が極めて高くなっており、本発明におけるより好ましい原料と成り得る。なお、ナリンゲニンやヘスペレチンは前述のように水への溶解が困難であり、原料として相応しくない。   An example of a combination of a naringenin glycoside and a hesperetin glycoside is a combination of naringin and hesperidin, and a representative example is citron polyphenol (Toyo Sangyo Co., Ltd.). It contains about 90% by weight of naringin, one of the naringenin glycosides, and about 10% by weight of α-monoglucosyl hesperidin, one of the hesperetin glycosides, and has extremely high solubility in water. It can be a more preferable raw material in the present invention. Note that naringenin and hesperetin are difficult to dissolve in water as described above, and are not suitable as raw materials.

(フラバノン重合体)
本発明の重合体は、少なくとも一種のフラバノン配糖体又はそれを含む原料を、任意の順序で、同時又は逐次的に酸化重合工程と、グリコシド結合加水分解工程とに付すことにより得ることができる。当該重合体の範囲には、オリゴマー、例えば二量体、三量体、四量体、及び五量体や、さらに重合度の高い重合体が含まれる。
(Flavanone polymer)
The polymer of the present invention can be obtained by subjecting at least one flavanone glycoside or a raw material containing the same to an oxidative polymerization step and a glycosidic bond hydrolysis step simultaneously or sequentially in an arbitrary order. . The range of the polymers includes oligomers such as dimers, trimers, tetramers, and pentamers, and polymers having a higher degree of polymerization.

得られるフラバノン重合体は、主鎖として、重合フラバノン鎖を有する。当該主鎖は、実質的には、フラバノンに対応するモノマー単位のみからなり、そこに糖がグリコシド結合していてもよい。しかしながら、重合反応の際に、原料中にフラバノンと重合可能な他の物質が微量含まれる可能性もあり、その量が微量であれば重合体の性質は影響されないと考えられる。したがって、当該重合体の分子は、微量であれば、他のフラボノイド等の、フラバノンに対応するモノマー単位でないモノマー単位を含んでいてもよい。当該重合体分子中、フラバノンに対応するモノマー単位でないモノマー単位の数は、全モノマー単位の数の1.0%未満、好ましくは0.5%未満、より好ましくは0.1%未満、より好ましくは0%である。ここで、モノマー単位とは、重合の結果生じた、原料一分子に相当する構造単位である。例えば、フラボノイド又はフラバノンに対応するモノマー単位は、重合の結果生じた、フラボノイド又はフラバノン一分子に相当する構造単位を意味する。   The resulting flavanone polymer has a polymerized flavanone chain as the main chain. The main chain is substantially composed of only a monomer unit corresponding to flavanone, and a sugar may be glycosidically bonded thereto. However, at the time of the polymerization reaction, there is a possibility that other materials that can be polymerized with flavanone may be contained in a small amount in the raw material, and it is considered that if the amount is small, the properties of the polymer are not affected. Therefore, the molecule of the polymer may contain a monomer unit other than the monomer unit corresponding to flavanone, such as another flavonoid, if the amount is a trace amount. In the polymer molecule, the number of monomer units that are not monomer units corresponding to flavanone is less than 1.0%, preferably less than 0.5%, more preferably less than 0.1%, more preferably less than the total number of monomer units. Is 0%. Here, the monomer unit is a structural unit corresponding to one molecule of a raw material, which is generated as a result of polymerization. For example, a monomer unit corresponding to a flavonoid or a flavanone means a structural unit corresponding to one molecule of a flavonoid or a flavanone resulting from polymerization.

原料に含有され得る、フラバノン配糖体以外のフラボノイド配糖体は、例えば以下のものがあるが、これらに限定されない:フラボン類の配糖体、例えば、ルテオリン又はアピゲニンの配糖体等、カルコン類の配糖体、例えば、サフロミン又はカルタミンのような配糖体、フラバノール類の配糖体、例えば、エピカテキン、エピカテキンガレート、エピガロカテキン、又はエピガロカテキンガレートの配糖体等、フラボノール類の配糖体、例えば、ケンフェロール又はケルセチンの配糖体等、イソフラボン類の配糖体、例えば、ゲニステイン、又はダイゼインの配糖体等、アントシアニジン類の配糖体、例えば、シアニジン、デルフィニジン、マルビジン、ペオニジン、ペチュニジン、又はペラルゴニジンの配糖体等。   Flavonoid glycosides other than flavanone glycosides that may be contained in the raw material include, but are not limited to, for example: glycosides of flavones, such as glycosides of luteolin or apigenin, such as chalcone. , Such as glycosides such as safuromin or carthamin, glycosides of flavanols, such as glycosides of epicatechin, epicatechin gallate, epigallocatechin, or epigallocatechin gallate, and flavonols , Glycosides such as kaempferol or quercetin, glycosides of isoflavones, such as glycosides of genistein or daidzein, glycosides of anthocyanidins, such as cyanidin, delphinidin, Malvidin, paeonidine, petunidin, or pelargonidin glycosides.

フラバノン配糖体に由来する糖部分は、グリコシド結合加水分解工程を経て、少なくとも部分的に除去され、当該糖部分の一部は残存していてもよい。このため、本発明の重合体分子には、部分的に糖がグリコシド結合しているか、又は糖が結合していない。より具体的に記載すると、本発明の重合体分子中、フラバノンに対応する全てのモノマー単位の数(n)が、糖が結合したフラバノンに対応するモノマー単位の数(N)よりも大きい(n>N)。   The sugar moiety derived from the flavanone glycoside may be at least partially removed through a glycosidic bond hydrolysis step, and a part of the sugar moiety may remain. For this reason, the polymer molecule of the present invention is partially glycosidically linked to a sugar or has no sugar linked thereto. More specifically, in the polymer molecule of the present invention, the number (n) of all monomer units corresponding to flavanone is larger than the number (N) of monomer units corresponding to flavanone to which sugar is bonded (n) > N).

本発明の重合体の分子は、好ましくは、式(I)のフラバノン配糖体に対応するモノマーを含有する。当該分子中、式(I)のフラバノン配糖体に対応するモノマー単位の数は、フラバノンに対応する全てのモノマー単位の数の好ましくは95%以上、より好ましくは97%以上、より好ましくは99%以上、より好ましくは99.5%以上、より好ましくは100%である。式(I)のフラバノン配糖体に対応するモノマー単位は、重合の結果生じた、フラバノン配糖体一分子に相当する構造単位を意味する。グリコシド結合加水分解工程のために、生じた構造単位は糖部分を有さないこともあれば、糖部分を保持していることもある。それらのいずれも、式(I)のフラバノン配糖体に対応するモノマー単位である。   The molecules of the polymers according to the invention preferably contain monomers corresponding to the flavanone glycosides of the formula (I). In the molecule, the number of monomer units corresponding to the flavanone glycoside of the formula (I) is preferably 95% or more, more preferably 97% or more, more preferably 99% of the number of all monomer units corresponding to flavanone. %, More preferably 99.5% or more, more preferably 100%. The monomer unit corresponding to the flavanone glycoside of the formula (I) means a structural unit corresponding to one molecule of the flavanone glycoside resulting from the polymerization. Due to the glycosidic bond hydrolysis step, the resulting structural unit may have no sugar moiety or may retain the sugar moiety. All of them are monomer units corresponding to the flavanone glycosides of formula (I).

前記の原料には、フラバノン配糖体に加えて、重合反応に関与しない他の物質も含まれていてもよい。当該原料の例として、ナリンギン等のフラバノン配糖体を含有する植物抽出物が挙げられる。   The raw material may contain other substances not involved in the polymerization reaction in addition to the flavanone glycoside. Examples of the raw material include a plant extract containing a flavanone glycoside such as naringin.

ある態様においては、本発明の重合体は、ナリンギンを主な原料として製造される重合体である。当該重合体分子には、ナリンギンに対応するモノマー単位に加えて、ヘスペリジン等の別のフラボノイド配糖体に対応するモノマー単位が存在してもよい。ナリンギンに対応するモノマー単位の数は、全てのモノマー単位の数の50%以上、80%以上、90%以上、95%以上、又は98%以上であってよい。   In one embodiment, the polymer of the present invention is a polymer produced using naringin as a main raw material. In the polymer molecule, in addition to a monomer unit corresponding to naringin, a monomer unit corresponding to another flavonoid glycoside such as hesperidin may be present. The number of monomer units corresponding to naringin may be 50% or more, 80% or more, 90% or more, 95% or more, or 98% or more of the number of all monomer units.

ある態様においては、本発明の重合体は、ナリンギンのアグリコンであるナリンゲニンだけ、ヘスペリジンのアグリコンであるヘスペレチンだけ、又はその両方だけから生成される重合体でない。   In some embodiments, the polymers of the present invention are not polymers formed solely from naringin, the aglycone of naringin, from hesperetin, the aglycone of hesperidin, or both.

(酸化重合工程)
フラバノン配糖体、又はそれを含む原料の酸化重合は、酸化酵素存在下で行うことができる。
(Oxidative polymerization step)
The oxidative polymerization of the flavanone glycoside or a raw material containing the same can be carried out in the presence of an oxidase.

酸化重合工程の条件は、特許文献1に記載された条件を利用することができ、その記載に基づいて、以下に簡単にまとめる。   The conditions of the oxidative polymerization step can use the conditions described in Patent Document 1, and based on the description, are briefly summarized below.

当該酸化重合で使用される酵素は、フェノール類の酸化を起こすのに十分な酸化能を有するものであれば特に制限はない。例えば、ラッカーゼ(EC 1.10.3.2)、カテコールオキシダーゼ(EC 1.10.3.1)、チロシナーゼ(EC 1.14.18.1)、ビリルビンオキシダーゼ(EC 1.3.3.5)などのオキシダーゼ、またはペルオキシダーゼ(EC 1.11.1.7)を使用できる。これらの酵素の起源は特に限定されない。これらの中で、ラッカーゼが特に好適である。好ましいラッカーゼは、漆の木から得られるラッカーゼ、またはPyricularia属、Pleurotus属、Pycnoporus属、Polystictus属、Mycelopthora属もしくはNeurospora属の微生物ラッカーゼである。特に、Pycnoporus属、Mycelopthora属のラッカーゼが好ましい。   The enzyme used in the oxidative polymerization is not particularly limited as long as it has an oxidizing ability sufficient to cause oxidation of phenols. For example, oxidases such as laccase (EC 1.10.3.2), catechol oxidase (EC 1.10.3.1), tyrosinase (EC 1.14.18.1), bilirubin oxidase (EC 1.3.3.5), or peroxidase (EC 1.11.1.7) can be used. . The origin of these enzymes is not particularly limited. Of these, laccase is particularly preferred. Preferred laccases are laccases obtained from lacquer trees or microbial laccases of the genera Pyricularia, Pleurotus, Pycnoporus, Polystictus, Mycelopthora or Neurospora. In particular, laccases of the genus Pycnoporus and Mycelopthora are preferred.

また、ペルオキシダーゼの例としては、西洋ワサビおよび大豆ペルオキシダーゼが挙げられる。   Examples of peroxidase include horseradish and soybean peroxidase.

酵素は、それ自体を用いてもよいし、該酵素を含む酵素製剤の形でも用いることができ、本明細書においては、酵素製剤も酵素の一態様である。酵素は、精製物でも、未精製物でもよい。酵素量は原料モノマー1gに対して通常1〜1,000,000ユニット、好ましくは3〜500,000ユニット、さらに好ましくは5〜200,000ユニットである。重量で表すと、酵素量は、原料モノマー1gに対して0.001〜1g、好ましくは0.01〜0.5g、より好ましくは0.1〜0.3gである。使用される酵素の力価は、典型的には、80000POU/g以上、90000POU/g以上、又は100000POU/g以上である。   The enzyme may be used by itself or in the form of an enzyme preparation containing the enzyme. In the present specification, the enzyme preparation is also one embodiment of the enzyme. The enzyme may be purified or unpurified. The amount of the enzyme is usually 1 to 1,000,000 units, preferably 3 to 500,000 units, more preferably 5 to 200,000 units per gram of the raw material monomer. In terms of weight, the amount of the enzyme is 0.001 to 1 g, preferably 0.01 to 0.5 g, and more preferably 0.1 to 0.3 g, per 1 g of the raw material monomer. The titer of the enzyme used is typically at least 80,000 POU / g, at least 90000 POU / g, or at least 100,000 POU / g.

ペルオキシダーゼを用いて重合させる際に用いる酸化剤は、酸化反応を開始させる酸化剤であればよく、一般的には過酸化物が用いられる。過酸化物は有機過酸化物および無機過酸化物のいずれでも良い。この中で特に好ましいものとして、過酸化水素を挙げることができる。過酸化水素の濃度は、特に限定されない。   The oxidizing agent used in the polymerization using peroxidase may be any oxidizing agent that initiates an oxidation reaction, and generally a peroxide is used. The peroxide may be either an organic peroxide or an inorganic peroxide. Among them, hydrogen peroxide is particularly preferable. The concentration of hydrogen peroxide is not particularly limited.

酸化剤である過酸化物や酸素は、原料モノマーの合計量に対して0.3〜10倍モルが好ましく、より好ましくは0.5〜3倍モルが特に好ましい。   The oxidizing agent, such as peroxide or oxygen, is preferably 0.3 to 10 moles, more preferably 0.5 to 3 moles, based on the total amount of the raw material monomers.

酸化重合工程で使用される溶媒は、特に限定されないが、水、有機溶媒と水の混合溶媒であってよい。水は蒸留水や脱イオン水でもよいが、水の代わりに緩衝液を用いてもよい。緩衝液を用いる場合はpH2〜12の範囲が望ましい。   The solvent used in the oxidative polymerization step is not particularly limited, but may be water, or a mixed solvent of an organic solvent and water. The water may be distilled water or deionized water, but a buffer may be used instead of water. When a buffer is used, the pH is preferably in the range of 2 to 12.

混合溶媒中の有機溶媒は、例えば、エタノール、プロピレングリコール、グリセリンなどである。これらは単独あるいは混合物として使用される。また、有機溶媒−水の混合比はモノマーと酵素触媒が共に溶解する任意の量を用いることができる。好ましくは1:99〜90:10、特に好ましくは1:99〜70:30の範囲が望ましい。   The organic solvent in the mixed solvent is, for example, ethanol, propylene glycol, glycerin and the like. These are used alone or as a mixture. The mixing ratio of the organic solvent and water may be any amount in which both the monomer and the enzyme catalyst are dissolved. It is preferably in the range of 1:99 to 90:10, and particularly preferably in the range of 1:99 to 70:30.

反応温度は、酵素触媒が不活性化しない温度が望ましい。好ましくは10〜70℃、より好ましくは30〜70℃、より好ましくは30〜60℃、より好ましくは30〜50℃、より好ましくは40〜50℃である。反応温度が高い場合は、一般に酵素は失活するが、混合溶媒系によっては酵素を安定化するので、その場合は高い反応温度も採用可能となる。   The reaction temperature is preferably a temperature at which the enzyme catalyst is not inactivated. Preferably it is 10-70 degreeC, More preferably, it is 30-70 degreeC, More preferably, it is 30-60 degreeC, More preferably, it is 30-50 degreeC, More preferably, it is 40-50 degreeC. When the reaction temperature is high, the enzyme is generally inactivated, but the enzyme is stabilized depending on the mixed solvent system. In this case, a high reaction temperature can be adopted.

反応時間は特に限定されないが、典型的には30分間以上、または1〜48時間である。所定時間反応を行った後、加熱などの処理を行って酵素を失活させる。   The reaction time is not particularly limited, but is typically 30 minutes or more, or 1 to 48 hours. After performing the reaction for a predetermined time, the enzyme is inactivated by performing a treatment such as heating.

(グリコシド結合加水分解工程)
グリコシド結合加水分解工程は、グリコシダーゼ等の酵素触媒下で行うことができる。
(Glycoside bond hydrolysis step)
The glycosidic bond hydrolysis step can be performed under an enzyme catalyst such as glycosidase.

グリコシダーゼには、α−グルコシダーゼ、β−グルコシダーゼ、β−ガラクトシダーゼなどがあるが、本発明では、β−グルコシダーゼ(EC 3.2.1.21)が好ましい。   Glycosidases include α-glucosidase, β-glucosidase, β-galactosidase and the like, and in the present invention, β-glucosidase (EC 3.2.1.21) is preferred.

本工程で用いる好ましいβ−グルコシダーゼは、β−グルコシダーゼ活性を有する酵素であればいずれでもよく、該酵素を含む酵素製剤の形でも用いることができる。本明細書においては、酵素製剤も酵素の一態様である。また、酵素は、精製物でも、未精製物でもよい。   The preferred β-glucosidase used in this step may be any enzyme having β-glucosidase activity, and may be used in the form of an enzyme preparation containing the enzyme. In the present specification, the enzyme preparation is also one embodiment of the enzyme. The enzyme may be a purified product or an unpurified product.

酸化酵素としてラッカーゼ又はペルオキシダーゼを用い、加水分解にβ−グルコシダーゼを用いる場合、使用されるβ−グルコシダーゼの、ラッカーゼ又はペルオキシダーゼに対する重量比は、好ましくは1/40以上、より好ましくは1/20以上、より好ましくは1/10以上である。   When laccase or peroxidase is used as an oxidase, and β-glucosidase is used for hydrolysis, the weight ratio of β-glucosidase used to laccase or peroxidase is preferably 1/40 or more, more preferably 1/20 or more, More preferably, it is 1/10 or more.

また、本発明において、β−グルコシダーゼ活性を有する酵素の添加量は、処理温度及び処理時間により適宜変更することができるが、例えば、酵素の量は、原料モノマーに対して、通常0.5重量%以上、好ましくは1重量%以上であり、上限値は特にないが、上限値は典型的には30重量%程度である。この量は酵素処理温度に依存する。   In the present invention, the amount of the enzyme having β-glucosidase activity can be appropriately changed depending on the treatment temperature and the treatment time. For example, the amount of the enzyme is usually 0.5 wt. %, Preferably 1% by weight or more, and there is no particular upper limit, but the upper limit is typically about 30% by weight. This amount depends on the enzyme treatment temperature.

使用される酵素の力価は、典型的には、70.0μ/g以上、又は80.0μ/g以上であれば充分である。   Typically, a titer of 70.0 μ / g or more, or 80.0 μ / g or more, is sufficient.

本発明において、β−グルコシダーゼを用いて酵素処理する温度は、10〜70℃、より好ましくは30〜70℃、より好ましくは30〜60℃、より好ましくは30〜50℃、より好ましくは40〜50℃である。グリコシド結合加水分解工程を酸化重合工程と同時に行うと簡便であり、したがって、本工程の温度は、酸化重合工程の温度と同じにすることができる。反応温度が40℃以上である場合には、酵素の量は、原料モノマーに対して、通常0.5重量%以上、好ましくは1重量%以上であるが、40℃未満では、原料モノマーに対して、1重量%以上であることが好ましい。   In the present invention, the temperature of the enzyme treatment using β-glucosidase is 10 to 70 ° C, more preferably 30 to 70 ° C, more preferably 30 to 60 ° C, more preferably 30 to 50 ° C, and more preferably 40 to 70 ° C. 50 ° C. It is convenient to perform the glycosidic bond hydrolysis step at the same time as the oxidative polymerization step. Therefore, the temperature of this step can be the same as the temperature of the oxidative polymerization step. When the reaction temperature is 40 ° C. or higher, the amount of the enzyme is usually 0.5% by weight or more, preferably 1% by weight or more, based on the raw material monomer. Therefore, the content is preferably 1% by weight or more.

また、本発明において、反応時間は特に限定されないが、典型的には30分間以上、または1〜48時間である。   In the present invention, the reaction time is not particularly limited, but is typically 30 minutes or more, or 1 to 48 hours.

使用される溶媒は、酸化重合工程で用いるものと同じでよい。必要に応じて、反応液のpHを調整してもよい。pHは、通常pH2〜8であり、好ましくはpH3〜6である。   The solvent used may be the same as that used in the oxidative polymerization step. If necessary, the pH of the reaction solution may be adjusted. The pH is usually from pH 2 to 8, preferably from pH 3 to 6.

所定時間反応を行った後、加熱などの処理を行って酵素を失活させる。   After performing the reaction for a predetermined time, the enzyme is inactivated by performing a treatment such as heating.

酸化重合工程とグリコシド結合加水分解工程は、任意の順序で、同時又は逐次的に行うことができる。好ましくは、これらの工程を同時に行う。   The oxidative polymerization step and the glycosidic bond hydrolysis step can be performed simultaneously or sequentially in any order. Preferably, these steps are performed simultaneously.

(他の工程)
酸化重合工程と、グリコシド結合加水分解工程を行った後に、生成した本発明の重合体に対して必要に応じて精製などの他の工程を行ってもよい。ただし、当該重合体の構造に悪影響を及ぼす工程は実施すべきでない。
(Other processes)
After performing the oxidative polymerization step and the glycosidic bond hydrolysis step, other steps such as purification may be performed on the produced polymer of the present invention, if necessary. However, steps that adversely affect the structure of the polymer should not be performed.

確認のために記載するが、精製工程は必須でない。本発明の重合体は、酵素反応物のような混合物の形態で、精製することなく利用してもよいし、部分的又は完全に精製してから利用してもよい。しかしながら、当該重合体を精製すると、油脂を分散させる、水又は水溶液の能力を向上させる効果や、口中の油脂の洗い流し効果が向上するため、精製することが好ましい。精製方法は特に限定されないが、例えば、透析、活性炭・吸着剤の処理等の方法を用いることができる。特に重合しなかった原料あるいは、重合体の中で油脂の分散効果が低い物質を除くような精製方法が好ましい。   Although described for confirmation, a purification step is not essential. The polymer of the present invention may be used without purification in the form of a mixture such as an enzyme reaction product, or may be used after being partially or completely purified. However, purification of the polymer improves the effect of dispersing fats and oils, improving the ability of water or an aqueous solution, and the effect of washing out fats and oils in the mouth. The purification method is not particularly limited, and for example, a method such as dialysis, treatment of activated carbon and an adsorbent, or the like can be used. In particular, a purification method that removes a raw material that has not been polymerized or a substance having a low effect of dispersing fats and oils in a polymer is preferable.

(油脂の分散)
本発明の重合体が水中に存在すると、油脂を水に加えた際に生じる油滴が通常よりも細かく分散する。即ち、当該重合体は、油脂を分散させる、水又は水溶液の能力を向上させることができる。重合体のこのような能力は、当該重合体について以下の試験をすることにより評価することができる。
(Dispersion of fats and oils)
When the polymer of the present invention is present in water, oil droplets formed when adding fats and oils to water are dispersed finer than usual. That is, the polymer can improve the ability of water or an aqueous solution to disperse fats and oils. Such ability of the polymer can be evaluated by performing the following tests on the polymer.

<試験液の調製>
重合体約0.5gを純水50mlに溶解し(1.0g/100ml)、当該溶液にアルコール95%の水溶液150mlを加える。得られた混合液を0.5ml採取し、それを以下の配合で調製されたアルコール含有飲料30mlに添加し、良く撹拌して、試験液を得る。試験液を、下記の工程1〜7を有する方法で試験する。
<Preparation of test solution>
About 0.5 g of the polymer is dissolved in 50 ml of pure water (1.0 g / 100 ml), and 150 ml of a 95% aqueous solution of alcohol is added to the solution. 0.5 ml of the obtained mixed liquid is collected, added to 30 ml of alcohol-containing beverage prepared with the following composition, and stirred well to obtain a test liquid. The test solution is tested by a method having the following steps 1 to 7.

<試験>
工程1.東洋佐々木ガラス株式会社(東洋佐々木硝子社)製、口径約4.9cm、最大外径約6.1cm、厚み約2mm、高さ約11.2cm、深さ約7.5cm、満注容量約140mlのガラス容器に、試験液を30ml注ぎ、
工程2.当該試験液を液温23℃で静置し、
工程3.静置された試験液に辣油(ラー油)(ハウス食品株式会社)を200μl加え、当該ガラス容器にふたをし、
工程4.振盪装置に固定された内寸約6.5cm四方の枡形容器中に当該ガラス容器を置き、水平に直径80mmの円を描くように250回/分の速度で1分間当該枡形容器を振盪し、
工程5.当該ガラス容器を水平にしたまま、回転された試験液を液温23℃で3時間静置し、
工程6.当該ガラス容器の上部から液面の写真を撮影し、そして
工程7.得られた写真に対する目視評価を行い、油脂の分散レベルを決定する。
<Test>
Step 1. Manufactured by Toyo Sasaki Glass Co., Ltd. (Toyo Sasaki Glass Co., Ltd.), caliber about 4.9 cm, maximum outer diameter about 6.1 cm, thickness about 2 mm, height about 11.2 cm, depth about 7.5 cm, full capacity about 140 ml Pour 30 ml of the test solution into the glass container of
Step 2. The test liquid is allowed to stand at a liquid temperature of 23 ° C.,
Step 3. 200 μl of sharp oil (lar oil) (House Foods Co., Ltd.) was added to the test liquid that was allowed to stand, and the glass container was capped.
Step 4. The glass container is placed in a square container having an inner size of about 6.5 cm square fixed to a shaking device, and the square container is shaken at a rate of 250 times / minute for 1 minute so as to horizontally draw a circle having a diameter of 80 mm,
Step 5. With the glass container kept horizontal, the rotated test solution was allowed to stand at a solution temperature of 23 ° C. for 3 hours,
Step 6. Taking a picture of the liquid level from the top of the glass container; The obtained photographs are visually evaluated to determine the level of dispersion of fats and oils.

試験に用いる容器の形状は図1に示すとおりである。工程3におけるふたのためには、パラフィルムなどを用いてよい。工程4の模式図を図2に示す。振盪装置に固定した内寸約6.5cm四方の枡形容器中にガラス容器を置く。振盪のために用いる振盪装置は、典型的には、タイテック株式会社のBR−300LFである。この装置を用いる場合、図2のように当該枡形容器が常に同じ方向を向く状態で振盪させる。工程6の写真は、解像度がある程度高いことが好ましく、例えば、800万画素程度の解像度のものを用いることができる。   The shape of the container used for the test is as shown in FIG. For the lid in step 3, parafilm or the like may be used. FIG. 2 shows a schematic diagram of the step 4. The glass container is placed in a square container having an inner size of about 6.5 cm and fixed to a shaking device. The shaking device used for shaking is typically BR-300LF from Taitec Corporation. In the case of using this apparatus, as shown in FIG. 2, the container is shaken while always facing the same direction. It is preferable that the photograph in the step 6 has a high resolution to some extent. For example, a photograph having a resolution of about 8 million pixels can be used.

工程7においては、油滴のサイズが小さいこと、そして油滴が偏りなく液面全体に分布することが好ましい。各分散レベルに対応する典型的な分散状態を図3〜5に示す。これらに基づいて試験液中の油脂の分散レベルを決定する。分散状態が良い程分散レベルは高くなる。分散レベルが2以上であれば、試験された重合体は、油脂を分散させる、水又は水溶液の能力を向上させることができると判断される。   In step 7, it is preferable that the size of the oil droplets is small and that the oil droplets are distributed evenly over the entire liquid surface. Typical dispersion states corresponding to each dispersion level are shown in FIGS. Based on these, the dispersion level of the fat or oil in the test liquid is determined. The better the dispersion state, the higher the dispersion level. If the dispersion level is 2 or greater, it is determined that the tested polymer can improve the ability of water or aqueous solution to disperse fats and oils.

(適用)
本発明の重合体は、飲食品(機能性食品、健康補助食品、栄養機能食品、特別用途食品、特定保健用食品、栄養補助食品、食事療法用食品、健康食品、サプリメント等)として、又はその原料として使用することができる。当該飲食品の形態は、特に限定されないが、例えば、清涼飲料水(例えば、スポーツドリンク、炭酸飲料、果汁飲料)、チューハイなどのアルコール飲料である。或いは、錠剤、顆粒剤、散剤、カプセル剤(ソフトカプセルも含む)等の形態であってもよい。
(Application)
The polymer of the present invention may be used as food or drink (functional food, health supplement, nutritional functional food, special use food, food for specified health use, dietary supplement, dietary food, health food, supplement, etc.) or the like. Can be used as raw material. The form of the food / beverage product is not particularly limited, and is, for example, an alcoholic beverage such as a soft drink (for example, a sports drink, a carbonated beverage, a fruit juice beverage), and a chuhai. Alternatively, it may be in the form of tablets, granules, powders, capsules (including soft capsules) and the like.

本発明の重合体が存在すると、油脂を水に加えた際に生じる油滴が細かく分散する。このため、当該重合体は、食事などによって口にもたらされる油脂を口から洗い流す、水又は水溶液の能力を向上させることができる。したがって、本発明は、別の側面では、本発明の重合体を有効成分とする、口中の油脂の洗い流し用飲食品組成物である。油脂は食事によって口にもたらされてもよいし、別の方法でもたらされてもよい。また、当該飲食品組成物は、上記したとおりの飲食品であってよい。   When the polymer of the present invention is present, oil droplets generated when adding fats and oils to water are finely dispersed. For this reason, the polymer can improve the ability of water or an aqueous solution to wash out oils and fats brought into the mouth by eating or the like from the mouth. Therefore, in another aspect, the present invention is a food and drink composition for washing away fats and oils in the mouth, comprising the polymer of the present invention as an active ingredient. The fat may be brought into the mouth by a meal or may be brought in another way. Further, the food and drink composition may be the food and drink as described above.

口中の油脂の洗い流し用飲食品組成物は、その洗い流し効果に関連した様々な表示を付すことができる。本発明は、以下の表示を付した、口中の油脂の洗い流し用飲食品組成物にも関する:「油っこい食事に合う」、「食事の油を洗い流す」、「口中の油ギレがよい」、「油をさっぱりさせる」、或いはこれらと同視できる表示。当該表示は、当該重合体を含有する組成物や、それを含む容器又は包装に付すことができる。これらの表示を付したものは、油脂の洗い流しという用途に用いられることが意図されていると考えることができる。   The food and drink composition for washing out fats and oils in the mouth can be given various labels related to the washing-out effect. The present invention also relates to a food and drink composition for washing out fats and oils in the mouth, with the following designations: "fits a greasy meal", "washes out meal oils", "good grease in the mouth", " "Refresh the oil" or a display that can be regarded as the same. The indication can be attached to a composition containing the polymer or a container or package containing the composition. Those with these indications can be considered to be intended to be used for the purpose of washing off fats and oils.

当該飲食品組成物における重合体の含有量は、特に限定されないが、典型的には0.001〜5重量%である。   The content of the polymer in the food or drink composition is not particularly limited, but is typically 0.001 to 5% by weight.

(数値範囲)
明確化のために記載すると、本明細書において下限値と上限値によって表されている数値範囲、即ち「下限値〜上限値」は、それら下限値及び上限値を含む。例えば、「1〜2」により表される範囲は、1及び2を含む。
(Numeric range)
For clarity, a numerical range represented by a lower limit and an upper limit in this specification, that is, “lower limit to upper limit” includes the lower limit and the upper limit. For example, the range represented by “1-2” includes 1 and 2.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.

(実験1)
ナリンギン約90重量%とα−モノグルコシルヘスペリジン約10重量%とを含有するナリンギン含有物(ゆずポリフェノール、東洋製糖株式会社)に、酸化重合工程と、グリコシド結合加水分解工程とを実施し、得られた重合体に対して、口中の油脂の洗い流し効果に関する官能評価と、油脂の分散状態の評価をした。
(Experiment 1)
An oxidative polymerization step and a glycosidic bond hydrolysis step are performed on a naringin-containing substance (yuzu polyphenol, Toyo Sugar Co., Ltd.) containing about 90% by weight of naringin and about 10% by weight of α-monoglucosyl hesperidin, and obtained. The polymer was subjected to a sensory evaluation on the effect of rinsing the fats and oils in the mouth and a dispersion state of the fats and oils.

<重合体とそれを含有する試験液の調製>
ナリンギン含有物を純水50mlに1.0g/100mlの濃度で溶解した。得られた溶液に、ラッカーゼ(ラッカーゼ M120、天野エンザイム株式会社)を0.1g/100mlの濃度で溶解した。次いで、得られた溶液に、β−グルコシダーゼ(アロマーゼ、天野エンザイム株式会社)を0〜0.1g/100mlの濃度で溶解した。得られた溶液を、30、40、又は50℃の恒温槽中で24時間静置して反応させた。反応終了後、反応液を90℃で5分に保ち酵素を失活させた。酵素を失活させた反応液50mlを常温に戻し、アルコール95%溶液を150ml加えて、ナリンギン酵素処理物含有物を得た。当該ナリンギン酵素処理物含有物を0.5ml採取し、これを、以下の表に示す配合を有するアルコール含飲料30mlに添加し、良く撹拌して、試験液を調製した。各試験液の調製のための反応条件は、表3〜5に示す。
<Preparation of polymer and test solution containing it>
The naringin-containing substance was dissolved in 50 ml of pure water at a concentration of 1.0 g / 100 ml. Laccase (Laccase M120, Amano Enzyme Co., Ltd.) was dissolved in the obtained solution at a concentration of 0.1 g / 100 ml. Next, β-glucosidase (Allomerase, Amano Enzyme Co., Ltd.) was dissolved in the obtained solution at a concentration of 0 to 0.1 g / 100 ml. The resulting solution was allowed to stand in a thermostat at 30, 40, or 50 ° C. for 24 hours to react. After completion of the reaction, the reaction solution was kept at 90 ° C. for 5 minutes to inactivate the enzyme. 50 ml of the reaction solution in which the enzyme was inactivated was returned to room temperature, and 150 ml of a 95% alcohol solution was added to obtain a substance containing a treated product of naringin. 0.5 ml of the naringin enzyme-treated product-containing material was collected, added to 30 ml of an alcohol-containing beverage having the composition shown in the following table, and stirred well to prepare a test solution. Reaction conditions for preparation of each test solution are shown in Tables 3 to 5.

<官能評価>
得られた試験液に対して、以下の方法で官能評価を行った。
<Sensory evaluation>
The obtained test solution was subjected to a sensory evaluation by the following method.

専門パネラーがごま油(かどや製油株式会社)100μlを口に入れ、口中に軽く馴染ませた後、試験液を飲用した。その後、どの程度口中の油が洗い流されてさっぱりするのかを官能評価により試験した。比較例で用いるために、表2の配合を有するアルコール含有飲料30mlに、原料用アルコール(アルコール分71%)を0.5ml添加して、比較例1の試験液を調製した。   100 μl of sesame oil (Kadoya Oil Co., Ltd.) was put into the mouth by a specialized panel, and the test solution was drunk after lightly fitting into the mouth. Thereafter, it was tested by sensory evaluation how much the oil in the mouth was washed away and refreshed. For use in the comparative example, a test solution of the comparative example 1 was prepared by adding 0.5 ml of raw material alcohol (alcohol content: 71%) to 30 ml of the alcohol-containing beverage having the composition shown in Table 2.

評価基準は以下のとおりである。スコアが2点以上であれば、効果があると判断される。結果を表3〜5に示す。   The evaluation criteria are as follows. If the score is 2 or more, it is determined that there is an effect. The results are shown in Tables 3 to 5.

3点=口中がさっぱりした
2点=口中がややさっぱりした
1点=口中のさっぱり感が感じられない
<油脂の分散状態の評価>
調製された試験液を、下記の工程1〜7を有する方法で試験した。
3 points = Mouth in the mouth 2 points = Slight in the mouth 1 point = No refreshing feeling in the mouth <Evaluation of dispersion state of fats and oils>
The prepared test liquid was tested by a method having the following steps 1 to 7.

<試験>
工程1.東洋佐々木ガラス株式会社(東洋佐々木硝子社)製、口径約4.9cm、最大外径約6.1cm、厚み約2mm、高さ約11.2cm、深さ約7.5cm、満注容量約140mlのガラス容器に、試験液を30ml注ぎ、
工程2.当該試験液を液温23℃で静置し、
工程3.静置された試験液に辣油(ラー油)(ハウス食品株式会社)を200μl加え、当該ガラス容器にふたをし、
工程4.振盪装置に固定された内寸約6.5cm四方の枡形容器中に当該ガラス容器を置き、水平に直径80mmの円を描くように250回/分の速度で1分間当該枡形容器を振盪し、
工程5.当該ガラス容器を水平にしたまま、回転された試験液を液温23℃で3時間静置し、
工程6.当該ガラス容器の上部から液面の写真を撮影し、そして
工程7.得られた写真に対する目視評価を行い、油脂の分散レベルを決定する。
<Test>
Step 1. Manufactured by Toyo Sasaki Glass Co., Ltd. (Toyo Sasaki Glass Co., Ltd.), caliber about 4.9 cm, maximum outer diameter about 6.1 cm, thickness about 2 mm, height about 11.2 cm, depth about 7.5 cm, full capacity about 140 ml Pour 30 ml of the test solution into the glass container of
Step 2. The test liquid is allowed to stand at a liquid temperature of 23 ° C.,
Step 3. 200 μl of sharp oil (lar oil) (House Foods Co., Ltd.) was added to the test liquid that was allowed to stand, and the glass container was capped.
Step 4. The glass container is placed in a square container having an inner size of about 6.5 cm square fixed to a shaking device, and the square container is shaken at a rate of 250 times / minute for 1 minute so as to horizontally draw a circle having a diameter of 80 mm,
Step 5. With the glass container kept horizontal, the rotated test solution was allowed to stand at a solution temperature of 23 ° C. for 3 hours,
Step 6. Taking a picture of the liquid level from the top of the glass container; The obtained photographs are visually evaluated to determine the level of dispersion of fats and oils.

工程7においては、油滴のサイズが小さいこと、そして油滴が偏りなく液面全体に分布することが好ましい。各分散レベルに対応する典型的な分散状態を示す図3〜5に基づいて試験液の分散レベルを決定した。図3が分散レベル1(分散状態が悪い)、図4が分散レベル2(分散状態が良い)、図5がレベル3(分散状態が非常に良い)の典型例を示す。結果を表3〜5に示す。   In step 7, it is preferable that the size of the oil droplets is small and that the oil droplets are distributed evenly over the entire liquid surface. The dispersion level of the test liquid was determined based on FIGS. 3 to 5 showing typical dispersion states corresponding to the respective dispersion levels. 3 shows a typical example of the dispersion level 1 (the dispersion state is bad), FIG. 4 shows a typical example of the dispersion level 2 (the dispersion state is good), and FIG. 5 shows a typical example of the level 3 (the dispersion state is very good). The results are shown in Tables 3 to 5.

酸化重合とグリコシド結合加水分解を組み合わせると、様々な条件で、油脂の分散状態を改善できる重合体が得られた。一方、酸化重合(比較例2等)又はグリコシド結合加水分解(比較例3等)のいずれか一方しか行わない場合には、油脂の分散状態は改善されなかった。これは、反応温度を上昇させても同じであった(比較例4、5、6、7)。なお、比較例2は、特許文献1に記載の発明に相当する。   When oxidative polymerization and glycosidic bond hydrolysis were combined, a polymer that could improve the dispersion state of fats and oils under various conditions was obtained. On the other hand, when only one of the oxidative polymerization (Comparative Example 2 and the like) and the glycoside bond hydrolysis (Comparative Example 3 and the like) was performed, the dispersion state of the fats and oils was not improved. This was the same even when the reaction temperature was increased (Comparative Examples 4, 5, 6, and 7). Note that Comparative Example 2 corresponds to the invention described in Patent Document 1.

なお、いずれの試験液も、味の面で大きな問題は認められず、本発明の重合体は味の面でも十分に許容されるものであることも明らかとなった。   It should be noted that no serious problem was recognized in any of the test liquids in terms of taste, and it was also clarified that the polymer of the present invention was sufficiently acceptable in terms of taste.

(実験2)
一部の実験で反応時間を48時間としたこと以外は、実験1に準じて試験液を調製した。具体的な反応条件は下記の表に示した。また、実験1と同様の官能評価と、油脂の分散状態の評価を行った。その結果も以下の表に示す。
(Experiment 2)
Test liquids were prepared according to Experiment 1, except that the reaction time was set to 48 hours in some experiments. Specific reaction conditions are shown in the table below. In addition, the same sensory evaluation as in Experiment 1 and the evaluation of the dispersed state of fats and oils were performed. The results are also shown in the table below.

グリコシド結合加水分解を行わない場合には、反応時間を延長しても油脂の分散状態は改善されないことが明らかとなった(比較例2及び8の比較より)。したがって、酸化重合と共にグリコシド結合加水分解を行うことが重要であることが明らかとなった。   When the glycosidic bond hydrolysis was not performed, it became clear that the dispersion state of the fats and oils was not improved even if the reaction time was extended (from a comparison of Comparative Examples 2 and 8). Therefore, it became clear that it is important to perform glycosidic bond hydrolysis together with oxidative polymerization.

(実験3)
反応中に、マグネティックスターラーで250rpmにて反応液を撹拌したこと以外は、実験1に準じて試験液を調製した。具体的な反応条件は下記の表に示した。また、実験1と同様の官能評価と、油脂の分散状態の評価を行った。その結果も以下の表に示す。
(Experiment 3)
During the reaction, a test solution was prepared according to Experiment 1, except that the reaction solution was stirred with a magnetic stirrer at 250 rpm. Specific reaction conditions are shown in the table below. In addition, the same sensory evaluation as in Experiment 1 and the evaluation of the dispersed state of fats and oils were performed. The results are also shown in the table below.

反応を撹拌しても油脂の分散状態は改善されなかった(比較例2及び9の比較より)。したがって、酸化重合と共にグリコシド結合加水分解を行うことが重要であることが明らかとなった。   Even if the reaction was stirred, the dispersed state of the fats and oils was not improved (from a comparison of Comparative Examples 2 and 9). Therefore, it became clear that it is important to perform glycosidic bond hydrolysis together with oxidative polymerization.

(実験4)
この実験では、精製の効果を検討した。実施例12の酵素反応の後に、分画分子量1000の透析膜(Spectrum社、再生セルロース製)の中に、50mlの反応物を入れ、温水中で透析することで、未反応物などの低分子物を除いた(実施例13)。得られた透析膜の内側に含まれる精製反応液を凍結乾燥し、得られた乾燥物が10000ppmの濃度になるように純水に再溶解し、得られた溶液を表2に示す配合のアルコール含飲料30mlに添加し、良く撹拌して、試験液を調製した。比較のため、比較例2について同様の操作を行い、試験液を調製した(比較例10)。得られた試験液について、実験1と同様の油脂の分散状態の評価を行った。結果を以下の表に示す。精製をすると、油脂の分散状態が良好となった。
(Experiment 4)
In this experiment, the effect of purification was examined. After the enzymatic reaction of Example 12, 50 ml of the reactant was put into a dialysis membrane (Spectrum, manufactured by regenerated cellulose) having a molecular weight cut off of 1,000, and dialyzed in warm water to obtain low molecular weight components such as unreacted substances. The product was removed (Example 13). The purified reaction solution contained inside the obtained dialysis membrane is freeze-dried, and the obtained dried product is redissolved in pure water so as to have a concentration of 10000 ppm. The test solution was prepared by adding the mixture to 30 ml of the beverage containing the mixture and stirring the mixture well. For comparison, a similar operation was performed for Comparative Example 2 to prepare a test solution (Comparative Example 10). About the obtained test liquid, the dispersion state of fats and oils was evaluated in the same manner as in Experiment 1. The results are shown in the table below. When refined, the dispersed state of the fat and oil became good.

また、比較例10と実施例13の実験(反応、攪拌及び透析後)で得られた重合物を凍結乾燥させ、その凍結乾燥物の一部を、MALDI−TOFMS(測定機器:Bruker社 autoflex speed、加速電圧:19kV、反射電圧:21kV)に供し、それぞれの質量分析も行った。比較例10の条件で得られた重合体は、分子量(m/z)約1181(この値は、ナリンゲニンの配糖体が2分子重合した場合の分子量に相当する)と約1760(この値は、ナリンゲニンの配糖体が3分子重合した場合の分子量に相当する)を代表的な検出ピークに有していた。一方で、実施例13の条件で得られた重合体は、分子量(m/z)約1081(この値は、ナリンゲニンが4分子重合した場合の分子量に相当する)と約1359(この値は、ナリンゲニンが5分子重合した場合の分子量に相当する)に代表される検出ピークを有していた。   Further, the polymer obtained in the experiment (after reaction, stirring and dialysis) of Comparative Example 10 and Example 13 was freeze-dried, and a part of the freeze-dried product was subjected to MALDI-TOFMS (measurement apparatus: Bruflex autoflex speed). , Acceleration voltage: 19 kV, reflection voltage: 21 kV), and mass spectrometry was performed for each. The polymer obtained under the conditions of Comparative Example 10 had a molecular weight (m / z) of about 1181 (this value corresponds to the molecular weight of a naringenin glycoside polymerized in two molecules) and about 1760 (this value was , Which is equivalent to the molecular weight when three molecules of naringenin glycoside were polymerized) at a typical detection peak. On the other hand, the polymer obtained under the conditions of Example 13 has a molecular weight (m / z) of about 1081 (this value corresponds to the molecular weight when four molecules of naringenin are polymerized) and about 1359 (this value is (Corresponding to the molecular weight when five molecules of naringenin were polymerized).

以上から、酸化重合工程とグリコシド結合加水分解工程の両方に付すことにより得られる重合体は、糖が結合していない又は糖が部分的にしか結合していないことが明らかとなった。また、これらの結果から、酸化重合工程とグリコシド結合加水分解工程の両方に付すことにより得られる重合体は、酸化重合工程のみにより得られる重合体と異なり、単に重合体の生成率が多いことに起因して油の分散効果が得られたのではなく、重合体に糖が結合していないか又は糖が部分的にしか結合していないことに起因して、油脂の分散効果が発現したと考えられる。   From the above, it was clarified that the polymer obtained by subjecting to both the oxidative polymerization step and the glycosidic bond hydrolysis step had no sugar bound or only partially bound sugar. Also, from these results, the polymer obtained by subjecting to both the oxidative polymerization step and the glycosidic bond hydrolysis step is different from the polymer obtained only by the oxidative polymerization step, and merely has a high polymer generation rate. The dispersing effect of oils and fats was not manifested because the effect of dispersing the oil was not obtained, but due to the fact that sugar was not bonded to the polymer or the sugar was only partially bonded. Conceivable.

(実験5)
原料としてナリンギン(東京化成工業株式会社製)を単独で用いたことを除いて実験1に準じて試験液を調製した。具体的な反応条件は下記の表に示した。また、実験1と同様の油脂の分散状態の評価を行った。その結果も以下の表に示す。ナリンギンを単独で用いても、好ましい性質を有する重合体が得られた。
(Experiment 5)
A test solution was prepared according to Experiment 1, except that Naringin (manufactured by Tokyo Chemical Industry Co., Ltd.) was used alone as a raw material. Specific reaction conditions are shown in the table below. In addition, the same state of dispersion of fats and oils as in Experiment 1 was evaluated. The results are also shown in the table below. Even when naringin was used alone, a polymer having favorable properties was obtained.

Claims (14)

糖がグリコシド結合していない、又は部分的に糖がグリコシド結合しているフラバノン重合体の製造方法であって、少なくとも一種のフラバノン配糖体又はそれを含む原料を、任意の順序で、同時又は逐次的に酸化重合工程と、グリコシド結合加水分解工程とに付すことを含み、当該少なくとも一種のフラバノン配糖体が、ブチン配糖体、エリオジクチオール配糖体、ヘスペレチン配糖体、ホモエリオジクチオール配糖体、ナリンゲニン配糖体、ピノセムブリン配糖体、サクラネチン配糖体、イソサクラネチン配糖体及びステルビン配糖体からなる群から選択される、前記製造方法。 A method for producing a flavanone polymer in which a sugar is not glycoside-linked or in which a sugar is partially glycoside-bonded, wherein at least one flavanone glycoside or a raw material containing the same is simultaneously or in any order. and sequentially oxidative polymerization process, see contains subjecting the glycoside bond hydrolysis step, the at least one flavanone glycoside, butyne glycosides, eriodictyol glycosides, hesperetin glycoside, Homoerio The above-mentioned production method , wherein the method is selected from the group consisting of dictyol glycoside, naringenin glycoside, pinosembulin glycoside, sakuranetin glycoside, isosakuranetin glycoside, and sterubin glycoside . 前記フラバノン配糖体が、ナリンゲニン配糖体、又はナリンゲニン配糖体とヘスペレチン配糖体との組合せである、請求項に記載の方法。 2. The method of claim 1 , wherein the flavanone glycoside is a naringenin glycoside or a combination of a naringenin glycoside and a hesperetin glycoside. 前記フラバノン配糖体の糖部分が、ペントース及びヘキソースから選択される単糖であるか、又はそれらから選択される単糖が互いにグリコシド結合した二糖若しくはそれより重合度の高い糖である、請求項1又は2に記載の方法。 The sugar portion of the flavanone glycoside is a monosaccharide selected from pentose and hexose, or a monosaccharide selected from them is a disaccharide or a sugar having a higher degree of polymerization than the glycoside-bonded one another. Item 3. The method according to Item 1 or 2 . ナリンゲニン配糖体がナリンギンである、請求項2又は3に記載の方法。 4. The method according to claim 2 , wherein the naringenin glycoside is naringin. ヘスペレチン配糖体が、ヘスペリジン及び/又はα−モノグルコシルヘスペリジンである、請求項2〜4のいずれか1項に記載の方法。 The method according to any one of claims 2 to 4 , wherein the hesperetin glycoside is hesperidin and / or α-monoglucosyl hesperidin. 酸化重合工程がラッカーゼ又はペルオキシダーゼの存在下で行われ、グリコシド結合加水分解工程がβ−グルコシダーゼの存在下で行われる、請求項1〜5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5 , wherein the oxidative polymerization step is performed in the presence of laccase or peroxidase, and the glycosidic bond hydrolysis step is performed in the presence of β-glucosidase. 使用されるβ−グルコシダーゼの、ラッカーゼ又はペルオキシダーゼに対する重量比が、1/40以上である、請求項に記載の方法。 The method according to claim 6 , wherein the weight ratio of β-glucosidase to laccase or peroxidase used is 1/40 or more. グリコシド結合加水分解工程が、10〜70℃で行われる、請求項6又は7に記載の方法。 The method according to claim 6 or 7 , wherein the glycosidic bond hydrolysis step is performed at 10 to 70 ° C. 酸化重合工程が10〜70℃で行われる、請求項6〜8のいずれか1項に記載の方法。 The method according to any one of claims 6 to 8 , wherein the oxidative polymerization step is performed at 10 to 70 ° C. 糖がグリコシド結合していない、又は部分的に糖がグリコシド結合しているフラバノン重合体であって、当該フラバノンが、ブチン、エリオジクチオール、ヘスペレチン、ホモエリオジクチオール、ナリンゲニン、ピノセムブリン、サクラネチン、イソサクラネチン及びステルビンからなる群から選択される少なくとも一種である、前記フラバノン重合体A flavanone polymer in which the sugar is not glycoside-linked or in which the sugar is partly glycoside-bonded , wherein the flavanone is butyne, eriodictyol, hesperetin, homoeriodictyol, naringenin, pinosembulin, sacranetin, isosakuranetin And the flavanone polymer, which is at least one selected from the group consisting of and sterubin . 請求項10に記載の重合体を含有する、飲食品。 A food or drink comprising the polymer according to claim 10 . アルコール飲料である、請求項11に記載の飲食品。 The food or drink according to claim 11 , which is an alcoholic beverage. 請求項10に記載の重合体を含有する、口中の油脂の洗い流し用食品組成物。 A food composition for washing away fats and oils in the mouth, comprising the polymer according to claim 10 . 以下に示す表示のいずれかを付した、請求項13に記載の食品組成物。
「油っこい食事に合う」、「食事の油を洗い流す」、「口中の油ギレがよい」、「油をさっぱりさせる」、或いはこれらと同視できる表示。
14. The food composition according to claim 13 , wherein the food composition has one of the following indications.
"Fit with oily meals", "Rinse off meal oils", "Good oil grease in mouth", "Refresh oil", or display that can be regarded as the same.
JP2016043781A 2016-03-07 2016-03-07 Flavanone polymer having an effect of washing out fats and oils Active JP6676415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016043781A JP6676415B2 (en) 2016-03-07 2016-03-07 Flavanone polymer having an effect of washing out fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043781A JP6676415B2 (en) 2016-03-07 2016-03-07 Flavanone polymer having an effect of washing out fats and oils

Publications (2)

Publication Number Publication Date
JP2017158452A JP2017158452A (en) 2017-09-14
JP6676415B2 true JP6676415B2 (en) 2020-04-08

Family

ID=59852844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043781A Active JP6676415B2 (en) 2016-03-07 2016-03-07 Flavanone polymer having an effect of washing out fats and oils

Country Status (1)

Country Link
JP (1) JP6676415B2 (en)

Also Published As

Publication number Publication date
JP2017158452A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
CN1816537B (en) Flavonoid solubilizing agent and method of solubilizing flavonoid
Ferrentino et al. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products
Terahara Flavonoids in foods: a review
KR101518080B1 (en) Carotenoid compositions containing modified gum acacia
JP5000373B2 (en) Water-soluble flavonoid composition and production method thereof, food containing water-soluble flavonoid composition, etc.
Dassoff et al. Potential development of non-synthetic food additives from orange processing by-products—a review.
Xu et al. Is there consistency between the binding affinity and inhibitory potential of natural polyphenols as α-amylase inhibitors?
AU2005320635A1 (en) Antioxidant material, anti-deterioration agent and food or beverage
Alwazeer et al. Hydrogen incorporation into solvents can improve the extraction of phenolics, flavonoids, anthocyanins, and antioxidants: A case-study using red beetroot
Miyake et al. Difference in plasma metabolite concentration after ingestion of lemon flavonoids and their aglycones in humans
JP6676415B2 (en) Flavanone polymer having an effect of washing out fats and oils
JP2008253256A (en) Polymer of polyphenols and antioxidant and lipase inhibitor each containing the same
JP4522625B2 (en) Citrus fermented product and method for producing the same
KR101546436B1 (en) The mugwort extracts and method for manufacturing thereof
CN113748169B (en) Gardenia blue pigment and preparation method thereof
JP5858686B2 (en) Process for producing sugar adducts of poorly water-soluble polyphenols
WO2022044291A1 (en) Blue pigment and method for producing same
Shin et al. Effect of commercial carbohydrases on the hesperetin and narigenin contents of citrus fruits
JP5985229B2 (en) Process for producing sugar adducts of poorly water-soluble polyphenols
JP7577751B2 (en) Blue pigment and its manufacturing method
WO2017195835A1 (en) Method for producing modified polyphenols
JP3797700B2 (en) Antioxidant and method for preventing oxidation of lipid in aqueous medium using the same
CN100381436C (en) Flavonoid compound and process for producing the same
JP5422871B2 (en) Isoflavones composition
Beres et al. Metabolites of polyphenols produced by probiotic microorganisms and their beneficial effects on human health and intestinal microbiota

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250