JP6665673B2 - Manufacturing method of ferroelectric thin film - Google Patents

Manufacturing method of ferroelectric thin film Download PDF

Info

Publication number
JP6665673B2
JP6665673B2 JP2016095911A JP2016095911A JP6665673B2 JP 6665673 B2 JP6665673 B2 JP 6665673B2 JP 2016095911 A JP2016095911 A JP 2016095911A JP 2016095911 A JP2016095911 A JP 2016095911A JP 6665673 B2 JP6665673 B2 JP 6665673B2
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
ferroelectric thin
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016095911A
Other languages
Japanese (ja)
Other versions
JP2017204573A (en
Inventor
敏昭 渡辺
敏昭 渡辺
曽山 信幸
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016095911A priority Critical patent/JP6665673B2/en
Priority to KR1020170056942A priority patent/KR102299871B1/en
Publication of JP2017204573A publication Critical patent/JP2017204573A/en
Application granted granted Critical
Publication of JP6665673B2 publication Critical patent/JP6665673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials

Description

本発明は、ゾルゲル法等により調製した原料溶液を塗布焼成して、強誘電体薄膜を製造する方法に関するものである。更に詳しくは、BST系膜(チタン酸ストロンチウムバリウム系膜)、BT系膜(チタン酸バリウム系膜)又はST系膜(チタン酸ストロンチウム系膜)の強誘電体薄膜を製造するのに適した方法である。   The present invention relates to a method for producing a ferroelectric thin film by applying and baking a raw material solution prepared by a sol-gel method or the like. More specifically, a method suitable for producing a ferroelectric thin film of a BST-based film (a strontium titanate-based film), a BT-based film (a barium titanate-based film) or an ST-based film (a strontium titanate-based film). It is.

ゾルゲル法は、金属アルコキシドからなるゾルを加水分解・重縮合反応により、流動性を失ったゲルとし、このゲルを加熱焼成して酸化物とする方法であり、基板(ウェーハ)上に膜を形成する技術としては、例えば基板を溶液中に浸漬した後一定速度で引き上げるディップコート法、基板の上部から溶液を基板上に流し拡げるフローコート法、回転するプラスチツクロール表面を溶液で濡らし基板を搬送しながらロールに接触させるロールコート法、或いは回転する基板上に溶液を滴下し回転力によって基板上に流し拡げるスピンコート法など種々の方法が知られている。このうち、特にスピンコート法の場合、基板の外周端部で膜が厚くなり易く、基板の裏面にも回り込む現象が生じ易い。   The sol-gel method is a method in which a sol composed of a metal alkoxide is converted into a gel having lost fluidity by a hydrolysis / polycondensation reaction, and the gel is heated and baked to form an oxide, and a film is formed on a substrate (wafer). Examples of such techniques include a dip coating method in which a substrate is immersed in a solution and then lifted at a constant speed, a flow coating method in which the solution is poured from above the substrate onto the substrate and spread, and a rotating plastic roll surface is wetted with the solution and the substrate is transported. Various methods are known, such as a roll coating method in which a solution is contacted with a roll while spinning, or a spin coating method in which a solution is dropped on a rotating substrate and the solution is flowed and spread on the substrate by rotational force. Among them, in the case of the spin coating method in particular, the film tends to be thick at the outer peripheral edge of the substrate, and the phenomenon of wrapping around the back surface of the substrate is likely to occur.

このようなゾルゲル法等(以下、CSD法と総称し、その溶液をCSD溶液と称する。)による塗布方法の場合、一回で塗布する膜厚が厚すぎると、熱処理後の膜にクラックが入りやすいという問題がある。このクラックで剥がれた膜がパーティクルとなり、デバイスの歩留まりが低下する原因となり得るため、基板の外周端部の膜は熱処理する前に除去するという方法が取られる。   In the case of a coating method using such a sol-gel method or the like (hereinafter, the solution is collectively referred to as a CSD solution), if the film thickness applied at one time is too thick, cracks occur in the film after the heat treatment. There is a problem that it is easy. Since the film peeled off by the cracks becomes particles, which may cause a reduction in the yield of the device, a method of removing the film at the outer peripheral end of the substrate before the heat treatment is adopted.

基板の外周端部の膜を除去する方法として、原料溶液を塗布した後に、基板を回転させながら基板の外周端部に有機溶剤を接触させて膜を取り除くエッジビードリンス(EBR)と称する方法がある。   As a method for removing the film at the outer peripheral edge of the substrate, a method called edge bead rinsing (EBR) for removing the film by applying an organic solvent to the outer peripheral edge of the substrate while rotating the substrate after applying the raw material solution is used. is there.

上記EBR法でCSD溶液による塗膜の一部を除去する場合、一般的には、そのCSD溶液に使用されている溶液をEBR用液体として用いることが考えられている。一方、ゾルゲル法等により製作した原料溶液を塗布焼成して、PZT膜(チタン酸ジルコン酸鉛膜)、SBT膜(タンタル酸ビスマスストロンチウム膜)等の強誘電体薄膜を形成するときに、これらの強誘電体薄膜を形成するための有機金属化合物を含有するCSD溶液を基板に塗布してゲル状塗膜を形成し、基板を回転させながら外周端部に、EBR用液体として水を噴射又は滴下して、ゲル状塗膜の外周端部を除去した後、外周端部について除去された後のゲル状塗膜を加熱処理して強誘電体薄膜を形成する方法が開示されている(例えば、特許文献1参照。)。   When a part of the coating film formed by the CSD solution is removed by the EBR method, it is generally considered that the solution used for the CSD solution is used as the EBR liquid. On the other hand, when a raw material solution manufactured by a sol-gel method or the like is applied and fired to form ferroelectric thin films such as a PZT film (lead zirconate titanate film) and an SBT film (bismuth strontium tantalate film), A CSD solution containing an organometallic compound for forming a ferroelectric thin film is applied to a substrate to form a gel-like coating film, and water is sprayed or dropped as a liquid for EBR on the outer peripheral edge while rotating the substrate. Then, after removing the outer peripheral edge of the gel-like coating film, a method of forming a ferroelectric thin film by heat-treating the gel-like coating film after removing the outer peripheral edge portion is disclosed (for example, See Patent Document 1.).

特許文献1の発明においてEBR用液体として水を選定している理由は、強誘電体薄膜がPZT膜(チタン酸ジルコン酸鉛膜)、SBT膜(タンタル酸ビスマスストロンチウム膜)である場合、その原料溶液であるCSD溶液の主溶媒にメタノール、エタノール、ブタノール等を使用している関係上、CSD溶液を塗布した後に、上記外周端部にメタノール、エタノール、ブタノール等の溶媒を噴射又は滴下すると、溶媒の半径方向内方への浸透と、溶けた膜の半径方向外方への伸びとが相互に影響し合い、両者の作用力のばらつき等により、噴射又は滴下領域近傍の膜厚が不均一になって、加熱処理後に噴射又は滴下領域近傍においてクラックや局部剥がれが生じる問題点があるためである。   The reason why water is selected as the EBR liquid in the invention of Patent Document 1 is that when the ferroelectric thin film is a PZT film (lead zirconate titanate film) or an SBT film (bismuth strontium tantalate film), Due to the use of methanol, ethanol, butanol, etc. as the main solvent of the CSD solution, which is a solution, the solvent such as methanol, ethanol, butanol, etc. is sprayed or dropped onto the outer peripheral edge after the CSD solution is applied. Of the melted film and the radially outward expansion of the melted film interact with each other. This is because there is a problem that cracks and local peeling occur in the vicinity of the sprayed or dropped region after the heat treatment.

特開2011−014649号公報(請求項1、段落[0001]、段落[0009])JP 2011-014649A (Claim 1, paragraph [0001], paragraph [0009])

CSD溶液の主溶媒の種類を考慮することなく、この主溶媒と同一の有機溶媒をEBR用液体として用いた場合にも上記と同様の問題点が起こることがあった。特に、強誘電体薄膜がチタン酸ストロンチウムバリウム系膜(以下、BST系膜と称することもある。)、チタン酸バリウム系膜(以下、BT系膜と称することもある。)又はチタン酸ストロンチウム系膜(以下、ST系膜と称することもある。)である場合であって、その原料溶液であるCSD溶液の主溶媒に酢酸イソアミルを使用するときに、CSD溶液を塗布した後に、上記外周端部にEBR用液体として特許文献1に記載された水を噴射又は滴下すると、酢酸イソアミルを主溶媒とするCSD溶液は、水と混ざらないため、水系のEBR用の液体では基板の外周端部の膜を除去をすることができない問題点があった。またEBR用液体としてこの主溶媒と同一の酢酸イソアミルを用いた場合も、塗膜が膨潤し膜厚が不均一になることから、基板の外周端部の膜の除去率を高めることができない問題点があった。   Even when the same organic solvent as the main solvent is used as the liquid for EBR without considering the type of the main solvent of the CSD solution, the same problems as described above may occur. In particular, the ferroelectric thin film is a strontium barium titanate-based film (hereinafter, also referred to as a BST-based film), a barium titanate-based film (hereinafter, also referred to as a BT-based film), or a strontium titanate-based film. When using isoamyl acetate as a main solvent of a CSD solution as a raw material solution for the case where the film is a film (hereinafter, also referred to as an ST-based film), after applying the CSD solution, When water described in Patent Literature 1 is jetted or dropped as a liquid for EBR to the portion, the CSD solution containing isoamyl acetate as a main solvent does not mix with water. There was a problem that the film could not be removed. In addition, even when isoamyl acetate, which is the same as the main solvent, is used as the EBR liquid, the coating film swells and the film thickness becomes non-uniform, so that the removal rate of the film at the outer peripheral edge of the substrate cannot be increased. There was a point.

本発明の目的は、強誘電体薄膜を形成するために、主溶媒が酢酸イソアミルであるCSD溶液をスピンコート後にエッジビードリンスしたときに、基板の外周端部の膜の除去率を高めることができるとともに、基板の外周端部の膜にクラックや局部剥がれを生じることなく除去して、パーティクルの発生を防止する強誘電体薄膜の製造方法を提供することにある。   An object of the present invention is to increase the removal rate of a film at the outer peripheral edge of a substrate when spin-coating a CSD solution whose main solvent is isoamyl acetate after spin coating to form a ferroelectric thin film. It is another object of the present invention to provide a method of manufacturing a ferroelectric thin film capable of preventing generation of particles by removing a film at an outer peripheral end portion of a substrate without causing cracks or local peeling.

本発明の第1の観点は、強誘電体薄膜を形成するための有機金属化合物を含有するCSD溶液を基板に塗布してゲル状塗膜を形成する工程と、前記基板を回転させながら外周端部に液体を噴射又は滴下して、前記ゲル状塗膜の外周端部を除去する工程と、前記外周端部について除去された後の前記ゲル状塗膜を加熱処理して強誘電体薄膜を形成する工程とを有する強誘電体薄膜の製造方法において、前記CSD溶液の主溶媒が酢酸イソアミルであって、前記液体がメタノール及び/又はエタノールを主成分とする液体であることを特徴とする。   According to a first aspect of the present invention, there is provided a step of applying a CSD solution containing an organometallic compound for forming a ferroelectric thin film to a substrate to form a gel-like coating film; Spraying or dropping a liquid on the part, removing the outer peripheral edge of the gel-like coating, and heating the gel-like coating after the outer peripheral edge has been removed to form a ferroelectric thin film. Forming a ferroelectric thin film, wherein the main solvent of the CSD solution is isoamyl acetate, and the liquid is a liquid containing methanol and / or ethanol as a main component.

本発明の第2の観点は、第1の観点に基づく発明であって、前記強誘電体薄膜がBST系膜、BT系膜又はST系膜であることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the ferroelectric thin film is a BST-based film, a BT-based film, or an ST-based film.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記有機金属化合物が一般式C2n+1COOH(但し、3≦n≦7)で表されるカルボン酸の金属塩であることを特徴とする。 A third aspect of the present invention is an invention based on the first or second aspect, wherein the organometallic compound is a carboxylic acid represented by a general formula C n H 2n + 1 COOH (provided that 3 ≦ n ≦ 7) Characterized in that it is a metal salt of

本発明の第1の観点の強誘電体薄膜の製造方法によれば、CSD溶液の主溶媒が酢酸イソアミルであるときに、基板にCSD溶液を塗布した後、回転する基板にメタノール及び/又はエタノールを主成分とする液体を噴射又は滴下した場合、この液体は主溶媒の酢酸イソアミルに対して他の有機溶媒と比較して溶解性が高いため、噴射又は滴下した箇所から半径方向外方位置の外周端部の塗膜が膨潤しにくく、部分的に厚くなることがなく、結果としてこの外周端部の膜におけるクラックや局部剥がれを防止することができる。   According to the method for producing a ferroelectric thin film of the first aspect of the present invention, when the main solvent of the CSD solution is isoamyl acetate, the CSD solution is applied to the substrate, and then the methanol and / or ethanol is applied to the rotating substrate. When a liquid containing as a main component is jetted or dropped, this liquid has a higher solubility in isoamyl acetate as a main solvent than other organic solvents, so that the liquid is located at a position radially outward from the jetted or dropped portion. The coating film on the outer peripheral end does not easily swell and does not become partially thick, and as a result, cracks and local peeling of the film on the outer peripheral end can be prevented.

本発明の第2の観点の強誘電体薄膜の製造方法によれば、BST系膜、BT系膜又はST系膜である強誘電体薄膜を製造するときの主溶媒には、上記有機金属化合物を溶解した場合の経時安定性が良好な酢酸イソアミルが多用されるため、上記強誘電体薄膜を製造する際に効果的である。   According to the method for producing a ferroelectric thin film of the second aspect of the present invention, the main solvent used for producing a ferroelectric thin film that is a BST-based film, a BT-based film, or an ST-based film contains the organometallic compound described above. Since isoamyl acetate having good stability over time in the case of dissolving is frequently used, it is effective in producing the ferroelectric thin film.

本発明の第3の観点の強誘電体薄膜の製造方法によれば、上記有機金属化合物として一般式C2n+1COOH(但し、3≦n≦7)で表されるカルボン酸の金属塩を用いることにより、主溶媒に対して溶解性の高いEBR用のメタノール及び/又はエタノールを主成分とする液体を噴射又は滴下した場合でも、より一層塗膜が膨潤しにくいため、クラックや局部剥がれを防止することができる。 According to the method for producing a ferroelectric thin film of the third aspect of the present invention, the metal salt of a carboxylic acid represented by the general formula C n H 2n + 1 COOH (where 3 ≦ n ≦ 7) is used as the organometallic compound. By using this, even when a liquid mainly containing methanol and / or ethanol for EBR having high solubility in the main solvent is jetted or dropped, the coating film is less likely to swell, so that cracks and local peeling are prevented. Can be prevented.

本発明の実施形態において基板を回転させながら外周端部の膜を除去している状態を概略的に示す断面図である。(a)はゲル状塗膜の外周端部を除去する前の状態を示す断面図であり、(b)はゲル状塗膜の外周端部を除去した後の状態を示す断面図である。FIG. 4 is a cross-sectional view schematically showing a state in which a film at an outer peripheral end is removed while rotating the substrate in the embodiment of the present invention. (A) is a sectional view showing a state before removing the outer peripheral end of the gel-like coating film, and (b) is a sectional view showing a state after removing the outer peripheral end of the gel-like coating film. 膜の外周端部における断面部を模式的に示す図である。It is a figure which shows the cross section in the outer peripheral end part of a film typically.

次に本発明を実施するための形態を図面を参照しながら説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明の強誘電体薄膜の製造方法は、ペロブスカイト型酸化物薄膜、好ましくはBST系膜、BT系膜又はST系膜を製造する方法であって、有機金属化合物を含有する主溶媒が酢酸イソアミルであるCSD溶液を基板に塗布してゲル状塗膜を形成する工程(CSD溶液塗布工程)と、この基板を回転させながら外周端部にメタノール及び/又はエタノールを主成分とする液体を噴射又は滴下して、この外周端部のゲル状塗膜を除去する工程(EBR工程)と、この外周端部について除去された後のゲル状塗膜を加熱処理して強誘電体薄膜を形成する工程(加熱処理工程)とを有する。BST系膜、BT系膜又はST系膜は、ドーパントとしてカルシウム(Ca)及び/又はジルコニウム(Zr)をそれぞれ含んでもよい。ドーパントとしてのカルシウムの量はバリウム及び/又はストロンチウムの合計モル数の0〜20%であることが好ましく、ドーパントとしてのジルコニウムの量はチタンのモル数の0〜20%であることが好ましい。   The method for producing a ferroelectric thin film of the present invention is a method for producing a perovskite oxide thin film, preferably a BST-based film, a BT-based film or an ST-based film, wherein the main solvent containing the organometallic compound is isoamyl acetate. Applying a CSD solution to a substrate to form a gel-like coating film (CSD solution applying step), and spraying or spraying a liquid containing methanol and / or ethanol as a main component on the outer peripheral edge while rotating the substrate. A step of dropping and removing the gel-like coating film at the outer peripheral end (EBR step), and a step of heat-treating the gel-like coating film removed at the outer peripheral end to form a ferroelectric thin film (Heat treatment step). The BST-based film, the BT-based film, or the ST-based film may include calcium (Ca) and / or zirconium (Zr) as dopants, respectively. The amount of calcium as a dopant is preferably 0 to 20% of the total number of moles of barium and / or strontium, and the amount of zirconium as a dopant is preferably 0 to 20% of the number of moles of titanium.

<CSD溶液>
この強誘電体薄膜の製造方法で使用されるCSD溶液は、金属化合物を溶媒により溶解し、安定化剤等を添加したものであり、BST系膜(チタン酸ストロンチウムバリウム系膜)では、Ba原料、Sr原料、Ti原料が用いられ、BT系膜(チタン酸バリウム系膜)では、Ba原料、Ti原料が用いられ、ST系膜(チタン酸ストロンチウム系膜)ではSr原料、Ti原料が用いられる。このCSD溶液は、バリウム及び/又はストロンチウムを含有するペロブスカイト型酸化物形成用溶液である。BST系膜を形成する溶液の場合、Ba原料の有機バリウム化合物、Sr原料の有機ストロンチウム化合物及びTi原料のチタンアルコキシドを有機溶媒中に溶解してなる。BT系膜を形成する溶液の場合、Ba原料の有機バリウム化合物及びTi原料のチタンアルコキシドを有機溶媒中に溶解してなる。ST系膜を形成する溶液の場合、Sr原料の有機ストロンチウム化合物及びTi原料のチタンアルコキシドを有機溶媒中に溶解してなる。BST系膜、BT系膜又はST系膜がドーパントとしてカルシウム(Ca)及び/又はジルコニウム(Zr)を含む場合には、上記有機金属化合物として、Ca原料の有機カルシウム化合物及びZr原料の有機ジルコニウム化合物が選ばれる。強誘電体薄膜のドーパントとしてジルコニウム(Zr)を含む場合には、有機ジルコニウム化合物はジルコニウムアルコキシドであることが好ましい。
<CSD solution>
The CSD solution used in the method for producing a ferroelectric thin film is obtained by dissolving a metal compound in a solvent and adding a stabilizer and the like. In a BST-based film (a strontium barium titanate-based film), a Ba material is used. , Sr raw material, and Ti raw material are used. For a BT-based film (barium titanate-based film), a Ba raw material and a Ti raw material are used. For an ST-based film (a strontium titanate-based film), an Sr raw material and a Ti raw material are used. . This CSD solution is a perovskite-type oxide forming solution containing barium and / or strontium. In the case of a solution for forming a BST film, an organic barium compound as a Ba raw material, an organic strontium compound as a Sr raw material, and a titanium alkoxide as a Ti raw material are dissolved in an organic solvent. In the case of a solution for forming a BT-based film, an organic barium compound as a Ba raw material and a titanium alkoxide as a Ti raw material are dissolved in an organic solvent. In the case of a solution for forming an ST-based film, an Sr raw material organic strontium compound and a Ti raw material titanium alkoxide are dissolved in an organic solvent. When the BST-based film, the BT-based film or the ST-based film contains calcium (Ca) and / or zirconium (Zr) as a dopant, the organic metal compound is an organic calcium compound as a Ca raw material and an organic zirconium compound as a Zr raw material. Is selected. When zirconium (Zr) is included as a dopant for the ferroelectric thin film, the organic zirconium compound is preferably a zirconium alkoxide.

上記有機バリウム化合物及び有機ストロンチウム化合物は、一般式C2n+1COOH(但し、3≦n≦7)で表されるカルボン酸の金属塩であることが好ましい。強誘電体薄膜のドーパントとしてカルシウム(Ca)を含む場合には、有機カルシウム化合物も、上記一般式で表される金属塩であることが好ましい。このようなカルボン酸としては、上記一般式のnの数に応じて具体的には次のような化合物が挙げられる。 The organic barium compound and the organic strontium compound are preferably metal salts of a carboxylic acid represented by the general formula C n H 2n + 1 COOH (provided that 3 ≦ n ≦ 7). When calcium (Ca) is contained as a dopant for the ferroelectric thin film, the organic calcium compound is also preferably a metal salt represented by the above general formula. Specific examples of such a carboxylic acid include the following compounds according to the number of n in the above general formula.

n=3の場合にはn−酪酸が挙げられる。n=4の場合にはα−メチル酪酸又はイソキッソウ酸(β−メチル酪酸)が挙げられる。n=5の場合には2−エチル酪酸、2,2−ジメチル酪酸、3,3−ジメチル酪酸、2,3−ジメチル酪酸、3−メチルペンタン酸又は4−メチルペンタン酸が挙げられる。n=6の場合には2−エチルペンタン酸、3−エチルペンタン酸、2,2−ジメチルペンタン酸、3,3−ジメチルペンタン酸、2,3−ジメチルペンタン酸又は4−メチルヘキサン酸が挙げられる。n=7の場合には2−エチルヘキサン酸、3−エチルヘキサン酸、2,2−ジメチルヘキサン酸又は3,3−ジメチルヘキサン酸が挙げられる。   When n = 3, n-butyric acid is exemplified. When n = 4, α-methylbutyric acid or isoxouric acid (β-methylbutyric acid) is exemplified. When n = 5, examples thereof include 2-ethylbutyric acid, 2,2-dimethylbutyric acid, 3,3-dimethylbutyric acid, 2,3-dimethylbutyric acid, 3-methylpentanoic acid and 4-methylpentanoic acid. When n = 6, mention may be made of 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 2,3-dimethylpentanoic acid or 4-methylhexanoic acid. Can be When n = 7, examples thereof include 2-ethylhexanoic acid, 3-ethylhexanoic acid, 2,2-dimethylhexanoic acid, and 3,3-dimethylhexanoic acid.

またチタンアルコキシドとしては、テトラエトキシチタン、テトライソプロポキシチタン、テトラn−ブトキシチタン、テトラi−ブトキシチタン、テトラt−ブトキシチタン、ジメトキシジイソプロポキシチタン等が例示される。ジルコニウムアルコキシドとしては、ジルコニウムn−ブトキシド、ジルコニウムn−プロポキシド、ジルコニウムイソプロポキシド、ジルコニウムエトキシド等が例示される。   Examples of the titanium alkoxide include tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetra-i-butoxytitanium, tetra-t-butoxytitanium, dimethoxydiisopropoxytitanium and the like. Examples of the zirconium alkoxide include zirconium n-butoxide, zirconium n-propoxide, zirconium isopropoxide, zirconium ethoxide, and the like.

本発明の強誘電体薄膜の製造方法では、有機バリウム化合物及び/又は有機ストロンチウム化合物、必要に応じて有機カルシウム化合物及び/又は有機ジルコニウム化合物、チタンアルコキシド、及び有機溶媒を所望の金属成分濃度となるように、適当な比率で混合する。また、溶液の均質化のために加熱還流することが行われる。   In the method for producing a ferroelectric thin film of the present invention, an organic barium compound and / or an organic strontium compound, and if necessary, an organic calcium compound and / or an organic zirconium compound, a titanium alkoxide, and an organic solvent have a desired metal component concentration. As described above. In addition, heating and reflux are performed to homogenize the solution.

上記有機溶媒は、酢酸イソアミルを主溶媒とする。本明細書で「主溶媒」とは溶媒中、51質量%以上含むことをいう。酢酸イソアミルはカルボン酸塩の溶解性の点で優れる。上記CSD溶液を塗布に適した濃度及び濡れ性とするために、酢酸イソアミル以外に、カルボン酸などの溶媒を補助溶媒として混合してもよい。但し、カルボン酸塩を溶解した場合の経時安定性が低いことから、本発明の有機溶媒にはメタノール、エタノール、ブタノール等のアルコールは含まない。なお、溶液中の有機金属化合物の合計濃度は、金属酸化物換算量で0.1〜20重量%程度であることが好ましい。   As the organic solvent, isoamyl acetate is used as a main solvent. As used herein, the term “main solvent” means that the solvent contains 51% by mass or more. Isoamyl acetate is excellent in solubility of carboxylate. In order to make the above-mentioned CSD solution have a concentration and wettability suitable for coating, a solvent such as carboxylic acid may be mixed as an auxiliary solvent in addition to isoamyl acetate. However, the organic solvent of the present invention does not include alcohols such as methanol, ethanol, and butanol because the stability with time when the carboxylate is dissolved is low. The total concentration of the organometallic compound in the solution is preferably about 0.1 to 20% by weight in terms of a metal oxide.

また、CSD溶液中には、必要に応じて安定化剤としてβ−ジケトン類(例えば、アセチルアセトン、ヘプタフルオロブタノイルピバロイルメタン、ジピバロイルメタン、トリフルオロアセチルアセトン、ベンゾイルアセトン等)、ケトン酸類(例えば、アセト酢酸、プロピオニル酢酸、ベンゾイル酢酸等)などを、金属に対するモル比で0.2〜3倍程度配合してもよい。   In the CSD solution, if necessary, β-diketones (eg, acetylacetone, heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, benzoylacetone, etc.) as stabilizers, ketones Acids (for example, acetoacetic acid, propionylacetic acid, benzoylacetic acid, etc.) may be blended in a molar ratio to the metal of about 0.2 to 3 times.

<CSD溶液塗布工程>
基板にCSD溶液を塗布することにより、基板の全面にゲル状塗膜を形成する。基板材料としては、シリコンウェーハ(単結晶)、及び白金、ニッケルなどの金属類、酸化ルテニウム、酸化イリジウム、ルテニウム酸ストロンチウム(SrRuO)又はコバルト酸ランタンストロンチウム((LaSr1−x)CoO)などのぺロブスカイト型導電性酸化物などの被膜を有した、シリコン、ガラス、アルミナ、石英などの基板が挙げられる。 CSD溶液を基板上に塗布する方法は、スピンコート法である。
<CSD solution application process>
A gel-like coating film is formed on the entire surface of the substrate by applying the CSD solution to the substrate. As the substrate material, a silicon wafer (single crystal), and platinum, metals such as nickel, ruthenium oxide, iridium oxide, strontium ruthenate (SrRuO 3) or lanthanum cobaltate strontium ((La x Sr 1-x ) CoO 3 ), A substrate of silicon, glass, alumina, quartz or the like having a coating of a perovskite-type conductive oxide or the like. The method of applying the CSD solution on the substrate is a spin coating method.

<EBR工程>
図1(a)に示すように、CSD溶液を塗布した後のゲル状塗膜1が形成された基板2を回転させながら、その外周端部に上方のノズル3からメタノール及び/又はエタノールを主成分とする液体4を噴射又は滴下することにより、図1(b)に示すようにゲル状塗膜1の外周端部を除去する。EBR用液体として炭素数が1〜2の範囲にあるアルコールであるメタノール、エタノールに限定するのは、炭素数が3以上のアルコール、例えば1−プロパノール、2−プロパノール及び1−ブタノールは、沸点がそれぞれ97.2℃、82.6℃及び117.7℃であるのに対して、メタノール及びエタノールの沸点は64.7℃及び78.4℃であって、基板へ噴射又は滴下後に速やかに揮発し、塗膜を膨潤させることが少ないためである。またCSD溶液の主溶媒と同一の酢酸イソアミルをEBR用液体とした場合、酢酸イソアミルは、塗膜との親和性が高く効果的に塗膜の除去を行うことができるが、沸点が高く乾燥しにくいことが塗膜の膨潤を促す要因になり、基板の外周端部の膜の除去を確実に行うことができない。以上の理由から本発明のEBR用液体はメタノール及び/又はエタノールを主成分とする液体である。ここで主成分とはEBR用液体100質量%に対して75質量%以上、好ましくは80質量%以上を含む割合をいう。
<EBR process>
As shown in FIG. 1 (a), while rotating the substrate 2 on which the gel-like coating film 1 after the application of the CSD solution is formed, methanol and / or ethanol are mainly supplied from the upper nozzle 3 to the outer peripheral end thereof. By spraying or dropping the liquid 4 as a component, the outer peripheral end of the gel-like coating film 1 is removed as shown in FIG. As the liquid for EBR, the alcohol having a carbon number in the range of 1 to 2 is limited to methanol and ethanol, and the alcohol having 3 or more carbon atoms, for example, 1-propanol, 2-propanol and 1-butanol has a boiling point of The boiling points of methanol and ethanol are 64.7 ° C and 78.4 ° C, whereas they are 97.2 ° C, 82.6 ° C and 117.7 ° C, respectively, and are quickly volatilized after being sprayed or dropped onto the substrate. However, this is because swelling of the coating film is small. When isoamyl acetate, which is the same as the main solvent of the CSD solution, is used as the liquid for EBR, isoamyl acetate has a high affinity with the coating film and can effectively remove the coating film. Difficulty is a factor that promotes swelling of the coating film, and it is not possible to reliably remove the film at the outer peripheral edge of the substrate. For the above reasons, the EBR liquid of the present invention is a liquid containing methanol and / or ethanol as a main component. Here, the main component refers to a ratio containing at least 75% by mass, preferably at least 80% by mass with respect to 100% by mass of the EBR liquid.

EBR時の基板の回転速度としては、例えば、1000〜3000rpmである。噴射又は滴下の位置は、除去対象の位置に対応して適宜設定される。例えば、基板の外周縁5mmから半径方向外側を除去する場合、その基板の外周縁から半径方向内方に5mmの位置に上記液体4を噴射又は滴下し、その噴射又は滴下位置の外側の5mmの範囲の膜を除去する。噴射又は滴下量としては、塗膜の厚さ等から適宜に設定され、除去対象の範囲に存在するゲル状塗膜を洗い流すのに十分な量であればよい。上記の回転速度であれば2〜5秒間上記液体4を噴射又は滴下し続ければ十分である。また、このEBR工程においては、外周端部のゲル状塗膜1が流れ易いように、基板2を回転させながら、必要に応じて、ノズル3を半径方向外方に移動させるようにしてもよい。   The rotation speed of the substrate during EBR is, for example, 1000 to 3000 rpm. The position of the jet or the drop is appropriately set according to the position of the object to be removed. For example, when removing the outer periphery in the radial direction from the outer periphery 5 mm of the substrate, the liquid 4 is ejected or dropped at a position 5 mm radially inward from the outer periphery of the substrate, and 5 mm outside the ejection or dripping position is ejected. Remove the area of the film. The amount of spraying or dropping is appropriately set based on the thickness of the coating film and the like, and may be an amount sufficient to wash away the gel coating film existing in the range to be removed. At the above rotational speed, it is sufficient if the liquid 4 is continuously jetted or dropped for 2 to 5 seconds. In this EBR step, the nozzle 3 may be moved outward in the radial direction as needed while rotating the substrate 2 so that the gel-like coating film 1 at the outer peripheral end can easily flow. .

<加熱処理工程>
加熱処理工程は、乾燥工程、仮焼工程、結晶化アニール工程から構成される。
<Heat treatment step>
The heat treatment step includes a drying step, a calcining step, and a crystallization annealing step.

(乾燥工程)
外周端部を除去した後のゲル状塗膜を乾燥させ、溶媒を除去する。この乾燥温度は溶媒の種類によっても異なるが、通常は80〜200℃程度であり、好ましくは100〜180℃の範囲でよい。但し、原料溶液中の金属化合物を金属酸化物に転化させるための次工程の加熱の際の昇温中に、溶媒は除去されるので、塗膜の乾燥工程は必ずしも必要とされない。
(Drying process)
After removing the outer edge, the gel-like coating film is dried to remove the solvent. The drying temperature varies depending on the type of the solvent, but is usually about 80 to 200C, and preferably in the range of 100 to 180C. However, the solvent is removed during the heating in the next step for converting the metal compound in the raw material solution into the metal oxide, so that the step of drying the coating film is not necessarily required.

(仮焼工程)
その後、仮焼工程として、塗布した基板を加熱し、有機金属化合物を完全に加水分解又は熱分解させて金属酸化物に転化させ、金属酸化物からなる膜を形成する。この加熱は、一般に加水分解の必要なゾルゲル法では水蒸気を含んでいる雰囲気、例えば、空気又は含水蒸気雰囲気(例えば、水蒸気を含有する窒素雰囲気)中で行われ、熱分解させるMOD法では含酸素雰囲気中で行われる。加熱温度は、金属酸化物の種類によっても異なるが、通常は150〜550℃の範囲であり、好ましくは、300〜450℃である。加熱時間は、加水分解及び熱分解が完全に進行するように選択するが、通常は1分ないし1時間程度である。
(Calcination process)
Thereafter, as a calcining step, the applied substrate is heated, and the organometallic compound is completely hydrolyzed or thermally decomposed to be converted into a metal oxide, thereby forming a film made of the metal oxide. This heating is generally performed in an atmosphere containing steam in the sol-gel method requiring hydrolysis, for example, in an air or steam-containing atmosphere (for example, a nitrogen atmosphere containing steam), and in the MOD method for thermal decomposition, oxygen-containing is used. It takes place in an atmosphere. The heating temperature varies depending on the type of the metal oxide, but is usually in the range of 150 to 550 ° C, preferably 300 to 450 ° C. The heating time is selected so that the hydrolysis and thermal decomposition proceed completely, but is usually about 1 minute to 1 hour.

ゾルゲル法等の場合は、1回の塗布で、ペロブスカイト型酸化物薄膜に必要な膜厚とすることは難しい場合が多いので、必要に応じて、上記のCSD溶液塗布から仮焼までの工程を繰返すことによりCSD溶液を重ね塗りし、その塗布の都度、外周端部についてゲル状塗膜を除去しながら、所望の膜厚の金属酸化物の膜を得る。   In the case of a sol-gel method or the like, it is often difficult to obtain a film thickness required for a perovskite-type oxide thin film in a single application. Therefore, if necessary, the above steps from the application of the CSD solution to calcination may be performed. By repeating the application, the CSD solution is repeatedly applied, and each time the application is performed, a metal oxide film having a desired film thickness is obtained while removing the gel-like coating film from the outer peripheral end.

(結晶化アニール工程)
このようして得られた塗布膜は、非晶質であるか、結晶質であっても結晶性が不十分であるので、分極性が低く、強誘電体薄膜として利用できない。そのため、最後に結晶化アニール工程として、その金属酸化物の結晶化温度以上の温度で焼成して、ペロブスカイト型の結晶構造を持つ結晶質の金属酸化物薄膜とする。なお、結晶化のための焼成は、最後に一度で行うのではなく、各塗布した塗膜ごとに、上記の仮焼に続けて行ってもよいが、高温での焼成を何回も繰返す必要があるので、最後にまとめて行う方が経済的には有利である。
(Crystallization annealing step)
The thus-obtained coating film is amorphous or crystalline and has insufficient crystallinity, so that it has low polarizability and cannot be used as a ferroelectric thin film. Therefore, finally, as a crystallization annealing step, firing is performed at a temperature equal to or higher than the crystallization temperature of the metal oxide to obtain a crystalline metal oxide thin film having a perovskite crystal structure. The firing for crystallization may not be performed once at the end, but may be performed after the above-described calcination for each applied coating film, but it is necessary to repeat firing at a high temperature many times. Therefore, it is economically advantageous to perform the operation at the end.

この結晶化のための焼成温度は通常は500〜800℃の比較的低い温度で良く、例えば550〜700℃である。従って、基板としては、この焼成温度に耐える程度の耐熱性を有するものを使用する。結晶化のための焼成(アニール)時間は、通常は1分から1時間程度であり、焼成雰囲気は特に制限されないが、通常は空気又は酸素である。このようにして形成されたペロブスカイト型酸化物薄膜は、基板の上に均一に形成され、その外周端部においてもクラックや局部剥がれがなく、したがって、パーティクルの付着のない強誘電体薄膜を得ることができる。
ここから
The firing temperature for this crystallization may be a relatively low temperature of usually 500 to 800C, for example, 550 to 700C. Therefore, a substrate having heat resistance enough to withstand this firing temperature is used. The firing (annealing) time for crystallization is usually about 1 minute to 1 hour, and the firing atmosphere is not particularly limited, but is usually air or oxygen. The perovskite-type oxide thin film thus formed is uniformly formed on the substrate, and there is no crack or local peeling even at the outer peripheral end thereof, and therefore, a ferroelectric thin film free of particles is obtained. Can be.
from here

<Ba、Sr、Ca含有ペロブスカイト型酸化物薄膜用CSD溶液の調製>
Ba、Sr、Caのカルボン酸塩と、Ti、Zrのアルコキシドとを、表1に示す金属原子比となるように混合することにより、7種類のCSD溶液1〜7を調製した。具体的には、Ba、Sr、Ca原料として、一般式M(C2n+1COO)(但し、3≦n≦7、MはBa、Sr、Caを意味する。)で表わされるカルボン酸塩を用いた。またTi原料としてチタンテトライソプロポキシドを用いた。更にZr原料としてジルコニウムn−ブトキシドを用いた。これらを表1に示す金属原子比となるように計量し、ZrとTiの合計モル数の1倍量のアセチルアセトンを安定化剤として混合した。また組成物の酸化物換算の合計濃度が表1に示す質量%の濃度(表1では「酸化物濃度」で示している。)となるように主溶媒として酢酸イソアミルをCSD溶液100質量%に対して40〜70質量%加え、補助溶媒としてCSD溶液に用いたカルボン酸塩と同じn数を持つカルボン酸を11〜24質量%の割合で加え、150℃で1時間、窒素雰囲気の中で還流し、7種類のペロブスカイト型酸化物薄膜用のCSD溶液1〜7を調製した。表1に、7種類のCSD溶液1〜7に用いられる主溶媒の酢酸イソアミルの含有割合、補助溶媒のカルボン酸の含有割合をそれぞれ示す。
<Preparation of CSD solution for perovskite oxide thin film containing Ba, Sr, and Ca>
Seven types of CSD solutions 1 to 7 were prepared by mixing the carboxylate salts of Ba, Sr, and Ca and the alkoxides of Ti, Zr so as to have the metal atom ratios shown in Table 1. Specifically, a carboxylic acid represented by the general formula M (C n H 2n + 1 COO) 2 (where 3 ≦ n ≦ 7, M means Ba, Sr, Ca) as a raw material for Ba, Sr, and Ca. Salt was used. Titanium tetraisopropoxide was used as a Ti raw material. Further, zirconium n-butoxide was used as a Zr raw material. These were weighed so as to have the metal atom ratios shown in Table 1, and acetylacetone was mixed as a stabilizer in an amount of 1 times the total mole number of Zr and Ti. Further, isoamyl acetate was used as a main solvent in 100% by mass of the CSD solution so that the total concentration of the composition in terms of oxide was the concentration of mass% shown in Table 1 (in Table 1, indicated by “oxide concentration”). The carboxylic acid having the same n number as that of the carboxylate used in the CSD solution is added as a co-solvent in an amount of 11 to 24% by mass, and the mixture is added at 150 ° C for 1 hour in a nitrogen atmosphere. The mixture was refluxed to prepare seven types of CSD solutions 1 to 7 for perovskite-type oxide thin films. Table 1 shows the content of isoamyl acetate as the main solvent and the content of carboxylic acid as the auxiliary solvent used in the seven types of CSD solutions 1 to 7, respectively.

Figure 0006665673
Figure 0006665673

<実施例1>
直径4インチのシリコンウエーハ上にSiO膜、TiO膜、Pt膜がこの順に形成された基板のPt膜表面にCSD溶液1を1mL滴下し、基板を先ずスピンコーターで500rpmの回転速度で3秒間回転させ、次いで3000rpmの回転速度で15秒間回転させて、基板のPt膜上(以下、単に基板という。)にCSD溶液1をスピンコートした。その後、基板をスピンコーターで2800rpmの回転速度で回転させながら、基板の外周端部から半径方向内側5mmの位置にメタノールを噴射してゲル状塗膜を溶解し、EBR処理を行った。この基板を300℃に加熱したホットプレート上で5分間加熱し、有機物の熱分解を行った。この操作を繰り返し、計2回塗布を行った後、急速加熱(RTA)により700℃で5分焼成を行い、基板上にペロブスカイト型酸化物薄膜であるBST系膜を得た。
<Example 1>
1 mL of CSD solution 1 was dropped on the Pt film surface of a substrate having a SiO 2 film, a TiO 2 film, and a Pt film formed in this order on a silicon wafer having a diameter of 4 inches, and the substrate was first coated with a spin coater at a rotation speed of 500 rpm. The CSD solution 1 was spin-coated on the Pt film of the substrate (hereinafter, simply referred to as the substrate) by rotating the substrate at a rotation speed of 3000 rpm for 15 seconds. Thereafter, while rotating the substrate at a rotation speed of 2800 rpm with a spin coater, methanol was sprayed at a position 5 mm radially inward from the outer peripheral end of the substrate to dissolve the gel-like coating film, and EBR treatment was performed. This substrate was heated on a hot plate heated to 300 ° C. for 5 minutes to thermally decompose organic substances. This operation was repeated, and after coating was performed twice in total, baking was performed at 700 ° C. for 5 minutes by rapid heating (RTA) to obtain a BST-based film as a perovskite oxide thin film on the substrate.

<実施例2〜11、比較例1〜8>
表2に示す7種類のCSD溶液1〜7を用いて、実施例1で用いた基板と同じ基板上に実施例1と同様にCSD溶液1〜7を実施例2〜11及び比較例1〜8毎にスピンコートした。次いで表2に示すEBR用の液体を用いてEBR処理を実施例1と同様に行った。以下、実施例1と同様にして行い、基板上にペロブスカイト型酸化物薄膜であるBST系膜、ST系膜、BT系膜を得た。
<Examples 2 to 11, Comparative Examples 1 to 8>
Using the seven types of CSD solutions 1 to 7 shown in Table 2, the CSD solutions 1 to 7 were prepared on the same substrate as in Example 1 in the same manner as in Example 1 by using Examples 2 to 11 and Comparative Examples 1 to 7. Each 8 was spin-coated. Next, EBR treatment was performed in the same manner as in Example 1 using the EBR liquids shown in Table 2. Thereafter, the same procedure as in Example 1 was performed to obtain a BST-based film, an ST-based film, and a BT-based film as perovskite-type oxide thin films on the substrate.

<比較試験及び評価>
実施例1〜11及び比較例1〜8で得られた19種類の膜の外周端部を触針式表面形状測定器(Veeco Instruments社製、機器名:Dectak)により観察し、膜の外周端部の塗膜の除去率としてのハンプ(hump)率を算出した。また上記膜の外周端部を目視で観察し、クラックや膜剥がれの有無を調べた。ここで「ハンプ率」とは、図2に示すように、基板表面から測定した最も厚い部分の膜厚から平均膜厚を差し引いた値(ハンプ高さh)の平均膜厚aに対する割合((h/a)×100(%))をいう。その結果を表2に示す。
<Comparison test and evaluation>
The outer peripheral edges of the 19 types of films obtained in Examples 1 to 11 and Comparative Examples 1 to 8 were observed with a stylus type surface shape measuring device (Veeco Instruments, Inc., device name: Dectak), and the outer peripheral edges of the films were observed. The hump ratio as the removal ratio of the coating film in the part was calculated. The outer peripheral edge of the film was visually observed to check for cracks and film peeling. Here, the “hump ratio” is a ratio ((hump height h) of a value obtained by subtracting the average film thickness from the film thickness of the thickest portion measured from the substrate surface to the average film thickness a as shown in FIG. 2 (( h / a) × 100 (%)). Table 2 shows the results.

Figure 0006665673
Figure 0006665673

表2から明らかなように、EBR用の液体として、1−プロパノールを用いた比較例1及び2−プロパノールを用いた比較例2では、いずれも膜の剥がれやクラックはなかったものの、メタノールやエタノールと比較して沸点が高く、塗膜が膨潤したことにより、ハンプ率はいずれも「6%」と高かった。またEBR用の液体として、1−ブタノールを用いた比較例3では、膜の剥がれやクラックはなかったものの、1−プロパノールや2−プロパノールより更に沸点が高いためにハンプ率は「8%」と高かった。   As is clear from Table 2, in each of Comparative Example 1 using 1-propanol and Comparative Example 2 using 2-propanol as the liquid for EBR, there was no peeling or cracking of the film, but methanol and ethanol were used. The hump ratio was as high as "6%" due to the higher boiling point and swelling of the coating film. In Comparative Example 3 using 1-butanol as the liquid for EBR, although there was no peeling or cracking of the film, the hump ratio was “8%” because the boiling point was higher than that of 1-propanol or 2-propanol. it was high.

またEBR用の液体として、主溶媒と同一の酢酸イソアミルを用いた比較例4及び6では、いずれも膜の剥がれやクラックはなかったものの、メタノールやエタノールより沸点が高く、膜が膨潤したためにハンプ率はいずれも「5%」と高かった。   In Comparative Examples 4 and 6, in which the same solvent as the main solvent, isoamyl acetate was used as the liquid for EBR, neither peeling nor cracking of the film was observed, but the boiling point was higher than that of methanol or ethanol, and the film was swollen. The rate was as high as 5%.

更にEBR用の液体として水を用いた比較例7及びEBR用の液体として水とプロピレングリコールを質量比で80:20の割合で混合して用いた比較例8では、いずれも膜の外周端部には塗膜の除去できていない部分があり、ハンプ率の測定を正常に行うことができなかった。また局所的に膜の剥がれが確認された。   Further, in Comparative Example 7 using water as the liquid for EBR and Comparative Example 8 using water and propylene glycol mixed at a mass ratio of 80:20 as the liquid for EBR, in both cases, the outer peripheral edge of the film was used. There was a part where the coating film could not be removed, and the hump ratio could not be measured normally. Moreover, peeling of the film was locally confirmed.

これに対して、EBR用の液体として、メタノール及び/又はエタノールを主成分とする液体を用いた実施例1〜11では、いずれも膜の外周端部のハンプ率が「4〜4.5%」と低く、膜の外周端部の塗膜の除去率が高かった。また膜の外周端部の全周にわたって膜の剥がれやクラックは確認されなかった。   On the other hand, in Examples 1 to 11 in which a liquid containing methanol and / or ethanol as a main component was used as the liquid for EBR, the hump ratio at the outer peripheral end of the film was “4 to 4.5%”. And the removal rate of the coating film on the outer peripheral edge of the film was high. Also, no peeling or cracking of the film was observed over the entire outer peripheral edge of the film.

本発明の方法で製造された強誘電体薄膜は、キャパシタや強誘電体メモリ(FeRAM)、圧電素子等のデバイスに利用することができる。   The ferroelectric thin film manufactured by the method of the present invention can be used for devices such as a capacitor, a ferroelectric memory (FeRAM), and a piezoelectric element.

1 ゲル状塗膜
2 基板
3 ノズル
4 液体
h ハンプ高さ
a 平均膜厚
DESCRIPTION OF SYMBOLS 1 Gel-like coating film 2 Substrate 3 Nozzle 4 Liquid h Hump height a Average film thickness

Claims (3)

強誘電体薄膜を形成するための有機金属化合物を含有するCSD溶液を基板に塗布してゲル状塗膜を形成する工程と、前記基板を回転させながら外周端部に液体を噴射又は滴下して、前記ゲル状塗膜の外周端部を除去する工程と、前記外周端部について除去された後の前記ゲル状塗膜を加熱処理して強誘電体薄膜を形成する工程とを有する強誘電体薄膜の製造方法において、
前記CSD溶液の主溶媒が酢酸イソアミルであって、前記液体がメタノール及び/又はエタノールを主成分とする液体であることを特徴とする強誘電体薄膜の製造方法。
A step of applying a CSD solution containing an organometallic compound for forming a ferroelectric thin film to a substrate to form a gel-like coating film, and spraying or dropping a liquid on an outer peripheral end while rotating the substrate. Removing the outer peripheral edge of the gel coating film, and heating the gel coating film removed from the outer peripheral edge to form a ferroelectric thin film In the method for producing a thin film,
A method for producing a ferroelectric thin film, wherein a main solvent of the CSD solution is isoamyl acetate, and the liquid is a liquid containing methanol and / or ethanol as a main component.
前記強誘電体薄膜がBST系膜(チタン酸ストロンチウムバリウム系膜)、BT系膜(チタン酸バリウム膜)又はST系膜(チタン酸ストロンチウム膜)である請求項1記載の強誘電体薄膜の製造方法。   2. The ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is a BST-based film (a strontium titanate-based film), a BT-based film (a barium titanate film), or an ST-based film (a strontium titanate film). Method. 前記有機金属化合物が一般式C2n+1COOH(但し、3≦n≦7)で表されるカルボン酸の金属塩である請求項1又は2記載の強誘電体薄膜の製造方法。
The method for producing a ferroelectric thin film according to claim 1, wherein the organometallic compound is a metal salt of a carboxylic acid represented by the general formula C n H 2n + 1 COOH (where 3 ≦ n ≦ 7).
JP2016095911A 2016-05-12 2016-05-12 Manufacturing method of ferroelectric thin film Active JP6665673B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016095911A JP6665673B2 (en) 2016-05-12 2016-05-12 Manufacturing method of ferroelectric thin film
KR1020170056942A KR102299871B1 (en) 2016-05-12 2017-05-04 Method of producing ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095911A JP6665673B2 (en) 2016-05-12 2016-05-12 Manufacturing method of ferroelectric thin film

Publications (2)

Publication Number Publication Date
JP2017204573A JP2017204573A (en) 2017-11-16
JP6665673B2 true JP6665673B2 (en) 2020-03-13

Family

ID=60323387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095911A Active JP6665673B2 (en) 2016-05-12 2016-05-12 Manufacturing method of ferroelectric thin film

Country Status (2)

Country Link
JP (1) JP6665673B2 (en)
KR (1) KR102299871B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217219A (en) * 2004-01-30 2005-08-11 Hitachi Cable Ltd Ferroelectric thin film and manufacturing method thereof
KR101565186B1 (en) * 2008-05-28 2015-11-02 미쓰비시 마테리알 가부시키가이샤 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
JP5381410B2 (en) * 2009-06-30 2014-01-08 三菱マテリアル株式会社 Method for manufacturing ferroelectric thin film
JP5828293B2 (en) * 2011-05-17 2015-12-02 三菱マテリアル株式会社 Method for manufacturing PZT ferroelectric thin film

Also Published As

Publication number Publication date
KR102299871B1 (en) 2021-09-07
JP2017204573A (en) 2017-11-16
KR20170128101A (en) 2017-11-22

Similar Documents

Publication Publication Date Title
KR100726319B1 (en) Precursor solution, method for manufacturing precursor solution, pztn compound oxide, method for manufacturing pztn compound oxide, piezoelectric element, ink jet printer, ferroelectric capacitor, and ferroelectric memory
JP2001261338A (en) Raw material solution for forming titanium-containing metal oxide thin film, method of forming the same, and titanium-containing metal oxide thin film
US9005698B2 (en) Piezoelectric thin film process
WO2011001734A1 (en) Fluid for removing coating film formed by csd, method for removing csd coating film using same, and ferroelectric thin film and process for producing same
JP6665673B2 (en) Manufacturing method of ferroelectric thin film
JP5381410B2 (en) Method for manufacturing ferroelectric thin film
JPH11163273A (en) Manufacture of dielectric thin film and dielectric capacitor and dielectric memory
JP5434631B2 (en) CSD coating film removing composition, CSD coating film removing method using the same, ferroelectric thin film and method for producing the same
JP4042276B2 (en) Method for forming Pb-based perovskite metal oxide thin film
JP2001072416A (en) Raw material solution for forming perovskite-type oxide thin film, method for forming perovskite-type oxide thin film and perovskite-type oxide thin film
JP4048650B2 (en) Raw material solution for forming perovskite oxide thin films
JP2001220142A (en) SOURCE SOLUTION FOR FORMATION OF REROVSKITE TYPE OR Bi SHEET PEROVSKITE TYPE OXIDE THIN FILM, METHOD OF FORMING PEROVSKITE TYPE OR Bi SHEET PEROVSKITE OXIDE THIN FILM, AND PEROVSKITE TYPE OR Bi SHEET PEROVSKITE TYPE OXIDE THIN FILM
JP7166800B2 (en) Coating liquid composition for oriented piezoelectric film, oriented piezoelectric film, and liquid ejection head
JP2001072926A (en) Starting solution for formation of perovskite-type oxide thin film
JP6365294B2 (en) Method for forming LaNiO3 thin film
JP2000119022A (en) Ferroelectric thin film, raw material solution for forming the same film and formation of film
JP5754539B2 (en) Composition for forming LaNiO3 thin film and method for forming LaNiO3 thin film using this composition
JP5119990B2 (en) Coating composition for forming high dielectric thin film and method for producing the same
JP2003002649A (en) Blt ferroelectric thin film, composition for forming the same, and producing method for the same
JP2006278986A (en) Process for forming dielectric thin film and piezoelectric device employing dielectric film formed by that method
JP4407103B2 (en) Ferroelectric thin film with excellent fatigue resistance and composition for forming the same
JP2008053281A (en) High dielectric film and its forming method
JP2008004269A (en) Coating composition for forming high dielectric thin film, and its manufacturing method
JP2006272929A (en) Method for forming dielectric thin membrane, and piezoelectric device having dielectric membrane produced by method for forming it
JP2006278988A (en) Process for forming dielectric thin film and piezoelectric device employing dielectric film formed by that method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150