JP6665829B2 - Film-coated hot-dip Zn-Al-Mg plated steel sheet and method for producing the same - Google Patents
Film-coated hot-dip Zn-Al-Mg plated steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP6665829B2 JP6665829B2 JP2017092758A JP2017092758A JP6665829B2 JP 6665829 B2 JP6665829 B2 JP 6665829B2 JP 2017092758 A JP2017092758 A JP 2017092758A JP 2017092758 A JP2017092758 A JP 2017092758A JP 6665829 B2 JP6665829 B2 JP 6665829B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- film
- dip
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 78
- 239000010959 steel Substances 0.000 title claims description 78
- 229910018134 Al-Mg Inorganic materials 0.000 title claims description 65
- 229910018467 Al—Mg Inorganic materials 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000007747 plating Methods 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 17
- 229910017706 MgZn Inorganic materials 0.000 claims description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 15
- 230000005496 eutectics Effects 0.000 claims description 15
- 229910017604 nitric acid Inorganic materials 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 239000007921 spray Substances 0.000 claims description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 10
- -1 phosphoric acid compound Chemical class 0.000 claims description 9
- 229910007570 Zn-Al Inorganic materials 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 8
- 239000004566 building material Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 39
- 239000011701 zinc Substances 0.000 description 15
- 238000005299 abrasion Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011941 photocatalyst Substances 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical group [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical group [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- SZHQPBJEOCHCKM-UHFFFAOYSA-N 2-phosphonobutane-1,2,4-tricarboxylic acid Chemical compound OC(=O)CCC(P(O)(O)=O)(C(O)=O)CC(O)=O SZHQPBJEOCHCKM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 1
- TUYRAIOYNUOFNH-UHFFFAOYSA-N CP(=O)(O)OP(=O)O Chemical compound CP(=O)(O)OP(=O)O TUYRAIOYNUOFNH-UHFFFAOYSA-N 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Landscapes
- Chemical Treatment Of Metals (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、散水冷却用建材として使用する、親水性、耐久性及び耐候性に優れた皮膜被覆溶融Zn−Al−Mg系めっき鋼板及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a coating-coated hot-dip Zn-Al-Mg-based steel sheet having excellent hydrophilicity, durability and weather resistance, which is used as a building material for water spray cooling, and a method for producing the same.
従来、工場、倉庫及び畜舎など空調設備のない施設において、日中の日射により屋根面が加熱され、輻射熱により建物内が外気温以上に高温となる場合がある。そこで、安価で簡便な冷却方法が求められており、近年、省エネルギー、自然エネルギー活用の観点から、建屋の屋根や外壁に散水を行い、水の蒸発熱により建屋を冷却する、散水冷却システムが検討されている。 2. Description of the Related Art Conventionally, in a facility without an air conditioner, such as a factory, a warehouse, and a barn, the roof surface is heated by daylight, and the inside of the building may become higher than the outside temperature due to radiant heat. Therefore, there has been a demand for an inexpensive and simple cooling method.In recent years, from the viewpoint of energy saving and utilization of natural energy, a water spray cooling system that sprays water on the roof and outer walls of the building and cools the building with the heat of evaporation of water has been studied. Have been.
例えば、特許文献1には、散水装置にかかる水圧を低く、かつ略一定に保って水を少量ずつゆっくり流すことで、効率的かつ安価に建物を冷却できる散水装置、並びに当該散水装置を用いた屋根冷却システムが開示されている。 For example, Patent Literature 1 uses a watering device that can efficiently and inexpensively cool a building by lowering the water pressure applied to the watering device, and keeping the water pressure approximately constant to slowly flow the water little by little, and using the watering device. A roof cooling system is disclosed.
しかしながら、水圧を低く一定に保って少量ずつ散水しても、屋根材の種類によっては水を弾き、全面を均一に冷却できない。少量の水で全面を薄い水膜で均一に濡らし、効率的に蒸発冷却を促進するためには、屋根材として濡れ性の良い(親水性の高い)材料が必要である。 However, even if water is sprayed little by little while keeping the water pressure low and constant, the water is repelled depending on the type of roofing material, and the entire surface cannot be cooled uniformly. In order to uniformly wet the entire surface with a thin water film with a small amount of water and efficiently promote evaporative cooling, a material having good wettability (high hydrophilicity) is required as a roof material.
特許文献2には、構造物壁面または屋根面の所定領域に、光励起に応じて親水化する光触媒層を形成しておき、この光触媒層の形成領域に水を供給し、蒸発に伴う潜熱により周辺空気および構造物を冷却することを特徴とする都市空間の冷却方法が開示されている。 In Patent Literature 2, a photocatalyst layer that becomes hydrophilic in response to photoexcitation is formed in a predetermined region of a structure wall surface or a roof surface, water is supplied to the photocatalyst layer formation region, and latent heat associated with evaporation causes peripheral heat generation. A method for cooling an urban space characterized by cooling air and structures is disclosed.
しかしながら、光触媒は紫外線により励起されることによって親水化するため、天候に左右され、親水性を維持することができない。 However, since the photocatalyst becomes hydrophilic by being excited by ultraviolet rays, it is not possible to maintain hydrophilicity depending on the weather.
また、特許文献3には、無機主体の皮膜で平均粒子径が1〜40nmのフュームドシリカと、平均粒子径が0.1〜500μm、見掛け比容積が2〜12cm3/gである非晶質の無機粉体を含むことにより凹凸を形成し、高い親水性を示すコーティング組成物が開示されている。 Further, Patent Document 3 discloses a fumed silica having an average particle diameter of 1 to 40 nm in an inorganic-based film and an amorphous film having an average particle diameter of 0.1 to 500 μm and an apparent specific volume of 2 to 12 cm 3 / g. There is disclosed a coating composition which forms irregularities by including high quality inorganic powder and exhibits high hydrophilicity.
散水冷却用建材用途としては、常時日光に触れるため、有機樹脂を使用した場合紫外線による劣化が懸念される。そこで、特許文献3のような無機主体の皮膜が好ましい。 As a water spray cooling building material application, since it is always in contact with sunlight, when an organic resin is used, there is a concern about deterioration due to ultraviolet rays. Therefore, an inorganic-based coating as disclosed in Patent Document 3 is preferable.
しかしながら、凹凸を付与する目的で皮膜中に0.1〜500μmの粒子を含むため、加工を伴う用途に使用する場合には摺動、磨耗により皮膜中の粒子が脱落して皮膜が剥離するため、厳しい条件においては耐磨耗性が不十分である。 However, since the coating contains 0.1 to 500 μm particles for the purpose of imparting irregularities, when used in applications involving processing, the particles in the coating fall off due to sliding and abrasion, and the coating is peeled off. Under severe conditions, the abrasion resistance is insufficient.
本発明は、かかる事情に鑑みてなされたものであって、散水冷却用建材として使用する鋼板であって、安定して、高い親水性を示し、耐候性、耐食性、外観及び耐磨耗性に優れた親水性皮膜を有する皮膜被覆溶融Zn−Al−Mg系めっき鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a steel sheet used as a building material for watering cooling, showing a stable, high hydrophilicity, weather resistance, corrosion resistance, appearance and abrasion resistance. An object of the present invention is to provide a film-coated hot-dip Zn-Al-Mg-based steel sheet having an excellent hydrophilic film and a method for producing the same.
本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた。その結果、特定のめっき層を有する溶融Zn−Al−Mg系めっき鋼板を特定の酸で処理することによって表面に凹凸形状を作製し、さらに親水性の皮膜を形成することによって上記課題を解決できることを知見した。 The present inventors have intensively studied to solve the above problems. As a result, it is possible to solve the above-mentioned problem by forming an uneven shape on the surface by treating a hot-dip Zn-Al-Mg-based plated steel sheet having a specific plating layer with a specific acid, and further forming a hydrophilic film. Was found.
本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。 The present invention has been made based on the above findings, and the gist is as follows.
[1]鋼板の少なくとも一方の表面に、Al:5.0質量%以上10.0質量%未満、Mg:0.2質量%以上5.0質量%未満を含有し、残部がZnおよび不可避的不純物からなり、初晶Al相と、Al−Zn−MgZn2の3元共晶を含有する溶融Zn−Al−Mg系めっき層を有する鋼板を、0.01mol/L以上10mol/L未満の硝酸に、2秒以上60秒未満接触させる酸接触工程と、
前記酸接触工程後の溶融Zn−Al−Mg系めっき鋼板を乾燥させる乾燥工程と、
前記乾燥工程後の溶融Zn−Al−Mg系めっき鋼板上に親水性皮膜形成用処理液を塗布し、乾燥させて親水性皮膜を形成する皮膜形成工程と、を行うことを特徴とする皮膜被覆付溶融Zn−Al−Mg系めっき鋼板の製造方法。
[1] At least one surface of a steel sheet contains Al: 5.0% by mass or more and less than 10.0% by mass, Mg: 0.2% by mass or more and less than 5.0% by mass, and the balance is Zn and inevitable. A steel plate having a molten Zn—Al—Mg-based plating layer containing impurities and containing a primary Al phase and a ternary eutectic of Al—Zn—MgZn 2 was subjected to nitric acid of 0.01 mol / L or more and less than 10 mol / L. An acid contacting step of contacting for at least 2 seconds and less than 60 seconds;
A drying step of drying the hot-dip Zn-Al-Mg-based plated steel sheet after the acid contacting step;
A coating step of applying a treatment liquid for forming a hydrophilic film on the hot-dip Zn-Al-Mg-based plated steel sheet after the drying step, and drying to form a hydrophilic film. A method for producing a hot-dip Zn-Al-Mg-based plated steel sheet.
[2]前記初晶Al相の平均長径が10μm以下であることを特徴とする[1]に記載の皮膜被覆溶融Zn−Al−Mg系めっき鋼板の製造方法。 [2] The method for producing a coating-coated hot-dip Zn-Al-Mg-based steel sheet according to [1], wherein the primary crystal Al phase has an average major axis of 10 μm or less.
[3]前記親水性皮膜が、無機皮膜であることを特徴とする[1]または[2]に記載の皮膜被覆溶融Zn−Al−Mg系めっき鋼板の製造方法。 [3] The method for producing a film-coated hot-dip Zn-Al-Mg-based steel sheet according to [1] or [2], wherein the hydrophilic film is an inorganic film.
[4]鋼板の少なくとも一方の表面に、Al:5.0質量%以上10.0質量%未満、Mg:0.2質量%以上5.0質量%未満を含有し、残部がZnおよび不可避的不純物からなり、初晶Al相と、Al−Zn−MgZn2の3元共晶を含有する溶融Zn−Al−Mg系めっき層を有し、該溶融Zn−Al−Mg系めっき層の上にさらに親水性皮膜を有する皮膜被覆溶融Zn−Al−Mg系めっき鋼板であって、
前記皮膜被覆溶融Zn−Al−Mg系めっき鋼板の断面において、溶融Zn−Al−Mg系めっき層の最大厚さがhのとき、鋼板幅方向に2hの範囲において、親水性皮膜と溶融Zn−Al−Mg系めっき層の界面が形成する曲線の長さをL、この曲線のうち、親水性皮膜と初晶Al相が接する界面により形成される曲線の長さの和をLAlとするとき、下記式(1)および式(2)を満たすことを特徴とする皮膜被覆溶融Zn−Al−Mg系めっき鋼板。
1.5≦L/2h<5.5 (1)
0.40≦LAl/L<0.90 (2)
[5]前記初晶Al相の平均長径が10μm以下であることを特徴とする[4]に記載の皮膜被覆溶融Zn−Al−Mg系めっき鋼板。
[4] At least one surface of the steel sheet contains Al: 5.0% by mass to less than 10.0% by mass, Mg: 0.2% by mass to less than 5.0% by mass, with the balance being Zn and inevitable. It consists impurities, and primary crystal Al phase has a Zn-Al-Mg-based plating layer containing ternary eutectic of Al-Zn-MgZn 2, over the molten Zn-Al-Mg plated layer Further, a film-coated hot-dip Zn-Al-Mg-based steel sheet having a hydrophilic film,
In the cross section of the film-coated hot-dip Zn-Al-Mg-based plated steel sheet, when the maximum thickness of the hot-dip Zn-Al-Mg-based plated layer is h, the hydrophilic film and hot-dip Zn- When the length of the curve formed by the interface of the Al-Mg-based plating layer is L, and the sum of the lengths of the curves formed by the interface between the hydrophilic film and the primary Al phase is L Al And a film-coated hot-dip Zn-Al-Mg-based steel sheet satisfying the following formulas (1) and (2).
1.5 ≦ L / 2h <5.5 (1)
0.40 ≦ L Al /L<0.90 (2)
[5] The coating-coated hot-dip Zn-Al-Mg-based steel sheet according to [4], wherein the primary crystal Al phase has an average major axis of 10 µm or less.
[6]前記親水性皮膜が、無機皮膜であることを特徴とする[4]または[5]に記載の皮膜被覆溶融Zn−Al−Mg系めっき鋼板。 [6] The coating-coated hot-dip Zn-Al-Mg-based steel sheet according to [4] or [5], wherein the hydrophilic film is an inorganic film.
本発明によれば、散水冷却用建材として好適な、親水性、耐久性(耐磨耗性)、耐食性、外観及び耐候性に優れた皮膜被覆溶融Zn−Al−Mg系めっき鋼板が得られる。 According to the present invention, a coated Zn—Al—Mg-based coated steel sheet excellent in hydrophilicity, durability (abrasion resistance), corrosion resistance, appearance, and weather resistance, which is suitable as a building material for water spray cooling, can be obtained.
以下、本発明について具体的に説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, the present invention will be described specifically. Note that the present invention is not limited to the following embodiments.
本発明の皮膜被覆溶融Zn−Al−Mg系めっき鋼板の製造方法は、特定の溶融Zn−Al−Mg系めっき鋼板を、0.01mol/L以上10mol/L未満の硝酸に2秒以上60秒未満接触させる酸接触工程と、めっき鋼板を乾燥させる乾燥工程と、この乾燥工程後に、めっき鋼板上に親水性皮膜形成用処理液を塗布し、乾燥させ、親水性皮膜を形成する皮膜形成工程を有する。 The method for producing a coating-coated hot-dip Zn-Al-Mg-based coated steel sheet of the present invention is characterized in that a specific hot-dip Zn-Al-Mg-based coated steel sheet is subjected to nitric acid of 0.01 mol / L or more and less than 10 mol / L for 2 seconds to 60 seconds. An acid contacting step of making less than a contact, a drying step of drying the plated steel sheet, and after this drying step, a treatment liquid for forming a hydrophilic film is applied on the plated steel sheet and dried to form a film forming step of forming a hydrophilic film. Have.
上記「特定の溶融Zn−Al−Mg系めっき鋼板」とは、鋼板の少なくとも一方の表面に、Al:5.0質量%以上10.0質量%未満、Mg:0.2質量%以上5.0質量%未満を含有し、残部がZnおよび不可避的不純物からなる溶融Zn−Al−Mg系めっき層を有し、該溶融Zn−Al−Mg系めっき層が、初晶Al相と、Al−Zn−MgZn2の3元共晶を含有する溶融Zn−Al−Mg系めっき鋼板である。 The above-mentioned "specific hot-dip Zn-Al-Mg-based plated steel sheet" means that at least one surface of the steel sheet has Al: 5.0% by mass or more and less than 10.0% by mass, and Mg: 0.2% by mass or more and 5.0% by mass. A molten Zn—Al—Mg-based plating layer containing less than 0% by mass and the balance consisting of Zn and unavoidable impurities, wherein the molten Zn—Al—Mg-based plating layer is composed of a primary Al phase, an Al— a hot-dip Zn-Al-Mg plated steel sheet containing ternary eutectic of Zn-MgZn 2.
溶融Zn−Al−Mg系めっき鋼板においては、Al−Zn−MgZn2の3元共晶中に初晶Al相の細粒が粒状に分散しているが、これを硝酸と接触させることでZnおよびMgZn2が優先的に溶解し、Alが残存することで凹凸形状が得られる。この上にさらに無機皮膜を形成することで、もともと親水性のそれほど高くない無機皮膜であってもその親水性が高められる。さらに、表面に残存するAlはZnより固く、耐食性にも優れるため、得られる表面は耐磨耗性、耐食性にも優れる。 In the hot-dip Zn-Al-Mg-based plated steel sheet, fine grains of the primary Al phase are dispersed in the ternary eutectic of Al-Zn-MgZn 2 in granular form. And MgZn 2 are preferentially dissolved and Al remains to obtain an uneven shape. By further forming an inorganic film thereon, even if the inorganic film is not originally so hydrophilic, its hydrophilicity can be enhanced. Furthermore, since the Al remaining on the surface is harder than Zn and has excellent corrosion resistance, the resulting surface has excellent abrasion resistance and corrosion resistance.
先ず、本発明の溶融Zn−Al−Mg系めっき鋼板の各構成について説明する。 First, each configuration of the hot-dip Zn-Al-Mg-based plated steel sheet of the present invention will be described.
<溶融Zn−Al−Mg系めっき鋼板>
本発明で製造される皮膜被覆溶融Zn−Al−Mg系めっき鋼板のベースとなる溶融Zn−Al−Mg系めっき鋼板について説明する。この溶融Zn−Al−Mg系めっき鋼板の溶融Zn−Al−Mg系めっき層中にMgを添加する目的は、主として、島状に形成した初晶Al相の周囲に縞状にAl−Zn−MgZn2の3元共晶を形成させ、その後の硝酸溶解処理で表面に微細なAlの凹凸形状を形成できるようにすることにある。
<Hot-dipped Zn-Al-Mg-based plated steel sheet>
The hot-dip Zn-Al-Mg-based coated steel sheet serving as the base of the coating-coated hot-dip Zn-Al-Mg-based steel sheet manufactured in the present invention will be described. The purpose of adding Mg to the hot-dip Zn-Al-Mg-based plated layer of this hot-dip Zn-Al-Mg-based steel sheet is mainly to form a striped Al-Zn- An object of the present invention is to form a ternary eutectic of MgZn 2 and to form fine Al irregularities on the surface by a subsequent nitric acid dissolution treatment.
溶融Zn−Al−Mg系めっき層(以下、単に「めっき層」という)の成分組成の限定理由について説明する。 The reason for limiting the component composition of the hot-dip Zn-Al-Mg-based plating layer (hereinafter, simply referred to as “plating layer”) will be described.
Al:5.0質量%以上10.0質量%未満
めっき層中のAl含有量が5.0質量%未満では、初晶Al相ではなく初晶Zn相が形成される。ZnはAlに比べやわらかく耐摩耗性に劣るため、摩耗性が低下してしまう。一方、Al含有量が10.0質量%以上になるとめっき浴中にAlを主体としたトップドロスが大量に発生し、めっき外観を損なうという問題が生じる。以上の理由から、めっき層中のAl含有量は5.0質量%以上10.0質量%未満、好ましくは6.0質量%以上8.0質量%未満とする。
Al: 5.0% by mass or more and less than 10.0% by mass When the Al content in the plating layer is less than 5.0% by mass, not a primary Al phase but a primary Zn phase is formed. Zn is soft and inferior to abrasion resistance as compared with Al, so that abrasion resistance is reduced. On the other hand, when the Al content is 10.0% by mass or more, a large amount of top dross mainly composed of Al is generated in the plating bath, which causes a problem of impairing the plating appearance. For the above reasons, the Al content in the plating layer is set to 5.0% by mass or more and less than 10.0% by mass, preferably 6.0% by mass or more and less than 8.0% by mass.
Mg:0.2質量%以上5.0質量%未満
本発明においてめっき組成中にMgを含む狙いの一つは、島状に形成した初晶Al相の周囲に縞状にAl−Zn−MgZn2の3元共晶を形成させ、Alが微細に分散した形状を得ることにある。
Mg: 0.2% by mass or more and less than 5.0% by mass In the present invention, one of the aims of containing Mg in the plating composition is to form an Al-Zn-MgZn striped around the primary Al phase formed in an island shape. 2 to form a ternary eutectic and obtain a shape in which Al is finely dispersed.
一般の溶融Zn−Al系めっき鋼板(Al:4.3質量%、残部Zn)のめっき層は、初晶ZnとZn−Alの2元共晶からなり、この2元共晶はめっき層表面とめっき層−素地界面近傍に連続して存在する。これに対し、本発明の組成のめっき層は、初晶Al相の周囲に縞状にAl−Zn−MgZn2の3元共晶が存在する。 The plating layer of a general hot-dip Zn—Al-based plated steel sheet (Al: 4.3% by mass, balance Zn) is composed of a binary eutectic of primary Zn and Zn—Al, and the binary eutectic is the surface of the plating layer. And continuously in the vicinity of the plating layer-substrate interface. On the other hand, in the plating layer of the composition of the present invention, a ternary eutectic of Al—Zn—MgZn 2 exists in a striped shape around the primary Al phase.
なお、上記形状はSEM−EDXによる元素分析により、Alのみが検出される初晶Al相の部分と、Zn、Al、Mgが検出されるAl−Zn−MgZn2の3元共晶の部分をそれぞれ確認できる。 In addition, the above-mentioned shape shows, by elemental analysis by SEM-EDX, a portion of a primary Al phase in which only Al is detected and a portion of a ternary eutectic of Al-Zn-MgZn 2 in which Zn, Al, and Mg are detected. You can check each.
めっき層中のMgが0.2質量%未満の場合、Al−Zn−MgZn2の3元共晶の面積率が小さくなり、硝酸処理後の凹凸が小さくなって、親水皮膜を形成しても十分な親水性が得られない。一方、めっき層中のMgが5.0質量%以上の場合、初晶Al相は微細となるが、Al−Zn−MgZn2の3元共晶の増加によりめっき層の硬度が増し、曲げ加工で大きな亀裂が発生しやすく、加工性が低下する。また、ドロス付着も増加する。したがって、めっき層中のMg含有量は0.2質量%以上5.0質量%未満とする。 When the content of Mg in the plating layer is less than 0.2% by mass, the area ratio of the ternary eutectic of Al—Zn—MgZn 2 is reduced, the unevenness after nitric acid treatment is reduced, and even if a hydrophilic film is formed. Sufficient hydrophilicity cannot be obtained. On the other hand, when Mg in the plating layer is 5.0% by mass or more, the primary Al phase becomes fine, but the hardness of the plating layer increases due to an increase in the ternary eutectic of Al—Zn—MgZn 2 , and bending is performed. In this case, large cracks are easily generated, and the workability is reduced. Dross adhesion also increases. Therefore, the Mg content in the plating layer is set to 0.2% by mass or more and less than 5.0% by mass.
初晶Al相の平均長径は、10μm以下であることが好ましい。初晶Al相の平均長径は、10μm以下であれば、硝酸処理後に十分な凹凸が形成でき、親水皮膜を形成することで十分な親水性を得ることが可能である。 The average major diameter of the primary Al phase is preferably 10 μm or less. If the average major diameter of the primary Al phase is 10 μm or less, sufficient unevenness can be formed after the nitric acid treatment, and sufficient hydrophilicity can be obtained by forming a hydrophilic film.
ここで、初晶Al相の粒径(平均長径)は、以下のようにして測定する。鋼板板厚方向断面SEMにおいて、タテ:めっき層厚さ、ヨコ:めっき層厚さの2倍、となる視野において、個々の初晶Al相の最大長さを長径として測定し、その平均値を平均長径とする。これらの測定は酸処理後いずれに測定してもよい。 Here, the particle diameter (average major axis) of the primary Al phase is measured as follows. In the cross section SEM in the thickness direction of the steel sheet, in the field of view: vertical: plating layer thickness, horizontal: twice the plating layer thickness, the maximum length of each primary Al phase was measured as the major axis, and the average value was measured. The average major axis. These measurements may be made after any acid treatment.
以上のように、溶融Zn−Al−Mg系めっき鋼板のめっき層に適量のMgを含有させることにより、Al−Zn−MgZn2の3元共晶中に細粒状の初晶Al相が分散しためっき組成を持つ。 As described above, by incorporating an appropriate amount of Mg in the plating layer of the hot-dip Zn-Al-Mg plated steel sheet, the primary crystal Al phase fine particulate is dispersed in ternary Akirachu of Al-Zn-MgZn 2 Has plating composition.
このような溶融Zn−Al−Mg系めっき鋼板および皮膜被覆溶融Zn−Al−Mg系めっき鋼板は、例えば、下記のような製造条件で得ることができる。 Such a hot-dip Zn-Al-Mg-based steel sheet and a film-coated hot-dip Zn-Al-Mg-based steel sheet can be obtained, for example, under the following manufacturing conditions.
下地鋼板として使用する鋼板は、用途に応じて公知の鋼板から適宜選定すればよく、特に限定する必要はない。例えば、低炭素アルミキルド鋼板や極低炭素鋼板を用いることが、めっき作業の観点から好ましい。この鋼板(下地鋼板)を溶融Zn−Al系めっき浴に浸漬して熱浸(溶融)めっきを行った後、同めっき浴から引き上げて冷却し、鋼板表面に溶融Zn−Al系合金めっき層を形成する。このめっき層は、Al:5.0質量%以上10.0質量%未満、Mg:0.2質量%以上5.0質量%未満を含有し、さらに残部がZnおよび不可避的不純物からなる。したがって、溶融Zn−Al系めっき浴の浴組成も、実質的にめっき層の平均組成とほぼ同一となるように調整することが好ましい。 The steel sheet used as the base steel sheet may be appropriately selected from known steel sheets according to the application, and is not particularly limited. For example, it is preferable to use a low carbon aluminum killed steel sheet or an extremely low carbon steel sheet from the viewpoint of plating operation. This steel sheet (base steel sheet) is immersed in a hot-dip Zn-Al-based plating bath to perform hot immersion (hot-dip) plating, then pulled out of the plating bath and cooled, and a hot-dip Zn-Al-based alloy plating layer is formed on the steel sheet surface. Form. This plating layer contains Al: 5.0% by mass or more and less than 10.0% by mass, Mg: 0.2% by mass or more and less than 5.0% by mass, and the balance consists of Zn and unavoidable impurities. Therefore, it is preferable that the bath composition of the hot-dip Zn—Al-based plating bath is also adjusted to be substantially the same as the average composition of the plating layer.
溶融Zn−Al系めっき浴から引き上げためっき鋼板の冷却速度は特に限定しないが、250℃までの冷却速度が1〜15℃/秒、望ましくは2〜10℃/秒とすることが好ましい。めっき浴から引き上げためっき鋼板の250℃までの冷却速度が1℃/秒未満では、初晶Alが生成しない場合がある。また一方、冷却速度が15℃/秒を超えると、初晶Alの粒が大きくなりやすい。 The cooling rate of the plated steel sheet pulled up from the hot-dip Zn—Al-based plating bath is not particularly limited, but the cooling rate up to 250 ° C. is preferably 1 to 15 ° C./sec, and more preferably 2 to 10 ° C./sec. If the cooling rate of the plated steel sheet pulled up from the plating bath to 250 ° C. is less than 1 ° C./sec, primary crystal Al may not be generated. On the other hand, if the cooling rate exceeds 15 ° C./sec, primary Al grains tend to be large.
なお、めっき浴温は、390〜480℃の範囲とするのが好ましい。めっき浴温が390℃未満ではめっき浴の粘性が増してめっき表面がムラになりやすい。一方、めっき浴温が480℃を超えるとめっき浴中のドロスが増加しやすい。すなわち、めっき浴温が390℃以上であれば、めっき浴の粘性が適正に維持されるので、めっき表面がムラになりにくく、一方、480℃以下であれば、めっき浴中のドロスが増加しにくい。 The plating bath temperature is preferably in the range of 390 to 480 ° C. When the plating bath temperature is lower than 390 ° C., the viscosity of the plating bath increases, and the plating surface tends to become uneven. On the other hand, if the plating bath temperature exceeds 480 ° C., dross in the plating bath tends to increase. That is, if the plating bath temperature is 390 ° C. or higher, the viscosity of the plating bath is appropriately maintained, and the plating surface is less likely to be uneven. Hateful.
酸接触工程
酸接触工程は、溶融Zn−Al−Mg系めっき鋼板を0.01mol/L以上10mol/L未満の硝酸に2秒以上60秒未満接触させる工程である。
Acid Contact Step The acid contact step is a step of bringing the hot-dip Zn—Al—Mg-based plated steel sheet into contact with 0.01 mol / L or more and less than 10 mol / L nitric acid for 2 seconds or more and less than 60 seconds.
上記溶融Zn−Al−Mg系めっき鋼板のめっき層を硝酸に接触させることで、めっき表層(めっき層の表面から板厚方向に10μmまでの領域)のうちZnおよびMgZn2が溶解し、微細な凹凸が形成される。表面に残存するAlはZnより固く、得られる表面は耐磨耗性に優れる。 By bringing the plating layer of the above-mentioned hot-dip Zn-Al-Mg-based plated steel sheet into contact with nitric acid, Zn and MgZn 2 in the plating surface layer (a region from the surface of the plating layer to 10 μm in the plate thickness direction) are dissolved, Irregularities are formed. Al remaining on the surface is harder than Zn, and the resulting surface has excellent wear resistance.
以下、硝酸処理方法の限定理由について説明する。 Hereinafter, the reasons for limiting the nitric acid treatment method will be described.
硝酸濃度0.01mol/L未満では溶解の効果が小さく、凹凸形状が得られないため、0.01mol/L以上とする。好ましくは0.1mol/L以上である。一方、10mol/L以上の場合には溶解速度が速く、凹凸形状が大きくなり過ぎて外観がムラになるため、硝酸の濃度は10mol/L未満とする。好ましくは1mol/L以下である。 If the nitric acid concentration is less than 0.01 mol / L, the effect of dissolution is small, and a concavo-convex shape cannot be obtained. Preferably it is 0.1 mol / L or more. On the other hand, when the concentration is 10 mol / L or more, the dissolution rate is high, the unevenness becomes too large, and the appearance becomes uneven, so that the concentration of nitric acid is less than 10 mol / L. Preferably it is 1 mol / L or less.
硝酸への接触時間は2秒以上60秒未満である。2秒未満では、処理時間が短く、凹凸形状が得られないため、2秒以上とする。一方、60秒以上では、処理時間が長く、生産性が低下するとともに、凹凸形状が大きくなりすぎて外観の低下につながる。 The contact time with nitric acid is 2 seconds or more and less than 60 seconds. When the treatment time is less than 2 seconds, the treatment time is short and the uneven shape cannot be obtained. On the other hand, if the time is 60 seconds or longer, the processing time is long, the productivity is reduced, and the uneven shape becomes too large, which leads to the deterioration of the appearance.
酸の温度に特に指定はなく、一般的な範囲として5℃以上70℃未満であればよい。酸を加熱して使うこともできるが、加熱による溶解の促進効果は小さい。 The temperature of the acid is not particularly specified, and may be a general range of 5 ° C. or more and less than 70 ° C. Although the acid can be used after heating, the effect of promoting dissolution by heating is small.
鋼板を硝酸に接触させる方法については特に制限はない。ロールコート法、バーコート法、浸漬法、スプレー塗布法等を使用することができる。鋼板を酸に接触させた後、上記接触時間の範囲内で水により酸を洗い流し、乾燥させる。これが本発明における乾燥工程に相当する。 There is no particular limitation on the method of contacting the steel sheet with nitric acid. A roll coating method, a bar coating method, a dipping method, a spray coating method and the like can be used. After the steel sheet is brought into contact with the acid, the acid is washed off with water and dried within the above contact time. This corresponds to the drying step in the present invention.
皮膜形成工程
皮膜形成工程とは、上記乾燥工程後の溶融Zn−Al−Mg系めっき鋼板に親水性皮膜形成用処理液を塗布し、これを乾燥させて皮膜を形成する工程である。
Film forming step The film forming step is a step of applying a treatment liquid for forming a hydrophilic film to the molten Zn-Al-Mg-based plated steel sheet after the above-mentioned drying step, followed by drying to form a film.
親水性皮膜としては、上記溶融Zn−Al−Mg系めっき鋼板上に形成して親水性を示すものであればよく、平滑な面に皮膜を形成した際の水の接触角θ0が90°未満であればよい。好ましくは70°未満、さらに好ましくは55°未満である。親水性の皮膜をZn−Al−Mg系めっき鋼板の凹凸上に皮膜を形成することにより、より低い接触角を得ることができる。 The hydrophilic film, the Zn-Al-Mg-based formed on the plated steel sheet as long as it exhibits hydrophilicity, the contact angle theta 0 of water at the time of forming a film on the smooth surface is 90 ° It is sufficient if it is less than. Preferably it is less than 70 °, more preferably less than 55 °. A lower contact angle can be obtained by forming a hydrophilic film on the unevenness of the Zn-Al-Mg-based plated steel sheet.
親水性皮膜形成用処理液で形成される親水性皮膜の種類としては、無機皮膜が好ましい。有機皮膜では、紫外線により変性するため長期の親水性を確保することが困難である。 As a kind of the hydrophilic film formed by the treatment liquid for forming a hydrophilic film, an inorganic film is preferable. Since the organic film is denatured by ultraviolet rays, it is difficult to secure long-term hydrophilicity.
無機皮膜としては、チタン化合物、ジルコニウム化合物、シリカ、シランカップリング剤、バナジン酸化合物、リン酸化合物、ニッケル化合物、モリブデン化合物等を複合して用いることができる。 As the inorganic coating, a titanium compound, a zirconium compound, silica, a silane coupling agent, a vanadate compound, a phosphate compound, a nickel compound, a molybdenum compound, or the like can be used in combination.
特に、リン酸化合物を含む場合、皮膜と水との親和性が高くなり、平滑な面に皮膜を形成した際の水の接触角が50°以下となりやすく好ましい。ただし、リン酸化合物が皮膜中50質量%を超えると皮膜が水に溶解しやすくなり、耐食性が低下するため、リン酸化合物は皮膜中50質量%未満であることが好ましい。 In particular, when a phosphoric acid compound is contained, the affinity between the film and water increases, and the contact angle of water when forming the film on a smooth surface is preferably 50 ° or less, which is preferable. However, when the content of the phosphoric acid compound exceeds 50% by mass in the film, the film is easily dissolved in water and the corrosion resistance is reduced. Therefore, the content of the phosphoric acid compound in the film is preferably less than 50% by mass.
リン酸化合物としては、例えば、リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩、ピロリン酸、ピロリン酸塩、トリポリリン酸、トリポリリン酸塩などの縮合リン酸塩、亜リン酸、亜リン酸塩、次亜リン酸、次亜リン酸塩、ホスホン酸、ホスホン酸塩などが挙げられる。ホスホン酸塩としては、例えば、ニトリロトリスメチレンホスホン酸、ホスフォノブタントリカルボン酸、エチレンジアミンテトラメリレンホスホン酸、メチルジホスホン酸、メチレンホスホン酸などが挙げられる。 Examples of the phosphoric acid compound include condensed phosphates such as phosphoric acid, primary phosphate, secondary phosphate, tertiary phosphate, pyrophosphate, pyrophosphate, tripolyphosphate, and tripolyphosphate; Examples include phosphoric acid, phosphite, hypophosphorous acid, hypophosphite, phosphonic acid, phosphonate and the like. Examples of the phosphonate include nitrilotrismethylenephosphonic acid, phosphonobutanetricarboxylic acid, ethylenediaminetetramerylenephosphonic acid, methyldiphosphonic acid, and methylenephosphonic acid.
皮膜中には、アクリル樹脂、ウレタン樹脂、フェノール樹脂などの有機樹脂を含むこともできる。ただし、紫外線により変性するため長期の親水性を確保することが困難となるため、皮膜中10質量%以下であることが好ましく、含まないことがさらに好ましい。 An organic resin such as an acrylic resin, a urethane resin, and a phenol resin can be included in the film. However, since it is difficult to secure long-term hydrophilicity because it is denatured by ultraviolet rays, the content is preferably 10% by mass or less in the film, and more preferably not contained.
また、皮膜中に0.1μm以上の粒子を含むと耐磨耗性が低下するため、0.1μm以上の粒子を含有する場合でもその含有量は5質量%以下が好ましい。より好ましくは、皮膜中に0.1μm以上の粒子を含まないことである。 Further, if the coating contains particles of 0.1 μm or more, the abrasion resistance is reduced. Therefore, even if the coating contains particles of 0.1 μm or more, the content is preferably 5% by mass or less. More preferably, the coating does not contain particles of 0.1 μm or more.
親水性皮膜の膜厚は、0.1μm以上3μm未満が好ましい。0.1μm未満では水や酸素が透過しやすくなって耐食性が低下し、3μm以上では皮膜が凹凸を覆ってしまい、凹凸の効果による親水性向上効果が小さくなる。また、親水性皮膜の膜厚は断面をSEMで観察することによって測定される。任意の5視野(10μm×10μm)において任意の5箇所の膜厚をそれぞれ測定し、平均をとることによって算出できる。 The thickness of the hydrophilic film is preferably 0.1 μm or more and less than 3 μm. If it is less than 0.1 μm, water and oxygen tend to permeate and the corrosion resistance is reduced. If it is 3 μm or more, the film covers the irregularities, and the effect of improving the hydrophilicity by the effect of the irregularities is reduced. The thickness of the hydrophilic film is measured by observing the cross section with an SEM. The thickness can be calculated by measuring the film thickness at any five points in any five visual fields (10 μm × 10 μm) and taking the average.
上記親水性皮膜の形成方法としては、特に限定はされず、例えば、親水性皮膜を形成できる処理液中へ上記亜鉛系めっき鋼板を浸漬させる方法や、上記亜鉛系めっき鋼板に処理液を塗布する方法が挙げられる。処理液の塗布方法は、処理される亜鉛系めっき鋼板の形状等によって適宜最適な方法を選択すればよく、ロールコート法、バーコート法、浸漬法、スプレー塗布法等によって撥水撥油処理液を塗布することが可能である。さらに、塗布後にエアーナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。なお、処理液は従来公知の方法で調製すればよい。 The method for forming the hydrophilic film is not particularly limited. For example, a method of immersing the galvanized steel sheet in a treatment liquid capable of forming a hydrophilic film, or applying a treatment liquid to the galvanized steel sheet Method. The method of applying the treatment liquid may be selected as appropriate depending on the shape of the zinc-coated steel sheet to be treated, and the like. The water-repellent and oil-repellent treatment liquid is applied by a roll coating method, a bar coating method, a dipping method, a spray coating method, or the like. Can be applied. Furthermore, it is also possible to adjust the amount of application, make the appearance uniform, and make the film thickness uniform by the air knife method or the roll drawing method after the application. The treatment liquid may be prepared by a conventionally known method.
なお、上記親水性皮膜を形成できる処理液で処理した後の乾燥方法は、特に限定はされず、室温乾燥でも、加熱乾燥でもよい。加熱乾燥を行う手段としてはドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。温度についても特に限定されないが、最高到達板温(Peak Metal Temperature:PMT)で室温〜200℃程度であるのが好ましい。 The drying method after the treatment with the treatment liquid capable of forming the hydrophilic film is not particularly limited, and may be room temperature drying or heat drying. As a means for heating and drying, a dryer, a hot air oven, a high-frequency induction heating oven, an infrared oven, or the like can be used. Although the temperature is not particularly limited, it is preferable that the maximum ultimate sheet temperature (Peak Metal Temperature: PMT) is from room temperature to about 200 ° C.
このように形成された皮膜被覆溶融Zn−Al−Mg系めっき鋼板は、溶融Zn−Al−Mg系めっき層の最大厚さがhのとき、鋼板幅方向に2hの範囲において、親水性皮膜と溶融Zn−Al−Mg系めっき層の界面が形成する曲線の長さをL、この曲線のうち、親水性皮膜と初晶Al相(すなわち、溶融Zn−Al−Mg系めっき層の凸部)が接する界面により形成される曲線の長さの和をLAlとするとき、以下の式(1)と(2)を満たす。
1.5≦L/2h<5.5 (1)
0.40≦LAl/L<0.90 (2)
L/2hは表面凹凸の指標であり、式(1)の範囲であれば皮膜被覆溶融Zn−Al−Mg系めっき鋼板は高い親水性を示す。L/2hが1.5未満では凹凸の効果が小さく、親水性が低下する。また、L/2hが5.5以上では、凹凸が大き過ぎるため、部分的に面圧が高くなって耐磨耗性が低下するとともに、凹凸による光の吸収により外観が低下する。好ましくは、1.7以上、3.0未満である。LAl/Lは表面のAl量の指標であり、式(2)の範囲であれば皮膜被覆溶融Zn−Al−Mg系めっき鋼板は高い耐摩耗性と良好な外観を示す。LAl/Lが0.40未満ではやわらかいZnが表面に多く存在するため、耐摩耗性が不十分となる。LAl/Lが0.90以上では表面の溶解が進み凹凸が大き過ぎるため、外観が低下する。好ましくは、0.5以上、0.8未満である。
When the maximum thickness of the hot-dip Zn-Al-Mg-based plating layer is h, the coating-coated hot-dip Zn-Al-Mg-based coated steel sheet thus formed has a hydrophilic coating within a range of 2 h in the width direction of the steel sheet. The length of the curve formed by the interface of the hot-dip Zn-Al-Mg-based plating layer is L, and among these curves, the hydrophilic film and the primary Al phase (that is, the convex portion of the hot-dip Zn-Al-Mg-based plating layer) when the sum of the length of the curve formed by the interface in contact with the L Al, satisfy the following equations (1) and (2).
1.5 ≦ L / 2h <5.5 (1)
0.40 ≦ L Al /L<0.90 (2)
L / 2h is an index of the surface unevenness, and the film-coated hot-dip Zn—Al—Mg-based steel sheet shows high hydrophilicity in the range of the expression (1). When L / 2h is less than 1.5, the effect of unevenness is small, and the hydrophilicity is reduced. When L / 2h is 5.5 or more, the unevenness is too large, so that the surface pressure is partially increased and the wear resistance is reduced, and the appearance is reduced due to the absorption of light by the unevenness. Preferably, it is 1.7 or more and less than 3.0. L Al / L is an index of the amount of Al on the surface. If it is in the range of the expression (2), the film-coated hot-dip Zn-Al-Mg-based plated steel sheet shows high wear resistance and good appearance. When L Al / L is less than 0.40, a lot of soft Zn is present on the surface, so that the wear resistance becomes insufficient. When L Al / L is 0.90 or more, dissolution of the surface proceeds, and the unevenness is too large, so that the appearance is deteriorated. Preferably, it is 0.5 or more and less than 0.8.
なお、図1に示すようなh、L、LAlについては、タテ:めっき層厚さ、ヨコ:鋼板幅方向にめっき層厚さの2倍、となる任意の5視野の鋼板板厚方向断面SEMを観察し、めっき層の最大膜厚の5視野の平均値をhとし、親水性皮膜と溶融Zn−Al−Mg系めっき層の界面が形成する曲線の長さの5視野の平均値をLとし、親水性皮膜とZn−Alの2元共晶が接する界面により形成される曲線の長さの和の5視野の平均値をLAlとすることにより、それぞれ算出することができる。 In addition, as for h, L, and L Al as shown in FIG. 1, the vertical direction: the thickness of the plating layer, and the horizontal: the cross section of the steel plate in the thickness direction in any five fields of view, which is twice the thickness of the plating layer in the steel sheet width direction. Observing the SEM, the average value of the five visual fields of the maximum film thickness of the plating layer is defined as h, and the average value of the five visual fields of the length of the curve formed by the interface between the hydrophilic film and the molten Zn-Al-Mg-based plating layer is defined as h. L, and the average value of the sum of the lengths of the curves formed by the interface where the hydrophilic film and the binary eutectic of Zn-Al contact each other in five visual fields can be calculated as L Al .
次に、本発明を実施例に基づき具体的に説明するが、あくまで本発明を説明する一例に過ぎず、本発明を限定するものではない。 Next, the present invention will be specifically described based on examples, but is merely an example for describing the present invention, and does not limit the present invention.
表面処理めっき鋼板(皮膜被覆溶融Zn−Al−Mg系めっき鋼板に相当)のベース鋼板として使用した各めっき鋼板を、めっき組成(平均組成)、めっき処理条件(めっき浴温、浴浸漬時間、めっき後の250℃までの冷却速度)とともに表1に示す。 Each plated steel sheet used as a base steel sheet of a surface-treated plated steel sheet (corresponding to a film-coated hot-dip Zn-Al-Mg-based steel sheet) was subjected to plating composition (average composition), plating treatment conditions (plating bath temperature, bath immersion time, plating). Table 1 together with the subsequent cooling rate up to 250 ° C).
ここで、初晶Al相の粒径(平均長径(表1中のYμm))は、さきに説明した方法で測定した。 Here, the particle diameter (average major axis (Y μm in Table 1)) of the primary Al phase was measured by the method described above.
めっき鋼板に硝酸を所定の時間スプレーし、次に水をスプレーして水洗した後、ブロワーで乾燥させ、さらに表2に示す親水性表面処理組成物(親水性皮膜形成用処理液)をめっき鋼板表面に塗布し、5〜20秒間で最高到達板温が80℃になるように乾燥して供試材とした。L/2h、LAl/Lは、さきに説明した方法で測定した。これら供試材について、下記の試験方法により親水性、耐食性、耐候性、耐磨耗性を評価した。その結果を、各供試材に適用した硝酸濃度、表面処理組成物の組成及びその塗装条件とともに、表3に示す。 Nitric acid is sprayed on the plated steel sheet for a predetermined time, and then sprayed with water, washed with water, dried with a blower, and further coated with a hydrophilic surface treatment composition (a treatment liquid for forming a hydrophilic film) shown in Table 2 on the plated steel sheet. It was applied to the surface and dried so that the maximum temperature reached 80 ° C. in 5 to 20 seconds to obtain a test material. L / 2h and L Al / L were measured by the method described above. These test materials were evaluated for hydrophilicity, corrosion resistance, weather resistance, and abrasion resistance by the following test methods. The results are shown in Table 3 together with the nitric acid concentration applied to each test material, the composition of the surface treatment composition, and the coating conditions.
(1)耐食性
端部と裏面をテープシールした供試材に対してJIS−Z−2371−2000の塩水噴霧試験を行い、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
(1) Corrosion resistance A salt water spray test according to JIS-Z-2371-2000 was performed on a test material having an end portion and a back surface tape-sealed, and a test time at which a white rust generation area ratio was 5% was measured. The evaluation criteria are as follows.
○:192時間以上
○−:120時間以上192時間未満
△:120時間未満
また、上記塩水噴霧試験後に外観を目視観察して評価した。評価基準は以下の通りである。
◎:白色味、ムラなし
○:灰色味、ムラなし
○−:灰色味、ムラあり
△:灰黒色味
(2)耐磨耗性
試験条件;フェルト接触面幅20mm×10mm、荷重:3.8kg/cm2(0.4MPa)、被膜表面を100回単純往復。試験前後および皮膜なしのサンプルのZnの蛍光FXカウントから、皮膜の残存率を求めた。その評価基準は以下の通りである。
: 1: 192 hours or more −-: 120 hours or more and less than 192 hours Δ: less than 120 hours The appearance was visually observed and evaluated after the above salt spray test. The evaluation criteria are as follows.
◎: White tint, no unevenness ○: Gray tint, no unevenness ○-: Grayish tint, uneven black △: Gray black tint (2) Abrasion resistance Test conditions: Felt contact surface width 20 mm × 10 mm, load: 3.8 kg / cm 2 (0.4 MPa), simple reciprocating 100 times on the coating surface. The residual ratio of the film was determined from the fluorescence FX count of Zn before and after the test and in the sample without the film. The evaluation criteria are as follows.
◎:皮膜残存率90%以上
○:皮膜残存率75%以上90%未満
○−:皮膜残存率50%以上75%未満
△:皮膜残存率50%未満
(3)親水性(みかけの接触角)
得られた各サンプルを、30mm×50mmに加工し、室温にて2μLの蒸留水を表面に3滴滴下し、滴下後30秒後の各接触角を、固液界面解析装置Drop Master 500(協和界面科学(株)製)を使用して測定し、3滴の平均を水接触角として算出した。水接触角の良否は以下の基準に従って行った。
◎: Residual film ratio of 90% or more :: Residual film ratio of 75% or more and less than 90% ○-: Residual film ratio of 50% or more and less than 75% △: Residual film ratio of less than 50% (3) Hydrophilicity (apparent contact angle)
Each of the obtained samples was processed into a size of 30 mm × 50 mm, and 3 μL of 2 μL of distilled water was dropped on the surface at room temperature. Each contact angle 30 seconds after the drop was measured with a solid-liquid interface analyzer Drop Master 500 (Kyowa) The average of three drops was calculated as a water contact angle. The quality of the water contact angle was determined according to the following criteria.
◎:10°未満
○:30°未満10°以上
○−:40°未満30°以上
△:40°以上
(4)耐候性
JIS D0205(1987)に基づき、サンシャインウェザーテストを1000時間行った場合の親水性の低下を評価した。その評価基準は以下の通りである。
◎: less than 10 ° ○: less than 30 ° 10 ° or more ○-: less than 40 ° 30 ° or more △: 40 ° or more (4) Weatherability Based on JIS D0205 (1987), when a sunshine weather test was performed for 1000 hours. The decrease in hydrophilicity was evaluated. The evaluation criteria are as follows.
◎:+2°未満
○:+2°以上 +5°未満
○−:+5°以上 +10°未満
△:+10°以上
◎: less than + 2 ° ○: + 2 ° or more and less than + 5 ° ○-: + 5 ° or more and less than + 10 ° △: + 10 ° or more
表3の結果より、本発明例のサンプルは、いずれも、親水性、耐磨耗性及び耐候性に優れることがわかった。これに対し、いずれかの要件が不足した比較例のサンプルは、いずれかの性能に対して満足いく結果が得られないことがわかった。 From the results in Table 3, it was found that all of the samples of the present invention were excellent in hydrophilicity, abrasion resistance and weather resistance. On the other hand, it was found that the sample of the comparative example in which any of the requirements was insufficient could not obtain a satisfactory result for any of the performances.
本発明によれば、散水冷却用建材として使用する親水性と耐磨耗性、耐候性に優れた皮膜被覆溶融Zn−Al−Mg系めっき鋼板を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the coating-coated molten Zn-Al-Mg-based steel sheet excellent in hydrophilicity, abrasion resistance, and weather resistance used as a water spray cooling building material can be obtained.
Claims (4)
1.5≦L/2h<5.5 (1)
0.40≦LAl/L<0.90 (2) At least one surface of the steel sheet contains Al: 5.0% by mass or more and less than 10.0% by mass, Mg: 0.2% by mass or more and less than 5.0% by mass, and the balance consists of Zn and inevitable impurities. a primary crystal Al phase average major axis is 10μm or less, Al-Zn-MgZn have Zn-Al-Mg-based plating layer containing ternary eutectic of 2, the molten Zn-Al-Mg plated A coating used as a water spray cooling building material having a hydrophilic coating further containing less than 50% by mass of a phosphoric acid compound on the layer and having a water contact angle θ 0 of less than 90 ° when the coating is formed on a smooth surface A coated hot-dip Zn-Al-Mg-based coated steel sheet, wherein in the cross-section of the film-coated hot-dip Zn-Al-Mg-based coated steel sheet, the maximum thickness of the hot-dip Zn-Al-Mg-based plated layer is h , and the steel sheet width direction In the range of 2h, hydrophilic The length of the curve formed by the interface between the film and the hot-dip Zn-Al-Mg-based plating layer is L, and the sum of the lengths of the curves formed by the interface where the hydrophilic film and the primary Al phase are in contact with each other is L. as the L Al, the following formulas (1) and is characterized by satisfying (2), film-coated hot-dip Zn-Al-Mg plated steel sheet to be used as a water spray cooling building materials.
1.5 ≦ L / 2h <5.5 (1)
0.40 ≦ L Al /L<0.90 (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017092758A JP6665829B2 (en) | 2017-05-09 | 2017-05-09 | Film-coated hot-dip Zn-Al-Mg plated steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017092758A JP6665829B2 (en) | 2017-05-09 | 2017-05-09 | Film-coated hot-dip Zn-Al-Mg plated steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018188704A JP2018188704A (en) | 2018-11-29 |
JP6665829B2 true JP6665829B2 (en) | 2020-03-13 |
Family
ID=64479552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017092758A Active JP6665829B2 (en) | 2017-05-09 | 2017-05-09 | Film-coated hot-dip Zn-Al-Mg plated steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6665829B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110218959A (en) * | 2019-05-07 | 2019-09-10 | 江苏东纲金属制品有限公司 | A kind of bridge cable high corrosion-resistant Zn90-Al10-Mg Alloy Coating Steel Wire |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345380A (en) * | 1986-08-13 | 1988-02-26 | Kawasaki Steel Corp | Surface treated steel sheet having superior adhesion to paint and its production |
JPH0913179A (en) * | 1995-04-24 | 1997-01-14 | Kao Corp | Method of imparting lypophilicity to metal surface |
JP2002146504A (en) * | 2000-08-22 | 2002-05-22 | Nisshin Steel Co Ltd | Material for electrical equipment and member for electrical equipment having excellent corrosion resistance and whisker resistance |
JP2011168855A (en) * | 2010-02-19 | 2011-09-01 | Nisshin Steel Co Ltd | Polyvinyl chloride coated steel sheet having excellent end face corrosion resistance |
JP2013023683A (en) * | 2011-07-26 | 2013-02-04 | Nicca Chemical Co Ltd | Coating composition and article with coating film |
JP6443467B2 (en) * | 2016-02-18 | 2018-12-26 | Jfeスチール株式会社 | Fused Zn-Al-Mg plated steel sheet with coating and method for producing the same |
-
2017
- 2017-05-09 JP JP2017092758A patent/JP6665829B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018188704A (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6443467B2 (en) | Fused Zn-Al-Mg plated steel sheet with coating and method for producing the same | |
JP4551268B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet | |
CN103732780B (en) | Melting Zn-Al alloy coated steel sheet and manufacture method thereof | |
JP6583317B2 (en) | Film-coated molten Zn-Al-Mg-based plated steel sheet and method for producing the same | |
TW200706693A (en) | A galvannealed steel sheet and a method of production the same | |
CN106811711B (en) | A kind of continuous hot-dipping galvanizing and the dual-purpose production unit of UV color coating and production technology | |
JP2018532889A (en) | Zinc alloy-plated steel sheet excellent in bending workability and manufacturing method thereof | |
JP4645470B2 (en) | Zinc-based plated steel sheet with excellent lubricity and adhesion and method for producing the same | |
WO2019054483A1 (en) | Hot-dip plated checkered plate and manufacturing method thereof | |
TW201432091A (en) | Hot dip Al-Zn plated steel sheet and method of manufacturing the same | |
JP6665829B2 (en) | Film-coated hot-dip Zn-Al-Mg plated steel sheet and method for producing the same | |
JP5124296B2 (en) | Painted steel sheet with excellent corrosion resistance | |
KR102081372B1 (en) | Coated steel sheet having high corrosion resistance and method for manufacturing the same | |
JP4891271B2 (en) | Manufacturing method of coated steel sheet with excellent corrosion resistance | |
JP5423215B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
JP2011177621A (en) | Method of manufacturing surface-treated coated steel sheet | |
JP2004124118A (en) | Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same | |
CN114829666A (en) | Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same | |
KR102018015B1 (en) | Dryinplace corrosionresistant coating for zinc or zincalloy coated substrates | |
JP2003268518A (en) | Original sheet for coating having excellent workability | |
JP3367459B2 (en) | Manufacturing method of hot-dip Zn-Al alloy plated steel sheet | |
TW201502317A (en) | Corrosion-resistant galvanized steel sheet and method of making the same | |
JP3500593B2 (en) | Alloyed galvanized steel sheet for painting | |
CN106660321B (en) | Coated steel plate | |
KR20160029000A (en) | Metal-coated steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180502 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180509 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6665829 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |