JP6673702B2 - Cooling tower with axial blower - Google Patents

Cooling tower with axial blower Download PDF

Info

Publication number
JP6673702B2
JP6673702B2 JP2016010278A JP2016010278A JP6673702B2 JP 6673702 B2 JP6673702 B2 JP 6673702B2 JP 2016010278 A JP2016010278 A JP 2016010278A JP 2016010278 A JP2016010278 A JP 2016010278A JP 6673702 B2 JP6673702 B2 JP 6673702B2
Authority
JP
Japan
Prior art keywords
blade
wing
cooling tower
convex portion
axial blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016010278A
Other languages
Japanese (ja)
Other versions
JP2017129093A (en
Inventor
道雄 辰巳
道雄 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2016010278A priority Critical patent/JP6673702B2/en
Priority to CN201611102962.3A priority patent/CN106996393B/en
Publication of JP2017129093A publication Critical patent/JP2017129093A/en
Application granted granted Critical
Publication of JP6673702B2 publication Critical patent/JP6673702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、軸流送風機を備えた冷却塔に関し、特に、正圧側となる翼前面を凹形状に、負圧側となる翼背面を凸形状に、それぞれ形成した複数枚の翼を、回転軸に配設して構成した軸流送風機を備えた冷却塔に関するものである。   The present invention relates to a cooling tower equipped with an axial blower, and in particular, a plurality of blades formed respectively on the rotating shaft, the front surface of the blade on the positive pressure side having a concave shape, and the back surface of the blade on the negative pressure side having a convex shape. The present invention relates to a cooling tower provided with an axial blower arranged and configured.

従来、図4に示すように、冷却塔1は、板材20を多数並列して構成した充填材2と、充填材2に上方から処理水を供給する給水槽4と、充填材2の側方から充填材2の板材20間に外気を流入させる吸引ファン6と、充填材2内で流入する空気によって冷却された処理水が流入する排水槽5とを備え、充填材2の上端に隣接する隙間、具体的には、外気の通路となる充填材2の上端と給水槽4の隙間にエアシール材3を配設するようにしている。   Conventionally, as shown in FIG. 4, a cooling tower 1 includes a filler 2 configured by arranging a number of plate members 20 in parallel, a water supply tank 4 for supplying treated water to the filler 2 from above, and a side of the filler 2. And a drainage tank 5 into which treated water cooled by air flowing in the filler 2 flows, and is adjacent to an upper end of the filler 2. The air seal material 3 is disposed in a gap, specifically, in a gap between the upper end of the filler 2 serving as a passage for outside air and the water supply tank 4.

充填材2が配置される冷却塔1の架台10は、外気の取入口となる側面(板材20に対して直交する側面)に、外気を導くとともに、充填材2へ供給される処理水の外部への飛散及び異物の侵入を防止するルーバ11が取り付けられている。   The gantry 10 of the cooling tower 1 in which the filler 2 is disposed guides the outside air to a side surface (a side surface orthogonal to the plate 20) serving as an outside air intake, and also supplies the outside of the treated water supplied to the filler 2. A louver 11 for preventing scattering into the air and entry of foreign matter is attached.

また、架台10の上部には、充填材2の上方に給水槽4が配設されるとともに、対向して配設される充填材2、2間の上方には吸引ファンとしての軸流送風機6が配設され、下部には充填材2、2に共通の排水槽5が配設されている(例えば、特許文献1参照。)。   A water supply tank 4 is disposed above the filler 2 above the gantry 10, and an axial blower 6 as a suction fan is disposed above the opposed fillers 2, 2. Is disposed, and a drainage tank 5 common to the fillers 2 and 2 is disposed below (see, for example, Patent Document 1).

特開2013−11400号公報JP 2013-11400 A

ところで、従来、冷却塔1の軸流送風機6には、図5に示すような、正圧側となる翼前面61aを略平面形状に、負圧側となる翼背面61bを凸形状に、それぞれ形成した複数枚の翼61Xを、回転軸60に配設して構成した軸流送風機が用いられていた。   By the way, conventionally, as shown in FIG. 5, a blade front surface 61a on the positive pressure side is formed in a substantially planar shape, and a blade back surface 61b on the negative pressure side is formed in a convex shape, as shown in FIG. An axial blower configured by disposing a plurality of blades 61X on the rotating shaft 60 has been used.

この冷却塔1の軸流送風機6の翼61Xの周りの空気の流れを解析した結果、負圧側となる翼背面61bにおいては、翼背面61bの凸形状の頂上位置を過ぎた空気の流れは、翼背面61bの表面から剥離し、そのまま翼背面61bの翼61Xの回転方向の後端部に流れ、後端部の位置で、渦が発生し、乱流となる。 As a result of analyzing the air flow around the blade 61X of the axial blower 6 of the cooling tower 1, on the blade back surface 61b on the negative pressure side, the air flow past the convex top of the blade back surface 61b is The wings 61X are separated from the surface of the wing rear surface 61b and flow as they are at the rear end of the wing rear surface 61b in the rotational direction of the wing 61X. At the position of the rear end, a vortex is generated, resulting in turbulence.

そして、このように、乱流が起きると、翼61Xの翼背面61bの実質的な負圧面の面積が減少するため、軸流送風機6の静圧を低下させる要因になっていた。   Then, when the turbulent flow occurs, the substantial negative pressure surface area of the blade back surface 61b of the blade 61X is reduced, which is a factor for reducing the static pressure of the axial blower 6.

本発明は、上記従来の冷却塔の軸流送風機の翼の負圧側となる翼背面における空気の流れの剥離現象に着目し、翼の翼背面の実質的な負圧面の面積の剥離による減少を低減し、静圧値を高めることができるようにした軸流送風機を備えた冷却塔を提供することを目的とする。   The present invention focuses on the separation phenomenon of the air flow on the blade back side which is the suction side of the blade of the conventional cooling tower axial flow blower, and reduces the reduction due to the separation of the substantial suction surface area of the blade back surface of the blade. It is an object of the present invention to provide a cooling tower provided with an axial blower capable of reducing the static pressure value and increasing the static pressure value.

上記目的を達成するため、本発明の軸流送風機を備えた冷却塔は、負圧側となる翼背面を凸形状に形成した複数枚の翼を、回転軸に配設して構成した軸流送風機を備えた冷却塔において、前記翼の負圧側となる翼背面の凸形状を、翼の回転方向の先端から翼の幅寸法の20〜45%の位置に第1の凸部が、65〜85%の位置に第2の凸部が形成され、第1の凸部と第2の凸部との間に凹部が形成されてなり、翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線と直交する方向の翼の厚みが、第1の凸部の位置で6〜20%に、第2の凸部の位置で2〜10%に、それぞれ形成されてなることを特徴とする。   In order to achieve the above object, a cooling tower provided with an axial blower of the present invention is an axial blower configured by arranging a plurality of blades having a convex back surface on the negative pressure side on a rotating shaft. In the cooling tower provided with the first blade, the first convex portion is formed such that the convex shape on the back surface of the blade, which is the negative pressure side of the blade, is located at a position 20 to 45% of the width of the blade from the tip in the rotational direction of the blade. %, A second convex portion is formed, a concave portion is formed between the first convex portion and the second convex portion, and an imaginary line connecting both ends of the blade in the width direction with respect to the width of the blade. The thickness of the wing in the direction orthogonal to the direction of the first convex portion is 6 to 20%, and the thickness of the wing is 2 to 10% at the position of the second convex portion.

この場合において、前記翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線と直交する方向の翼の厚みが、第1の凸部と第2の凸部との間の凹部の位置で、第1の凸部の位置の厚みより薄く、第2の凸部の位置の厚みより厚く、かつ、4〜15%に形成されてなるようにすることができる。   In this case, the thickness of the blade in a direction orthogonal to an imaginary line connecting both ends in the width direction of the blade with respect to the width dimension of the blade is the position of the concave portion between the first convex portion and the second convex portion, It can be formed to be thinner than the thickness at the position of the first protrusion, thicker than the thickness at the position of the second protrusion, and 4 to 15%.

また、前記翼が、同一の横断面形状からなるようにすることができる。   Further, the wings may have the same cross-sectional shape.

また、前記翼が、FRP製又はアルミニウム製とすることができる。   Further, the wing may be made of FRP or aluminum.

また、前記翼が、中空形状に形成されてなるようにすることができる。   Further, the wing may be formed in a hollow shape.

また、前記翼が、表面を耐摩耗性材料でコーティングされてなるようにすることができる。   Further, the wing may have a surface coated with a wear-resistant material.

本発明の軸流送風機を備えた冷却塔によれば、冷却塔に備えた軸流送風機の回転軸に配設した、負圧側となる翼背面を凸形状に形成した複数枚の翼を、当該翼の翼背面の凸形状を、翼の回転方向の先端から翼の幅寸法の20〜45%の位置に第1の凸部が、65〜85%の位置に第2の凸部が形成され、第1の凸部と第2の凸部との間に凹部が形成されてなり、翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線と直交する方向の翼の厚みが、第1の凸部の位置で6〜20%に、第2の凸部の位置で2〜10%に、それぞれ形成されてなるようにすることにより、翼背面の第1の凸形状の頂上位置を過ぎて、翼背面の表面から剥離した空気の流れを、第2の凸形状によって再付着させることによって、翼背面の翼の回転方向の後端部の位置で渦が発生せず、乱流となることを防止することができる。これにより、翼の翼背面の実質的な負圧面の面積の剥離による減少を低減し、静圧値を高めることができ、従来の翼よりもひねり角度を緩くしたり、軸流送風機の回転数を低減できるため、低消費エネルギで、低騒音の軸流送風機を備えた冷却塔を提供することができる。 According to the cooling tower provided with the axial blower of the present invention, disposed on the rotating shaft of the axial blower provided in the cooling tower, a plurality of blades having a convex back surface on the negative pressure side, the said blade, The convex shape on the back surface of the wing is formed such that a first convex portion is formed at a position of 20 to 45% of a width dimension of the wing from a tip in a rotational direction of the wing, and a second convex portion is formed at a position of 65 to 85% of the wing. A concave portion is formed between the first convex portion and the second convex portion, and the thickness of the wing in a direction orthogonal to an imaginary line connecting both ends in the width direction of the wing with respect to the width dimension of the wing is equal to the first thickness. 6 to 20% at the position of the convex portion, and 2 to 10% at the position of the second convex portion, so that the position of the top of the first convex shape on the back surface of the wing can be changed. The air flow separated from the surface of the wing rear surface is reattached by the second convex shape, so that the position of the rear end of the wing rear surface in the rotational direction is changed. Vortex does not occur, it can be prevented from becoming turbulent. As a result, it is possible to reduce the reduction of the substantial negative pressure surface area on the back surface of the blade due to peeling, increase the static pressure value, make the twist angle smaller than that of the conventional blade, and make the rotation speed of the axial blower Therefore, it is possible to provide a cooling tower provided with an axial blower with low energy consumption and low noise.

また、前記翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線と直交する方向の翼の厚みが、第1の凸部と第2の凸部との間の凹部の位置で、第1の凸部の位置の厚みより薄く、第2の凸部の位置の厚みより厚く、かつ、4〜15%に形成されてなるようにすることにより、翼の両面の空気の流れが、乱流となることを防止することができる。   Further, the thickness of the wing in a direction orthogonal to an imaginary line connecting both ends in the width direction of the wing with respect to the width dimension of the wing is the first position at the position of the concave portion between the first convex portion and the second convex portion. Is formed to be thinner than the thickness at the position of the convex portion, thicker than the thickness at the position of the second convex portion, and 4 to 15%, so that the air flow on both surfaces of the wing becomes turbulent. Can be prevented.

また、前記翼が、同一の横断面形状からなるようにすることにより、翼の製造を引抜成形法や押出成形法によって簡易に実施することができるため、低コストの軸流送風機を備えた冷却塔を提供することができる。   Further, by making the blades have the same cross-sectional shape, the blades can be easily manufactured by a pultrusion molding method or an extrusion molding method. Towers can be provided.

また、前記翼が、FRP製又はアルミニウム製とすることにより、軽量で、強度が大きな翼を、引抜成形法や押出成形法によって簡易に製造することができる。   Further, by making the wings made of FRP or aluminum, it is possible to easily manufacture a lightweight, high-strength wing by a pultrusion molding method or an extrusion molding method.

また、前記翼が、中空形状に形成されてなるようにすることにより、翼を軽量化することができるため、低消費エネルギの軸流送風機を備えた冷却塔を提供することができる。   In addition, since the blades are formed in a hollow shape, the weight of the blades can be reduced, so that it is possible to provide a cooling tower including an axial blower with low energy consumption.

また、前記翼が、表面を耐摩耗性材料でコーティングされてなるようにすることにより、耐久性のある軸流送風機を備えた冷却塔を提供することができる。   Further, by providing a surface of the blade with a wear-resistant material, a cooling tower having a durable axial blower can be provided.

本発明の軸流送風機を備えた冷却塔に用いる軸流送風機の一実施例を示す斜視図である。It is a perspective view showing one example of an axial fan used for a cooling tower provided with an axial fan of the present invention. 同軸流送風機の翼の横断面図である。It is a cross-sectional view of the blade of the coaxial blower. 同軸流送風機の翼の周りの空気の流れを示す模式図である。It is a schematic diagram which shows the flow of the air around the blade | wing of a coaxial flow blower. 軸流送風機を備えた冷却塔の説明図である。It is explanatory drawing of the cooling tower provided with the axial blower. 従来の軸流送風機の翼の周りの空気の流れを示す模式図である。It is a schematic diagram which shows the flow of the air around the blade | wing of the conventional axial flow fan.

以下、本発明の軸流送風機を備えた冷却塔の実施の形態を、図面に基づいて説明する。   Hereinafter, an embodiment of a cooling tower provided with an axial blower of the present invention will be described with reference to the drawings.

図1〜図3に、本発明の軸流送風機を備えた冷却塔の一実施例を示す。   1 to 3 show an embodiment of a cooling tower provided with the axial blower of the present invention.

この冷却塔1は、図4に示す従来の冷却塔1と同様、架台10の上部、より具体的には、対向して配設される充填材2、2間の上方に、吸引ファンとしての軸流送風機6を配設するようにしている。   This cooling tower 1 is, like the conventional cooling tower 1 shown in FIG. 4, an upper part of the gantry 10, more specifically, above the space between the packing materials 2, 2 disposed opposite to each other, as a suction fan. An axial blower 6 is provided.

この軸流送風機6は、複数枚(本実施例においては、4枚。)の翼61を、ボス部材60aを介して、電動機によって回転駆動される回転軸60に配設して構成されている。   The axial flow blower 6 is configured by arranging a plurality of (four in the present embodiment) blades 61 on a rotating shaft 60 that is rotated by an electric motor via a boss member 60a. .

翼61は、翼61の中心側の端面から内部に、ボス部材60aから放射状に伸びる軸部材(図示省略)を挿入するようにし、この軸部材にねじ部材60bを用いて固定するようにしている。   The wing 61 is configured such that a shaft member (not shown) extending radially from the boss member 60a is inserted into the inside of the wing 61 from an end face on the center side, and the wing 61 is fixed to the shaft member using a screw member 60b. .

また、翼61は、翼61の外周側の端面に、翼61の端面形状よりも若干大きく形成した端面板62を配設するようにしている。
この端面板62を配設することによって、翼61の外周側に空気が逃げることを防止し、軸流送風機6の効率を高めることができる。
Further, the wing 61 has an end face plate 62 slightly larger than the end face shape of the wing 61 provided on the outer end face of the wing 61.
By disposing the end face plate 62, it is possible to prevent air from escaping to the outer peripheral side of the blade 61, and to increase the efficiency of the axial blower 6.

ところで、本実施例において、翼61は、その断面形状を、図2に示すように、正圧側となる翼前面61aを凸形状と凹形状とを組み合わせた形状に、負圧側となる翼背面61bを凸形状に、それぞれ形成するようにしている。   In the present embodiment, the blade 61 has a cross-sectional shape, as shown in FIG. 2, in which a blade front surface 61a on the positive pressure side is combined with a convex shape and a concave shape, and a blade rear surface 61b on the negative pressure side. Are formed in a convex shape, respectively.

より具体的には、翼61の負圧側となる翼背面61bの凸形状を、翼61の回転方向の先端から翼61の幅寸法Wの20〜45%、より好ましくは、25〜35%(本実施例においては、約30%)(L1/W)の位置(頂点の位置をいう。本明細書において同じ。)に第1の凸部が、65〜85%、より好ましくは、70〜80%(本実施例においては、約75%)(L3/W)の位置(頂点の位置をいう。本明細書において同じ。)に第2の凸部が、それぞれ形成され、第1の凸部と第2の凸部との間の45〜65%、より好ましくは、50〜60%(本実施例においては、約55%)(L2/W)の位置(谷の位置をいう。本明細書において同じ。)に凹部が形成されてなり、翼61の幅寸法Wに対する翼61の幅方向の両端を結ぶ仮想線Lと直交する方向の翼61の厚みが、第1の凸部の位置で6〜20%、より好ましくは、10〜15%(本実施例においては、約14%)(T1/W)に、第2の凸部の位置で2〜10%、より好ましくは、4〜8%(本実施例においては、約7%)(T3/W)に、凹部の位置で4〜15%、より好ましくは、6〜10%(本実施例においては、約8%)(T2/W)に、それぞれ形成するようにしている。   More specifically, the convex shape of the blade back surface 61b, which is the negative pressure side of the blade 61, is set to 20 to 45%, more preferably 25 to 35% of the width dimension W of the blade 61 from the tip in the rotation direction of the blade 61 ( In this embodiment, the first convex portion is located at a position (approximately 30%) (L1 / W) (the position of the apex; the same in the present specification). 80% (about 75% in this embodiment) (L3 / W) position (the position of the vertex; the same in the present specification), the second convex portions are formed, and the first convex portion is formed. 45 to 65%, more preferably 50 to 60% (about 55% in this embodiment) (L2 / W) between the portion and the second convex portion (refers to the position of the valley. The same applies in the specification.), A temporary portion connecting both ends in the width direction of the wing 61 with respect to the width dimension W of the wing 61. The thickness of the wing 61 in the direction perpendicular to the line L is 6 to 20% at the position of the first convex portion, more preferably 10 to 15% (about 14% in the present embodiment) (T1 / W). 2 to 10% at the position of the second convex portion, more preferably 4 to 8% (in this embodiment, about 7%) (T3 / W), 4 to 15% at the position of the concave portion, More preferably, they are formed at 6 to 10% (about 8% in this embodiment) (T2 / W), respectively.

この場合、翼61の幅寸法Wに対する翼61の幅方向の両端を結ぶ仮想線Lと直交する方向の翼61の厚みが、第1の凸部と第2の凸部との間の凹部の位置で、第1の凸部の位置の厚みより薄く(T1/W>T2/W)、第2の凸部の位置の厚みより厚く(T2/W>T3/W)なるようにしている。   In this case, the thickness of the wing 61 in the direction orthogonal to the imaginary line L connecting both ends of the wing 61 in the width direction with respect to the width dimension W of the wing 61 is such that the thickness of the concave portion between the first convex portion and the second convex portion. At the position, the thickness is smaller than the thickness of the first convex portion (T1 / W> T2 / W), and larger than the thickness of the second convex portion (T2 / W> T3 / W).

また、翼61の幅寸法Wに対する翼61の幅方向の両端を結ぶ仮想線Lと直交する方向の仮想線Lから翼61の翼前面61aまでの距離が、第1の凸部の位置で2〜10%(本実施例においては、約5%)(Da1/W)に、第2の凸部の位置で−2〜0%(本実施例においては、約−1%)(Da3/W)に、凹部の位置で0〜5%(本実施例においては、約2%)(Da2/W)に、翼背面61bまでの距離が、第1の凸部の位置で5〜20%(本実施例においては、約10%)(Db1/W)に、第2の凸部の位置で3〜12%(本実施例においては、約7%)(Db3/W)に、凹部の位置で4〜15%(本実施例においては、約6%)(Db2/W)に、それぞれ形成するようにしている。   The distance from the virtual line L in the direction orthogonal to the virtual line L connecting both ends of the blade 61 in the width direction with respect to the width dimension W of the blade 61 to the blade front surface 61a of the blade 61 is 2 at the position of the first protrusion. -10 to 10% (about 5% in this embodiment) (Da1 / W), -2 to 0% (about -1% in this embodiment) at the position of the second convex portion (Da3 / W). ), The distance to the blade back surface 61b is 0 to 5% (approximately 2% in this embodiment) (Da2 / W) at the position of the concave portion, and 5 to 20% (Da2 / W) at the position of the first convex portion. In this embodiment, about 10%) (Db1 / W), at the position of the second convex part 3-12% (about 7% in this example) (Db3 / W), at the position of the concave part At 4 to 15% (about 6% in this embodiment) (Db2 / W).

この冷却塔1の軸流送風機6の翼61の周りの空気の流れを解析した結果を、図3に示す。
図3から明らかなように、翼61の翼背面61bの第1の凸形状の頂上位置を過ぎて、翼背面61bの表面から剥離した空気の流れが、第2の凸形状によって再付着することによって、図5に示す従来の翼61Xのように、翼背面61bの翼61の回転方向の後端部の位置で渦が発生せず、乱流となることを防止できるものとなる。
これにより、翼61の翼背面61bの実質的な負圧面の面積の剥離による減少を低減し、静圧値を高めることができ、従来の翼61Xよりもひねり角度を緩くしたり、軸流送風機6の回転数を低減できるため、低消費エネルギで、低騒音化を実現できるものとなる。
FIG. 3 shows the result of analyzing the flow of air around the blades 61 of the axial blower 6 of the cooling tower 1.
As apparent from FIG. 3, past the position of the top of the first convex of the blade suction surface 61b of the blade 61, the flow of air that has peeled off from the surface of the blade suction surface 61b is reattached by a second convex Thus, unlike the conventional blade 61X shown in FIG. 5, a vortex does not occur at the rear end of the blade 61 on the blade rear surface 61b in the rotational direction, and turbulence can be prevented.
Thereby, the reduction of the substantial negative pressure surface area of the blade back surface 61b of the blade 61 due to separation can be reduced, the static pressure value can be increased, the twist angle can be made smaller than that of the conventional blade 61X, and the axial blower can be used. 6, the number of rotations can be reduced, so that low energy consumption and low noise can be realized.

また、翼61の幅寸法Wに対する翼61の幅方向の両端を結ぶ仮想線Lと直交する方向の翼61の厚みが、第1の凸部と第2の凸部との間の凹部の位置で、第1の凸部の位置の厚みより薄く(T1/W>T2/W)、第2の凸部の位置の厚みより厚く(T2/W>T3/W)、かつ、4〜15%(T2/W)に形成することにより、翼61の両面の空気の流れが、乱流となることを防止することができる。   Further, the thickness of the wing 61 in a direction orthogonal to the imaginary line L connecting both ends of the wing 61 in the width direction with respect to the width dimension W of the wing 61 is determined by the position of the concave portion between the first convex portion and the second convex portion. In this case, the thickness at the position of the first convex portion is thinner (T1 / W> T2 / W), the thickness at the position of the second convex portion is thicker (T2 / W> T3 / W), and 4 to 15% By forming (T2 / W), it is possible to prevent the air flow on both surfaces of the blade 61 from becoming turbulent.

翼61は、同一の横断面形状からなるように製造することができる。
これにより、翼61の製造を引抜成形法(FRP製)や押出成形法(アルミニウム製(アルミニウム合金製を含む。本明細書において同じ。))によって簡易に実施することができるため、軸流送風機6の低コスト化を実現できるものとなる。
The wings 61 can be manufactured to have the same cross-sectional shape.
Accordingly, the blade 61 can be easily manufactured by a pultrusion molding method (FRP) or an extrusion molding method (aluminum (including aluminum alloys; the same applies in the present specification)). 6 can be realized at low cost.

引抜成形法(FRP製)は、グラスファイバーロービング等を主体とした補強繊維基材を樹脂槽(液体状の不飽和ポリエステル、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を貯留した槽)に通すことで含浸工程を行い、次に余分な樹脂をスクイズ、脱泡した後に、金型へ導入し、金型の中で加熱することで熱硬化性樹脂を硬化させ、引抜装置で引き抜くことで所定の形状に形成された成形品を得る方法である。
成形品は、連続してエンドレスに成形されて引き抜かれるため、成形品を適宜の長さに切断することで製品を製造することができる。
In the pultrusion molding method (made of FRP), a reinforcing fiber base mainly composed of glass fiber roving or the like is passed through a resin tank (a tank storing a thermosetting resin such as a liquid unsaturated polyester, epoxy resin, or phenol resin). After performing the impregnation step, then squeeze and defoam the excess resin, introduce it into the mold, heat it in the mold to cure the thermosetting resin, and pull it out with a drawing device to remove it. This is a method for obtaining a molded article formed in the shape of.
Since the molded article is continuously formed endlessly and pulled out, a product can be manufactured by cutting the molded article to an appropriate length.

なお、FRP製の翼61は、引抜成形法以外の方法、例えば、ハンドレイアップ法(少量他品種生産の場合)、スプレーアップ法等を用いて製造することもできる。   The FRP blades 61 can be manufactured by a method other than the pultrusion molding method, for example, a hand lay-up method (in the case of small-quantity production of other products), a spray-up method, or the like.

押出成形法(アルミニウム製)は、アルミニウム基材を、金型 (ダイス)に圧力をかけてダイス孔を通過、押し出すことで所定の形状に形成された成形品を得る方法である。
成形品は、連続してエンドレスに成形されて押し出されるため、成形品を適宜の長さに切断することで製品を製造することができる。
The extrusion molding method (made of aluminum) is a method of obtaining a molded article formed into a predetermined shape by applying pressure to a die (die) and passing through and extruding a die hole.
Since the molded product is continuously extruded and formed endlessly, the product can be manufactured by cutting the molded product to an appropriate length.

なお、アルミニウム製の翼61は、押出成形法以外の方法、例えば、金型鋳造法等を用いて製造することもできる。   The aluminum wings 61 can be manufactured by a method other than the extrusion molding method, for example, by using a die casting method.

また、翼61を、FRP製又はアルミニウム製とすることにより、軽量で、強度が大きな翼を得ることができる。   Further, by making the wing 61 made of FRP or aluminum, it is possible to obtain a wing that is lightweight and has high strength.

また、翼61は、翼61を引抜成形法(FRP製)や押出成形法(アルミニウム製(アルミニウム合金製を含む。))等によって製造することによって、内部を中空形状に形成することができる。この場合、補強目的のほか、ボス部材60aから放射状に伸びる軸部材や端面板62を支持したり、固定するために、必要に応じて、リブや肉厚部を形成することができる。
これにより、翼61を軽量化することができるため、軸流送風機6の低消費エネルギ化を実現できるものとなる。
The inside of the blade 61 can be formed in a hollow shape by manufacturing the blade 61 by a pultrusion molding method (made of FRP) or an extrusion molding method (made of aluminum (including an aluminum alloy)). In this case, in addition to the purpose of reinforcement, ribs and thick portions can be formed as necessary to support and fix the shaft member and the end plate 62 extending radially from the boss member 60a.
Thus, the weight of the blades 61 can be reduced, so that low energy consumption of the axial blower 6 can be realized.

また、翼61は、表面を耐摩耗性材料でコーティングすることができる。
コーティングする耐摩耗性材料には、FRP製の翼61の場合は、例えば、ホワイトアランダム(WA(Al))、グリーンカーボランダム(GC(SiC))を含有したゲルコート材料を好適に用いることができる。
これにより、耐摩耗性(耐腐食性)を向上することができ、耐久性を向上することができる。
The surface of the wing 61 can be coated with a wear-resistant material.
As the wear-resistant material to be coated, in the case of the FRP blade 61, for example, a gel coat material containing white alundum (WA (Al 2 O 3 )) and green carborundum (GC (SiC)) is preferably used. Can be used.
Thereby, wear resistance (corrosion resistance) can be improved, and durability can be improved.

以上、本発明の軸流送風機を備えた冷却塔について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As described above, the cooling tower provided with the axial blower of the present invention has been described based on the embodiment, but the present invention is not limited to the configuration described in the above embodiment, but within a scope that does not depart from the gist thereof. The configuration can be appropriately changed.

本発明の軸流送風機を備えた冷却塔は、翼の翼背面の実質的な負圧面の面積の剥離による減少を低減し、静圧値を高めることができるという特性を有していることから、軸流送風機を備えた冷却塔の用途に好適に用いることができる。   The cooling tower provided with the axial blower of the present invention has a characteristic that the reduction of the substantial suction surface area on the back surface of the blade due to separation can be reduced and the static pressure value can be increased. It can be suitably used for a cooling tower provided with an axial blower.

1 冷却塔
2 充填材
20 板材
3 エアシール材
4 給水槽
5 排水槽
6 軸流送風機(吸引ファン)
60 回転軸
60a ボス部材
61 翼
61a 翼前面
61b 翼背面
62 端面板
DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Filling material 20 Plate material 3 Air seal material 4 Water supply tank 5 Drainage tank 6 Axial blower (suction fan)
Reference Signs List 60 rotation axis 60a boss member 61 blade 61a blade front 61b blade back 62 end plate

Claims (7)

負圧側となる翼背面を凸形状に形成した複数枚の翼を、回転軸に配設して構成した軸流送風機を備えた冷却塔において、前記翼の負圧側となる翼背面の凸形状を、翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線を基準として、翼の回転方向の先端から翼の幅寸法の20〜45%の位置に第1の凸部が、65〜85%の位置に第2の凸部が形成され、第1の凸部と第2の凸部との間に凹部が形成されてなり、翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線と直交する方向の翼の厚みが、第1の凸部の位置で6〜20%に、第2の凸部の位置で2〜10%に、それぞれ形成されてなることを特徴とする軸流送風機を備えた冷却塔。 In a cooling tower provided with an axial blower configured by arranging a plurality of blades on the suction side on the back side of the blade in a convex shape, the convex shape of the blade back side on the suction side of the blade is provided. The first convex portion is 65 to 85% at a position 20 to 45% of the width of the wing from the tip in the rotation direction of the wing with reference to an imaginary line connecting both ends of the wing in the width direction with respect to the width of the wing. And a concave portion is formed between the first convex portion and the second convex portion, and an imaginary line connecting both ends of the blade in the width direction with respect to the width of the blade. An axial flow blower, wherein the thickness of the blades in the direction orthogonal to each other is formed to be 6 to 20% at the position of the first protrusion and 2 to 10% at the position of the second protrusion. With cooling tower. 前記翼の幅寸法に対する翼の幅方向の両端を結ぶ仮想線と直交する方向の翼の厚みが、第1の凸部と第2の凸部との間の凹部の位置で、第1の凸部の位置の厚みより薄く、第2の凸部の位置の厚みより厚く、かつ、4〜15%に形成されてなることを特徴とする請求項1に記載の軸流送風機を備えた冷却塔。   The thickness of the wing in a direction orthogonal to an imaginary line connecting both ends in the width direction of the wing with respect to the width dimension of the wing is the first protrusion at the position of the recess between the first protrusion and the second protrusion. The cooling tower provided with an axial blower according to claim 1, wherein the cooling tower is formed to be thinner than the thickness at the position of the portion, thicker than the thickness at the position of the second convex portion, and 4 to 15%. . 前記翼が、同一の横断面形状からなることを特徴とする請求項1又は2に記載の軸流送風機を備えた冷却塔。   The cooling tower provided with an axial blower according to claim 1 or 2, wherein the blades have the same cross-sectional shape. 前記翼が、FRP製であることを特徴とする請求項1、2又は3に記載の軸流送風機を備えた冷却塔。   4. The cooling tower according to claim 1, wherein the blade is made of FRP. 前記翼が、アルミニウム製であることを特徴とする請求項1、2又は3に記載の軸流送風機を備えた冷却塔。   4. The cooling tower according to claim 1, wherein the blade is made of aluminum. 前記翼が、中空形状に形成されてなることを特徴とする請求項1、2、3、4又は5に記載の軸流送風機を備えた冷却塔。   The cooling tower according to claim 1, 2, 3, 4, or 5, wherein the blade is formed in a hollow shape. 前記翼が、表面を耐摩耗性材料でコーティングされてなることを特徴とする請求項1、2、3、4、5又は6に記載の軸流送風機を備えた冷却塔。   The cooling tower according to claim 1, 2, 3, 4, 5, or 6, wherein the blade has a surface coated with a wear-resistant material.
JP2016010278A 2016-01-22 2016-01-22 Cooling tower with axial blower Expired - Fee Related JP6673702B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016010278A JP6673702B2 (en) 2016-01-22 2016-01-22 Cooling tower with axial blower
CN201611102962.3A CN106996393B (en) 2016-01-22 2016-12-05 The cooling tower for having axial fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010278A JP6673702B2 (en) 2016-01-22 2016-01-22 Cooling tower with axial blower

Publications (2)

Publication Number Publication Date
JP2017129093A JP2017129093A (en) 2017-07-27
JP6673702B2 true JP6673702B2 (en) 2020-03-25

Family

ID=59396547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010278A Expired - Fee Related JP6673702B2 (en) 2016-01-22 2016-01-22 Cooling tower with axial blower

Country Status (2)

Country Link
JP (1) JP6673702B2 (en)
CN (1) CN106996393B (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2059192U (en) * 1989-12-09 1990-07-11 上海交通大学 Low noise axial-flow blower
JP4501575B2 (en) * 2004-07-26 2010-07-14 三菱電機株式会社 Axial blower
CN2876367Y (en) * 2005-11-09 2007-03-07 申振华 Large deflection wind force machine wing shape
AU2008363120B2 (en) * 2008-10-22 2012-08-16 Sharp Kabushiki Kaisha Propeller fan, fluid feeder and mold
CN201666277U (en) * 2009-12-18 2010-12-08 依必安派特风机(上海)有限公司 Impeller for axial flow fan and axial flow fan
CN201753690U (en) * 2010-03-19 2011-03-02 海尔集团公司 Axial flow fan and air conditioning outdoor unit provided with same
JP5602237B2 (en) * 2010-09-21 2014-10-08 三菱電機株式会社 Axial blower
JP5633905B2 (en) * 2011-06-29 2014-12-03 日本スピンドル製造株式会社 cooling tower
CN102748327A (en) * 2012-07-31 2012-10-24 洛瓦空气工程(上海)有限公司 Axial-flow blower impeller device with sickle-shaped forward-bending blade
CN202707612U (en) * 2012-07-31 2013-01-30 珠海格力电器股份有限公司 Axial flow fan blade
CN203962474U (en) * 2014-06-05 2014-11-26 陈保黎 Axial-flow blower
CN204628094U (en) * 2015-01-05 2015-09-09 美的集团武汉制冷设备有限公司 Axial-flow blower

Also Published As

Publication number Publication date
JP2017129093A (en) 2017-07-27
CN106996393A (en) 2017-08-01
CN106996393B (en) 2019-05-10

Similar Documents

Publication Publication Date Title
US6378322B1 (en) High-performance molded fan
US20120003098A1 (en) Flared tip fan blade and method of manufacturing same
RU2698227C2 (en) Impeller for diagonal or radial fans (embodiments thereof), die casting mold for making such impeller, as well as device with at least one such impeller
JP4798640B2 (en) Propeller fan, molding die and fluid feeder
JP4388992B1 (en) Propeller fan, fluid feeder and mold
EP2383473B1 (en) Propeller fan
US8210738B2 (en) Horizontal agitator and method for producing a flow in a clearing basin using the horizontal agitator
US6692231B1 (en) Molded fan having repositionable blades
EP2549114A1 (en) Cross-flow fan and air conditioner
US11885348B2 (en) Axial fan with trailing edge flap
JP6673702B2 (en) Cooling tower with axial blower
JP4388993B1 (en) Propeller fan, fluid feeder and mold
US10018201B2 (en) Fan and mould for making the same
JP2003065293A (en) Impeller for axial fan
CN216975330U (en) Super large ceiling fan blade with nested structure and adopting plastic extrusion molding process
CN213540838U (en) Axial flow fan impeller with balance groove
CN205298019U (en) Plastics axial compressor impeller
WO2023137732A1 (en) Ultra-large ceiling fan blade having nested structure and using plastic extrusion molding process
JP2017115768A (en) Blade for blower, and blower
TW202007868A (en) Heat dissipation fan
JP6084368B2 (en) Propeller fan, fluid feeder including the same, electric fan, and mold for forming propeller fan
CN106351873A (en) Fan blade
CN2530293Y (en) Combined radiating fan
AU2011202590B2 (en) Propeller fan, fluid feeder and molding die
CN110873073A (en) Heat radiation fan

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees