JP6669437B2 - Cyclic enone reductase and its use - Google Patents

Cyclic enone reductase and its use Download PDF

Info

Publication number
JP6669437B2
JP6669437B2 JP2015041695A JP2015041695A JP6669437B2 JP 6669437 B2 JP6669437 B2 JP 6669437B2 JP 2015041695 A JP2015041695 A JP 2015041695A JP 2015041695 A JP2015041695 A JP 2015041695A JP 6669437 B2 JP6669437 B2 JP 6669437B2
Authority
JP
Japan
Prior art keywords
cyclic
protein
enone
cyclic enone
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015041695A
Other languages
Japanese (ja)
Other versions
JP2016158583A (en
Inventor
浅野 泰久
泰久 浅野
和範 山本
和範 山本
銅谷 正晴
正晴 銅谷
木原 秀太
秀太 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefectural University
Original Assignee
Toyama Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefectural University filed Critical Toyama Prefectural University
Priority to JP2015041695A priority Critical patent/JP6669437B2/en
Publication of JP2016158583A publication Critical patent/JP2016158583A/en
Application granted granted Critical
Publication of JP6669437B2 publication Critical patent/JP6669437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、環状エノン還元酵素及びこの酵素を用いることにより、環状エノンの炭素−炭素2重結合を還元して、環状ケトンを製造する方法に関する。前記酵素は、例えば、ヤロウィア・リポリティカ NBRC 0746に由来する酵素である。   The present invention relates to a cyclic enone reductase and a method for producing a cyclic ketone by using the enzyme to reduce a carbon-carbon double bond of the cyclic enone. The enzyme is, for example, an enzyme derived from Yarrowia lipolytica NBRC 0746.

環状ケトンは、医薬品や有機合成における原料として汎用性の高い有用な化合物であり、光学活性アルコール、光学活性アミンの原料としても重要な化合物である。これらの環状ケトンの製造方法として、例えば、環状エノンの還元が有用である。   Cyclic ketones are useful compounds having high versatility as raw materials in pharmaceuticals and organic synthesis, and are also important compounds as raw materials for optically active alcohols and optically active amines. As a method for producing these cyclic ketones, for example, reduction of a cyclic enone is useful.

化学的にエノンの炭素−炭素2重結合を還元する方法としては、パラジウム(0)-トリブチルスズを用いる方法(非特許文献1)、サマリウム(0)を用いる方法(非特許文献2)、コバルトヒドリドを用いる方法(非特許文献3)、鉄ヒドリドを用いる方法(非特許文献4)、立体選択的に還元する方法としては、銅―キラルホスフィンを用いる方法(非特許文献5−7)、キラル有機分子触媒(非特許文献8)などが知られている。   As a method for chemically reducing the carbon-carbon double bond of the enone, a method using palladium (0) -tributyltin (Non-patent document 1), a method using samarium (0) (Non-patent document 2), a cobalt hydride (Non-patent document 3), a method using iron hydride (non-patent document 4), a method using stereo-selective reduction, a method using copper-chiral phosphine (non-patent document 5-7), a chiral organic compound Molecular catalysts (Non-Patent Document 8) and the like are known.

一方、生物学的な反応によって環状エノンの炭素−炭素2重結合を還元する酵素としては、以下のような酵素が報告されている。Nicotiana tabacum由来のエノン還元酵素であるp44、p90(非特許文献9)、Candida castellii、Kazachstania spencerorum、Kluyveromyces matrixianus由来のLevodione還元酵素(非特許文献10)、Saccharomyces carlsbergensis由来のOld Yellow Enzyme(非特許文献11)、Bacillus subtilis由来のYqjM(非特許文献12)が5員環エノンまたは6員環エノンを立体選択的に還元することが知られている。また、Pseudomonas putida M10由来のMorphinone reductase(非特許文献13)、Digitalis purpurea由来のprogesterone 5α-reductase(非特許文献14)は多環式化合物のエノンを還元することが知られている。   On the other hand, the following enzymes have been reported as enzymes that reduce a carbon-carbon double bond of a cyclic enone by a biological reaction. Nicotiana tabacum-derived enone reductase p44, p90 (Non-Patent Document 9), Candida castellii, Kazachstania spencerorum, Levodione reductase from Kluyveromyces matrixianus (Non-Patent Document 10), Old Yellow Enzyme from Saccharomyces carlsbergensis (Non-Patent Document) 11) It is known that YqjM derived from Bacillus subtilis (Non-Patent Document 12) stereoselectively reduces a 5-membered or 6-membered enone. Morphinone reductase derived from Pseudomonas putida M10 (Non-patent document 13) and progesterone 5α-reductase derived from Digitalis purpurea (Non-patent document 14) are known to reduce enones of polycyclic compounds.

Tetrahedron Lett.,23巻, 477〜480ページ(1981年)Tetrahedron Lett., 23, pp. 477-480 (1981) Synlett, 443〜444ページ (1995年)Synlett, 443-444 (1995) Synlett, 96〜98ページ (1999年)Synlett, pp. 96-98 (1999) J. Org. Chem., 37巻, 1542〜1545ページ (1972年)J. Org. Chem., 37, 1542-1545 (1972) J. Am. Chem. Soc., 121巻, 9473〜9474ページ (1999年)J. Am. Chem. Soc., 121, 9473-9947 (1999) J. Am. Chem. Soc., 126巻, 8352〜8353ページ (2004年)J. Am. Chem. Soc., 126, 8352-8353 (2004) Org. Lett., 6巻, 1273〜1275ページ (2004年)Org. Lett., Vol. 6, pp. 1273-1275 (2004) J. Am. Chem. Soc., 128巻, 13368〜13369ページ (2006年)J. Am. Chem. Soc., Vol. 128, pp. 13368-13369 (2006) Tetrahedron: Asymmetry, 15巻, 2443〜2446 ページ (2004 年)Tetrahedron: Asymmetry, 15 (2443-2446) (2004) J. Biotechnol., 156巻, 279〜285 ページ (2011 年)J. Biotechnol., 156, 279-285 (2011) J. Mol. Catal. B: Enzyme, 4 2巻, 52〜54 ページ (2006 年)J. Mol. Catal. B: Enzyme, 42, 52-54 (2006) Adv. Synth. Catal., 351巻, 3287〜3305 ページ (2009 年)Adv. Synth. Catal., Volume 351, pp. 3287-3305 (2009) Biochem. J., 301巻, 97〜103 ページ (1994 年)Biochem. J., 301, 97-103 (1994) J. Plant. Physiol., 141巻, 269〜275 ページ (1993 年)J. Plant. Physiol., 141, 269-275 (1993)

上述したように、環状エノンの炭素−炭素2重結合を還元する酵素は知られている。しかしか、5員環エノンや6員環エノンなどの小員環エノンと、一部の多環式化合物を基質とするもので、例えば、7員環以上の単環の大環状エノンを還元し得る酵素は知られていない。そのため、大環状エノンの炭素−炭素2重結合の還元は化学的な方法に限られていた。   As mentioned above, enzymes that reduce the carbon-carbon double bond of cyclic enones are known. However, a small-membered enone such as a five-membered or six-membered ring enone and some polycyclic compounds are used as substrates. The enzyme obtained is not known. Therefore, reduction of the carbon-carbon double bond of the macrocyclic enone has been limited to a chemical method.

しかし、化学的な方法によるエノンの還元方法は、嫌気条件や非水条件などの厳密な反応条件を必要とするなどの欠点がある。   However, the enone reduction method by a chemical method has drawbacks such as requiring strict reaction conditions such as anaerobic conditions and non-aqueous conditions.

そこで本発明は、7員環以上の単環の大環状エノンであっても還元可能な、新規な環状エノン還元酵素を提供すること、及びこの環状エノン還元酵素を用いて、7員環以上の単環の大環状エノンを含む環状エノンの炭素−炭素2重結合を還元して、環状ケトンを製造する方法を提供することを目的とする。   Therefore, the present invention provides a novel cyclic enone reductase capable of reducing even a 7-membered or more monocyclic macrocyclic enone, and using this cyclic enone reductase, It is an object of the present invention to provide a method for producing a cyclic ketone by reducing a carbon-carbon double bond of a cyclic enone including a monocyclic macrocyclic enone.

本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、ヤロウィア・リポリティカ(Yarrowia lipolytica) NBRC 0746由来の新規な環状エノン還元酵素が、5員環エノンや6員環エノンなどの小環状エノンのみならず、7員環以上の大環状エノンの炭素−炭素2重結合を還元し得ることを発見し、さらに、ヤロウィア・リポリティカ NBRC 0746の菌体、酵素、形質転換体およびその菌体処理物を用いて、穏和な条件下で大環状エノンを還元すると大環状ケトンを生成することができることを見出して、本発明を完成した。   The present inventors have conducted intensive studies to solve the above problems. As a result, the novel cyclic enone reductase derived from Yarrowia lipolytica NBRC 0746 is not only capable of forming carbon atoms of macrocyclic enones having seven or more ring members, but also small cyclic enones such as five-membered and six-membered enones. -It was discovered that the carbon double bond could be reduced, and the macrocyclic enone was reduced under mild conditions using the cells, enzymes, transformants and processed cells of Yarrowia lipolytica NBRC 0746. Then, they found that a macrocyclic ketone could be produced, and completed the present invention.

以下、本発明を示す。
[1]
(A)〜(H)に示す性質を有する環状エノン還元酵素。
(A)NADPHを電子供与体として環状エノンの炭素−炭素2重結合を還元し、対応する環状ケトンを生成する。
(B)分子量 ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(以下、SDS−PAGEと略す)により約45,000。ゲル濾過により約40,000。
(C)至適pH pH4.5−8.5。
(D)至適温度 35−50℃。
(E)温度安定性 5−40℃。
(F)pH安定性 pH3.5−10.0。
(G)阻害剤 硝酸亜鉛 塩化水銀、硝酸銀。
(H)補欠分子族 フラビンモノヌクレオチド(FMN)。
[2]
前記(A)における環状エノンはシクロへキセノン、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状エノンである[1]に記載の環状エノン還元酵素。
[3]
ヤロウィア・リポリティカ(Yarrowia lipolytica) NBRC 0746由来である[1]又は[2]に記載の環状エノン還元酵素。
[4]
(a1)下記(1)〜(3)の何れかのアミノ酸配列を有し、かつ(a2)環状エノン還元活性を有する、タンパク質。
(1)配列表の配列番号2に記載のアミノ酸配列;
(2)配列表の配列番号2に記載のアミノ酸配列において1から50個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列;又は
(3)配列表の配列番号2に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列
[5]
前記環状エノン還元活性は、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状エノンの還元活性である[4]に記載のタンパク質。
[6]
前記シクロへキセノンの還元活性は、以下の測定法により測定される[5]に記載のタンパク質。
測定法: 100 mM リン酸カリウム緩衝液(pH 7.0)、0.2 mM NADPH、20 mM シクロへキセノン及び前記タンパク質を含む反応液中30℃で反応させ、NADPHの減少にともなう340 nmの吸光度の減少を測定する。
[7]
[4]に記載のタンパク質をコードする遺伝子又は下記の(4)〜(6)の何れかの塩基配列を有する遺伝子。
(4)配列表の配列番号1に記載の塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列;
(5)配列表の配列番号1に記載の塩基配列において1から50個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列;又は
(6)配列表の配列番号1に記載の塩基配列とストリンジェントな条件下でハイブリダイスする塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列。
[8]
前記環状エノン還元活性は、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状エノンの還元活性である[7]に記載の遺伝子。
[9]
前記シクロへキセノンの還元活性は、以下の測定法により測定される[8]に記載の遺伝子。
測定法: 100 mM リン酸カリウム緩衝液(pH 7.0)、0.2 mM NADPH、20 mM シクロへキセノン及び前記タンパク質を含む反応液中30℃で反応させ、NADPHの減少にともなう340 nmの吸光度の減少を測定する。
[10]
[7]〜[9]のいずれかに記載の遺伝子をベクター中に含むプラスミド。
[11]
宿主生物中に、[10]に記載のプラスミドを前記遺伝子がコードする環状エノン還元酵素を発現可能に含む、形質転換体。
[12]
[1]〜[6]のいずれか1項に記載の酵素又はタンパク質、[11]に記載の形質転換体およびその菌体処理物からなる群から選択されるいずれかの酵素源を、環構造の炭素数が5〜20個の環状エノンに作用させて、前記環状エノンの炭素−炭素2重結合の還元生成物である環状ケトンを得る工程を含む、環状ケトンの製造方法。
[13]
前記環状エノンが、下式(1)で示される化合物である[12]に記載の製造方法。
式(1):
(式中、nは1〜15の整数であり、Rは水素原子又は炭素数1〜6個のアルキル基である。)
[14]
前記環状エノンが、式(1)のnが7〜10の12員環エノン〜15員環エノンである[13]に記載の製造方法。
[15]
前記式(1)の環状エノンが、3-メチル−2−シクロへキセノンであり、
3-メチル−2−シクロへキセノンの炭素−炭素2重結合を立体選択的に還元して、
環状ケトンとして、(S)-3-メチル−シクロへキサノンを得る、[12]に記載の製造方法。
Hereinafter, the present invention will be described.
[1]
A cyclic enone reductase having the properties shown in (A) to (H).
(A) Reduction of a carbon-carbon double bond of a cyclic enone using NADPH as an electron donor to produce a corresponding cyclic ketone.
(B) Molecular weight Approximately 45,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (hereinafter abbreviated as SDS-PAGE). About 40,000 by gel filtration.
(C) Optimum pH pH 4.5-8.5.
(D) optimal temperature 35-50 ° C.
(E) Temperature stability 5-40 ° C.
(F) pH stability pH 3.5-10.0.
(G) Inhibitor Zinc nitrate Mercury chloride, silver nitrate.
(H) Prosthetic group Flavin mononucleotide (FMN).
[2]
The cyclic enone reductase according to [1], wherein the cyclic enone in (A) is at least one type of cyclic enone selected from the group consisting of cyclohexenone, cyclododesenone, and cyclopentadecenone.
[3]
The cyclic enone reductase according to [1] or [2], which is derived from Yarrowia lipolytica NBRC 0746.
[4]
(A1) a protein having any one of the following amino acid sequences (1) to (3), and (a2) having a cyclic enone reducing activity:
(1) the amino acid sequence of SEQ ID NO: 2 in the sequence listing;
(2) an amino acid sequence having a deletion, substitution and / or addition of 1 to 50 amino acids in the amino acid sequence of SEQ ID NO: 2 in the sequence listing; or (3) an amino acid sequence of SEQ ID NO: 2 in the sequence listing Amino acid sequence having 90% or more identity to [5]
The protein according to [4], wherein the cyclic enone reducing activity is a reducing activity of at least one type of cyclic enone selected from the group consisting of cyclohexenone, cyclododesenone, and cyclopentadecenone.
[6]
The protein according to [5], wherein the reduction activity of the cyclohexenone is measured by the following measurement method.
Assay: Reaction at 30 ° C in a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 0.2 mM NADPH, 20 mM cyclohexenone and the above protein, and decrease in absorbance at 340 nm due to decrease in NADPH. Measure.
[7]
A gene encoding the protein of [4] or a gene having any one of the following nucleotide sequences (4) to (6).
(4) a nucleotide sequence having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing and encoding a protein having cyclic enone reducing activity;
(5) a base sequence having a base sequence having deletion, substitution and / or addition of 1 to 50 bases in the base sequence set forth in SEQ ID NO: 1 in the sequence listing, and encoding a protein having cyclic enone reducing activity; Or (6) a nucleotide sequence having a nucleotide sequence that hybridizes under stringent conditions with the nucleotide sequence of SEQ ID NO: 1 in the sequence listing, and encoding a protein having cyclic enone reducing activity.
[8]
The gene according to [7], wherein the cyclic enone reducing activity is a reducing activity of at least one type of cyclic enone selected from the group consisting of cyclohexenone, cyclododesenone, and cyclopentadecenone.
[9]
The gene according to [8], wherein the cyclohexenone reducing activity is measured by the following measurement method.
Assay: Reaction at 30 ° C in a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 0.2 mM NADPH, 20 mM cyclohexenone and the above protein, and decrease in absorbance at 340 nm due to decrease in NADPH. Measure.
[10]
A plasmid comprising the gene according to any one of [7] to [9] in a vector.
[11]
A transformant comprising, in a host organism, the plasmid of [10] such that the cyclic enone reductase encoded by the gene can be expressed.
[12]
The enzyme or protein according to any one of [1] to [6], the transformant according to [11], and any enzyme source selected from the group consisting of processed cells thereof, A process for producing a cyclic ketone, which is a reduction product of a carbon-carbon double bond of the cyclic enone, by acting on a cyclic enone having 5 to 20 carbon atoms.
[13]
The production method according to [12], wherein the cyclic enone is a compound represented by the following formula (1).
Equation (1):
(In the formula, n is an integer of 1 to 15, and R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
[14]
The production method according to [13], wherein the cyclic enone is a 12-membered ring enone to a 15-membered ring enone wherein n in the formula (1) is 7 to 10.
[15]
The cyclic enone of the formula (1) is 3-methyl-2-cyclohexenone,
Stereoselectively reducing the carbon-carbon double bond of 3-methyl-2-cyclohexenone,
The production method according to [12], wherein (S) -3-methyl-cyclohexanone is obtained as a cyclic ketone.

本発明によれば、5員環エノンや6員環エノンなどの小環状エノンのみならず、7員環以上の大環状エノンの炭素−炭素2重結合をも還元することができる環状エノン還元酵素を提供することができる。この環状エノン還元酵素は、ヤロウィア・リポリティカ(Yarrowia lipolytica) NBRC 0746に由来する物であることができ、この菌体、環状エノン還元酵素、環状エノン還元酵素の遺伝子を含む形質転換体、並びに前記菌体及び形質転換体の菌体処理物を用いることで、穏和な条件で、5員環エノンや6員環エノンなどの小環状エノンのみならず、7員環以上の大環状エノンを還元する方法を提供することもできる。   According to the present invention, a cyclic enone reductase capable of reducing not only a small cyclic enone such as a 5-membered ring enone or a 6-membered ring enone but also a carbon-carbon double bond of a macrocyclic enone having 7 or more ring members Can be provided. This cyclic enone reductase can be derived from Yarrowia lipolytica (Yarrowia lipolytica) NBRC 0746, and the cells, the cyclic enone reductase, a transformant containing the gene for cyclic enone reductase, and the bacterium described above. Method for reducing not only small cyclic enones such as 5-membered enones and 6-membered ring enones but also macrocyclic enones having a 7-membered ring or more under mild conditions by using the treated cells of transformants and transformants Can also be provided.

図1は、SDS-PAGEにおけるパターンを示す写真である。レーン1は分子量マーカー、レーン2、レーン3は実施例1で得られた酵素を示す。FIG. 1 is a photograph showing a pattern in SDS-PAGE. Lane 1 shows the molecular weight marker, and lanes 2 and 3 show the enzyme obtained in Example 1. 図2は、実施例1で得られた酵素の至適pHを示す図である。FIG. 2 is a diagram showing the optimum pH of the enzyme obtained in Example 1. 図3は、実施例1で得られた酵素の至適温度を示す図である。FIG. 3 is a diagram showing the optimum temperature of the enzyme obtained in Example 1. 図4は、実施例1で得られた酵素の温度安定性を示す図である。FIG. 4 is a diagram showing the temperature stability of the enzyme obtained in Example 1. 図5は、実施例1で得られた酵素のpH安定性を示す図である。FIG. 5 is a diagram showing the pH stability of the enzyme obtained in Example 1. 図6は、実施例1で得られた酵素の紫外可視吸収スペクトルである。FIG. 6 is an ultraviolet-visible absorption spectrum of the enzyme obtained in Example 1. 図7は、FAD、FMN標準品と実施例1で得られた酵素のHPLCクロマトグラムである。FIG. 7 is an HPLC chromatogram of the FAD and FMN standard products and the enzyme obtained in Example 1. 図8は、実施例1で得られた酵素とシクロへキセノンの酵素反応を行った場合の反応液とシクロヘキサノン標準品のGC/MSクロマトグラムである。FIG. 8 is a GC / MS chromatogram of a reaction solution and a cyclohexanone standard product when an enzyme reaction of the enzyme obtained in Example 1 with cyclohexenone was performed. 図9は、実施例1で得られた酵素と3-メチルシクロへキセノンの酵素反応を行った場合の反応液と3-メチルシクロヘキサノン標準品のGC/MSクロマトグラムである。FIG. 9 is a GC / MS chromatogram of a reaction solution and a 3-methylcyclohexanone standard product when an enzyme reaction between the enzyme obtained in Example 1 and 3-methylcyclohexenone was performed. 図10は、実施例1で得られた酵素と3-メチルシクロへキセノンの酵素反応を行った場合の反応液と(R/S)-3-メチルシクロヘキサノン標準品のGC/MSクロマトグラムである。FIG. 10 is a GC / MS chromatogram of a reaction solution and an (R / S) -3-methylcyclohexanone standard product when an enzyme reaction between the enzyme obtained in Example 1 and 3-methylcyclohexenone was performed. 図11は、実施例1で得られた酵素とシクロドデセノンの酵素反応を行った場合の反応液とシクロドデカノン標準品のGC/MSクロマトグラムである。FIG. 11 is a GC / MS chromatogram of a reaction solution and a cyclododecanone standard product when an enzyme reaction between the enzyme obtained in Example 1 and cyclododecenone was performed. 図12は、実施例1で得られた酵素とシクロペンタデセノンの酵素反応を行った場合の反応液とシクロペンタデカノン標準品のGC/MSクロマトグラムである。FIG. 12 is a GC / MS chromatogram of a reaction solution and a cyclopentadecanone standard product obtained when an enzyme reaction of the enzyme obtained in Example 1 with cyclopentadecenone was performed. 図13は、環状エノン還元酵素遺伝子の塩基配列(配列番号1)である。FIG. 13 shows the nucleotide sequence of the cyclic enone reductase gene (SEQ ID NO: 1). 図14は、環状エノン還元酵素のアミノ酸配列(配列番号2)である。FIG. 14 shows the amino acid sequence of the cyclic enone reductase (SEQ ID NO: 2).

以下、本発明を以下に説明する。   Hereinafter, the present invention will be described below.

1.環状エノン還元酵素
本発明は、(A)〜(H)に示す性質を有する環状エノン還元酵素を包含する。
(A)NADPHを電子供与体として環状エノンの炭素−炭素2重結合を還元し、対応する環状ケトンを生成する。
(A)における環状エノンは、例えば、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状ケトンである。本発明の環状エノン還元酵素が、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンの炭素−炭素2重結合を還元して、対応する環状ケトンを生成することは実施例において具体的に示されている。
1. Cyclic Enone Reductase The present invention includes a cyclic enone reductase having the properties shown in (A) to (H).
(A) Reduction of a carbon-carbon double bond of a cyclic enone using NADPH as an electron donor to produce a corresponding cyclic ketone.
The cyclic enone in (A) is, for example, at least one type of cyclic ketone selected from the group consisting of cyclohexenone, cyclododesenone, and cyclopentadecenone. It is specifically shown in the examples that the cyclic enone reductase of the present invention reduces the carbon-carbon double bond of cyclohexenone, cyclododesenone and cyclopentadecenone to produce the corresponding cyclic ketone. .

下記(B)〜(H)は、具体的には、実施例に記載されている。
(B)分子量 ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS−PAGE)により約45,000。ゲル濾過により約40,000。
(C)至適pH pH4.5−8.5。
(D)至適温度 35−50℃。
(E)温度安定性 5−40℃。
(F)pH安定性 pH3.5−10.0。
(G)阻害剤 硝酸亜鉛 塩化水銀、硝酸銀。
(H)補欠分子族 フラビンモノヌクレオチド(FMN)。
The following (B) to (H) are specifically described in Examples.
(B) Molecular weight Approximately 45,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). About 40,000 by gel filtration.
(C) Optimum pH pH 4.5-8.5.
(D) optimal temperature 35-50 ° C.
(E) Temperature stability 5-40 ° C.
(F) pH stability pH 3.5-10.0.
(G) Inhibitor Zinc nitrate Mercury chloride, silver nitrate.
(H) Prosthetic group Flavin mononucleotide (FMN).

2.本発明の酵素の製造
本発明の環状エノン還元酵素は、本発明の環状エノン還元酵素を産生する微生物であるヤロウィア・リポリティカ(Yarrowia lipolytica) NBRC 0746を培養し、培養物から通常の蛋白質の精製方法により、精製して調製することができる。ヤロウィア・リポリティカ NBRC 0746は、入手または購入が容易な保存株から得ることができる。例えば、以下のカルチャーコレクションより入手可能である。独立行政法人製品評価技術基盤機構バイオテクノロジー本部 生物遺伝資源部門(NBRC)(〒292-0818 千葉県木更津市かずさ鎌足2-5-8)。
2. Production of the Enzyme of the Present Invention The cyclic enone reductase of the present invention is obtained by culturing Yarrowia lipolytica NBRC 0746, which is a microorganism producing the cyclic enone reductase of the present invention, and then purifying a normal protein from the culture. Can be purified and prepared. Yarrowia lipolytica NBRC 0746 can be obtained from a stock that is easily obtained or purchased. For example, it is available from the following culture collection: Genetic Resource Division (NBRC), Biotechnology Division, National Institute of Technology and Evaluation (2-5-8 Kazusa Kamatari, Kisarazu-shi, Chiba 292-0818, Japan).

上記微生物は、YPD培地等の一般的な培地で培養される。また、目的の環状エノン還元酵素を誘導させるために、各種エノン化合物を培地に添加すると優れた結果が得られるため、好ましい。例えば、シクロへキセノンを0.01〜0.1%(W/V)培地に添加する。微生物の培養は、一般的な条件により行なうことができる。例えば、pH4.0〜9.5、温度範囲20℃〜37℃の範囲で、好気的に24〜72時間培養するのが好ましい。   The microorganism is cultured in a general medium such as a YPD medium. In addition, it is preferable to add various enone compounds to the medium in order to induce the desired cyclic enone reductase, since excellent results can be obtained. For example, cyclohexenone is added to a 0.01-0.1% (W / V) medium. Culture of the microorganism can be performed under general conditions. For example, it is preferable to culture aerobically for 24 to 72 hours at a pH of 4.0 to 9.5 and a temperature range of 20 to 37 ° C.

十分に増殖させた後に菌体を回収し、緩衝液中で破砕して無細胞抽出液とする。無細胞抽出液から、培養物からの蛋白質の精製は、例えば、菌体を破砕後、陰イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲルろ過などを組み合わせることにより行うことができる。より具体的には、蛋白質の溶解度による分画(硫安などによる塩析など)や、陽イオン交換、陰イオン交換、ゲルろ過、疎水性クロマトグラフィーや、アフィニティークロマトグラフィーなどを適宜組み合わせることにより精製することができる。たとえば、Q Sepharoseを用いた陽イオン交換クロマトグラフィー、Toyopearl Butyl カラムを用いた疎水性クロマトグラフィー、MonoQを用いた陰イオン交換クロマトグラフィー、RESOURCE PHEを用いた疎水クロマトグラフィー、HiTrap Qを用いた陰イオン交換クロマトグラフィー、Superdexを用いたゲルろ過等を経て電気泳動的にほぼ単一バンドにまで精製することができる。   After sufficient growth, the cells are collected and crushed in a buffer to obtain a cell-free extract. Purification of the protein from the culture from the cell-free extract can be carried out, for example, by disrupting the cells and combining anion exchange chromatography, hydrophobic chromatography, gel filtration and the like. More specifically, purification is performed by appropriately combining fractionation based on protein solubility (such as salting out with ammonium sulfate, etc.), cation exchange, anion exchange, gel filtration, hydrophobic chromatography, and affinity chromatography. be able to. For example, cation exchange chromatography using Q Sepharose, hydrophobic chromatography using Toyopearl Butyl column, anion exchange chromatography using MonoQ, hydrophobic chromatography using RESOURCE PHE, anion using HiTrap Q It can be purified electrophoretically to almost a single band through exchange chromatography, gel filtration using Superdex, and the like.

本発明の環状エノン還元酵素の環状エノンに対する還元活性は、次のようにして確認することができる。
還元活性測定法: 100 mM リン酸カリウム緩衝液(pH 7.0)、0.2 mM NADPH、20 mM シクロへキセノン及び酵素を含む反応液中30℃で反応させ、NADPHの減少にともなう340 nmの吸光度の減少を測定する。1 Uは、1分間に1μmolのNADPHの減少を触媒する酵素量とした。また、蛋白質の定量は、バイオラッド製蛋白質アッセイキットを用いた色素結合法により行うことができる。
The activity of the cyclic enone reductase of the present invention for reducing cyclic enone can be confirmed as follows.
Reduction activity measurement method: Reaction in a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 0.2 mM NADPH, 20 mM cyclohexenone and enzyme at 30 ° C. Decrease in absorbance at 340 nm due to decrease in NADPH Is measured. 1 U was the amount of enzyme that catalyzes the reduction of 1 μmol of NADPH per minute. The protein can be quantified by a dye binding method using a protein assay kit manufactured by Bio-Rad.

上記環状エノンに対する還元活性は、シクロへキセノンに対する還元活性であるが、シクロへキセノン以外の環状エノンに対する還元活性も、シクロへキセノンに代えて還元活性を測定したい環状エノンを用いることでほぼ同様の方法で測定できる。シクロへキセノン以外の環状エノンは、例えば、7員環以上の単環の大環状エノンである、シクロドデセノン又はシクロペンタデセノンであることができる。シクロドデセノン及びシクロペンタデセノンに対する還元活性の測定方法を以下に例示する。3.0 mM シクロドデセノン又はシクロペンタデセノン、酵素 3.4 U (シクロへキセノンに対して)、100 mM リン酸カリウム緩衝液(pH 7.0)、20 mM NADPH、10 mMグルタミン酸、及びグルタミン酸デヒドロゲナーゼ 2 Uを含む反応液1 mLで30℃で24時間反応させ、反応液を酢酸エチルで抽出し、分析条件1でGC/MS分析を行う。標準物質との面積比からシクロドデカノン又はシクロペンタデカノンの生産量を求めることができる。グルタミン酸及びグルタミン酸デヒドロゲナーゼは、後述するように、NADP+をNADPH還元するための系である。 The reduction activity for the cyclic enone is a reduction activity for cyclohexenone, but the reduction activity for a cyclic enone other than cyclohexenone is almost the same by using a cyclic enone whose reduction activity is to be measured instead of cyclohexenone. Can be measured by the method. The cyclic enone other than cyclohexenone can be, for example, cyclododecenone or cyclopentadecenone, which is a monocyclic macrocyclic enone having 7 or more membered rings. A method for measuring the reduction activity for cyclododesenone and cyclopentadecenone is described below. Reaction solution containing 3.0 mM cyclododesenone or cyclopentadecenone, 3.4 U enzyme (relative to cyclohexenone), 100 mM potassium phosphate buffer (pH 7.0), 20 mM NADPH, 10 mM glutamate, and 2 U glutamate dehydrogenase The reaction is carried out at 30 ° C. for 24 hours with 1 mL, and the reaction solution is extracted with ethyl acetate, and subjected to GC / MS analysis under analysis condition 1. The production amount of cyclododecanone or cyclopentadecanone can be determined from the area ratio with the standard substance. Glutamate and glutamate dehydrogenase are systems for reducing NADP + to NADPH, as described below.

3.本発明のタンパク質
本発明は、(a1)下記(1)〜(3)の何れかのアミノ酸配列を有し、かつ(a2)環状エノン還元活性を有する、タンパク質を包含する。
(1)配列表の配列番号2に記載のアミノ酸配列;
(2)配列表の配列番号2に記載のアミノ酸配列において1から50個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列;又は
(3)配列表の配列番号2に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列
3. The protein of the present invention The present invention includes (a1) a protein having any one of the following amino acid sequences (1) to (3) and (a2) having a cyclic enone reducing activity.
(1) the amino acid sequence of SEQ ID NO: 2 in the sequence listing;
(2) an amino acid sequence having a deletion, substitution and / or addition of 1 to 50 amino acids in the amino acid sequence of SEQ ID NO: 2 in the sequence listing; or (3) an amino acid sequence of SEQ ID NO: 2 in the sequence listing Amino acid sequence having at least 90% identity to

本発明の環状エノン還元活性を有するタンパク質の(a2)の環状エノン還元活性は、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状ケトンの還元活性であることができ、好ましくは、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンに対する還元活性である。特に、本発明の環状エノン還元活性を有するタンパク質は、7員環以上の単環の大環状エノンである、シクロドデセノン及び/又はシクロペンタデセノンに対する還元活性を有するタンパク質であることで、従来知られている環状エノン還元酵素と明確に異なる酵素である。環状エノン還元活性、即ち、環状エノンに対する還元活性は、前述1.の本発明の酵素について説明した測定方法で測定することができる。   The cyclic enone reducing activity (a2) of the protein having cyclic enone reducing activity of the present invention may be at least one cyclic ketone selected from the group consisting of cyclohexenone, cyclododesenone and cyclopentadecenone. And preferably reduction activity on cyclohexenone, cyclododesenone and cyclopentadecenone. In particular, the protein having a cyclic enone reducing activity of the present invention is conventionally known to be a protein having a reducing activity for cyclododesenone and / or cyclopentadecenone, which is a monocyclic macroenone having 7 or more membered rings. It is an enzyme that is distinctly different from the existing cyclic enone reductase. The cyclic enone reducing activity, that is, the reducing activity for cyclic enone, is as described in 1. above. Can be measured by the measurement method described for the enzyme of the present invention.

本発明のタンパク質の(1)における、配列表の配列番号2に記載のアミノ酸配列は、ヤロウィア・リポリティカ(Yarrowia lipolytica) NBRC 0746から単離された環状エノン還元活性を有する、タンパク質(環状エノン還元酵素)のアミノ酸配列である。実施例10にアミノ酸配列決定については詳述する。   The amino acid sequence described in SEQ ID NO: 2 in the sequence listing in (1) of the protein of the present invention is a protein (cyclic enone reductase) having a cyclic enone reducing activity isolated from Yarrowia lipolytica NBRC 0746. ) Is the amino acid sequence. Example 10 details the amino acid sequencing.

本発明のタンパク質の(2)は、配列表の配列番号2に記載のアミノ酸配列において1から50個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有するタンパク質である。ここで言う「1から50個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列」における「1から50個」の範囲は、欠失等を有するタンパク質が、前記(2a)の環状エノン還元活性を有する酵素であることを意味する。前記「1から50個」の範囲は、前記環状エノン還元活性を有するタンパク質である割合が高いという観点から、例えば、1から40個、好ましくは1から30個、より好ましくは1から20個、さらに好ましくは1から10個、一層好ましくは1から7個、さらに一層好ましくは1から5個、特に好ましくは1から3個程度であることができる。   The protein (2) of the present invention is a protein having an amino acid sequence having a deletion, substitution and / or addition of 1 to 50 amino acids in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. The range of "1 to 50" in the "amino acid sequence having deletion, substitution and / or addition of 1 to 50 amino acids" as used herein means that the protein having the deletion or the like is the cyclic enone of the above (2a). It means that the enzyme has a reducing activity. The range of “1 to 50” is, for example, 1 to 40, preferably 1 to 30, more preferably 1 to 20, from the viewpoint that the ratio of the protein having the cyclic enone reducing activity is high. It is more preferably about 1 to 10, more preferably about 1 to 7, even more preferably about 1 to 5, particularly preferably about 1 to 3.

本発明のタンパク質の(3)は、配列表の配列番号2に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有するタンパク質である。ここで言う「配列表の配列番号2に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列」における同一性は、前記アミノ酸配列の同一性を有するタンパク質が、前記(2a)の環状エノン還元活性を有する酵素である限り、特に限定されない。前記アミノ酸配列の同一性は、90%以上であれば特に限定されないが、好ましくは95%以上、さらに好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは98%、特に好ましくは99%以上である。   The protein (3) of the present invention is a protein having an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. Here, the identity in the “amino acid sequence having 90% or more identity to the amino acid sequence described in SEQ ID NO: 2 in the sequence listing” means that the protein having the amino acid sequence identity is the same as the above (2a). There is no particular limitation as long as the enzyme has cyclic enone reducing activity. The identity of the amino acid sequence is not particularly limited as long as it is 90% or more, but is preferably 95% or more, more preferably 96% or more, further preferably 97% or more, further preferably 98%, and particularly preferably 99%. That is all.

本発明の環状エノン還元活性を有するタンパク質の取得方法は特に制限されず、化学合成により合成したタンパク質でもよいし、遺伝子組換え技術により作製した組換えタンパク質でもよい。組換えタンパク質を作製する場合には、後述するように当該タンパク質をコードする遺伝子(DNA)を取得する。このDNAを適当な発現系に導入することにより、上記環状エノン還元酵素を産生することができる。   The method for obtaining the protein having a cyclic enone reducing activity of the present invention is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by a gene recombination technique. When producing a recombinant protein, a gene (DNA) encoding the protein is obtained as described below. By introducing this DNA into an appropriate expression system, the above-mentioned cyclic enone reductase can be produced.

本発明の環状エノン還元活性を有するタンパク質は、上記タンパク質をコードする遺伝子をベクター上に搭載し、このベクターによって宿主細胞を形質転換した後、形質転換させた宿主細胞を培養して培養物中に前記遺伝子がコードするタンパク質を蓄積し、蓄積したタンパク質を収集することを含む、生産方法により調製することができる。上記タンパク質をコードする遺伝子の取得方法は、特に限定されないが、4.において後述する。本発明のタンパク質の調製方法は、5.プラスミド及び形質転換体の項で後述する。   The protein having a cyclic enone reducing activity of the present invention is obtained by mounting a gene encoding the protein on a vector, transforming a host cell with this vector, and culturing the transformed host cell into a culture. The protein can be prepared by a production method including accumulating a protein encoded by the gene and collecting the accumulated protein. The method for obtaining the gene encoding the protein is not particularly limited, but is described in item 4. Will be described later. The method for preparing the protein of the present invention comprises: This will be described later in the section on plasmids and transformants.

4.遺伝子
本発明は、上記3.で説明したタンパク質をコードする遺伝子又は下記の(4)〜(6)の何れかの塩基配列を有する遺伝子を包含する。
(4)配列表の配列番号1に記載の塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列;
(5)配列表の配列番号1に記載の塩基配列において1から50個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列;又は
(6)配列表の配列番号1に記載の塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列。
4. Gene The present invention relates to the aforementioned 3. Or a gene having the nucleotide sequence of any of the following (4) to (6).
(4) a nucleotide sequence having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing and encoding a protein having cyclic enone reducing activity;
(5) a base sequence having a base sequence having deletion, substitution and / or addition of 1 to 50 bases in the base sequence set forth in SEQ ID NO: 1 in the sequence listing, and encoding a protein having cyclic enone reducing activity; Or (6) a nucleotide sequence having a nucleotide sequence that hybridizes under stringent conditions with the nucleotide sequence of SEQ ID NO: 1 in the sequence listing, and encoding a protein having cyclic enone reducing activity.

本発明の遺伝子において、「環状エノン還元活性を有するタンパク質」における「環状エノン還元活性」とは、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状ケトンの還元活性であることができ、好ましくは、シクロへキセノン、シクロドデセノン及びシクロペンタデセノンに対する還元活性である。特に、本発明の環状エノン還元活性を有するタンパク質は、7員環以上の単環の大環状エノンである、シクロドデセノン及び/又はシクロペンタデセノンに対する還元活性を有するタンパク質であることで、従来知られている環状エノン還元酵素と明確に異なる酵素である。環状エノン還元活性、即ち、環状エノンに対する還元活性は、前述1.の本発明の酵素について説明した測定方法で測定することができる。   In the gene of the present invention, the “cyclic enone reducing activity” in the “protein having a cyclic enone reducing activity” refers to a reducing activity of at least one cyclic ketone selected from the group consisting of cyclohexenone, cyclododesenone, and cyclopentadecenone. And preferably a reducing activity for cyclohexenone, cyclododesenone and cyclopentadecenone. In particular, the protein having a cyclic enone reducing activity of the present invention is conventionally known to be a protein having a reducing activity for cyclododesenone and / or cyclopentadecenone, which is a monocyclic macroenone having 7 or more membered rings. It is an enzyme that is distinctly different from the existing cyclic enone reductase. The cyclic enone reducing activity, that is, the reducing activity for cyclic enone, is as described in 1. above. Can be measured by the measurement method described for the enzyme of the present invention.

本明細書で言う「1から50個の塩基の欠失、置換及び/又は付加を有する塩基配列」における「1から50個」の範囲は特には限定されないが、例えば、好ましくは1から40個、より好ましくは1から30個、より好ましくは1から20個、より好ましくは1から10個、さらに好ましくは1から5個、特に好ましくは1から3個程度を意味する。   The range of "1 to 50" in the "base sequence having deletion, substitution and / or addition of 1 to 50 bases" as used herein is not particularly limited, but is preferably, for example, 1 to 40. , More preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, even more preferably 1 to 5, particularly preferably about 1 to 3.

配列表の配列番号2に記載のアミノ酸配列において1から50個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、環状エノン還元活性を有するタンパク質をコードする遺伝子;並びに配列表の配列番号1に記載の塩基配列において1から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、環状エノン還元活性を有少なくともタンパク質をコードする塩基配列を有する遺伝子(以下、これらの遺伝子を変異遺伝子と称する)については、配列番号1及び2に記載の塩基配列及びアミノ酸配列の情報に基づいて、化学合成、遺伝子工学的手法又は突然変異誘発などの当業者に既知の任意の方法で作製することができる。   A gene encoding a protein having an amino acid sequence having a deletion, substitution and / or addition of 1 to 50 amino acids in the amino acid sequence set forth in SEQ ID NO: 2 of the sequence listing and having a cyclic enone reducing activity; and A gene having a base sequence having deletion, substitution and / or addition of one to several bases in the base sequence of SEQ ID NO: 1 and having a base sequence encoding at least a protein having cyclic enone reducing activity ( Hereinafter, these genes will be referred to as mutant genes), which are known to those skilled in the art of chemical synthesis, genetic engineering techniques, mutagenesis, etc., based on the information on the nucleotide sequence and amino acid sequence described in SEQ ID NOS: 1 and 2. Can be produced by any method.

例えば、配列表の配列番号1に記載の塩基配列を有するDNAに対し、変異原となる薬剤と接触作用させる方法、紫外線を照射する方法、遺伝子工学的手法等を用いて調製することができる。遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であることから有用であり、モレキュラークローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載の方法に準じて行うことができる。   For example, it can be prepared using a method in which a DNA having the base sequence of SEQ ID NO: 1 in the sequence listing is brought into contact with a drug as a mutagen, a method of irradiating ultraviolet rays, a genetic engineering technique or the like. Site-directed mutagenesis, which is one of the genetic engineering techniques, is useful because it is a technique that can introduce a specific mutation at a specific position. Molecular cloning, 2nd edition, Current Protocols in Molecular Co., Ltd. It can be performed according to the method described in biology and the like.

上記した「ストリンジェントな条件下でハイブリダイズする」とは、DNAをプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAの塩基配列を意味し、例えば、コロニーあるいはプラーク由来のDNA又は該DNAの断片を固定化したフィルターを用いて、0.7〜1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1〜2×SSC溶液(1×SSC溶液は、150mM塩化ナトリウム、15mMクエン酸ナトリウム)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNA等を挙げることができる。ハイブリダイゼーションは、モレキュラークローニング第2版等に記載されている方法に準じて行うことができる。   The above "hybridize under stringent conditions" refers to the nucleotide sequence of DNA obtained by using colony hybridization, plaque hybridization, or Southern blot hybridization using DNA as a probe. For example, after performing hybridization at 65 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA derived from colonies or plaques or a fragment of the DNA has been immobilized, 0. DNAs and the like which can be identified by washing the filter with a 1 to 2 × SSC solution (1 × SSC solution is 150 mM sodium chloride and 15 mM sodium citrate) at 65 ° C. can be mentioned. Hybridization can be performed according to the method described in Molecular Cloning, 2nd edition and the like.

ストリンジェントな条件下でハイブリダイズするDNAとしては、プローブとして使用するDNAの塩基配列と一定以上の同一性を有するDNAが挙げられ、例えば90%以上、好ましくは93%以上、より好ましくは95%以上、さらに好ましくは98%以上、最も好ましくは99%以上の同一性を有するDNAが挙げられる。   Examples of the DNA that hybridizes under stringent conditions include DNAs having a certain degree of identity with the base sequence of the DNA used as the probe, for example, 90% or more, preferably 93% or more, and more preferably 95% or more. As described above, DNAs having the identity of 98% or more, most preferably 99% or more are more preferable.

本発明の遺伝子の取得方法は特に限定されない。本明細書中の配列表の配列番号1及び2に記載した塩基配列及びアミノ酸配列の情報に基づいて適当なブローブやプライマーを調製し、既存の生物のcDNAライブラリーをスクリーニングすることにより本発明の遺伝子を単離することができる。cDNAライブラリーは、本発明の遺伝子を発現している、例えば、ヤロウィア・リポリティカ(Yarrowia lipolytica) NBRC 0746の培養物から得られた細胞から常法により作製することができる。PCR法により本発明の遺伝子を取得することもできる。上記cDNAライブラリーを鋳型として使用し、配列番号1に記載した塩基配列を増幅できるように設計した1対のプライマーを用いてPCRを行う。PCRの反応条件は適宜設定することができ、例えば、94℃で30秒間(変性)、55℃で30秒〜1分間(アニーリング)、72℃で2分間(伸長)からなる反応工程を1サイクルとして、例えば30サイクル行った後、72℃で7分間反応させる条件などを挙げることができる。次いで、増幅されたDNA断片を、大腸菌等の宿主で増幅可能な適切なベクター中にクローニングすることができる。   The method for obtaining the gene of the present invention is not particularly limited. By preparing appropriate probes and primers based on the information on the nucleotide sequence and amino acid sequence described in SEQ ID NOs: 1 and 2 of the Sequence Listing in the present specification and screening a cDNA library of an existing organism, Genes can be isolated. The cDNA library can be prepared by a conventional method from cells expressing a gene of the present invention, for example, cells obtained from a culture of Yarrowia lipolytica NBRC 0746. The gene of the present invention can also be obtained by the PCR method. Using the above cDNA library as a template, PCR is performed using a pair of primers designed to amplify the base sequence described in SEQ ID NO: 1. The PCR reaction conditions can be set as appropriate. For example, one cycle of a reaction step consisting of 94 ° C. for 30 seconds (denaturation), 55 ° C. for 30 seconds to 1 minute (annealing), and 72 ° C. for 2 minutes (extension) Examples of such conditions include, for example, conditions in which the reaction is performed at 72 ° C. for 7 minutes after 30 cycles. Next, the amplified DNA fragment can be cloned into an appropriate vector that can be amplified in a host such as E. coli.

上記したプローブ又はプライマーの調製、cDNAライブラリーの構築、cDNAライブラリーのスクリーニング、並びに目的遺伝子のクローニングなどの操作は当業者に既知の方法で行うことができる。   Operations such as the preparation of the above-described probe or primer, construction of a cDNA library, screening of a cDNA library, and cloning of a target gene can be performed by methods known to those skilled in the art.

5.ペラスミド及び/又は形質転換体
本発明は、上記本発明の遺伝子をベクター中に含むプラスミドを包含する。さらに本発明は、宿主生物中に、本発明のプラスミドを前記本発明の遺伝子がコードする環状エノン還元酵素を発現可能に含む、形質転換体を包含する。
5. Perasmid and / or Transformant The present invention includes a plasmid containing the gene of the present invention in a vector. The present invention further encompasses a transformant comprising, in a host organism, the plasmid of the present invention so as to express the cyclic enone reductase encoded by the gene of the present invention.

本発明において、エノン還元酵素をコードするDNAを含む形質転換体を使用して、本発明の環状エノン還元活性を有するタンパク質を発現させることで、調製することができ、かつ得られるタンパク質を環状エノンの還元反応に利用することができる。   In the present invention, a protein having a cyclic enone reducing activity of the present invention is expressed by using a transformant containing DNA encoding an enone reductase, and can be prepared. Can be used for the reduction reaction.

上記環状エノン還元酵素の遺伝子は適当なベクター中に挿入する。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター(例えばプラスミド等)でもよいし、あるいは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。好ましくは、ベクターは発現ベクターである。発現ベクターにおいて上記遺伝子は、転写に必要な要素(例えば、プロモーター等)が機能的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜選択することができる。即ち、本発明のプラスミドに用いるベクターとしては、宿主生物内で本発明に利用する還元酵素をコードする遺伝子を発現できるものであれば、特に限定されない。このようなベクターとして、例えば大腸菌の場合では、pUC19 (タカラバイオ社製)、酵母の場合では、pPCIZA(ライフテクノロジーズ社製)などが挙げられる。   The cyclic enone reductase gene is inserted into an appropriate vector. The type of the vector used in the present invention is not particularly limited. For example, the vector may be an autonomously replicating vector (eg, a plasmid) or may be integrated into the genome of the host cell when introduced into the host cell. And may be replicated together with the chromosome. Preferably, the vector is an expression vector. In the expression vector, the gene is operably linked to elements required for transcription (eg, a promoter and the like). A promoter is a DNA sequence that exhibits transcription activity in a host cell, and can be appropriately selected according to the type of host. That is, the vector used for the plasmid of the present invention is not particularly limited as long as it can express the gene encoding the reductase used in the present invention in the host organism. Examples of such a vector include pUC19 (manufactured by Takara Bio Inc.) in the case of Escherichia coli and pPCIZA (manufactured by Life Technologies) in the case of yeast.

細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子(Geobacillus stearothermophilus maltogenic amylase gene)、バチルス・リケニホルミスαアミラーゼ遺伝子(Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BANアミラーゼ遺伝子(Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子(Bacillus subtilis alkaline protease gene)もしくはバチルス・プミルス・キシロシダーゼ遺伝子(Bacillus pumilus xylosidase gene)のプロモータ、またはファージ・ラムダのPR若しくはPLプロモータ、大腸菌(E. coli)のlac、trp若しくはtacプロモータなどが挙げられる。 Promoters operable in bacterial cells include the Bacillus stearothermophilus maltogenic amylase gene, the Bacillus licheniformis alpha-amylase gene, the Bacillus licheniformis alpha-amylase gene, Enns-BAN amylase gene (Bacillus amyloliquefaciens BAN amylase gene), Bacillus subtilis alkaline protease gene (Bacillus subtilis alkaline protease gene) or promoters of the Bacillus pumilus-xylosidase gene (Bacillus pumilus xylosidase gene) or phage lambda, P R Alternatively, a P L promoter, an E. coli lac, trp or tac promoter, etc. may be mentioned.

哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT−1(メタロチオネイン遺伝子)プロモータ、またはアデノウイルス2主後期プロモータなどがある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4cプロモータなどが挙げられる。糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたはtpiAプロモータなどがある。   Examples of promoters operable in mammalian cells include the SV40 promoter, the MT-1 (metallothionein gene) promoter, or the adenovirus 2 major late promoter. Examples of promoters operable in insect cells include the polyhedrin promoter, the P10 promoter, the Autographa californica polyhedrosis basic protein promoter, the baculovirus immediate early gene 1 promoter, or the baculovirus 39K delayed early gene. There are promoters, etc. Examples of promoters operable in yeast host cells include promoters derived from yeast glycolysis genes, alcohol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c promoters, and the like. Examples of promoters operable in filamentous fungal cells include the ADH3 promoter or the tpiA promoter.

また、上記環状エノン還元酵素の遺伝子は必要に応じて、適切なターミネータに機能的に結合されてもよい。環状エノン還元酵素の遺伝子を含む組換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサ配列(例えばSV40エンハンサ)などの要素を有していてもよい。環状エノン還元酵素の遺伝子を含む組換えベクターは更に、該ベクターが宿主細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類細胞のとき)が挙げられる。   In addition, the gene for the cyclic enone reductase may be operably linked to an appropriate terminator, if necessary. The recombinant vector containing the cyclic enone reductase gene may further have elements such as a polyadenylation signal (for example, derived from SV40 or adenovirus 5E1b region) and a transcription enhancer sequence (for example, SV40 enhancer). The recombinant vector containing the cyclic enone reductase gene may further comprise a DNA sequence enabling the vector to replicate in the host cell, such as the SV40 origin of replication (where the host cell is a mammalian cell). At the time of).

環状エノン還元酵素の遺伝子を含む組換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。環状エノン還元酵素の遺伝子、プロモータ、および所望によりターミネータおよび/または分泌シグナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に周知である。   The recombinant vector containing the cyclic enone reductase gene may further contain a selection marker. Selectable markers include, for example, genes whose complement is lacking in the host cell, such as dihydrofolate reductase (DHFR) or the Schizosaccharomyces pombe TPI gene or the like, or, for example, ampicillin, kanamycin, tetracycline, chloramphenicol, Examples include drug resistance genes such as neomycin or hygromycin. Methods for ligating a cyclic enone reductase gene, promoter, and optionally a terminator and / or secretion signal sequence, respectively, and inserting these into an appropriate vector are well known to those skilled in the art.

環状エノン還元酵素の遺伝子を含む組換えベクターを適当な宿主生物に導入することによって形質転換体を作製することができる。用いる宿主生物は、該酵素をコードするDNAを含む酵素発現ベクターにより形質転換され、DNAを導入した酵素を発現することができる生物であれば、特に制限するものではない。環状エノン還元酵素の遺伝子を含む組換えベクターを導入される宿主細胞は、環状エノン還元酵素の遺伝子を発現できれば任意の細胞でよく、細菌、酵母、真菌および高等真核細胞等が挙げられる。このような宿主生物として、より具体的には、例えば、大腸菌(Escherichia coli)や酵母(Pichia pastoris)が挙げられる。   A transformant can be prepared by introducing a recombinant vector containing a cyclic enone reductase gene into an appropriate host organism. The host organism to be used is not particularly limited as long as it can be transformed with an enzyme expression vector containing a DNA encoding the enzyme and can express the enzyme into which the DNA has been introduced. The host cell into which the recombinant vector containing the cyclic enone reductase gene is introduced may be any cell as long as it can express the cyclic enone reductase gene, and examples include bacteria, yeast, fungi, and higher eukaryotic cells. More specifically, examples of such host organisms include Escherichia coli and yeast (Pichia pastoris).

細菌細胞の例としては、バチルスまたはストレプトマイセス等のグラム陽性菌又は大腸菌(E. coli)等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、または公知の方法でコンピテント細胞を用いることにより行えばよい。哺乳類細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入されたDNA配列を発現させる方法も公知であり、例えば、エレクトロポーレーション法、リン酸カルシウム法、リポフェクション法等を用いることができる。   Examples of bacterial cells include Gram-positive bacteria such as Bacillus or Streptomyces or Gram-negative bacteria such as E. coli. Transformation of these bacteria may be performed by a protoplast method or by using competent cells by a known method. Examples of mammalian cells include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells, CHO cells, and the like. Methods for transforming a mammalian cell and expressing the DNA sequence introduced into the cell are also known. For example, an electroporation method, a calcium phosphate method, a lipofection method and the like can be used.

酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)等が挙げられる。酵母宿主への組換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法等を挙げることができる。   Examples of yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, such as Saccharomyces cerevisiae or Saccharomyces kluyveri. Examples of a method for introducing a recombinant vector into a yeast host include an electroporation method, a spheroblast method, and a lithium acetate method.

他の真菌細胞の例は、糸状菌、例えばアスペルギルス、ニューロスポラ、フザリウム、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、DNA構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことができる。DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例えば相同組換えまたは異種組換えにより行うことができる。   Examples of other fungal cells are cells belonging to filamentous fungi, such as Aspergillus, Neurospora, Fusarium, or Trichoderma. When a filamentous fungus is used as a host cell, transformation can be performed by integrating the DNA construct into the host chromosome to obtain a recombinant host cell. Integration of the DNA construct into the host chromosome can be performed according to a known method, for example, by homologous recombination or heterologous recombination.

昆虫細胞を宿主として用いる場合には、公知の方法を用いて組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質を発現させることができる。   When an insect cell is used as a host, a recombinant gene transfer vector and a baculovirus are cotransfected into an insect cell using a known method to obtain a recombinant virus in an insect cell culture supernatant, and then the recombinant virus is used. The virus can infect insect cells and express the protein.

バキュロウイルスとしては、例えば、ヨトウガ科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等を用いることができる。   As the baculovirus, for example, Autographa californica nuclear polyhedrosis virus, which is a virus that infects Armyworm, can be used.

昆虫細胞としては、Spodoptera frugiperdaの卵巣細胞であるSf9、Sf21〔バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー(W. H. Freeman and Company)、ニューヨーク(New York)、(1992)〕、Trichoplusia niの卵巣細胞であるHiFive(インビトロジェン社製)等を用いることができる。組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法又はリポフェクション法等を挙げることができる。   Insect cells include Sf9 and Sf21 which are ovarian cells of Spodoptera frugiperda (Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company, New York) (1992)], and HiFive (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used. Examples of a method of co-introducing the recombinant gene transfer vector and the baculovirus into insect cells for preparing a recombinant virus include a calcium phosphate method and a lipofection method.

本発明に利用する還元酵素をコードするDNAを含むベクターは、上記のように公知の方法により宿主微生物に導入することができる。例えば、宿主微生物として大腸菌を用いる場合は、市販のEscherichia coli JM109(以下、E. coli JM109)コンピテントセル(タカラバイオ社製)を用いることにより、当該ベクターを宿主細胞に導入することができる。宿主微生物として酵母を用いる場合は、市販のPichia pastoris X-33株、GS-115株、KM71H株(ライフテクノロジーズ社製)などを用いることにより、当該ベクターを宿主細胞に導入することができる。   The vector containing the DNA encoding the reductase used in the present invention can be introduced into a host microorganism by a known method as described above. For example, when Escherichia coli is used as a host microorganism, the vector can be introduced into a host cell by using a commercially available Escherichia coli JM109 (hereinafter, E. coli JM109) competent cell (manufactured by Takara Bio Inc.). When yeast is used as a host microorganism, the vector can be introduced into a host cell by using a commercially available Pichia pastoris X-33 strain, GS-115 strain, KM71H strain (manufactured by Life Technologies) or the like.

上記の形質転換体は、導入された遺伝子の発現を可能にする条件下で適切な栄養培地中で培養する。形質転換体の培養物から、本発明で用いる環状エノン還元酵素を単離精製するには、通常のタンパク質の単離、精製法を用いればよい。例えば、本発明で用いる環状エノン還元酵素が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常のタンパク質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィ一法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、本発明の環状エノン還元酵素を精製標品として得ることができる。   The above transformant is cultured in an appropriate nutrient medium under conditions allowing expression of the introduced gene. In order to isolate and purify the cyclic enone reductase used in the present invention from the culture of the transformant, a conventional protein isolation and purification method may be used. For example, when the cyclic enone reductase used in the present invention is expressed in a dissolved state in cells, after the culture is completed, the cells are collected by centrifugation, suspended in an aqueous buffer, and then sonicated by an ultrasonic crusher or the like. To obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a normal protein isolation and purification method, that is, a solvent extraction method, a salting out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using a resin such as diethylaminoethyl (DEAE) sepharose, cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia), resins such as butyl sepharose, phenyl sepharose, etc. The cyclic enone of the present invention is used alone or in combination with the hydrophobic chromatography method used, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing, etc. The reductase can be obtained as a purified sample.

6.環状ケトンの製造方法
本発明は、前記1.及び2.に記載の酵素又はタンパク質、前記5.に記載の形質転換体およびその菌体処理物からなる群から選択されるいずれかの酵素源を、環構造の炭素数が5〜20個の環状エノンに作用させて、前記環状エノンの炭素−炭素2重結合の還元生成物である環状ケトンを得る工程を含む、環状ケトンの製造方法を包含する。
6. The present invention relates to the aforementioned 1. And 2. 5. The enzyme or protein according to 5. Reacting any of the enzyme sources selected from the group consisting of the transformant described above and the treated cells thereof with a cyclic enone having a ring structure of 5 to 20 carbon atoms to obtain a carbon- A method for producing a cyclic ketone, which includes a step of obtaining a cyclic ketone that is a reduction product of a carbon double bond, is included.

「環状エノン」
「環状エノン」は、少なくとも1個、例えば、1個又は2個、好ましくは1個の炭素−炭素2重結合をα位とβ位の間に有する環状の炭化水素化合物である。環構造の炭素数は、5〜20個の範囲であり、好ましくは環構造の炭素数が5〜15個の範囲である。「環状エノン」は、例えば、下式(1)に示される化合物であることができる。
"Cyclic enone"
“Cyclic enone” is a cyclic hydrocarbon compound having at least one, for example one or two, preferably one carbon-carbon double bond between the α and β positions. The number of carbon atoms in the ring structure is in the range of 5 to 20, and preferably the number of carbon atoms in the ring structure is in the range of 5 to 15. “Cyclic enone” can be, for example, a compound represented by the following formula (1).

式(1)中、nは、1〜15の範囲の整数であり、Rは水素原子又は炭素数1〜6個のアルキル基である。前記式(1)の環状エノンは、nが7〜10の12員環エノン〜15員環エノンであっても、本発明の還元酵素を用いることで、環状ケトンにすることができる。   In the formula (1), n is an integer in the range of 1 to 15, and R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Even if the cyclic enone of the formula (1) is a 12-membered to 15-membered enone in which n is 7 to 10, the cyclic enone can be made into a cyclic ketone by using the reductase of the present invention.

「酵素源」としては、目的とする還元活性を有する限りにおいては、酵素そのものだけでなく、当該酵素を生成する微生物の菌体そのもの、または菌体処理物であってもよい。また、当該微生物由来の還元活性を有する酵素をコードするDNAが導入された形質転換体も含むものとする。   The “enzyme source” may be not only the enzyme itself, but also a cell itself of a microorganism that produces the enzyme or a processed product of the cell, as long as the enzyme has a desired reducing activity. It also includes a transformant into which a DNA encoding an enzyme having a reducing activity derived from the microorganism is introduced.

酵素源を用いた還元反応の際には、適当な溶媒と基質の環状エノン化合物、上記微生物、またはその処理物等を混合し、pH調整下に攪拌、振とうまたは静置する。   In the reduction reaction using an enzyme source, an appropriate solvent and a cyclic enone compound as a substrate, the above-mentioned microorganism, or a processed product thereof are mixed, and the mixture is stirred, shaken, or allowed to stand under pH adjustment.

反応溶媒としては、通常、水や緩衝液等の水性媒体を用いる。緩衝液としては、リン酸カリウム緩衝液やトリス−塩酸緩衝液が挙げられる。但し、これらの限定される意図ではない。   As a reaction solvent, an aqueous medium such as water or a buffer is usually used. Examples of the buffer include a potassium phosphate buffer and a Tris-HCl buffer. However, these are not intended to be limited.

基質である環状エノン化合物は、反応の初期に一括添加してもよく、反応の進行にあわせて逐次分割して添加してもよい。   The cyclic enone compound serving as a substrate may be added all at once in the early stage of the reaction, or may be added in portions as the reaction progresses.

反応時の温度は、還元酵素の至適温度及び温度安定性等を考慮して適宜決定することができ、通常、10〜60℃、好ましくは35〜50℃とする。   The temperature at the time of the reaction can be appropriately determined in consideration of the optimum temperature and temperature stability of the reductase, and is usually 10 to 60 ° C, preferably 35 to 50 ° C.

反応時のpHは、還元酵素の至適pH等を考慮して適宜決定することができ、通常、2.5〜10、好ましくはpH4.5〜8.5の範囲である。   The pH during the reaction can be appropriately determined in consideration of the optimum pH of the reductase and the like, and is usually in the range of 2.5 to 10, preferably in the range of 4.5 to 8.5.

反応液中の基質濃度は0.01〜1%(W/V)が好ましく、より好ましくは、0.01〜0.2%(W/V)である。   The substrate concentration in the reaction solution is preferably from 0.01 to 1% (W / V), and more preferably from 0.01 to 0.2% (W / V).

反応時間は、基質濃度、微生物の量及びその他の反応条件により適宜決定される。通常、2〜168時間で反応が終了するように各条件を設定することが好ましい。但し、この範囲に限定される意図ではない。   The reaction time is appropriately determined depending on the substrate concentration, the amount of the microorganism, and other reaction conditions. Usually, it is preferable to set each condition so that the reaction is completed in 2 to 168 hours. However, it is not intended to be limited to this range.

還元反応を促進させるために、反応液にグルコースなどのエネルギー源を0.5〜30%(W/V)の割合で加えるのが好ましい。   In order to promote the reduction reaction, it is preferable to add an energy source such as glucose to the reaction solution at a ratio of 0.5 to 30% (W / V).

一般に、生物学的方法による還元反応に必要とされているNADPH等の補酵素を添加することにより、反応を促進させることもできる。この場合、通常は、反応液に直接これらを添加する。   In general, the reaction can be promoted by adding a coenzyme such as NADPH required for a reduction reaction by a biological method. In this case, these are usually added directly to the reaction solution.

また、還元反応を促進させるために、NADP+をそれぞれの還元型へ還元する酵素と、該還元のための基質を共存させて反応を行うのが好ましい。例えば、還元型へ還元する酵素としてグルタミン酸脱水素酵素、還元のための基質としてグルタミン酸をそれぞれ共存させるか、または、還元型へ還元する酵素としてグルコース脱水素酵素、還元のための基質としてグルコースをそれぞれ共存させるのがよい。 In order to promote the reduction reaction, it is preferable to carry out the reaction in the presence of an enzyme for reducing NADP + to each reduced form and a substrate for the reduction. For example, glutamate dehydrogenase is used as an enzyme to reduce to a reduced form, glutamic acid is coexistent as a substrate for reduction, or glucose dehydrogenase is used as an enzyme to reduce to a reduced form, and glucose is used as a substrate for reduction. It is good to coexist.

還元反応により生成した環状ケトンを取り出す方法は特に限定されないが、反応液から直接、あるいは菌体等を分離後に、酢酸エチル、トルエン、ヘキサン、ジクロロメタン等の溶剤で抽出し、脱水後、蒸留やシリカゲルカラムクロマトグラフィー等により精製することにより、高純度の環状ケトンを容易に得ることができる。   The method for removing the cyclic ketone generated by the reduction reaction is not particularly limited, but is extracted directly with a solvent such as ethyl acetate, toluene, hexane, or dichloromethane from the reaction solution or after separating the cells, etc., followed by dehydration, distillation, or silica gel. By purifying by column chromatography or the like, a highly pure cyclic ketone can be easily obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can conform to the purpose of the preceding and the following. It is, of course, possible to implement them, and all of them are included in the technical scope of the present invention.

実施例1 環状エノン還元酵素の精製
ヤロウィア・リポリティカ NBRC0746株をシクロへキセノン(10 g, 90.8 mmol)を含む表1の培地20 Lに植菌し、30℃で48時間振盪培養した。この培養液を4℃、10,000×gで25分間遠心分離して集菌し、20 mM リン酸緩衝液(pH 7.0)で洗浄した。さらに、洗浄した菌を同緩衝液に懸濁し、多検体細胞破砕機(安井器械社製「マルチビーズショッカー」)を用い、菌体を2,500 rpmで6分間破砕した。次に、菌体破砕液を4℃、24,100×gで30分間遠心分離することにより菌体残渣を除去し、無細胞抽出液を得た。
Example 1 Purification of Cyclic Enone Reductase Yarrowia lipolytica NBRC0746 was inoculated into 20 L of the medium of Table 1 containing cyclohexenone (10 g, 90.8 mmol) and cultured with shaking at 30 ° C. for 48 hours. The culture was centrifuged at 10,000 xg for 25 minutes at 4 ° C to collect the cells, and washed with 20 mM phosphate buffer (pH 7.0). Further, the washed bacteria were suspended in the same buffer, and the cells were disrupted at 2,500 rpm for 6 minutes using a multi-sample cell disrupter ("Multi-Beads Shocker" manufactured by Yasui Kikai). Next, the cell lysate was centrifuged at 24,100 × g for 30 minutes at 4 ° C. to remove cell residues and obtain a cell-free extract.

この無細胞抽出液を20 mM リン酸緩衝液(pH 7.0)で平衡化したQ Sepharose(GEヘルスケア社製、5.6 cm×15 cm)に添加した。同緩衝液で洗浄後、0-1.0 M 塩化ナトリウムで勾配溶出を行い、溶出した画分を回収した。   This cell-free extract was added to Q Sepharose (GE Healthcare, 5.6 cm × 15 cm) equilibrated with 20 mM phosphate buffer (pH 7.0). After washing with the same buffer, gradient elution was performed with 0-1.0 M sodium chloride, and the eluted fraction was collected.

活性画分として溶出した素通り画分に硫安を30% 飽和添加し、30% 飽和硫安を含む20 mM リン酸緩衝液(pH 7.0)で平衡化したToyopearl Butyl-650M(東ソー社製、5.6 cm×15 cm)に添加した。同緩衝液で洗浄後、30-0 % 飽和硫安で勾配溶出を行い、溶出した画分を回収した。   Toyopearl Butyl-650M (manufactured by Tosoh Corporation, 5.6 cm ×) equilibrated with 20 mM phosphate buffer (pH 7.0) containing 30% saturated ammonium sulfate to the flow-through fraction eluted as the active fraction and equilibrated with 20 mM phosphate buffer (pH 7.0) containing 30% saturated ammonium sulfate 15 cm). After washing with the same buffer, gradient elution was performed with 30-0% saturated ammonium sulfate, and the eluted fraction was collected.

以後の精製は、タンパク質精製用液体クロマトグラフィーシステム (GEヘルスケア社製、AKTAexplorer 10S) を用いて行った。
得られた画分を20 mM リン酸緩衝液 (pH 7.0)に対して透析した後、同緩衝液で平衡化したMono Q 10/100 GL(GEヘルスケア社製、8 mL)に添加し、0-0.5 M 塩化ナトリウムで勾配溶出を行い、溶出した画分を回収した。
得られた画分を20 mM リン酸緩衝液 (pH 7.0) に対して透析した後、硫安を30% 飽和添加し、30% 飽和硫安を含む20 mM リン酸緩衝液(pH 7.0)で平衡化したRESOURCE PHE(Amersham Pharmacia Biotech社製、1 ml)に添加し、30-0 % 飽和硫安で勾配溶出を行い、溶出した画分を回収した。
得られた画分を20 mM リン酸緩衝液(pH 7.0)に対して透析した後、同緩衝液で平衡化したHiTrap Q(GEヘルスケア社製、5 mL)に添加し、0-0.5 M 塩化ナトリウムで勾配溶出を行い、溶出した画分を回収した。
得られた画分を20 mM リン酸緩衝液(pH 7.0)に対して透析した後、限外濾過 (メルクミリポア社製、Amicon(R) Ultra) により濃縮、同緩衝液で平衡化したSuperdex 200 10/300 GL (Amersham Biosciences K.K.社製、1 cm×30 cm)に添加し、溶出した。
Subsequent purification was performed using a liquid chromatography system for protein purification (AKTAexplorer 10S, manufactured by GE Healthcare).
The resulting fraction was dialyzed against 20 mM phosphate buffer (pH 7.0), and added to Mono Q 10/100 GL (GE Healthcare, 8 mL) equilibrated with the same buffer. Gradient elution was performed with 0-0.5 M sodium chloride, and the eluted fraction was collected.
The obtained fraction is dialyzed against 20 mM phosphate buffer (pH 7.0), ammonium sulfate is added at 30% saturation, and equilibrated with 20 mM phosphate buffer (pH 7.0) containing 30% saturated ammonium sulfate. RESOURCE PHE (Amersham Pharmacia Biotech, 1 ml) was added, and gradient elution was performed with 30-0% saturated ammonium sulfate, and the eluted fraction was collected.
The resulting fraction was dialyzed against 20 mM phosphate buffer (pH 7.0), added to HiTrap Q (5 mL, manufactured by GE Healthcare) equilibrated with the same buffer, and added to 0-0.5 M Gradient elution was performed with sodium chloride, and the eluted fraction was collected.
The obtained fraction was dialyzed against 20 mM phosphate buffer (pH 7.0), concentrated by ultrafiltration (Amicon (R) Ultra, manufactured by Merck Millipore ) , and Superdex 200 equilibrated with the same buffer. It was added to 10/300 GL (Amersham Biosciences KK, 1 cm × 30 cm) and eluted.

Superdex 200 10/300 GLにより得られた活性画分を、SDS-PAGEにより解析した結果、ほぼ単一バンドであった(図1)。精製酵素のシクロへキセノンに対する比活性は14.1 U/mgであった。精製の要約を表2に示す。   The active fraction obtained by Superdex 200 10/300 GL was analyzed by SDS-PAGE and found to be almost a single band (FIG. 1). The specific activity of the purified enzyme for cyclohexenone was 14.1 U / mg. A summary of the purification is shown in Table 2.

実施例2 環状エノン還元酵素の分子量測定
実施例1で得られた酵素のサブユニットの分子量をSDS-PAGEにより求めた結果、4.5万であった。また、Superdex 200 10/300 GLのゲルろ過カラムを用いて分子量を測定したところ、約4.0万であった。これらの結果より、本発明のエノン還元酵素はモノマー酵素と予想された。
Example 2 Measurement of Molecular Weight of Cyclic Enone Reductase The molecular weight of the subunit of the enzyme obtained in Example 1 was determined by SDS-PAGE to be 45,000. The molecular weight was measured using a Superdex 200 10/300 GL gel filtration column and found to be about 40,000. From these results, the enone reductase of the present invention was expected to be a monomer enzyme.

実施例3 環状エノン還元酵素の至適pH
リン酸カリウム緩衝液、トリス−塩酸緩衝液、酢酸ナトリウム緩衝液、グリシン−水酸化ナトリウム緩衝液を用いてpHを変化させて、実施例1で得られた酵素のシクロへキセノン還元活性を調べ、最大活性を100とした相対活性で表し、図2に示した。反応の至適pHは7.0であり、pH4.5−8.5の極めて広い範囲で最大活性の80%以上の活性を示した。
Example 3 Optimal pH of Cyclic Enone Reductase
The pH was changed using a potassium phosphate buffer, a Tris-HCl buffer, a sodium acetate buffer, and a glycine-sodium hydroxide buffer, and the cyclohexenone reducing activity of the enzyme obtained in Example 1 was examined. The maximum activity was expressed as a relative activity with respect to 100, and is shown in FIG. The optimum pH for the reaction was 7.0, and showed an activity of 80% or more of the maximum activity in an extremely wide range of pH 4.5 to 8.5.

実施例4 環状エノン還元酵素の至適温度
実施例1で得られた酵素を標準反応条件のうち温度だけを変化させて、シクロへキセノン還元活性を測定し、最大活性を100とした相対活性で表し、図3に示した。反応の至適温度は40℃であり、35−50℃において最大活性の80%以上の活性を示した。
Example 4 Optimum temperature of cyclic enone reductase The cyclohexenone reducing activity of the enzyme obtained in Example 1 was measured by changing only the temperature among the standard reaction conditions. And shown in FIG. The optimum temperature for the reaction was 40 ° C, and the activity was 80% or more of the maximum activity at 35-50 ° C.

実施例5 環状エノン還元酵素の温度安定性
実施例1で得られた酵素を5−80℃で30分間インキュベートした後、標準反応条件でシクロへキセノン還元活性を測定した。未処理の酵素を用いたときの活性を100とした相対活性で表し、図4に示した。酵素は5−40℃において最大活性の80%以上の活性を示した。
Example 5 Temperature stability of cyclic enone reductase After the enzyme obtained in Example 1 was incubated at 5-80 ° C for 30 minutes, cyclohexenone reducing activity was measured under standard reaction conditions. The activity was expressed as a relative activity with the activity when the untreated enzyme was used as 100, and is shown in FIG. The enzyme showed 80% or more of the maximum activity at 5-40 ° C.

実施例6 環状エノン還元酵素のpH安定性
実施例1で得られた酵素をpH3.5−11.5で30分間インキュベートした後、標準反応条件でシクロへキセノン還元活性を測定した。未処理の酵素を用いたときの活性を100とした相対活性で表し、図5に示した。酵素はpH3.5−10.0において最大活性の80%以上の活性を示した。
Example 6 pH Stability of Cyclic Enone Reductase After the enzyme obtained in Example 1 was incubated at pH 3.5-11.5 for 30 minutes, cyclohexenone reducing activity was measured under standard reaction conditions. The activity was expressed as a relative activity with the activity when the untreated enzyme was used as 100, and is shown in FIG. The enzyme showed 80% or more of the maximum activity at pH 3.5-10.0.

実施例7 環状エノン還元酵素の阻害剤
実施例1で得られた酵素を標準反応条件に、種々の阻害剤を1 mM 添加して、シクロへキセノン還元活性を測定し、阻害剤未添加の活性を100とした相対活性で表し、表3に示した。硝酸銀、塩化水銀、硝酸亜鉛において最大活性の20%以上の活性の阻害を示した。
Example 7 Inhibitor of Cyclic Enone Reductase Under the standard reaction conditions of the enzyme obtained in Example 1, various inhibitors were added at 1 mM, the cyclohexenone reducing activity was measured, and the activity without the inhibitor was measured. Is expressed as a relative activity with respect to 100, and is shown in Table 3. Silver nitrate, mercury chloride and zinc nitrate showed an activity inhibition of 20% or more of the maximum activity.

実施例8 環状エノン還元酵素の補欠分子族
実施例1で得られた酵素の紫外可視吸収スペクトルを測定した。(図6)
また、実施例1で得られた酵素を(5 mg/mL)100μLを10分間、100℃で処理し、16,000 ×gで5分間遠心分離を行った。その上清を10 mM リン酸二水素カリウム(15 mM 酢酸マンガン溶液):15 % アセトニトリル=85:15(pH 3.4)で二倍希釈して以下の条件でHPLC分析を行った。その結果、フラビンモノヌクレオチド(FMN)標準品と同様に11.9 minにピークが認められた。なお、フラビンアデニンジヌクレオチド(FAD)のピークは8.06 minに認められた。
Example 8 Prosthetic Group of Cyclic Enone Reductase An ultraviolet-visible absorption spectrum of the enzyme obtained in Example 1 was measured. (FIG. 6)
In addition, the enzyme obtained in Example 1 was treated with 100 μL of (5 mg / mL) at 100 ° C. for 10 minutes, and centrifuged at 16,000 × g for 5 minutes. The supernatant was diluted twice with 10 mM potassium dihydrogen phosphate (15 mM manganese acetate solution): 15% acetonitrile = 85: 15 (pH 3.4) and subjected to HPLC analysis under the following conditions. As a result, a peak was observed at 11.9 min similarly to the flavin mononucleotide (FMN) standard product. The peak of flavin adenine dinucleotide (FAD) was observed at 8.06 min.

HPLCシステム
分析条件
HPLCシステム:島津製作所社製「LC−20AD」
カラム:ジーエルサイエンス社製「Inertsil ODS-3」(2.1×30cm)
カラム温度:40℃
移動相:10 mM リン酸二水素カリウム(15 mM 酢酸マンガン溶液):15 % アセトニトリル=85:15(pH 3.4)
流速:0.5mL/min
検出波長:445nm
HPLC system analysis conditions HPLC system: "LC-20AD" manufactured by Shimadzu Corporation
Column: GL Science's "Inertsil ODS-3" (2.1 x 30 cm)
Column temperature: 40 ° C
Mobile phase: 10 mM potassium dihydrogen phosphate (15 mM manganese acetate solution): 15% acetonitrile = 85:15 (pH 3.4)
Flow rate: 0.5 mL / min
Detection wavelength: 445 nm

実施例9 環状エノン還元酵素のKm、Vmax
実施例1で得られた酵素を標準反応条件で反応させ、Vmax、 Km値を算出した。(表4)
Example 9 Km and Vmax of cyclic enone reductase
The enzyme obtained in Example 1 was reacted under standard reaction conditions, and Vmax and Km values were calculated. (Table 4)

実施例10 環状エノン還元酵素のアミノ酸配列
実施例1で得られた酵素を用いて、SDS-PAGEのゲルより、環状エノン還元酵素を含むゲル断片を切り出し、30 % のアセトニトリルを含む25 mM 炭酸水素アンモニウムを用いて洗浄後、ヨードアセトアミドを用いた還元アルキル化、トリプシンを用いて37℃で終夜ゲル内消化を行った。消化したペプチドを抽出し、nanoLC/nanoESI-QTOFで分析を行った。その結果、精製した酵素はYarrowia lipolytica CLIB122株の酵素 (Accession number: CAG82798) と同一のアミノ酸配列を有する酵素であった。
Example 10 Amino Acid Sequence of Cyclic Enone Reductase Using the enzyme obtained in Example 1, a gel fragment containing cyclic enone reductase was cut out from an SDS-PAGE gel, and 25 mM bicarbonate containing 30% acetonitrile was cut out. After washing with ammonium, reductive alkylation with iodoacetamide and in-gel digestion with trypsin at 37 ° C. overnight. The digested peptide was extracted and analyzed by nanoLC / nanoESI-QTOF. As a result, the purified enzyme was an enzyme having the same amino acid sequence as the enzyme of Yarrowia lipolytica CLIB122 (Accession number: CAG82798).

分析条件
LC/MS
UPLCシステム:Waters社製「nanoACQUITY UPLC」
Trapカラム:Waters社製「nanoACQUITY symmetry C18」( φ5 μm, 180 μm × 20 mm)
分析カラム:Waters社製「nanoACQUITY CSH 130 C18」(φ1.7 μm, 75 μm × 200 mm)
カラム温度:35℃
移動相:水(0.1 % ギ酸/ アセトニトリル(0.1 % ギ酸)
1 % (0−1 min)、1-50 % (1-50 min)、50-95 % (50-55 min)、95 %(55-75 min)、95-99 % (75-78 min) アセトニトリル(0.1 % ギ酸)
流速:0.3μL/min
Analysis conditions
LC / MS
UPLC system: “nanoACQUITY UPLC” manufactured by Waters
Trap column: “nanoACQUITY symmetry C18” manufactured by Waters (φ5 μm, 180 μm × 20 mm)
Analytical column: Waters “nanoACQUITY CSH 130 C18” (φ1.7 μm, 75 μm × 200 mm)
Column temperature: 35 ° C
Mobile phase: water (0.1% formic acid / acetonitrile (0.1% formic acid)
1% (0-1 min), 1-50% (1-50 min), 50-95% (50-55 min), 95% (55-75 min), 95-99% (75-78 min) Acetonitrile (0.1% formic acid)
Flow rate: 0.3 μL / min

MSシステム:Waters社製「SYNAPT G2-Si」
イオン化方法:nanoESI, ポジティブイオンモード
コーン電圧:3 kV
MS system: Waters "SYNAPT G2-Si"
Ionization method: nanoESI, positive ion mode Cone voltage: 3 kV

LC/MS/MS
フラグメンテーションモード: CID
トラップコリジョンエネルギー: 5,15,25,35V
トランスファーコリジョンエネルギー: off
LC / MS / MS
Fragmentation mode: CID
Trap collision energy: 5, 15, 25, 35V
Transfer collision energy: off

実施例11 ヤロウィア・リポリティカ NBRC0746由来環状エノンを生産する形質転換大腸菌の作製
ヤロウィア・リポリティカNBRC0746由来の環状エノンをコードする遺伝子配列を元にORFクローニング用のプライマー1(配列番号:3)、プライマー2(配列番号:4)を合成した。プライマーを各100 pmol、dNTP 0.2 mmol、ヤロウィア・リポリティカNBRC0746由来染色体DNA 50 ng、硫酸マグネシウム 1 mM、KOD -Plus- PCR用緩衝液、KOD -Plus- polymerase 0.2 U (TOYOBO製)を含む50μLの反応液を用い、初期変性後(94℃、2分)、変性(94℃、15秒)、アニール(58℃、30秒)、伸張(68℃、2分30秒)を30サイクル、Peliter Thermal Cycler PTC-200(エムジェイジャパン社製)を用いて行った。PCR後、増幅した遺伝子と発現用ベクターpUC19をEcoR IとHind IIIで消化し、T4 DNA Ligase (タカラ社製)を用いて、ライゲーションし、大腸菌E. coli JM109株を形質転換した。
Example 11 Preparation of Transformed E. coli Producing Cyclic Enone Derived from Yarrowia lipolytica NBRC0746 Primers 1 (SEQ ID NO: 3) and 2 (SEQ ID NO: 3) for ORF cloning based on the gene sequence encoding a cyclic enone derived from Yarrowia lipolytica NBRC0746 SEQ ID NO: 4) was synthesized. A 50 μL reaction containing 100 pmol of each primer, 0.2 mmol of dNTP, 50 ng of chromosomal DNA from Yarrowia lipolytica NBRC0746, 1 mM of magnesium sulfate, KOD-Plus-PCR buffer, KOD-Plus-polymerase 0.2 U (TOYOBO) Solution, after initial denaturation (94 ° C, 2 minutes), denaturation (94 ° C, 15 seconds), annealing (58 ° C, 30 seconds), extension (68 ° C, 2 minutes 30 seconds), 30 cycles, Peliter Thermal Cycler This was performed using PTC-200 (manufactured by MJ Japan). After PCR, the amplified gene and the expression vector pUC19 were digested with EcoR I and Hind III, ligated using T4 DNA Ligase (Takara), and transformed into E. coli JM109 strain.

配列番号:3:CCGCAAGCTTAAGGAGATGTCAACTGTCAACC
配列番号:4:CCGCGAATTCTTACTGCTTCAGCTCCTGAT
SEQ ID NO: 3: CCGCAAGCTTAAGGAGATGTCAACTGTCAACC
SEQ ID NO: 4: CCGCGAATTCTTACTGCTTCAGCTCCTGAT

実施例12 組換え環状エノン還元酵素の大腸菌による生産
環状エノン還元酵素を発現するプラスミドpUC19で形質転換された大腸菌E. coli JM109株を、アンピシリンを含む液体LB培地で37℃で12時間振とう培養し、1.0mM IPTGを加え、さらに24時間振とう培養を行った。 菌体を遠心分離により集菌した後、10mMリン酸カリウム緩衝液(pH7.0)に懸濁し、超音波で15分処理して菌体を破砕した。菌体破砕液を遠心分離し、その上清を菌体抽出液中として回収し、シクロへキセノンに対する活性を測定した。また該プラスミドを含まない大腸菌E. coli JM109株をLB培地で37℃で12時間振とう培養し、1.0mM IPTGを加え、さらに24時間振とう培養を行った菌体を、同様に破砕してシクロへキセノンに対する活性を測定した。
Example 12 Production of Recombinant Cyclic Enone Reductase by Escherichia coli Escherichia coli E. coli JM109 strain transformed with plasmid pUC19 expressing cyclic enone reductase was shake-cultured at 37 ° C. for 12 hours in a liquid LB medium containing ampicillin. Then, 1.0 mM IPTG was added, and shaking culture was further performed for 24 hours. After the cells were collected by centrifugation, the cells were suspended in a 10 mM potassium phosphate buffer (pH 7.0) and treated with ultrasonic waves for 15 minutes to disrupt the cells. The cell lysate was centrifuged, the supernatant was collected as a cell extract, and the activity against cyclohexenone was measured. The plasmid-free E. coli JM109 strain was cultured in an LB medium with shaking at 37 ° C. for 12 hours, 1.0 mM IPTG was added thereto, and the cells were further shake-cultured for 24 hours. The activity on cyclohexenone was measured.

実施例13 ヤロウィア・リポリティカ NBRC0746由来環状エノンを生産する形質転換酵母の作製
ヤロウィア・リポリティカ NBRC0746由来の環状エノンをコードする遺伝子配列を元にORFクローニング用のプライマー3(配列番号:5)、プライマー4(配列番号:6)を合成した。プライマーを各100 pmol、dNTP 0.2 mmol、ヤロウィア・リポリティカNBRC0746由来染色体DNA 50 ng、硫酸マグネシウム 1 mM、KOD -Plus- PCR用緩衝液、KOD -Plus- polymerase 0.2 Uを含む50μLの反応液を用い、初期変性後(94℃、2分)、変性(94℃、15秒)、アニール(58℃、30秒)、伸張(68℃、2分30秒)を30サイクル、S1000 Thermal Cycler (BIO RAD社製) を用いて行った。PCR後、増幅した遺伝子と発現用ベクターpPCIZAをEcoR IとXho Iで消化し、T4 DNA Ligaseを用いて、ライゲーションし、酵母Pichia pastoris X-33を形質転換した。
Example 13 Preparation of Transformed Yeast Producing Cyclic Enone Derived from Yarrowia lipolytica NBRC0746 Primers 3 (SEQ ID NO: 5) and 4 (SEQ ID NO: 5) for ORF cloning based on the gene sequence encoding a cyclic enone derived from Yarrowia lipolytica NBRC0746 SEQ ID NO: 6) was synthesized. Using a 50 μL reaction solution containing 100 pmol of each primer, 0.2 mmol of dNTP, 50 ng of chromosomal DNA derived from Yarrowia lipolytica NBRC0746, 1 mM of magnesium sulfate, KOD-Plus-PCR buffer, and KOD-Plus-polymerase 0.2 U, After initial denaturation (94 ° C, 2 minutes), denaturation (94 ° C, 15 seconds), annealing (58 ° C, 30 seconds), extension (68 ° C, 2 minutes 30 seconds), 30 cycles, S1000 Thermal Cycler (BIO RAD) Manufactured by Toshiba Corporation. After PCR, the amplified gene and the expression vector pPCIZA were digested with EcoRI and XhoI, ligated using T4 DNA Ligase, and transformed into yeast Pichia pastoris X-33.

配列番号:5:TCGAAACGAGGAATTCAAAAAAATGTCAACTGTCAACCTTTTC
配列番号:6:GCCGCGGCTCGAG TTACTGCTTCAGCTCCTGAT
SEQ ID NO: 5: TCGAAACGAGGAATTCAAAAAAATGTCAACTGTCAACCTTTTC
SEQ ID NO: 6: GCCGCGGCTCGAG TTACTGCTTCAGCTCCTGAT

実施例14 組換え環状エノン還元酵素の酵母による生産
環状エノン還元酵素を発現するプラスミドpPCIZAで形質転換された酵母Pichia pastorisを、100μg/mL ゼオシン (Invitrogen製)を含む5 mLのYPD培地で30℃、24時間振とう培養した。50μLの培養液を100 mM リン酸カリウム緩衝液 pH 7.0、1.34% yeast nitrogen base without amino acid、4×10-5% ビオチン、0.36% 硫酸アンモニウム、1% グリセロールを含む培地 10 mLで28℃、2日間振とう培養した。遠心分離(6,000 × g, 4℃, 5 min)で菌体を回収し、100 mM リン酸カリウム緩衝液 pH 7.0、1.34% yeast nitrogen base without amino acid、4 × 10-5% ビオチン、0.36% 硫酸アンモニウム、0.5% メタノールを含む培地 10 mL に移し、28℃で振とう培養した。24時間毎にメタノールを添加し、72時間振とう培養した後、遠心分離(6,000 × g, 4℃, 5 min)で菌体を回収した。菌体を100 mMリン酸カリウム緩衝液で洗浄後、300 mM グルコースを含む10 mLのリン酸カリウム緩衝液に懸濁した。
Example 14 Production of Recombinant Cyclic Enone Reductase by Yeast Yeast Pichia pastoris transformed with plasmid pPCIZA expressing cyclic enone reductase was treated at 30 ° C. in 5 mL of YPD medium containing 100 μg / mL zeocin (manufactured by Invitrogen). For 24 hours. 50 μL of the culture solution is added to 10 mL of a medium containing 100 mM potassium phosphate buffer pH 7.0, 1.34% yeast nitrogen base without amino acid, 4 × 10 -5 % biotin, 0.36% ammonium sulfate, and 1% glycerol at 28 ° C. for 2 days The cells were cultured with shaking. Collect cells by centrifugation (6,000 × g, 4 ° C, 5 min), 100 mM potassium phosphate buffer pH 7.0, 1.34% yeast nitrogen base without amino acid, 4 × 10 -5 % biotin, 0.36% ammonium sulfate Was transferred to 10 mL of a medium containing 0.5% methanol, and cultured with shaking at 28 ° C. After adding methanol every 24 hours and culturing with shaking for 72 hours, the cells were collected by centrifugation (6,000 × g, 4 ° C., 5 min). After washing the cells with 100 mM potassium phosphate buffer, the cells were suspended in 10 mL of potassium phosphate buffer containing 300 mM glucose.

実施例15 精製酵素を用いたシクロへキセノンの還元
実施例1で得られた酵素 3.4 U (シクロへキセノンに対して)、100 mM リン酸カリウム緩衝液(pH 7.0)、20 mM NADPH、2.0 mM シクロへキセノン、10 mMグルタミン酸、及びグルタミン酸デヒドロゲナーゼ 2 Uを含む反応液1 mLで、30℃で24時間反応させ、以下の条件(分析条件1)でGC/MS分析を行った。その結果、反応生成物はシクロヘキサノン標準品と同様に10.5 minに溶出した。シクロへキセノンは12.1 minに溶出した。生成したシクロヘキサノンをGC/MSで定量し、出発物質であるシクロへキセノンに対するモル収率を求めた結果、反応収率91.1 %でシクロヘキサノンが生成していた。GC/MSの全イオンクロマトグラム(TIC)を図8に示す。
Example 15 Reduction of cyclohexenone using purified enzyme 3.4 U of the enzyme obtained in Example 1 (relative to cyclohexenone), 100 mM potassium phosphate buffer (pH 7.0), 20 mM NADPH, 2.0 mM The reaction was performed at 30 ° C. for 24 hours with 1 mL of a reaction solution containing cyclohexenone, 10 mM glutamic acid, and 2 U of glutamate dehydrogenase, and subjected to GC / MS analysis under the following conditions (analysis conditions 1). As a result, the reaction product was eluted at 10.5 min similarly to the cyclohexanone standard. Cyclohexenone eluted at 12.1 min. The produced cyclohexanone was quantified by GC / MS, and the molar yield relative to the starting material cyclohexenone was determined. As a result, it was found that cyclohexanone was produced at a reaction yield of 91.1%. FIG. 8 shows the total ion chromatogram (TIC) of GC / MS.

GC/MSシステム
分析条件1
GC/MSシステム:島津製作所社製「GC/MS-QP2010 plus」
カラム:GLサイエンス社製「TC-70 column」(φ 0.25μm, 0.25 mm×60 m)
カラム初期温度:60℃
保持時間:3 min
昇温速度:10.2℃/min
到達温度:290℃
キャリアガス:ヘリウム
流速:30 cm/s
キャリアガス圧力:149 kPa
イオン源温度:200℃
GC / MS system analysis conditions 1
GC / MS system: "GC / MS-QP2010 plus" manufactured by Shimadzu Corporation
Column: GL Science "TC-70 column" (φ0.25μm, 0.25mm × 60m)
Column initial temperature: 60 ° C
Holding time: 3 min
Heating rate: 10.2 ° C / min
Ultimate temperature: 290 ° C
Carrier gas: Helium flow rate: 30 cm / s
Carrier gas pressure: 149 kPa
Ion source temperature: 200 ° C

実施例16 精製酵素を用いた3−メチルシクロへキセノンの還元
2.0 mM 3−メチルシクロへキセノンを出発物質として、実施例15と同様の条件で反応を行い、分析条件1でGC/MS分析を行った。その結果、反応生成物は3−メチルシクロヘキサノン標準品と同様に10.8 minに溶出した。3−メチルシクロヘキセノンは14.6 minに溶出した。生成した3−メチルシクロヘキサノンをGC/MSで定量し、出発物質である3−メチルシクロへキセノンに対するモル収率を求めた結果、反応収率25.2 %で3−メチルシクロへキサノンが生成していた。GC/MSのイオンクロマトグラム(m/z 112)を図9に示す。
Example 16 Reduction of 3-methylcyclohexenone using purified enzyme
The reaction was carried out under the same conditions as in Example 15 using 2.0 mM 3-methylcyclohexenone as a starting material, and GC / MS analysis was performed under analysis condition 1. As a result, the reaction product was eluted at 10.8 min in the same manner as the 3-methylcyclohexanone standard. 3-Methylcyclohexenone eluted at 14.6 min. The produced 3-methylcyclohexanone was quantified by GC / MS, and the molar yield relative to the starting material, 3-methylcyclohexenone, was determined. As a result, 3-methylcyclohexanone was produced at a reaction yield of 25.2%. The GC / MS ion chromatogram (m / z 112) is shown in FIG.

立体化学の確認を以下に示した分析条件(分析条件2)で行った結果、生成物は(S)-3−メチルシクロヘキサノンと同様に8.15 minに溶出した。(R)-3−メチルシクロヘキサノンは8.04 minに溶出する。反応はS選択的に進行しており、生成物のエナンチオマー過剰率は100%であった。(図10)   The stereochemistry was confirmed under the following analysis conditions (analysis condition 2). As a result, the product was eluted at 8.15 min in the same manner as (S) -3-methylcyclohexanone. (R) -3-methylcyclohexanone elutes at 8.04 min. The reaction proceeded S-selectively, and the enantiomeric excess of the product was 100%. (FIG. 10)

分析条件2
GC/MSシステム:島津製作所社製「GC/MS-QP2010 plus」
カラム:シグマアルドリッチ社製「Beta DexTM 325 column」(φ 0.25μm, 0.25 mm × 30 m)
カラム初期温度:80℃
保持時間:5 min
昇温速度:5℃/min
到達温度:230℃
キャリアガス:ヘリウム
流速:28 cm/s
キャリアガス圧力:150 kPa
イオン源温度:230℃
Analysis condition 2
GC / MS system: "GC / MS-QP2010 plus" manufactured by Shimadzu Corporation
Column: “Beta Dex TM 325 column” manufactured by Sigma-Aldrich (φ 0.25 μm, 0.25 mm × 30 m)
Column initial temperature: 80 ° C
Holding time: 5 min
Heating rate: 5 ° C / min
Ultimate temperature: 230 ° C
Carrier gas: Helium flow rate: 28 cm / s
Carrier gas pressure: 150 kPa
Ion source temperature: 230 ° C

実施例17 精製酵素を用いたシクロドデセノンの還元
3.0 mM シクロドデセノンを出発物質として、実施例15と同様の条件で反応を行い、分析条件1で反応液の酢酸エチル抽出物のGC/MS分析を行った。その結果、反応生成物はシクロドデカノン標準品と同様に17.8 minに溶出した。シクロドデセノンは20.1 minに溶出した。生成したシクロドデカノンをGC/MSで定量し、出発物質であるシクロドデセノンに対するモル収率を求めた結果、反応収率9.9 %でシクロドデカノンが生成していた。GC/MSの全イオンクロマトグラム(TIC)を図11に示す。
Example 17 Reduction of cyclododesenone using purified enzyme
Using 3.0 mM cyclododesenone as a starting material, the reaction was carried out under the same conditions as in Example 15, and the analysis solution was subjected to GC / MS analysis of an ethyl acetate extract of the reaction solution under analysis condition 1. As a result, the reaction product was eluted at 17.8 min in the same manner as the cyclododecanone standard. Cyclododesenone eluted at 20.1 min. The cyclododecanone produced was quantified by GC / MS, and the molar yield with respect to the starting material cyclododecenone was determined. As a result, cyclododecanone was produced at a reaction yield of 9.9%. FIG. 11 shows the total ion chromatogram (TIC) of GC / MS.

実施例19 精製酵素を用いたシクロペンタデセノンの還元
3.0 mM シクロペンタデセノンを出発物質として、実施例15と同様の条件で反応を行い、分析条件1で反応液の酢酸エチル抽出物のGC/MS分析を行った。その結果、反応生成物はシクロペンタデカノン標準品と同様に20.5 minに溶出した。シクロペンタデセノンは22.3 minに溶出した。生成したシクロペンタデカノンをGC/MSで定量し、出発物質であるシクロペンタデセノンに対するモル収率を求めた結果、反応収率0.0025%でシクロペンタデカノンが生成していた。GC/MSのイオンクロマトグラム(m/z 224)を図12に示す。
Example 19 Reduction of cyclopentadecenone using purified enzyme
Using 3.0 mM cyclopentadecenone as a starting material, the reaction was carried out under the same conditions as in Example 15, and a GC / MS analysis of the ethyl acetate extract of the reaction solution was performed under analysis condition 1. As a result, the reaction product was eluted at 20.5 min similarly to the cyclopentadecanone standard product. Cyclopentadecenone eluted at 22.3 min. The generated cyclopentadecanone was quantified by GC / MS, and the molar yield relative to the starting material cyclopentadecenone was determined. As a result, cyclopentadecanone was produced with a reaction yield of 0.0025%. The GC / MS ion chromatogram (m / z 224) is shown in FIG.

本発明は、環状エノン還元酵素を用いる技術分野に有用である。   The present invention is useful in the technical field using a cyclic enone reductase.

配列番号1:環状エノン還元酵素遺伝子の塩基配列
配列番号2:環状エノン還元酵素のアミノ酸配列
配列番号3:ORFクローニング用のプライマー1
配列番号4:ORFクローニング用のプライマー2
配列番号5:ORFクローニング用のプライマー3
配列番号6:ORFクローニング用のプライマー4
SEQ ID NO: 1: base sequence of cyclic enone reductase gene SEQ ID NO: 2: amino acid sequence of cyclic enone reductase SEQ ID NO: 3: primer 1 for ORF cloning
SEQ ID NO: 4: Primer 2 for ORF cloning
SEQ ID NO: 5: primer 3 for ORF cloning
SEQ ID NO: 6: primer 4 for ORF cloning

Claims (5)

(a1)下記(1)又は(3)のアミノ酸配列を有し、かつ(a2)環状エノン還元活性を有するタンパク質、(4)〜()のいずれかの塩基配列を有する遺伝子をベクター中に含むプラスミドを宿主生物中に前記遺伝子がコードする環状エノン還元酵素を発現可能に含む形質転換体およびその菌体処理物からなる群から選択されるいずれかの酵素源を、環構造の炭素数が12〜15個の環状エノンに作用させて、前記環状エノンの炭素−炭素2重結合の還元生成物である環状ケトンを得る工程を含む、環状ケトンの製造方法。
(1)配列表の配列番号2に記載のアミノ酸配列;
(3)配列表の配列番号2に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列;
(4)配列表の配列番号1に記載の塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配列;
(5)配列表の配列番号1に記載の塩基配列において1から50個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、環状エノン還元活性を有するタンパク質をコードする塩基配
(A1) a protein having the amino acid sequence of (1) or (3) below and (a2) a protein having cyclic enone reducing activity, and a gene having any one of the base sequences of (4) to ( 5 ) in a vector Any enzyme source selected from the group consisting of a transformant containing a plasmid containing the gene capable of expressing the cyclic enone reductase encoded by the gene in a host organism and a treated product thereof, A method for producing a cyclic ketone, comprising a step of acting on 12 to 15 cyclic enones to obtain a cyclic ketone that is a reduction product of a carbon-carbon double bond of the cyclic enone.
(1) the amino acid sequence of SEQ ID NO: 2 in the sequence listing;
(3) an amino acid sequence having 90% or more identity to the amino acid sequence described in SEQ ID NO: 2 in the sequence listing;
(4) a nucleotide sequence having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing and encoding a protein having cyclic enone reducing activity;
(5) a base sequence encoding a protein having a base sequence having deletion, substitution and / or addition of 1 to 50 bases in the base sequence of SEQ ID NO: 1 in the sequence listing, and encoding a protein having cyclic enone reducing activity; Column .
前記環状エノンが、下式(1)で示される化合物である請求項1に記載の製造方法。
式(1):
(式中、nは7〜10の整数であり、Rは水素原子又は炭素数1〜6個のアルキル基である。)
The method according to claim 1, wherein the cyclic enone is a compound represented by the following formula (1).
Equation (1):
(In the formula, n is an integer of 7 to 10 , and R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
前記環状エノン還元活性は、シクロドデセノン及びシクロペンタデセノンから成る群から選ばれる少なくとも1種の環状エノンの還元活性である請求項1又は2に記載の製造方法。 It said annular enone reductase activity, cyclododecenone and at least one process according to claim 1 or 2 which is a reducing activity of cyclic enone selected from the group consisting of cyclopentadecenones. 前記シクロドデセノンの還元活性は、以下の測定法により測定される請求項に記載の製造方法。
測定法: 100 mM リン酸カリウム緩衝液(pH 7.0)、0.2 mM NADPH、20 mM シクロドデセノン及び前記タンパク質を含む反応液中30℃で反応させ、生成したシクロドデカノンをGC/MSで定量する
The production method according to claim 3 , wherein the reduction activity of the cyclododesenone is measured by the following measurement method.
Assay: Reaction is carried out at 30 ° C. in a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 0.2 mM NADPH, 20 mM cyclododesenone and the above protein, and the produced cyclododecanone is quantified by GC / MS .
前記シクロペンタデセノンの還元活性は、以下の測定法により測定される請求項3に記載の製造方法。The production method according to claim 3, wherein the reduction activity of the cyclopentadecenone is measured by the following measurement method.
測定法: 100 mM リン酸カリウム緩衝液(pH 7.0)、0.2 mM NADPH、20 mM シクロペンタデセノン及び前記タンパク質を含む反応液中30℃で反応させ、生成したシクロペンタデカノンをGC/MSで定量する。Assay method: Reaction was carried out at 30 ° C. in a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 0.2 mM NADPH, 20 mM cyclopentadecenone and the protein, and the resulting cyclopentadecanone was analyzed by GC / MS. Quantify.
JP2015041695A 2015-03-03 2015-03-03 Cyclic enone reductase and its use Expired - Fee Related JP6669437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041695A JP6669437B2 (en) 2015-03-03 2015-03-03 Cyclic enone reductase and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041695A JP6669437B2 (en) 2015-03-03 2015-03-03 Cyclic enone reductase and its use

Publications (2)

Publication Number Publication Date
JP2016158583A JP2016158583A (en) 2016-09-05
JP6669437B2 true JP6669437B2 (en) 2020-03-18

Family

ID=56843442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041695A Expired - Fee Related JP6669437B2 (en) 2015-03-03 2015-03-03 Cyclic enone reductase and its use

Country Status (1)

Country Link
JP (1) JP6669437B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753335B2 (en) * 2001-07-24 2011-08-24 ダイセル化学工業株式会社 Enone reductase

Also Published As

Publication number Publication date
JP2016158583A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP7044860B2 (en) Genetic engineering bacteria
US7202069B2 (en) (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes
JPWO2010024444A1 (en) Method for producing optically active amine derivative
JPWO2010024445A1 (en) Process for producing optically active amine derivatives
Xu et al. Identification and characterization of a novel “thermophilic-like” old yellow enzyme from the genome of Chryseobacterium sp. CA49
EP2562253B1 (en) Modified carbonyl reductase, gene thereof, and method of producing optically active alcohols using these
DK2639216T3 (en) Halogenated Indones and Methods for Preparation of Optically Active Indanones or Optically Active Indanols Using These
JP4414337B2 (en) Novel carbonyl reductase, its gene, and its use
EP3697898A1 (en) Cytochrome p450 monooxygenase catalyzed oxidation of sesquiterpenes
US10844407B2 (en) Variant type tetraprenyl-β-curcumene cyclase and method for producing ambrein
JP6669437B2 (en) Cyclic enone reductase and its use
WO2011071058A1 (en) Preparation method for optically active 2-hydroxycycloalkane carboxylic acid ester
JP5761641B2 (en) Method for producing (R) -3-quinuclidinol
JP2003033185A (en) Enone reductase
JP4668176B2 (en) Triterpene hydroxylase
EP1236796A1 (en) Novel enone reductases isolated from Kluyveromyces lactis, methods for producing same, and methods for selectively reducing a carbon-carbon double bond of an Alpha, Beta-unsaturated ketone using the reductases
JP2017153445A (en) (s)-muscone production process
CN111094571A (en) Effective preparation method of ambergris alcohol
JP2012060913A (en) New styrene monooxygenase, method for producing the same, and method for producing optically active styrene oxide utilizing the same
JP4796323B2 (en) Novel carbonyl reductase, its gene, and its use
JP2010279272A (en) New carbonyl reductase; gene, vector, and transformant thereof; and method for producing optically active alcohol by utilization of them
KR20060113697A (en) Novel acetoacetyl-coa reductase and process for producing optically active alcohol
WO2019008110A1 (en) Method for preparing amines from aldehydes and ketones by biocatalysis
JPWO2020213731A1 (en) Method for Producing (1R, 3R) -3- (Trifluoromethyl) Cyclohexane-1-ol and its Intermediate
JP2012090537A (en) Improved type halohydrin epoxidase

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6669437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees