JP6673051B2 - Desulfurization method of molten steel - Google Patents

Desulfurization method of molten steel Download PDF

Info

Publication number
JP6673051B2
JP6673051B2 JP2016126591A JP2016126591A JP6673051B2 JP 6673051 B2 JP6673051 B2 JP 6673051B2 JP 2016126591 A JP2016126591 A JP 2016126591A JP 2016126591 A JP2016126591 A JP 2016126591A JP 6673051 B2 JP6673051 B2 JP 6673051B2
Authority
JP
Japan
Prior art keywords
molten steel
flux
cao
desulfurization
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016126591A
Other languages
Japanese (ja)
Other versions
JP2018003042A (en
Inventor
中村 亮太
亮太 中村
浩至 菅野
浩至 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016126591A priority Critical patent/JP6673051B2/en
Publication of JP2018003042A publication Critical patent/JP2018003042A/en
Application granted granted Critical
Publication of JP6673051B2 publication Critical patent/JP6673051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、取鍋中の溶鋼の上層にフラックスに通電し、溶鋼の脱硫処理を行う溶鋼の脱硫方法に関する。   The present invention relates to a method for desulfurizing molten steel in which a flux is supplied to the upper layer of molten steel in a ladle to desulfurize the molten steel.

転炉(一次精錬)で吹酸脱炭して溶製した溶鋼は、用途に応じて二次精錬される。二次精錬においては、製品成分に応じて、成分添加処理、更なる脱炭処理、不純物となる硫黄(以下、「S」とも記載する。)を除去する脱硫処理等が行われる。溶鋼の脱硫処理は、例えば、取鍋中の溶鋼の上層に脱硫フラックス(以下、単に「フラックス」とする。)を配置し、当該フラックスに通電電極を浸漬させて通電しながら溶鋼を撹拌することで行われる。これにより、溶鋼の脱硫を進行させることができる。製品(用途)によっては、Sの含有量を目標値以下に低減する必要があるため脱硫処理は重要であり、脱硫処理の効率化が求められている。なお、Sの含有量の目標値は、例えば15ppm以上100ppm以下の範囲内で設定される。   Molten steel melted by blowing acid decarburization in a converter (primary refining) is subjected to secondary refining according to the application. In the secondary refining, a component addition treatment, a further decarburization treatment, a desulfurization treatment for removing sulfur (hereinafter, also referred to as “S”) as an impurity, etc. are performed according to the product components. In the desulfurization treatment of molten steel, for example, a desulfurization flux (hereinafter, simply referred to as “flux”) is arranged on the upper layer of molten steel in a ladle, and a current-carrying electrode is immersed in the flux to stir the molten steel while energizing. Done in Thereby, desulfurization of molten steel can be advanced. Depending on the product (application), it is necessary to reduce the S content below the target value, so desulfurization is important, and there is a need for more efficient desulfurization. The target value of the S content is set, for example, within a range of 15 ppm or more and 100 ppm or less.

例えば特許文献1には、通電加熱型精錬取鍋において、溶鋼に適正な混合撹拌を付与して脱硫時間を短縮することを課題とし、撹拌ガス吹込み用プラグの取鍋底部の位置や電極との相対位置を規定する技術が開示されている。また、特許文献2には、溶鋼表面層の乱れを最小限に抑制しながら溶鋼の混合撹拌力を強化して脱硫時間を短縮することを課題とし、取鍋形状(鋼浴高さと内径の関係)を特定する技術が開示されている。   For example, Patent Literature 1 discloses an electric heating type refining ladle that aims to shorten the desulfurization time by imparting appropriate mixing and stirring to molten steel, and to set the position of the ladle bottom of the stirring gas injection plug and the electrode and the like. A technique for defining the relative positions of the two has been disclosed. In addition, Patent Literature 2 has an object to shorten the desulfurization time by strengthening the mixing and stirring power of molten steel while minimizing turbulence of the molten steel surface layer, and to improve the ladle shape (relation between steel bath height and inner diameter). ) Is disclosed.

特開2001−040411号公報JP-A-2001-040411 特開2008−173675号公報JP 2008-173675 A

しかし、上記特許文献1、2に記載の方法では、脱硫時間の短縮は可能であるが、フラックスの使用量に応じて脱硫効果が低くなる場合があり、溶鋼に添加したフラックスが十分に活用されない場合があった。   However, in the methods described in Patent Documents 1 and 2, although the desulfurization time can be reduced, the desulfurization effect may be reduced depending on the amount of the flux used, and the flux added to the molten steel is not sufficiently utilized. There was a case.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、脱硫時間を長くすることなく、添加したフラックスを効率的に活用することが可能な、新規かつ改良された溶鋼の脱硫方法を提供することにある。   Therefore, the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a novel and novel method that can efficiently utilize the added flux without extending the desulfurization time. An object of the present invention is to provide an improved method for desulfurizing molten steel.

上記課題を解決するために、本発明のある観点によれば、取鍋内の溶鋼の上部にCaOを含むフラックスを配置して、電極をフラックスに浸漬させて通電することにより溶鋼の脱硫処理を行う(但し、溶鋼に筒状浸漬管を浸漬して減圧する場合を除く)、取鍋精錬による溶鋼の脱硫方法であって、取鍋内の溶鋼の上部に配置されるフラックスの厚さを100mm以上200mm以下(但し、200mm以上を除く)とし、フラックスに含まれるCaOの含有量(質量%)とAlの含有量(質量%)との比であるCaO(質量%)/Al(質量%)を1.5以上2.5以下とし、脱硫処理時に添加されるCaO量(kg)を、脱硫処理対象の溶鋼単位量(t)当たりの値で5(kg/t)以上15(kg/t)以下とし、脱硫処理時に溶鋼を攪拌する攪拌ガスの撹拌動力密度は、30W/t以上80W/t以下とする、溶鋼の脱硫方法が提供される。
In order to solve the above-described problems, according to an aspect of the present invention, a desulfurization treatment of molten steel is performed by arranging a flux containing CaO on top of molten steel in a ladle, immersing an electrode in the flux and energizing the flux. (Except for the case where the pressure is reduced by immersing the cylindrical immersion pipe in the molten steel ) , the desulfurization method of the molten steel by ladle refining, wherein the thickness of the flux disposed on the molten steel in the ladle is 100 mm. 200 mm or less (excluding 200 mm or more), and CaO (mass%) / Al 2 which is the ratio of the content (mass%) of CaO contained in the flux to the content (mass%) of Al 2 O 3. O 3 (mass%) is set to 1.5 or more and 2.5 or less, and the CaO amount (kg) added at the time of desulfurization treatment is 5 (kg / t) as a value per unit amount (t) of molten steel to be desulfurized. above 15 and (kg / t) or less, de Stirring power density of the stirring gas for stirring the molten steel during processing is less 30 W / t or 80W / t, the desulfurization method of the molten steel is provided.

以上説明したように本発明によれば、脱硫時間を長くすることなく、添加したフラックスを効率的に活用することが可能となる。   As described above, according to the present invention, it is possible to efficiently utilize the added flux without lengthening the desulfurization time.

通電加熱型の溶鋼脱硫処理において添加されるCaO量と脱硫結果との一関係を表すグラフである。It is a graph showing one relationship between the amount of CaO added in the electric heating type molten steel desulfurization treatment and the desulfurization result. 通電加熱型の溶鋼脱硫処理を行う精錬設備の概要を示す説明図である。It is explanatory drawing which shows the outline of the smelting equipment which performs an electric heating type molten steel desulfurization process. 電極とガス吹き込みプラグとの配置を説明するための、取鍋を平面視した部分平面図である。FIG. 3 is a partial plan view of a ladle for explaining an arrangement of electrodes and gas blowing plugs in plan view.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

<1.概要>
まず、図1を参照して、本発明の一実施形態に係る溶鋼の脱硫方法の概要について説明する。なお、図1は、通電加熱型の溶鋼脱硫処理において添加されるCaO量と脱硫結果との一関係を表すグラフである。図1では、溶鋼上に配置するフラックスの厚さが90mm、150mmの2つの場合について、それぞれ添加するフラックスに含まれるCaO量を変化させ、脱硫処理開始から所定の処理時間経過後の溶鋼のSの含有量を調べた。本調査では、溶鋼のSの初期含有量は100ppmとし、脱硫処理開始から35分経過後の溶鋼のSの含有量を調べた。脱硫処理中の溶鋼の攪拌動力密度は60W/tとした。
<1. Overview>
First, an outline of a method for desulfurizing molten steel according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a graph showing one relationship between the amount of CaO added in the electric heating type molten steel desulfurization treatment and the desulfurization result. In FIG. 1, for two cases where the thickness of the flux disposed on the molten steel is 90 mm and 150 mm, the amount of CaO contained in the added flux is changed, and the S Was determined. In this study, the initial content of S in molten steel was 100 ppm, and the content of S in molten steel was examined 35 minutes after the start of desulfurization treatment. The stirring power density of the molten steel during the desulfurization treatment was 60 W / t.

CaOを用いた脱硫処理は、CaOとSとの反応によって行われるため、溶鋼に添加するCaO量は重要である。理論上は、図1に示すように、添加するCaOの原単位が大きくなる程、所定時間経過後に溶鋼から除かれるSの量は増加する。しかし、実際には、図1に示すように理論値とは異なる傾向を示すことが分かった。すなわち、添加CaO原単位が増加するとある程度までは溶鋼中のSの量は減少するが、ある値を超えてさらに添加CaO原単位を増加させると、溶鋼中のSの量は反って低減されない。また、例えばフラックスの厚さが90mmの場合の実績値のように、理論値と一致する区間が少なく、理論値から大きく外れることもある。   Since the desulfurization treatment using CaO is performed by the reaction between CaO and S, the amount of CaO added to the molten steel is important. Theoretically, as shown in FIG. 1, the larger the basic unit of CaO added, the larger the amount of S removed from the molten steel after a predetermined time has elapsed. However, in practice, it was found that as shown in FIG. 1, the tendency was different from the theoretical value. That is, although the amount of S in the molten steel decreases to a certain degree when the added CaO unit increases, the amount of S in the molten steel is not reduced when the added CaO unit increases beyond a certain value. Further, for example, as in the case of the actual value in the case where the thickness of the flux is 90 mm, there are few sections that match the theoretical value, and the interval may deviate greatly from the theoretical value.

そこで、本願発明者はフラックス層におけるフラックスの対流に着目し、フラックス層全体に対流を起こさせることで脱硫を促進し、脱硫処理における添加CaO原単位を向上させる溶鋼の脱硫方法を想到した。かかる方法により、例えば図1のフラックスの厚さが150mmの場合のように、脱硫処理後の溶鋼中のSの量が減少傾向にある区間において理論値に略一致するようになり、脱硫処理における添加CaO原単位が向上する。以下、本実施形態に係る溶鋼の脱硫方法について、詳細に説明していく。   Therefore, the inventors of the present application focused on the convection of the flux in the flux layer, and conceived of a desulfurization method for molten steel in which convection is generated in the entire flux layer to promote desulfurization and to increase the CaO basic unit added in the desulfurization treatment. According to such a method, for example, as in the case where the thickness of the flux in FIG. 1 is 150 mm, the amount of S in the molten steel after the desulfurization treatment substantially coincides with the theoretical value in a section in which the amount of S tends to decrease. The added unit of CaO is improved. Hereinafter, the method for desulfurizing molten steel according to the present embodiment will be described in detail.

<2.溶鋼の脱硫方法>
[2−1.精錬設備]
まず、図2に基づいて、本実施形態に係る溶鋼の脱硫方法を適用する精錬設備の概要を説明する。なお、図2は、通電加熱型の溶鋼脱硫処理を行う精錬設備の概要を示す説明図である。
<2. Desulfurization of molten steel>
[2-1. Refining equipment]
First, an outline of a refining facility to which the method for desulfurizing molten steel according to the present embodiment is applied will be described with reference to FIG. FIG. 2 is an explanatory view showing an outline of a smelting facility for performing an electric heating type molten steel desulfurization treatment.

本実施形態に係る溶鋼の脱硫方法は、通電加熱型の溶鋼脱硫処理を行う精錬設備にて実施される。かかる精錬設備は、図2に示すように、溶鋼5を収容する取鍋10と、溶鋼5の上部に配置されたフラックス7に浸漬された状態で通電する電極20と、取鍋10内の溶鋼5に対して当該溶鋼5を攪拌するための攪拌ガス3を吹き込むガス吹き込みプラグ30とを備える。電極20は、例えば3本の棒状の通電用加熱電極21、23、25からなり、取鍋10の上蓋12を貫通して設けられている。ガス吹き込みプラグ30は、取鍋10の底部に設けられている。   The method for desulfurizing molten steel according to the present embodiment is performed in a refining facility that performs a molten steel desulfurization treatment of an electric heating type. As shown in FIG. 2, the refining equipment includes a ladle 10 for accommodating molten steel 5, an electrode 20 that is energized while being immersed in a flux 7 disposed on the molten steel 5, and a molten steel in the ladle 10. 5 is provided with a gas blowing plug 30 for blowing a stirring gas 3 for stirring the molten steel 5. The electrode 20 includes, for example, three rod-shaped heating electrodes 21, 23, and 25 for energization, and is provided to penetrate the upper lid 12 of the ladle 10. The gas blowing plug 30 is provided at the bottom of the ladle 10.

取鍋10に収容された溶鋼5の上部に、フラックス7が配置されると、取鍋10の開口を覆うように上蓋12が配置され、溶鋼5及びフラックス7は無酸化雰囲気に置かれる。上蓋12に貫通して設けられている通電用加熱電極21、23、25の先端は、フラックス7に浸漬される。そして、通電用加熱電極21、23、25への通電と、ガス吹き込みプラグ30からの攪拌ガス3の吹き込みを開始し、溶鋼5の脱硫処理が開始する。脱硫処理時には、さらにCaO(CaOが含まれるフラックス)が溶鋼5に添加される。   When the flux 7 is disposed above the molten steel 5 accommodated in the ladle 10, the upper lid 12 is disposed so as to cover the opening of the ladle 10, and the molten steel 5 and the flux 7 are placed in a non-oxidizing atmosphere. The tips of the current-carrying heating electrodes 21, 23, 25 provided through the upper lid 12 are immersed in the flux 7. Then, energization of the heating electrodes 21, 23, and 25 and the injection of the stirring gas 3 from the gas injection plug 30 are started, and the desulfurization treatment of the molten steel 5 is started. During the desulfurization treatment, CaO (flux containing CaO) is further added to the molten steel 5.

[2−2.脱硫条件]
本実施形態では、以下の条件で溶鋼の脱硫処理を行う。これにより、フラックス層全体の対流を促進させることができ、脱硫処理時に添加したCaOを無駄なく脱硫に活用できる。
[2-2. Desulfurization conditions]
In the present embodiment, the desulfurization treatment of molten steel is performed under the following conditions. Thereby, the convection of the whole flux layer can be promoted, and CaO added during the desulfurization treatment can be utilized for desulfurization without waste.

(A)フラックスの厚さ
まず、取鍋内の溶鋼の上部に配置するフラックスの厚さを、100mm以上200mm以下とする。フラックスの厚さは、脱硫処理中に測定することは困難である。このため、ここで規定するフラックスの厚さは、脱硫処理後であって、溶鋼の撹拌を停止して溶鋼を静置した状態におけるフラックスの厚さとする。このフラックスの厚さは、例えば取鍋内に鋼製棒を挿入し、その後取鍋から引き抜いた当該製鋼棒に付着したフラックスの付着厚さを測定することで取得できる。なお、脱硫処理が行われても、フラックスの厚さに実質的な変化はない。
(A) Flux Thickness First, the thickness of the flux disposed above the molten steel in the ladle is set to 100 mm or more and 200 mm or less. Flux thickness is difficult to measure during desulfurization. For this reason, the thickness of the flux specified here is the thickness of the flux after the desulfurization treatment, in which the stirring of the molten steel is stopped and the molten steel is allowed to stand. The thickness of the flux can be obtained, for example, by inserting a steel rod into a ladle and then measuring the thickness of the flux adhered to the steel rod withdrawn from the ladle. In addition, there is no substantial change in the thickness of the flux even if the desulfurization treatment is performed.

フラックスの厚さが100mm未満であると、フラックス層で対流が起こりにくく、脱硫の進行が遅くなる。したがって、フラックスの厚さは100mm以上必要である。一方、フラックスの厚さが200mm超では、脱硫処理時のフラックス層表層に未滓化(未溶融)の部分が目立つようになる。仮に滓化していても温度低下による高粘性化が懸念され、フラックス層全体のフラックス対流が起こりにくいと考えられ、この結果、CaO原単位が悪化する。したがって、フラックスの厚さは200mm以下とする必要がある。なお、フラックス層表層の未滓化あるいは高粘性化を抑制するには、フラックスの厚さを150mm以下とすることが望ましい。   When the thickness of the flux is less than 100 mm, convection hardly occurs in the flux layer, and the progress of desulfurization becomes slow. Therefore, the thickness of the flux needs to be 100 mm or more. On the other hand, if the thickness of the flux is more than 200 mm, unslagged (unmelted) portions become noticeable on the surface of the flux layer during the desulfurization treatment. Even if the slag is formed, there is a concern that the viscosity may be increased due to a decrease in temperature, and it is considered that flux convection of the entire flux layer is unlikely to occur. As a result, the CaO basic unit deteriorates. Therefore, the thickness of the flux needs to be 200 mm or less. In addition, in order to suppress unslagging or high viscosity of the surface layer of the flux layer, the thickness of the flux is desirably 150 mm or less.

(B)CaO(質量%)/Al(質量%)
フラックスに含まれるCaOの含有量(質量%)とAlの含有量(質量%)との比であるCaO(質量%)/Al(質量%)は、1.5以上2.5以下とする。本実施形態のようにCaOを用いた脱硫は、CaOとSの反応によって生じるため、フラックスに含まれるCaO量は重要である。本実施形態では、CaO(質量%)/Al(質量%)を1.5以上2.5以下とすることで、上記フラックスの厚さのフラックス層内全体で対流が発生し、脱硫処理を促進させることができる。より好ましくは、CaO(質量%)/Al(質量%)を1.8以上2.4以下とする。
(B) CaO (% by mass) / Al 2 O 3 (% by mass)
CaO (mass%) / Al 2 O 3 (mass%), which is the ratio of the content (mass%) of CaO contained in the flux and the content (mass%) of Al 2 O 3 , is 1.5 or more and 2 .5 or less. Since desulfurization using CaO as in this embodiment is caused by the reaction between CaO and S, the amount of CaO contained in the flux is important. In the present embodiment, by setting CaO (mass%) / Al 2 O 3 (mass%) to be 1.5 or more and 2.5 or less, convection occurs in the entire flux layer having the thickness of the flux, and desulfurization occurs. Processing can be accelerated. More preferably, CaO (mass%) / Al 2 O 3 (mass%) is set to 1.8 or more and 2.4 or less.

CaO(質量%)/Al(質量%)が1.5未満の場合は、Alに対するCaOの相対濃度が低すぎるため、脱流速度が顕著に低下する。このため、一定時間内に脱硫処理を完了させるには、多量のフラックスを添加する必要があり、その結果フラックス層も厚くなるため、添加CaO原単位が悪化する。一方、CaO(質量%)/Al(質量%)が2.5超の場合は、フラックスの溶解速度が低下し、フラックス層の有効な対流が確保できない。また、フラックスの溶解温度が上がることにより、未滓化を招く場合もある。以上より、フラックスに含まれるCaOの含有量(質量%)とAlの含有量(質量%)との比(CaO(質量%)/Al(質量%))は、1.5以上2.5以下とする。 When the ratio of CaO (mass%) / Al 2 O 3 (mass%) is less than 1.5, the relative concentration of CaO with respect to Al 2 O 3 is too low, so that the outflow rate is significantly reduced. For this reason, in order to complete the desulfurization treatment within a certain time, it is necessary to add a large amount of flux, and as a result, the flux layer becomes thick, and the added CaO basic unit deteriorates. On the other hand, when CaO (mass%) / Al 2 O 3 (mass%) is more than 2.5, the dissolution rate of the flux decreases, and effective convection of the flux layer cannot be secured. In addition, an increase in the melting temperature of the flux may cause unslagging. As described above, the ratio (CaO (mass%) / Al 2 O 3 (mass%)) of the content (mass%) of CaO contained in the flux to the content (mass%) of Al 2 O 3 is 1. 5 or more and 2.5 or less.

(C)添加CaO量
脱硫処理時に添加するCaO量(kg)は、処理する溶鋼単位量(t)当たり5(kg/t)以上15(kg/t)以下とする。なお、添加するCaOの供給源として、例えば生石灰を用いることができる。生石灰は、CaOが90質量%以上含まれるものが多く、約100質量%のものもある。また他のCaO供給源として、カルシウムアルミネート、軽焼ドロマイト、造塊スラグ等のCaOを含むものを用いてもよい。これらを用いる場合、含有されるCaOの質量割合を用いて添加するCaO量を計算するとよい。
(C) Added CaO Amount The CaO amount (kg) added at the time of desulfurization treatment is set to 5 (kg / t) or more and 15 (kg / t) or less per unit amount (t) of molten steel to be treated. As a source of CaO to be added, for example, quicklime can be used. Quick lime often contains 90% by mass or more of CaO, and approximately 100% by mass. Further, as another CaO supply source, a material containing CaO such as calcium aluminate, lightly-burned dolomite, and ingot slag may be used. When these are used, the amount of CaO to be added may be calculated using the mass ratio of CaO contained.

脱硫処理時に添加するCaOが、溶鋼単位量(t)当たり5(kg/t)未満の場合、脱硫処理対象の溶鋼量に比べてCaO量が少ないため、脱硫処理後の溶鋼中のS量が低減しない。したがって、添加するCaO量は5.0(kg/t)以上とするのがよい。一方、脱硫処理時に添加するCaOが、溶鋼単位量(t)当たり15.0(kg/t)超の場合、溶鋼の上部のフラックスの厚さが上記を満たし、常用される取鍋寸法(溶鋼深さ、取鍋内径)であれば、フラックス中のCaO濃度が高くなり、フラックスの粘性が悪化する。このフラックスの粘性悪化(著しい場合には滓化不良)によりフラックス層の対流が起こりにくくなり、脱硫進行が遅くなる。したがって、添加するCaO量は15.0(kg/t)以下とするのがよい。   When the amount of CaO added during the desulfurization treatment is less than 5 (kg / t) per unit amount of molten steel (t), the amount of CaO in the molten steel after desulfurization treatment is small because the amount of CaO is smaller than the amount of molten steel to be desulfurized. Does not reduce. Therefore, the amount of CaO to be added is preferably 5.0 (kg / t) or more. On the other hand, when the amount of CaO added during the desulfurization treatment exceeds 15.0 (kg / t) per unit amount (t) of molten steel, the thickness of the flux above the molten steel satisfies the above, and the commonly used ladle dimensions (molten steel) (Depth, ladle inner diameter), the CaO concentration in the flux increases, and the viscosity of the flux deteriorates. Due to the deterioration of the viscosity of the flux (defective slagging in a remarkable case), the convection of the flux layer hardly occurs, and the progress of desulfurization is slowed. Therefore, the amount of CaO to be added is preferably 15.0 (kg / t) or less.

(D)攪拌ガスの攪拌動力密度
脱硫処理時に溶鋼を攪拌する攪拌ガスの撹拌動力密度は、20W/t以上90W/t以下とする。
(D) Stirring Power Density of Stirring Gas The stirring power density of the stirring gas for stirring the molten steel during the desulfurization treatment is set to 20 W / t or more and 90 W / t or less.

取鍋底部から不活性ガスあるいは窒素ガス等の攪拌ガスをガス吹き込みプラグから吹き込み、溶鋼を撹拌することは、脱硫処理にとって重要である。しかし、溶鋼の攪拌は、溶鋼量や取鍋形状に応じて適切に行う必要がある。溶鋼の撹拌が強すぎると、電極の浸漬部位におけるフラックスの厚さが極端に薄くなり、対流するフラックスの温度上昇効果が低下する。一方、溶鋼の撹拌が弱すぎると、溶鋼流のせん断力によって発生するフラックス層の対流が弱くなり、効率的な脱硫が行われない。そこで、本実施形態では、撹拌ガスの撹拌動力密度を20(W/t)以上90(W/t)以下と規定した。より好ましくは、撹拌ガスの撹拌動力密度は30(W/t)以上80(W/t)以下とする。   It is important for the desulfurization treatment to blow a stirring gas such as an inert gas or a nitrogen gas from a ladle bottom from a gas blowing plug to stir the molten steel. However, the stirring of the molten steel needs to be appropriately performed according to the amount of the molten steel and the shape of the ladle. If the stirring of the molten steel is too strong, the thickness of the flux at the site where the electrode is immersed becomes extremely thin, and the effect of increasing the temperature of the convective flux decreases. On the other hand, if the stirring of the molten steel is too weak, the convection of the flux layer generated by the shear force of the molten steel flow becomes weak, and efficient desulfurization is not performed. Therefore, in this embodiment, the stirring power density of the stirring gas is specified to be 20 (W / t) or more and 90 (W / t) or less. More preferably, the stirring power density of the stirring gas is 30 (W / t) or more and 80 (W / t) or less.

なお、撹拌動力密度は、例えば、特開2013−023739号公報に記載の、下記式(1)に基づき算出することができる。ここで、εは撹拌動力密度(W/t)、Qは攪拌ガス流量(Nm/sec)、Tは溶鋼温度(K)、Tは攪拌ガス温度(K)、Pは雰囲気圧力(Pa)、Wは溶鋼の質量(t)、ρは比重(t/m)、hは攪拌ガス吹き込み深さ(m)である。 The stirring power density can be calculated based on, for example, the following equation (1) described in JP2013-023739A. Here, ε M is the stirring power density (W / t), Q is the stirring gas flow rate (Nm 3 / sec), T 1 is the molten steel temperature (K), T n is the stirring gas temperature (K), and P 2 is the atmosphere. Pressure (Pa), W is the mass (t) of molten steel, ρ is the specific gravity (t / m 3 ), and h is the stirring gas blowing depth (m).

Figure 0006673051
Figure 0006673051

(E)電極及びプラグの位置
上述のフラックスの厚さ、攪拌ガスの撹拌動力密度とする場合、取鍋を平面視して、電極位置とプラグ位置とが近すぎると、電極位置でのフラックスの厚さが薄くなり、加熱したフラックスの対流が促進できず、脱硫の促進が困難となる。したがって、取鍋を平面視して、電極位置とプラグ位置とは、少なくとも同一位置ではなく、適切な距離で離間させる必要がある。
(E) Position of Electrode and Plug When the thickness of the flux and the stirring power density of the stirring gas are set as described above, if the ladle is viewed from above and the electrode position is too close to the plug position, the flux at the electrode position may be too small. Since the thickness becomes thin, convection of the heated flux cannot be promoted, and promotion of desulfurization becomes difficult. Therefore, when the ladle is viewed in plan, the electrode position and the plug position need to be separated from each other at an appropriate distance, not at least at the same position.

具体的には、図3に示すように、取鍋10を平面視し、電極20(ここでは、通電用加熱電極21、23、25のいずれか1つを指す。)の直径(以下、「電極直径」ともいう。)をD、ガス吹き込みプラグ30の直径(以下、「プラグ直径」ともいう。)をdとする。このとき、電極20の中心とガス吹き込みプラグ30の中心との距離Lが下記式(2)を満たすように、電極20及びガス吹き込みプラグ30の位置を決定する。   Specifically, as shown in FIG. 3, the ladle 10 is viewed in a plan view, and the diameter of the electrode 20 (here, any one of the heating electrodes 21, 23, and 25 for energization is indicated) (hereinafter, referred to as ““ The diameter of the gas blowing plug 30 (hereinafter, also referred to as “plug diameter”) is D, and the electrode diameter is also referred to as D. At this time, the positions of the electrode 20 and the gas blowing plug 30 are determined so that the distance L between the center of the electrode 20 and the center of the gas blowing plug 30 satisfies the following expression (2).

L≧1.7×(D/2)+(d/2) ・・・(2)   L ≧ 1.7 × (D / 2) + (d / 2) (2)

なお、例えば多角形等のように、電極20の断面が円ではない場合、電極直径Dとして、例えば断面積が等価な円の直径を用いてもよく、電極20の中心として、例えば幾何学的な重心を用いてもよい。また、プラグ直径は、例えばガス吹き込みプラグ30の孔部に外接する円の直径を用いてもよい。このとき、ガス吹き込みプラグ30の中心は、当該外接円の中心としてもよい。   When the cross section of the electrode 20 is not a circle, such as a polygon, for example, a diameter of a circle having an equivalent cross-sectional area may be used as the electrode diameter D. A good center of gravity may be used. The diameter of the plug may be, for example, the diameter of a circle circumscribing the hole of the gas blowing plug 30. At this time, the center of the gas blowing plug 30 may be the center of the circumscribed circle.

<3.まとめ>
以上、本発明の一実施形態に係る溶鋼の脱硫方法について説明した。本実施形態によれば、取鍋内の溶鋼の上部にCaOを含むフラックスを配置して、電極をフラックスに浸漬させて通電することにより溶鋼の脱硫処理を行う際、フラックスの厚さを100mm以上200mm以下とし、フラックスに含まれるCaOの含有量(質量%)とAlの含有量(質量%)との比を1.5以上2.5以下とし、脱硫処理時に添加されるCaO量(kg)を、処理する溶鋼単位量(t)当たり5(kg/t)以上15(kg/t)以下とする。
<3. Summary>
The method for desulfurizing molten steel according to one embodiment of the present invention has been described above. According to the present embodiment, when the flux containing CaO is arranged on the molten steel in the ladle, and the electrode is immersed in the flux and the current is applied to perform the desulfurization treatment of the molten steel, the thickness of the flux is 100 mm or more. 200 mm or less, the ratio of the content (% by mass) of CaO contained in the flux to the content (% by mass) of Al 2 O 3 is 1.5 or more and 2.5 or less, and the amount of CaO added at the time of desulfurization treatment (Kg) is set to 5 (kg / t) or more and 15 (kg / t) or less per unit amount (t) of molten steel to be treated.

これにより、フラックス層中に生じるフラックスの対流を全体的に促進され、溶鋼中のSが効率よくフラックス中のCaOと反応してフラックス中に分配され、その結果、溶鋼のS量を下げることができる。このように、添加したCaOを有効に脱硫に利用することができる。脱硫能力を向上することで、脱硫に寄与しないCaOを削減することができるので、CaO使用量を削減できる。また、本実施形態に係る溶鋼の脱硫方法は、特に、フラックス温度が最も高くなる電極位置のフラックス層を極力厚くすることができるため、フラックスの厚さが薄くなりすぎてフラックスの対流が促進されず、脱硫が促進されないということがなくなる。   Thereby, the convection of the flux generated in the flux layer is promoted as a whole, and S in the molten steel is efficiently reacted with CaO in the flux and distributed in the flux, and as a result, the S content in the molten steel is reduced. it can. Thus, the added CaO can be effectively used for desulfurization. By improving the desulfurization capacity, CaO that does not contribute to desulfurization can be reduced, so that the amount of CaO used can be reduced. In addition, the desulfurization method of molten steel according to the present embodiment can increase the thickness of the flux layer at the electrode position where the flux temperature is highest, so that the flux thickness becomes too thin and the convection of the flux is promoted. And desulfurization is not promoted.

以下、本発明の取鍋精錬による溶鋼の脱硫方法の有効性について検証した結果を示す。本実施例では、図2に示した精錬設備を用いて、通電加熱型の溶鋼脱硫処理を行った。脱硫処理対象として50〜70tの粗溶鋼を取鍋に収容し、粗溶鋼の上部にフラックスを投入した。その後、電極をフラックスに浸漬させて通電を開始するとともに、取鍋の底部のガス吹き込みプラグから攪拌ガスを吹き込む底吹き撹拌を開始し、脱硫処理を開始した。脱硫処理は35分実施した。なお、精錬設備の電極及びガス吹き込みプラグは、電極中心とガス吹き込みプラグのプラグ中心との距離Lが上記式(2)を満たすように配置されている。   Hereinafter, the results of verifying the effectiveness of the method for desulfurizing molten steel by ladle refining of the present invention will be described. In the present embodiment, the electric heating type molten steel desulfurization treatment was performed using the refining equipment shown in FIG. A 50-70 t crude molten steel was placed in a ladle as a target for desulfurization treatment, and a flux was injected into the upper part of the crude molten steel. Thereafter, the electrodes were immersed in a flux to start energization, and a bottom-blowing stirrer for blowing a stirring gas from a gas blowing plug at the bottom of the ladle was started to start desulfurization treatment. The desulfurization treatment was performed for 35 minutes. The electrodes and the gas blowing plugs of the refining facility are arranged such that the distance L between the electrode center and the plug center of the gas blowing plug satisfies the above expression (2).

下記表1に示す実施例及び比較例について、上記の脱硫条件にて溶鋼の脱硫を行い、CaO単位量当たりの脱硫量(ppm/CaO量kg)に基づき、CaO使用量が削減されたか否かを評価した。かかる評価は、比較例2を基準として、脱硫量が12%以上多くなった場合には◎、脱硫量が5%以上12%未満の場合には○、脱硫量が比較例2と同等(±5%未満)あるいは悪化した場合には×と評価した。   For Examples and Comparative Examples shown in Table 1 below, molten steel was desulfurized under the above desulfurization conditions, and based on the desulfurization amount per unit amount of CaO (ppm / CaO amount kg), whether or not the amount of CaO used was reduced. Was evaluated. Based on Comparative Example 2, the evaluation was ◎ when the desulfurization amount increased by 12% or more, ○ when the desulfurization amount was 5% or more and less than 12%, and the desulfurization amount was equivalent to Comparative Example 2 (± (Less than 5%) or worsened, it was evaluated as x.

Figure 0006673051
Figure 0006673051

表1に示すように、実施例1及び参考例2では、フラックスに含まれるCaOの含有量(質量%)とAlの含有量(質量%)との比であるCaO(質量%)/Al(質量%)を2.3、脱硫処理時に添加される溶鋼単位量(t)当たりのCaO量(kg)を8.0(kg/t)、撹拌動力密度を63W/tとして、溶鋼の脱硫処理を行った。実施例1では、フラックスの厚さを100mmとしたところ、CaO単位量当たりの脱硫量は良好であった。また、参考例2では、フラックスの厚さを200mmとしたところ、CaO単位量当たりの脱硫量は、実施例1よりは劣るものの、評価の基準とした比較例2より改善された。
As shown in Table 1, in Example 1 and Reference Example 2, CaO (mass%), which is a ratio of the content (mass%) of CaO contained in the flux to the content (mass%) of Al 2 O 3. / Al 2 O 3 (mass%): 2.3, CaO amount (kg) per unit amount (t) of molten steel added during desulfurization treatment: 8.0 (kg / t), stirring power density: 63 W / t , A desulfurization treatment of molten steel was performed. In Example 1, when the thickness of the flux was 100 mm, the desulfurization amount per CaO unit amount was good. Further, in Reference Example 2, when the thickness of the flux was 200 mm, the desulfurization amount per CaO unit amount was inferior to that of Example 1, but was improved from Comparative Example 2 which was the evaluation standard.

実施例3〜6では、フラックスの厚さを150mm、脱硫処理時に添加される溶鋼単位量(t)当たりのCaO量(kg)を8.0(kg/t)、撹拌動力密度を63W/tとして、溶鋼の脱硫処理を行った。CaO(質量%)/Al(質量%)の値は実施例3〜6で異なる値とした。表1より、CaO単位量当たりの脱硫量は、CaO(質量%)/Al(質量%)を1.5とした実施例3、及び、2.5とした実施例6では、評価の基準とした比較例2より改善され、CaO(質量%)/Al(質量%)を1.8とした実施例4、及び、2.4とした実施例5では、実施例3、6よりもさらに改善される結果となった。 In Examples 3 to 6, the flux thickness was 150 mm, the CaO amount (kg) per molten steel unit amount (t) added during desulfurization treatment was 8.0 (kg / t), and the stirring power density was 63 W / t. , A desulfurization treatment of molten steel was performed. The values of CaO (% by mass) / Al 2 O 3 (% by mass) were different values in Examples 3 to 6. From Table 1, the desulfurization amount per CaO unit amount was evaluated in Examples 3 and 6 where CaO (mass%) / Al 2 O 3 (mass%) was 1.5 and 2.5. In Comparative Example 2 which was improved as compared with Comparative Example 2, and in Example 4 in which CaO (mass%) / Al 2 O 3 (mass%) was 1.8 and in Example 5 in which 2.4 was 2.4, Example 3 was used. , 6 were further improved.

実施例7、8では、フラックスの厚さを150mm、CaO(質量%)/Al(質量%)を2.3、撹拌動力密度を63W/tとして、溶鋼の脱硫処理を行った。実施例7では、脱硫処理時に添加される溶鋼単位量(t)当たりのCaO量(kg)を5.0(kg/t)とし、実施例8では15.0(kg/t)としたところ、CaO単位量当たりの脱硫量は良好であった。 In Examples 7 and 8, molten steel was desulfurized with a flux thickness of 150 mm, CaO (mass%) / Al 2 O 3 (mass%) of 2.3, and a stirring power density of 63 W / t. In Example 7, the CaO amount (kg) per unit amount (t) of molten steel added at the time of desulfurization treatment was 5.0 (kg / t), and in Example 8, it was 15.0 (kg / t). And the amount of desulfurization per unit amount of CaO was good.

参考例9、10及び実施例11、12では、フラックスの厚さを150mm、CaO(質量%)/Al(質量%)を2.3、脱硫処理時に添加される溶鋼単位量(t)当たりのCaO量(kg)を8.0(kg/t)として、溶鋼の脱硫処理を行った。撹拌動力密度は、参考例9、10及び実施例11、12で異なる値とした。表1より、撹拌動力密度を20W/tとした参考例9、及び、90W/tとした参考例10では、評価の基準とした比較例2より改善され、撹拌動力密度を30W/tとした実施例11、及び、80W/tとした実施例12では、参考例9、10よりもさらに改善される結果となった。
In Reference Examples 9 and 10 and Examples 11 and 12, the flux thickness was 150 mm, CaO (% by mass) / Al 2 O 3 (% by mass) was 2.3, and the unit amount of molten steel added during desulfurization treatment (t The desulfurization treatment of the molten steel was performed with the CaO amount (kg) per 8.0) being 8.0 (kg / t). The stirring power density was different in Reference Examples 9 and 10 and Examples 11 and 12. From Table 1, in Reference Example 9 in which the stirring power density was 20 W / t, and in Reference Example 10 in which the stirring power density was 90 W / t, the stirring power density was 30 W / t, which was improved over Comparative Example 2 which was the evaluation criterion. In Example 11 and Example 12 in which the power consumption was 80 W / t, the results were further improved as compared with Reference Examples 9 and 10.

一方、比較例1は、参考例2よりさらにフラックスの厚さを大きくした場合であり、比較例2は、実施例1よりさらにフラックスの厚さを小さくした場合である。いずれの場合にも、CaO単位量当たりの脱硫量の改善は見受けられなかった。比較例1では表層のフラックスが未滓化の状態、あるいは低温となるため高粘性となり、フラックス層全体の対流が起こらず、比較例2では、フラックスの厚さが薄すぎて有効なフラックスの対流が起こりにくかったためと考える。
On the other hand, Comparative Example 1 is a case where the thickness of the flux is further increased than that of Reference Example 2, and Comparative Example 2 is a case where the thickness of the flux is further reduced than that of Example 1. In each case, no improvement in the desulfurization amount per CaO unit amount was found. In Comparative Example 1, the flux in the surface layer was in an unslagged state or at a low temperature and became highly viscous, so that convection of the entire flux layer did not occur. Was difficult to happen.

比較例3は、実施例3よりさらにCaO(質量%)/Al(質量%)の値を小さくした場合であり、比較例4は、実施例6よりさらにCaO(質量%)/Al(質量%)の値を大きくした場合である。いずれの場合にも、CaO単位量当たりの脱硫量の改善は見受けられなかった。比較例3ではCaOの相対濃度が低すぎて、脱硫速度が顕著に低下し、実施例4では、フラックスの流動性が悪く、フラックス層の有効な対流が確保できなかったためと考える。 Comparative Example 3 is a case where the value of CaO (% by mass) / Al 2 O 3 (% by mass) is smaller than that of Example 3, and Comparative Example 4 is a case where CaO (% by mass) / Al This is the case where the value of 2 O 3 (% by mass) is increased. In each case, no improvement in the desulfurization amount per CaO unit amount was found. It is considered that in Comparative Example 3, the relative concentration of CaO was too low, and the desulfurization rate was remarkably reduced. In Example 4, the fluidity of the flux was poor, and effective convection of the flux layer could not be secured.

比較例5は、実施例7よりさらに脱硫処理時に添加される溶鋼単位量(t)当たりのCaO量を小さくした場合であり、比較例6は、実施例8よりさらに脱硫処理時に添加される溶鋼単位量(t)当たりのCaO量を大きくした場合である。いずれの場合にも、CaO単位量当たりの脱硫量の改善は見受けられなかった。比較例5では、脱硫処理後の溶鋼のS量が多く、脱硫処理対象の溶鋼量に比べてCaO量が少ないため、比較例6では、フラックス中のCaO濃度が高くなり、フラックスの粘性が悪化し、フラックス層の対流が起こりにくくなったためと考える。   Comparative Example 5 is a case where the amount of CaO per unit amount of molten steel (t) added at the time of desulfurization treatment is smaller than that of Example 7, and Comparative Example 6 is a case where molten steel added at the time of desulfurization treatment more than that of Example 8. This is a case where the amount of CaO per unit amount (t) is increased. In each case, no improvement in the desulfurization amount per CaO unit amount was found. In Comparative Example 5, the S content of the molten steel after the desulfurization treatment was large, and the CaO amount was smaller than the amount of the molten steel to be desulfurized. Therefore, in Comparative Example 6, the CaO concentration in the flux was increased, and the viscosity of the flux was deteriorated. It is considered that the convection of the flux layer did not easily occur.

比較例7は、参考例9よりさらに撹拌ガスの撹拌動力密度を小さくした場合であり、比較例8は、参考例10よりさらに撹拌ガスの撹拌動力密度を大きくした場合である。いずれの場合にも、CaO単位量当たりの脱硫量の改善は見受けられなかった。比較例7では、溶鋼の撹拌が弱すぎて、溶鋼流のせん断力によって発生するフラックス層の対流が弱くなり、効率的な脱硫が行われず、比較例8では、溶鋼の撹拌が強すぎて、電極の浸漬部位におけるフラックスの厚さが極端に薄くなり、対流するフラックスの温度上昇効果が低下したためと考えられる。
Comparative Example 7 is a case where the stirring power density of the stirring gas is further reduced than in Reference Example 9, and Comparative Example 8 is a case where the stirring power density of the stirring gas is further increased than in Reference Example 10. In each case, no improvement in the desulfurization amount per CaO unit amount was found. In Comparative Example 7, the stirring of the molten steel was too weak, the convection of the flux layer generated by the shear force of the molten steel flow was weak, and efficient desulfurization was not performed. In Comparative Example 8, the stirring of the molten steel was too strong, It is considered that the thickness of the flux at the electrode immersion site became extremely thin, and the effect of increasing the temperature of the convective flux was reduced.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   As described above, the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that those skilled in the art to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.

3 攪拌ガス
5 溶鋼
7 フラックス
10 取鍋
12 上蓋
20 電極
21、23、25 通電用加熱電極
30 ガス吹き込みプラグ
Reference Signs List 3 Stirring gas 5 Molten steel 7 Flux 10 Ladle 12 Top lid 20 Electrode 21, 23, 25 Heating electrode for electricity supply 30 Gas blowing plug

Claims (1)

取鍋内の溶鋼の上部にCaOを含むフラックスを配置して、電極を前記フラックスに浸漬させて通電することにより前記溶鋼の脱硫処理を行う(但し、溶鋼に筒状浸漬管を浸漬して減圧する場合を除く)、取鍋精錬による溶鋼の脱硫方法であって、
前記取鍋内の前記溶鋼の上部に配置される前記フラックスの厚さを100mm以上200mm以下(但し、200mm以上を除く)とし、
前記フラックスに含まれるCaOの含有量(質量%)とAlの含有量(質量%)との比であるCaO(質量%)/Al(質量%)を1.5以上2.5以下とし、
前記脱硫処理時に添加されるCaO量(kg)を、脱硫処理対象の溶鋼単位量(t)当たりの値で5(kg/t)以上15(kg/t)以下とし、
前記脱硫処理時に前記溶鋼を攪拌する攪拌ガスの撹拌動力密度は、30W/t以上80W/t以下とする、溶鋼の脱硫方法。
A flux containing CaO is placed above the molten steel in the ladle, and the electrode is immersed in the flux and energized to conduct desulfurization of the molten steel (however, the cylindrical immersion pipe is immersed in the molten steel to reduce the pressure. ) , A method of desulfurizing molten steel by ladle refining,
The thickness of the flux disposed above the molten steel in the ladle is 100 mm or more and 200 mm or less (however, excluding 200 mm or more) ,
CaO (mass%) / Al 2 O 3 (mass%), which is the ratio of the CaO content (mass%) and Al 2 O 3 content (mass%) contained in the flux, is 1.5 or more and 2 .5 or less,
The CaO amount (kg) added at the time of the desulfurization treatment is 5 (kg / t) or more and 15 (kg / t) or less per unit amount (t) of molten steel to be desulfurized ,
A method for desulfurizing molten steel, wherein a stirring power density of a stirring gas for stirring the molten steel during the desulfurization treatment is set to 30 W / t or more and 80 W / t or less .
JP2016126591A 2016-06-27 2016-06-27 Desulfurization method of molten steel Active JP6673051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126591A JP6673051B2 (en) 2016-06-27 2016-06-27 Desulfurization method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126591A JP6673051B2 (en) 2016-06-27 2016-06-27 Desulfurization method of molten steel

Publications (2)

Publication Number Publication Date
JP2018003042A JP2018003042A (en) 2018-01-11
JP6673051B2 true JP6673051B2 (en) 2020-03-25

Family

ID=60948627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126591A Active JP6673051B2 (en) 2016-06-27 2016-06-27 Desulfurization method of molten steel

Country Status (1)

Country Link
JP (1) JP6673051B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139876B2 (en) * 2018-10-25 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel
JP7139878B2 (en) * 2018-10-26 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel
JP7139879B2 (en) * 2018-10-26 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel
JP7139877B2 (en) * 2018-10-26 2022-09-21 日本製鉄株式会社 Ladle refining method for molten steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642644B2 (en) * 1974-06-11 1981-10-06
JP3000864B2 (en) * 1994-10-11 2000-01-17 住友金属工業株式会社 Vacuum desulfurization refining method of molten steel
JP5014876B2 (en) * 2007-05-16 2012-08-29 株式会社神戸製鋼所 Secondary refining method of low-sulfur steel to suppress sulfurization phenomenon in vacuum degassing process
JP2010116610A (en) * 2008-11-13 2010-05-27 Kobe Steel Ltd Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP2010116611A (en) * 2008-11-13 2010-05-27 Kobe Steel Ltd Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP5803815B2 (en) * 2012-02-03 2015-11-04 新日鐵住金株式会社 Method of melting bearing steel
JP2015218390A (en) * 2014-05-21 2015-12-07 株式会社神戸製鋼所 Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring

Also Published As

Publication number Publication date
JP2018003042A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6673051B2 (en) Desulfurization method of molten steel
CN113795600B (en) Method for desulphurizing molten metals
JP7118599B2 (en) Ladle refining method for molten steel
JP2010047823A (en) Method for producing clean steel by ladle-refining method
JP2016183385A (en) Method of melting low nitrogen steel
JP5017935B2 (en) Hot metal desulfurization treatment method
JP5324142B2 (en) Refining method using electric furnace
JP5205799B2 (en) Method for melting Cr-containing low alloy steel
TW202313994A (en) Method for refining molten steel
JP2019119932A (en) Process for melting ultra-low sulfur and low nitrogen steel
JP2007332398A (en) Method for producing high cleanliness steel
JP2008308754A (en) Sulfer removal method for used slag
JP7047606B2 (en) Ladle refining method for molten steel
JP6822304B2 (en) Ladle refining method for molten steel
JP2013133486A (en) Melting method of iron scrap, and melting apparatus therefor
JP4839658B2 (en) Refining method of bearing steel
JP2000234119A (en) Method for desulfurizing steel
JP7167704B2 (en) Hot metal desulfurization method
JP7139879B2 (en) Ladle refining method for molten steel
JP6947024B2 (en) Hot metal desulfurization method
JP5574468B2 (en) Cast iron refining method and refining apparatus
JP6658241B2 (en) Metal raw material melting method
JP6627433B2 (en) Cold recycling method
JP6223286B2 (en) Hot metal desulfurization method
JP2005179762A (en) Method for producing extra-low sulfur steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6673051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151