JP6663144B2 - Ship equipped with air lubrication control device - Google Patents

Ship equipped with air lubrication control device Download PDF

Info

Publication number
JP6663144B2
JP6663144B2 JP2015057264A JP2015057264A JP6663144B2 JP 6663144 B2 JP6663144 B2 JP 6663144B2 JP 2015057264 A JP2015057264 A JP 2015057264A JP 2015057264 A JP2015057264 A JP 2015057264A JP 6663144 B2 JP6663144 B2 JP 6663144B2
Authority
JP
Japan
Prior art keywords
propeller
duct
air
bubbles
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015057264A
Other languages
Japanese (ja)
Other versions
JP2016175539A (en
Inventor
英幹 川島
英幹 川島
光 上入佐
光 上入佐
直人 枌原
直人 枌原
耕一郎 白石
耕一郎 白石
隆道 拾井
隆道 拾井
達也 濱田
達也 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2015057264A priority Critical patent/JP6663144B2/en
Publication of JP2016175539A publication Critical patent/JP2016175539A/en
Application granted granted Critical
Publication of JP6663144B2 publication Critical patent/JP6663144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Description

本発明は、船体の周囲に気泡を噴出して摩擦抵抗を低減する空気潤滑に用いる気泡対策装置を備えた船舶に関する。   The present invention relates to a ship provided with a bubble countermeasure device used for air lubrication to reduce frictional resistance by blowing bubbles around a hull.

船体の周囲に空気を噴出して船体表面近傍の海水に気泡を介在させることにより船舶の抵抗を低減させる空気潤滑法が、摩擦抵抗低減技術として用いられている。
しかしながら、船体の船尾に取り付けられたプロペラに気泡が流入すると、プロペラ効率の低下や船体の振動を招いてしまう。そこで、従来から気泡を除去する装置が提案されている。
An air lubrication method that reduces the resistance of a ship by blowing air around the hull and causing air bubbles to intervene in seawater near the hull surface has been used as a frictional resistance reduction technique.
However, when air bubbles flow into the propeller attached to the stern of the hull, the efficiency of the propeller decreases and the hull vibrates. Therefore, a device for removing air bubbles has been conventionally proposed.

特許文献1には、船体の船尾側部分にトンネルフィン等の船尾付加物を設けることによってプロペラ上部の水流を整流及び加速させ、喫水下部分に設けた空気吹き出し孔から噴出され左右両側の船側に沿って後方に流れる気泡がプロペラに流入することを防止しようとする船舶の抵抗低減装置が開示されている。
特許文献2には、船底に複数の空気回収口を設け、船底に設けた複数の空気吹き出し口から吹き出した空気を空気回収口から船体内に回収することによって空気を除去し、空気がプロペラに流入することを防止しようとする船舶の気泡回収装置が開示されている。
特許文献3には、水噴出部をプロペラの前方に設け、水噴出部から水中へ水を噴出することによって、船首側の底部に設けた空気吹き出し口から水中に吹き出され船首から船尾へ向かって移動する気泡をプロペラから離れる方向へ誘導し、気泡がプロペラに流入することを防止しようとするプロペラの起振力抑制装置が開示されている。
また、気泡を除去する装置ではないが、特許文献4には、気液供給装置において、吐出管内に設けられ、気液流体を旋回させることによって空気を吐出管の中心側に集める旋回部材が開示されている。
Patent Document 1 discloses that a stern appendage such as a tunnel fin is provided on a stern side portion of a hull to rectify and accelerate a water flow at an upper portion of a propeller, and is ejected from an air blowing hole provided at a lower portion of a draft to a ship side on both right and left sides. There is disclosed a drag reduction device for a ship that attempts to prevent bubbles flowing backward along the propeller from flowing into the propeller.
In Patent Document 2, a plurality of air recovery ports are provided on the bottom of the ship, and air blown out from the plurality of air outlets provided on the bottom of the ship is recovered from the air recovery ports into the hull, thereby removing air. An air bubble recovery device for a ship that attempts to prevent inflow is disclosed.
In Patent Literature 3, a water jetting part is provided in front of a propeller, and water is jetted into the water from the water jetting part, so that the water is jetted into the water from an air outlet provided at the bottom on the bow side, and the water is jetted from the bow toward the stern. There is disclosed a propeller vibrating force suppressing device that guides a moving bubble away from the propeller and prevents the bubble from flowing into the propeller.
Although it is not a device for removing air bubbles, Patent Document 4 discloses a swirling member provided in a discharge pipe in a gas-liquid supply device and collecting air at a center side of the discharge pipe by swirling gas-liquid fluid. Have been.

特開2011−93486号公報JP 2011-93486 A 特開2011−213303号公報JP 2011-213303 A 特開2014−125126号公報JP 2014-125126 A 特開2002−52330号公報JP-A-2002-52330

しかしながら、特許文献1乃至特許文献3に記載の装置を用いたとしても、プロペラに流入しようとする気泡を合理的に除去することは困難である。
特許文献1においては、例えば図2Aに示されるように、船尾側部分においてプロペラ16の上方に位置する空気層201が、プロペラ16に流入しないように、長さの長い船尾付加物41を設けている。また、例えば図4Aに示されるように、プロペラ16の外端に近い大きな船尾付加物42を設け、船尾付加物42によってプロペラ16上部の水流を整流及び加速し、プロペラ16近傍において空気層201の気泡が滞留することを防止している。このため、船尾付加物41、42が大型となり摩擦抵抗の増加、製造コスト、取り付けやメンテナンス等の面から課題がある。また、船尾付加物41、42が、船側の空気層201に機能するとしても、船底の空気層200に対して有効に機能することは困難である。
また、特に特許文献2に記載の気泡回収装置や特許文献3に記載の水噴出部を設けようとする場合には、構成が大がかりとなり、製造コストやメンテナンス費用が増大してしまう。
また、特許文献4に記載の発明は、液体に気体を加えて気液流体にして供給する気液供給装置に関するものであり、船体の周囲に噴出された気泡がプロペラに流入することによる悪影響を防止するものではない。
However, even if the devices described in Patent Documents 1 to 3 are used, it is difficult to rationally remove bubbles that are going to flow into the propeller.
In Patent Document 1, for example, as shown in FIG. 2A, a long stern appendage 41 is provided so that an air layer 201 located above the propeller 16 at the stern side does not flow into the propeller 16. I have. Further, as shown in FIG. 4A, for example, a large stern appendage 42 is provided near the outer end of the propeller 16, the stern appendage 42 rectifies and accelerates the water flow above the propeller 16, and the air layer 201 near the propeller 16 is formed. It prevents bubbles from staying. For this reason, the stern accessories 41 and 42 become large, and there are problems in terms of an increase in frictional resistance, manufacturing costs, installation and maintenance, and the like. Even if the stern appendages 41 and 42 function on the air layer 201 on the ship side, it is difficult to effectively function on the air layer 200 on the bottom of the ship.
In particular, when an air bubble collecting device described in Patent Literature 2 or a water jetting portion described in Patent Literature 3 is to be provided, the configuration becomes large and the manufacturing cost and maintenance cost increase.
In addition, the invention described in Patent Document 4 relates to a gas-liquid supply device that adds gas to a liquid and supplies the liquid as a gas-liquid fluid, and suppresses an adverse effect caused by bubbles ejected around a hull flowing into a propeller. It does not prevent it.

そこで本発明は、船体の周囲に空気を噴出して摩擦抵抗を低減する空気潤滑法の効果を維持しつつ、噴出した気泡がプロペラに流入することによるプロペラ効率への悪影響を合理的に防止する空気潤滑用気泡対策装置を備えた船舶を提供することを目的とする。   Therefore, the present invention rationally prevents the adverse effect on propeller efficiency due to the ejected bubbles flowing into the propeller while maintaining the effect of the air lubrication method of jetting air around the hull to reduce frictional resistance. An object of the present invention is to provide a ship provided with a bubble countermeasure device for air lubrication.

請求項1記載に対応した空気潤滑用気泡対策装置を備えた船舶においては、船体の周囲に気泡を噴出して摩擦抵抗を低減する空気潤滑に用いる気泡を噴出する空気供給口を備え、さらに、空気潤滑用気泡対策装置として、船体の船尾に設けたプロペラと、前記空気供給口からの前記プロペラに流入する前記気泡を集中させ前記プロペラの翼根部に前記気泡を流すプロペラの前方に設けた気泡集中手段とを備え、前記気泡集中手段が負圧によって前記気泡を誘引する構造を有し、気泡集中手段は、船体とプロペラの間に設けたダクトであり、ダクトを船体の船尾部に支持する捻られた形状を成すダクト支持手段をダクトの内側にさらに備え、ダクト支持手段は、プロペラの回転方向と同方向に捻られていることを特徴とする。請求項1に記載の本発明によれば、気泡集中手段によって気泡の集まり易いプロペラの翼根部への気泡の流入が促され、気泡はプロペラの翼根部に集中して後方に流れる。プロペラにおいて翼根部の部分が発生する推力は他の部分が発生する推力に比べて小さいので、プロペラへの気泡流入を防止するのではなく、気泡集中手段を設けてプロペラの翼根部への気泡の流入を促し、気泡を翼根部に集中させてプロペラの後方に流すことによって、プロペラの推力を大きく発生させる部分の気泡を確実かつ簡便に除去することができる。したがって、気泡がプロペラの推力発生に寄与する部分に流入することによるプロペラ効率の悪化を抑制でき、気泡集中手段も小型化が可能となる。これにより、船体の周囲に空気を噴出して摩擦抵抗を低減する空気潤滑法の効果を維持しつつ、噴出した気泡がプロペラに流入することによるプロペラ効率への悪影響を合理的に防止する空気潤滑用気泡対策装置を備えた船舶を提供できる。また、ダクト支持手段に捻りを与えることで旋回流が作られ、気泡はその旋回流の流速の遅い中心に集められる。したがって、気泡をより一層プロペラの翼根部に集中させることができる。また、ダクト支持手段により発生する旋回流が強まり、気泡をより一層プロペラの翼根部に集中させることができる。 The marine vessel provided with the air lubrication bubble countermeasure device according to claim 1, further comprising an air supply port for jetting air bubbles used for air lubrication for jetting air bubbles around the hull to reduce frictional resistance, As an air lubrication bubble countermeasure device, a propeller provided at the stern of a hull, and a bubble provided in front of a propeller which concentrates the bubbles flowing into the propeller from the air supply port and flows the bubbles to a blade root portion of the propeller Concentrating means, wherein the air bubble concentrating means has a structure for inducing the air bubbles by negative pressure, and the air bubble concentrating means is a duct provided between the hull and the propeller, and supports the duct at the stern of the hull. A duct supporting means having a twisted shape is further provided inside the duct, and the duct supporting means is twisted in the same direction as the rotation direction of the propeller . According to the first aspect of the present invention, the bubble concentration means promotes the inflow of bubbles into the blade root portion of the propeller, where the bubbles are likely to collect, and the bubbles are concentrated on the blade root portion of the propeller and flow backward. Since the thrust generated at the blade root part of the propeller is smaller than the thrust generated at other parts, instead of preventing air bubbles from flowing into the propeller, air bubble concentration means is provided to generate air bubbles at the blade root of the propeller. By encouraging the inflow and causing the bubbles to concentrate on the blade root portion and flow behind the propeller, it is possible to reliably and easily remove the bubbles in a portion that generates a large thrust of the propeller. Therefore, it is possible to suppress the deterioration of the propeller efficiency due to the bubbles flowing into the portion contributing to the generation of the thrust of the propeller, and it is possible to reduce the size of the bubble concentration unit. As a result, air lubrication that rationally prevents the air bubbles ejected from flowing into the propeller and adversely affects the propeller efficiency while maintaining the effects of the air lubrication method that reduces frictional resistance by ejecting air around the hull A ship provided with the air bubble countermeasure device can be provided. In addition, a swirling flow is created by imparting a twist to the duct supporting means, and bubbles are collected at the center of the swirling flow having a low flow velocity. Therefore, the bubbles can be further concentrated on the blade root of the propeller. Further, the swirling flow generated by the duct supporting means is strengthened, and the air bubbles can be further concentrated on the blade root of the propeller.

請求項2記載の本発明は、ダクト、円筒状を成したダクトであることを特徴とする。請求項2に記載の本発明によれば、ダクトに発生する負圧によって気泡が誘引され、ダクト内に気泡が集まり、気泡はプロペラの翼根部に集中して後方に流れる。また、ダクトを設けることでプロペラへの流入面における流れが遅くなり、伴流係数が良化してプロペラ効率が向上する。 According to a second aspect of the invention, duct, characterized in that it is a duct forms a circular cylindrical shape. According to the second aspect of the present invention, air bubbles are induced by the negative pressure generated in the duct, the air bubbles are collected in the duct, and the air bubbles concentrate on the blade root of the propeller and flow backward. Also, by providing the duct, the flow on the inflow surface to the propeller is slowed, the wake coefficient is improved, and the propeller efficiency is improved.

請求項3記載の本発明は、ダクトの後端部の直径が、プロペラの直径の50%以下であることを特徴とする。請求項3に記載の本発明によれば、ダクトを出た気泡がプロペラの翼根部以外の部分に流れることが防止され、気泡はより一層プロペラの翼根部に集中して後方に流れる。したがって、気泡がプロペラの推力を発生させる部分に流れることをより確実に防止でき、ダクトも小型のものとできる The third aspect of the present invention is characterized in that the diameter of the rear end of the duct is 50% or less of the diameter of the propeller. According to the third aspect of the present invention, the air bubbles that have exited the duct are prevented from flowing to portions other than the blade root of the propeller, and the air bubbles are further concentrated on the blade root of the propeller and flow backward. Therefore, it is possible to more reliably prevent the air bubbles from flowing to the portion where the thrust of the propeller is generated, and the size of the duct can be reduced .

求項記載の本発明は、ダクトの断面形状を内側に凸を成す翼型としたことを特徴とする。請求項に記載の本発明によれば、ダクトを翼型に形成することで、流速を増し気泡を中心に集め、プロペラの翼根部に集中させて後方に流すことができるとともに、分力として船体を前方に推進する揚力を増加させることができる。 Motomeko 4 the invention described is characterized in that the airfoil forming a convex cross-sectional shape of the duct on the inside. According to the present invention as set forth in claim 4 , by forming the duct in an airfoil shape, it is possible to increase the flow velocity, collect air bubbles at the center, concentrate the air bubbles on the blade root of the propeller, and flow the air backward. The lift that propels the hull forward can be increased.

請求項記載の本発明は、ダクトを、上流側の内直径よりも下流側の内直径が小さい加速型ダクトとしたことを特徴とする。請求項に記載の本発明によれば、ダクトを加速型ダクトとすることで、流れを加速し気泡をより一層、中心寄りに集め、プロペラの翼根部に集中させることができる。 The present invention described in claim 5 is characterized in that the duct is an accelerating duct whose inner diameter on the downstream side is smaller than that on the upstream side. According to the fifth aspect of the present invention, by making the duct an accelerating type duct, the flow can be accelerated, the air bubbles can be further collected near the center, and can be concentrated on the blade root of the propeller.

請求項記載の本発明は、ダクトの中心をプロペラの軸心と一致させたことを特徴とする。請求項に記載の本発明によれば、ダクトの中心とプロペラの軸心を一致させることで、気泡をプロペラの翼根部に正しく集中させて後方に流すことができるとともに、ダクトの製作や設置が容易となる。 The invention according to claim 6 is characterized in that the center of the duct coincides with the axis of the propeller. According to the sixth aspect of the present invention, by aligning the center of the duct with the axis of the propeller, air bubbles can be correctly concentrated on the blade root of the propeller and flow backward, and the production and installation of the duct Becomes easier.

請求項記載の本発明は、プロペラのピッチを、プロペラの翼根部で最大値となり翼端部で最小値となる、半径方向に減少する逓減ピッチとしたことを特徴とする。請求項記載の本発明によれば、プロペラの翼根部のピッチを増すことで、翼根部付近での旋回流を強くして気泡をより一層、旋回流の中心寄りに集め、プロペラの翼根部に集中させることができる。 The present invention described in claim 7 is characterized in that the pitch of the propeller is a gradually decreasing pitch that decreases in the radial direction and has a maximum value at the blade root of the propeller and a minimum value at the blade tip. According to the seventh aspect of the present invention, by increasing the pitch of the blade root of the propeller, the swirling flow near the blade root is strengthened and bubbles are further collected near the center of the swirling flow. You can concentrate on

請求項記載の本発明は、プロペラを支持するプロペラボスの表面にさらに気泡の集中を促進する凹部を設けたことを特徴とする。請求項に記載の本発明によれば、プロペラと共に回転するプロペラボスに凹部を形成して低圧となる部分を作ることで、気泡をより一層プロペラの翼根部に集中させることができる。 The present invention according to claim 8 is characterized in that a concave portion for further promoting the concentration of bubbles is provided on the surface of the propeller boss supporting the propeller. According to the eighth aspect of the present invention, by forming a concave portion in the propeller boss that rotates together with the propeller to create a low pressure portion, the air bubbles can be further concentrated on the blade root portion of the propeller.

本発明によれば、気泡集中手段によって気泡の集まり易いプロペラの翼根部への気泡の流入が促され、気泡はプロペラの翼根部に集中して後方に流れる。プロペラにおいて翼根部の部分が発生する推力は他の部分が発生する推力に比べて小さいので、プロペラへの気泡流入を防止するのではなく、気泡集中手段を設けてプロペラの翼根部への気泡の流入を促し、気泡を翼根部に集中させてプロペラの後方に流すことによって、プロペラの推力を大きく発生させる部分の気泡を確実かつ簡便に除去することができる。したがって、気泡がプロペラの推力発生に寄与する部分に流入することによるプロペラ効率の悪化を抑制でき、気泡集中手段も小型化が可能となる。これにより、船体の周囲に空気を噴出して摩擦抵抗を低減する空気潤滑法の効果を維持しつつ、噴出した気泡がプロペラに流入することによるプロペラ効率への悪影響を合理的に防止する空気潤滑用気泡対策装置を備えた船舶を提供できる。また、ダクト支持手段に捻りを与えることで旋回流が作られ、気泡はその旋回流の流速の遅い中心に集められる。したがって、気泡をより一層プロペラの翼根部に集中させることができる。また、ダクト支持手段により発生する旋回流が強まり、気泡をより一層プロペラの翼根部に集中させることができる。 According to the present invention, the bubble concentration means promotes the flow of bubbles into the blade root of the propeller where bubbles easily collect, and the bubbles flow rearward concentrated on the blade root of the propeller. Since the thrust generated at the blade root part of the propeller is smaller than the thrust generated at other parts, instead of preventing air bubbles from flowing into the propeller, air bubble concentration means is provided to generate air bubbles at the blade root of the propeller. By encouraging the inflow and causing the bubbles to concentrate on the blade root portion and flow behind the propeller, it is possible to reliably and easily remove the bubbles in a portion that generates a large thrust of the propeller. Therefore, it is possible to suppress the deterioration of the propeller efficiency due to the bubbles flowing into the portion contributing to the generation of the thrust of the propeller, and it is possible to reduce the size of the bubble concentration unit. As a result, air lubrication that rationally prevents the air bubbles ejected from flowing into the propeller and adversely affects the propeller efficiency while maintaining the effects of the air lubrication method that reduces frictional resistance by ejecting air around the hull A ship provided with the air bubble countermeasure device can be provided. In addition, a swirling flow is created by imparting a twist to the duct supporting means, and bubbles are collected at the center of the swirling flow having a low flow velocity. Therefore, the bubbles can be further concentrated on the blade root of the propeller. Further, the swirling flow generated by the duct supporting means is strengthened, and the air bubbles can be further concentrated on the blade root of the propeller.

また、ダクト、円筒状を成したダクトである場合には、ダクトに発生する負圧によって気泡が誘引され、ダクト内に気泡が集まり、気泡はプロペラの翼根部に集中して後方に流れる。また、ダクトを設けることでプロペラへの流入面における流れが遅くなり、伴流係数が良化してプロペラ効率が向上する。 Further, duct, in the case of duct forms a circular cylinder shape, are attracted bubbles by the negative pressure generated in duct, gathered bubble in the duct, the bubbles flows rearward to concentrate on the blade root portion of the propeller . Also, by providing the duct, the flow on the inflow surface to the propeller is slowed, the wake coefficient is improved, and the propeller efficiency is improved.

また、ダクトの後端部の直径が、プロペラの直径の50%以下である場合には、ダクトを出た気泡がプロペラの翼根部以外の部分に流れることが防止され、気泡はより一層プロペラの翼根部に集中して後方に流れる。したがって、気泡がプロペラの推力を発生させる部分に流れることをより確実に防止でき、ダクトも小型のものとできる In addition, when the diameter of the rear end of the duct is 50% or less of the diameter of the propeller, the air bubbles that have exited the duct are prevented from flowing to portions other than the blade root of the propeller, and the air bubbles are further reduced. Concentrate on the wing root and flow backward. Therefore, it is possible to more reliably prevent the air bubbles from flowing to the portion where the thrust of the propeller is generated, and the size of the duct can be reduced .

た、ダクトの断面形状を内側に凸を成す翼型とした場合には、ダクトを翼型に形成することで、流速を増し気泡を中心に集め、プロペラの翼根部に集中させて後方に流すことができるとともに、分力として船体を前方に推進する揚力を増加させることができる。 Also, in the case of the airfoil forming a convex cross-sectional shape of the duct on the inside, by forming the duct airfoil collected around the bubbles increase the flow velocity at the rear to concentrate on the blade root of the propeller In addition to the flow, the lift force for propelling the hull forward can be increased as a component force.

また、ダクトを、上流側の内直径よりも下流側の内直径が小さい加速型ダクトとした場合には、ダクトを加速型ダクトとすることで、流れを加速し、気泡をより一層、中心寄りに集め、プロペラの翼根部に集中させることができる。   Also, when the duct is an accelerated duct whose inner diameter on the downstream side is smaller than the inner diameter on the upstream side, the duct is made an accelerated duct to accelerate the flow and move the bubbles further toward the center. To concentrate on the propeller blade root.

また、ダクトの中心をプロペラの軸心と一致させた場合には、ダクトの中心とプロペラの軸心を一致させることで、気泡をプロペラの翼根部に正しく集中させて後方に流すことができるとともに、ダクトの製作や設置が容易となる。   When the center of the duct is aligned with the axis of the propeller, the center of the duct is aligned with the axis of the propeller so that air bubbles can be correctly concentrated on the blade root of the propeller and flow backward. In addition, the production and installation of the duct becomes easy.

また、プロペラのピッチを、プロペラの翼根部で最大値となり翼端部で最小値となる、半径方向に減少する逓減ピッチとした場合には、プロペラの翼根部のピッチを増すことで、翼根部付近での旋回流を強くして気泡をより一層、旋回流の中心寄りに集め、プロペラの翼根部に集中させることができる。   Also, if the pitch of the propeller is a gradually decreasing pitch that decreases in the radial direction and becomes the maximum value at the blade root of the propeller and the minimum value at the blade tip, the pitch of the blade root of the propeller is increased to increase the blade pitch. By strengthening the swirling flow in the vicinity, bubbles can be further collected near the center of the swirling flow and concentrated on the blade root of the propeller.

また、プロペラを支持するプロペラボスの表面にさらに気泡の集中を促進する凹部を設けた場合には、プロペラの回転と共に回転するプロペラボスに凹部を形成して低圧となる部分を作ることで、気泡をより一層プロペラの翼根部に集中させることができる。   Also, if a concave portion is provided on the surface of the propeller boss that supports the propeller to further promote the concentration of bubbles, the concave portion is formed in the propeller boss that rotates with the rotation of the propeller to create a low pressure portion, so that the bubble is reduced. Can be further concentrated on the blade root of the propeller.

本発明の一実施形態による空気潤滑用気泡対策装置を備えた船舶の概略構成図1 is a schematic configuration diagram of a ship provided with an air lubrication bubble control device according to an embodiment of the present invention. 同船舶に用いる空気潤滑用気泡対策装置を示す概略構成図Schematic configuration diagram showing an air lubrication countermeasure device used for the ship 同船舶に用いる気泡集中手段(ダクト)の要部を示す一部断面構成図Partial cross-sectional configuration diagram showing the main part of the bubble concentration means (duct) used for the ship 同船舶に用いる気泡集中手段(ダクト)のダクト内圧力分布図Pressure distribution diagram in the duct of the bubble concentration means (duct) used for the ship 同船舶に用いる逓減ピッチプロペラと通常プロペラのピッチ分布を示すグラフA graph showing the pitch distribution of a diminishing pitch propeller and a normal propeller used for the same ship 同船舶に用いる気泡集中手段のプロペラボスを示す概略構成図Schematic configuration diagram showing the propeller boss of bubble concentration means used for the same ship 模型船におけるダクト有りの場合とダクト無しの場合の船尾部周辺のプロペラ位置横断面における流速分布を示す図Diagram showing velocity distribution in cross section of propeller position around stern part with and without duct on model ship 本発明の他の実施形態による空気潤滑用気泡対策装置の気泡集中手段を後方から前方視した状態を示す要部正面図The principal part front view which shows the state which looked at the bubble concentration means of the bubble countermeasure device for air lubrication by another embodiment of this invention from the back and front. 本発明の更に他の実施形態による空気潤滑用気泡対策装置のダクトを後方から前方視した状態を示す要部正面図The principal part front view which shows the state which looked at the duct of the air lubricating bubble countermeasure apparatus by still another embodiment of this invention from the back front.

以下に、本発明の実施形態による空気潤滑用気泡対策装置を備えた船舶について説明する。   Hereinafter, a ship provided with an air lubrication bubble countermeasure device according to an embodiment of the present invention will be described.

図1は本発明の一実施形態による空気潤滑用気泡対策装置を備えた船舶の概略構成図、 図2は同船舶に用いる空気潤滑用気泡対策装置を示す一部断面側面図、図3は同船舶に用いる気泡集中手段(ダクト)の要部を示す一部断面構成図、図4は同船舶に用いる気泡集中手段(ダクト)のダクト内圧力分布図、図5は同船舶に用いる逓減ピッチプロペラと通常プロペラのピッチ分布を示すグラフ、図6は同船舶に用いる気泡集中手段のプロペラボスを示す概略構成図、図7は模型船におけるダクト有りの場合とダクト無しの場合の船尾部周辺のプロペラ位置横断面における流速分布を示す図である。   FIG. 1 is a schematic configuration diagram of a ship provided with an air lubricating bubble countermeasure device according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional side view showing an air lubricating bubble countermeasure device used in the ship, and FIG. FIG. 4 is a partial cross-sectional configuration diagram showing a main part of a bubble concentrating means (duct) used in a ship, FIG. 4 is a pressure distribution diagram in a duct of the bubble concentrating means (duct) used in the ship, and FIG. And a graph showing a pitch distribution of a normal propeller, FIG. 6 is a schematic configuration diagram showing a propeller boss of a bubble concentration means used in the same ship, and FIG. 7 is a propeller around a stern portion of a model ship with and without duct. It is a figure which shows the flow velocity distribution in a position cross section.

図1に示すように、船舶は、船体1の船尾に設けたプロペラ10と、プロペラ10の前方に設けた気泡集中手段20を有している。
また、船舶は、船体1の船首側の上甲板に設けた通風筒30と、船体1の船底に設けた空気供給口40と、通風筒30と空気供給口40とを連通する空気経路32を有している。通風筒30の上端には開口31を備え、船体1内部の船首倉庫33には送気手段34を備えている。送気手段34は、例えばブロワ(送風機)などにより構成することができ、空気経路32に設けられ、空気を吸い込み、必要な圧力に加圧して空気潤滑用空気を船底の空気供給口40から吹き出す。
このように、開口31から吸入された空気は空気経路32を通って空気供給口40から気泡として噴出される。空気供給口40から気泡として気体を供給することで、海面S.L.よりも下側の船体1の周囲に気泡を供給して高い摩擦抵抗低減効果を得ることができる。
また、船首倉庫33の下部には床面に溜まった水を船外に排出する排水手段35を有している。これにより、万が一、通風筒30内に水が侵入しても、排水手段35により船外に排出することができる。
空気供給口40から噴出された気泡は、直径が数ミリメートルの気泡であるため、浮力効果により船底に張り付くようにして船底に沿って船尾側に流れて行く。
As shown in FIG. 1, the marine vessel has a propeller 10 provided at the stern of the hull 1 and bubble concentration means 20 provided in front of the propeller 10.
In addition, the ship has a ventilation tube 30 provided on the upper deck of the hull 1 on the bow side, an air supply port 40 provided on the bottom of the hull 1, and an air path 32 communicating the ventilation tube 30 with the air supply port 40. Have. An opening 31 is provided at the upper end of the ventilation tube 30, and an air supply means 34 is provided in a bow warehouse 33 inside the hull 1. The air supply means 34 can be constituted by, for example, a blower (blower) or the like, is provided in the air path 32, sucks air, pressurizes it to a required pressure, and blows out air lubrication air from the air supply port 40 at the bottom of the ship. .
As described above, the air sucked from the opening 31 passes through the air path 32 and is ejected from the air supply port 40 as bubbles. By supplying gas as air bubbles from the air supply port 40, the sea surface S.S. L. By supplying air bubbles around the hull 1 below, a high frictional resistance reducing effect can be obtained.
In addition, a drainage means 35 for discharging water accumulated on the floor surface to the outside of the ship is provided below the bow warehouse 33. Thus, even if water enters the ventilation tube 30, the water can be discharged outboard by the drainage unit 35.
Since the bubbles ejected from the air supply port 40 are bubbles having a diameter of several millimeters, they flow to the stern side along the bottom of the ship so as to stick to the bottom of the ship due to the buoyancy effect.

図2に示すように、プロペラ10は中心部にプロペラボス13を有し、本実施形態において気泡集中手段20は、船体1とプロペラ10の間に設けた円筒状を成したダクトとしている。
また、ダクト(気泡集中手段)20の後端部21の直径は、プロペラ10の直径Dpの50%以下としている。
図4に示すように、ダクト20は、ダクト20内の翼面の凸部(点線αで囲んだ部分)の圧力が低くなる。したがって、プロペラ10の前方にダクト(気泡集中手段)20を備えることによって、空気供給口40から噴出され船尾側に到達した気泡は、ダクト20に発生する負圧によって誘引されてダクト20内に集まり、プロペラ10の翼根部11に集中して後方に流される。
翼根部11の部分が発生する推力は、プロペラ10の他の部分が発生する推力に比べて小さいので、プロペラ10への気泡流入を防止するのではなく、ダクト20によって気泡の集まり易いプロペラ10の翼根部11への気泡の流入を促し、気泡を翼根部11に集中させてプロペラ10の後方に流すことによって、プロペラ10の推力を大きく発生させる部分の気泡を確実かつ簡便に除去することができる。したがって、気泡がプロペラ10の推力発生に寄与する部分に流入することによるプロペラ効率の悪化を抑制でき、ダクト20も小型化が可能となる。
また、ダクト20の後端部21の直径をプロペラ10の直径Dpの50%以下、好ましくは40%〜50%とすることで、ダクト20を出た気泡がプロペラ10の翼根部11以外の部分に流れることが防止され、気泡はより一層プロペラ10の翼根部11に集中して後方に流れる。したがって、プロペラ10の推力が大きく発生する部分である0.7R付近(プロペラ直径Dpの70%部分)に気泡が流れることをより確実に防止でき、ダクト20も小型のものとできる。
As shown in FIG. 2, the propeller 10 has a propeller boss 13 at the center, and in this embodiment, the bubble concentration means 20 is a cylindrical duct provided between the hull 1 and the propeller 10.
The diameter of the rear end 21 of the duct (bubble concentrating means) 20 is 50% or less of the diameter Dp of the propeller 10.
As shown in FIG. 4, in the duct 20, the pressure of the convex portion (the portion surrounded by the dotted line α) of the wing surface in the duct 20 becomes low. Therefore, by providing the duct (bubble concentration means) 20 in front of the propeller 10, the bubbles ejected from the air supply port 40 and reaching the stern side are attracted by the negative pressure generated in the duct 20 and collected in the duct 20. , Which are concentrated on the blade root 11 of the propeller 10 and flow backward.
Since the thrust generated by the blade root portion 11 is smaller than the thrust generated by other portions of the propeller 10, the propeller 10 does not prevent air bubbles from flowing into the propeller 10. By encouraging air bubbles to flow into the blade root 11 and by causing the air bubbles to concentrate on the blade root 11 and flow behind the propeller 10, it is possible to reliably and easily remove the air bubbles in a portion that generates a large thrust of the propeller 10. . Therefore, deterioration of propeller efficiency due to air bubbles flowing into the portion of the propeller 10 that contributes to thrust generation can be suppressed, and the duct 20 can be reduced in size.
Also, by setting the diameter of the rear end 21 of the duct 20 to be 50% or less, preferably 40% to 50% of the diameter Dp of the propeller 10, the air bubbles that have exited the duct 20 are reduced to portions other than the blade root 11 of the propeller 10. The air bubbles are further concentrated on the blade root 11 of the propeller 10 and flow backward. Therefore, it is possible to more reliably prevent air bubbles from flowing near 0.7R (a portion 70% of the propeller diameter Dp) where the thrust of the propeller 10 is largely generated, and the duct 20 can be made small.

図2及び図3に示すように、ダクト20の断面形状は内側に凸を成す翼型としている。ダクト20を翼型に形成することで、流速を増し気泡を中心に集め、プロペラ10の翼根部11に集中させて後方に流すことができるとともに、分力として船体1を前方に推進する揚力を増加させることができる。   As shown in FIGS. 2 and 3, the cross-sectional shape of the duct 20 is an airfoil that is convex inward. By forming the duct 20 in an airfoil shape, it is possible to increase the flow velocity, collect air bubbles at the center, concentrate the air bubbles on the blade root 11 of the propeller 10 and flow the air backward, and at the same time, increase the lifting force for propelling the hull 1 forward as a component force. Can be increased.

図2及び図3に示すように、ダクト20を船体1の船尾部2に支持する捻られた形状を成すダクト支持手段22をダクト20の内側にさらに備えている。本実施形態においてダクト支持手段22は支柱としている。ダクト20は、支柱22を介して船体1の船尾部2に取り付けられる。
ダクト支持手段22に捻りを与えることで旋回流が作られ、気泡がその旋回流の流速の遅い中心に集められるので、気泡をより一層プロペラ10の翼根部11に集中させることができる。
さらに、ダクト支持手段22は、プロペラ10の回転方向と同方向に捻られている。ダクト支持手段22の捻りをプロペラ10の回転方向と同方向とすることで、旋回流を強めて気泡をより一層プロペラ10の翼根部11に集中させることができる。
As shown in FIGS. 2 and 3, a duct support means 22 having a twisted shape for supporting the duct 20 on the stern 2 of the hull 1 is further provided inside the duct 20. In the present embodiment, the duct support means 22 is a support. The duct 20 is attached to the stern 2 of the hull 1 via the support posts 22.
By imparting a twist to the duct support means 22, a swirling flow is created, and the bubbles are collected at the center where the flow velocity of the swirling flow is slow, so that the bubbles can be further concentrated on the blade root 11 of the propeller 10.
Further, the duct support means 22 is twisted in the same direction as the rotation direction of the propeller 10. By setting the torsion of the duct support means 22 in the same direction as the rotation direction of the propeller 10, the swirling flow can be strengthened and the bubbles can be further concentrated on the blade root 11 of the propeller 10.

図2及び図3に示すように、ダクト20は、上流側となる前端部23の内直径よりも下流側となる後端部21の内直径が小さい加速型ダクトである。ダクト20を加速型ダクトとすることで、流れを加速し気泡をより一層、中心寄りに集め、プロペラ10の翼根部11に集中させることができる。   As shown in FIGS. 2 and 3, the duct 20 is an accelerating duct in which the inner diameter of the rear end 21 downstream is smaller than the inner diameter of the front end 23 upstream. By making the duct 20 an accelerating type duct, the flow can be accelerated, the bubbles can be further collected near the center, and can be concentrated on the blade root 11 of the propeller 10.

図3に示すように、ダクト20の中心をプロペラ10の軸心と一致させている。ダクト20を軸対称形に形成し、プロペラ10の駆動軸とダクト20の中心軸を一致させて取り付けることで、気泡をプロペラ10の翼根部11に正しく集中させて後方に流すことができるとともに、ダクト20の製作や設置が容易となる。   As shown in FIG. 3, the center of the duct 20 matches the axis of the propeller 10. By forming the duct 20 in an axially symmetrical shape and attaching the drive shaft of the propeller 10 and the center axis of the duct 20 in alignment with each other, air bubbles can be correctly concentrated on the blade root 11 of the propeller 10 and flow backward. The manufacture and installation of the duct 20 are facilitated.

図5に逓減ピッチプロペラと通常プロペラのピッチ分布を示す。
プロペラ10は、プロペラボス13の半径をr1、翼根部11を半径r1から半径r2とする。プロペラ10の半径Rは1/2Dpであり、Hはピッチである。翼根部11(r1からr2)は、プロペラ10の直径Dpの20%以上40%以下である。
本実施形態によるプロペラ10のピッチHは、プロペラ10の翼根部11で最大値Hmaxとなり翼端部12で最小値Hminとなる、半径R方向に減少する逓減ピッチとしている。なお、図5に示す比較例は一定ピッチを示している。
プロペラ10の翼根部11のピッチを増すことで、翼根部11付近での旋回流を強くして気泡をより一層、旋回流の中心寄りに集め、プロペラ10の翼根部11に集中させることができる。
FIG. 5 shows the pitch distributions of the decreasing pitch propeller and the normal propeller.
In the propeller 10, the radius of the propeller boss 13 is r1, and the blade root 11 is the radius r1 from the radius r1. The radius R of the propeller 10 is 1/2 Dp, and H is the pitch. The blade root 11 (from r1 to r2) is at least 20% and at most 40% of the diameter Dp of the propeller 10.
The pitch H of the propeller 10 according to the present embodiment is a gradually decreasing pitch that decreases in the radius R direction, with the maximum value Hmax at the blade root 11 and the minimum value Hmin at the blade tip 12 of the propeller 10. The comparative example shown in FIG. 5 shows a constant pitch.
By increasing the pitch of the blade root 11 of the propeller 10, the swirling flow in the vicinity of the blade root 11 is strengthened, so that bubbles can be further collected near the center of the swirling flow and concentrated on the blade root 11 of the propeller 10. .

図6は同船舶に用いる気泡集中手段のプロペラボスを示す概略構成図であり、図6(a)はプロペラボスを後方から前方視した状態を示す要部正面図、図6(b)はプロペラボスを側方視した状態を示す要部側面図である。
図6に示すように、プロペラ10を支持するプロペラボス13の表面にさらに気泡の集中を促進する凹部14を設けている。凹部14は、プロペラ10の複数の羽根と羽根の間に切り込み状に形成され、プロペラ10の回転方向にそれぞれ壁面14aを有する。また、凹部14の船長方向はプロペラボス13の前方からプロペラ10の後方に亘って形成され、前方側には壁面14bを有する。
プロペラ10の回転と共に回転するプロペラボス13の凹部14は低圧となり気泡が集まるので、気泡をより一層プロペラ10の翼根部11に集中させることができる。
FIG. 6 is a schematic configuration diagram showing a propeller boss of the bubble concentration means used in the ship. FIG. 6 (a) is a front view of a main part showing the propeller boss viewed from the rear and forward, and FIG. 6 (b) is a propeller. It is a principal part side view which shows the state which looked at the boss from the side.
As shown in FIG. 6, a concave portion 14 for further promoting the concentration of bubbles is provided on the surface of a propeller boss 13 supporting the propeller 10. The concave portion 14 is formed in a cut shape between a plurality of blades of the propeller 10, and has a wall surface 14 a in the rotation direction of the propeller 10. The length of the concave portion 14 is formed from the front of the propeller boss 13 to the rear of the propeller 10, and has a wall surface 14b on the front side.
The depression 14 of the propeller boss 13 that rotates with the rotation of the propeller 10 has a low pressure and collects bubbles, so that the bubbles can be further concentrated on the blade root 11 of the propeller 10.

図7に模型船におけるダクト有りの場合とダクト無しの場合の船尾部周辺のプロペラ位置横断面における流速分布を示す。図7(a)はダクト無しの場合を示し、図7(b)はダクト有りの場合をしており、色が濃い部分ほど流速が速いことを表している。
図7(b)に示すように、ダクト20を設置することによって、ダクト20を設置しない場合と比べてプロペラ10への流入面における流れを遅く出来ることが分かる。空気潤滑を実施すると摩擦抵抗が低減し、船体表面の流体を引きずる効果が小さくなるため、船体表面に発達する境界層内の速度分布が変化し、プロペラ面での流速が速くなり、自航要素の内、伴流係数が悪化する。ダクト20は、それ自体が発生する伴流により伴流係数を良化できる。また、例えばポリマー投入など、その他の摩擦抵抗低減方法を実施した場合においても伴流係数の悪化が考えられるが、ダクト20を設置することによって伴流係数を良化できる。
したがって、ダクト20を設置することで、気泡をプロペラ10の翼根部11に集中させてプロペラ効率の悪化を抑制できるとともに、伴流係数を良化してプロペラ効率を向上できる。
FIG. 7 shows the flow velocity distribution in the cross section of the propeller position around the stern of the model ship with and without duct. FIG. 7A shows the case without the duct, and FIG. 7B shows the case with the duct. The darker the color, the faster the flow velocity.
As shown in FIG. 7B, it can be seen that the flow on the inflow surface to the propeller 10 can be made slower by installing the duct 20 than in the case where the duct 20 is not installed. Air lubrication reduces frictional resistance and reduces the effect of dragging fluid on the hull surface, changing the velocity distribution in the boundary layer that develops on the hull surface, increasing the flow velocity on the propeller surface, Of these, the wake coefficient deteriorates. The duct 20 can improve the wake coefficient by the wake generated by the duct 20 itself. In addition, the wake coefficient may be degraded when other frictional resistance reduction methods such as polymer introduction are performed. However, by installing the duct 20, the wake coefficient can be improved.
Therefore, by installing the duct 20, air bubbles can be concentrated on the blade root portion 11 of the propeller 10 to suppress the deterioration of the propeller efficiency, and the wake coefficient can be improved to improve the propeller efficiency.

図8を用いて、本発明の他の実施形態による空気潤滑用気泡対策装置を説明する。図8は本発明の他の実施形態による空気潤滑用気泡対策装置の気泡集中手段を後方から前方視した状態を示す要部正面図である。なお、上記した実施形態と同一機能部材には同一符号を付して説明を省略する。
本実施形態による気泡集中手段20は、円筒状を成したダクトではなく、半円状を成したダクト200(図8(a))、中心角を120度の角度の略円弧状に形成したダクト210(図8(b))、中心角を210度の角度の略円弧状に形成したダクト220(図8(c))、又はダクト部分を除去したフィン230(支柱)とした点において上記した実施形態と異なる。
Referring to FIG. 8, an air lubricating air bubble countermeasure device according to another embodiment of the present invention will be described. FIG. 8 is a main part front view showing a state where the bubble concentration means of the air lubricating bubble countermeasure device according to another embodiment of the present invention is viewed from the rear and forward. Note that the same reference numerals are given to the same functional members as in the above-described embodiment, and the description is omitted.
The bubble concentration means 20 according to the present embodiment is not a duct having a cylindrical shape, but a duct 200 having a semicircular shape (FIG. 8A), and a duct having a central angle formed in a substantially arc shape having an angle of 120 degrees. 210 (FIG. 8 (b)), a duct 220 (FIG. 8 (c)) formed in a substantially arc shape with a central angle of 210 degrees, or a fin 230 (post) with the duct portion removed. Different from the embodiment.

図8(a)のダクト200は、中心角が180度であり、ダクト中心線Ydが、船体1を後方から前方視した状態でプロペラ10の上下方向のプロペラ中心線Ypに対してプロペラ10の回転方向に傾き角θを有するように、ダクト支持手段(支柱)201を介して船体1の船尾部2に取り付けられる。
図8(b)のダクト210は、中心角が120度である。ダクト中心線Ydがプロペラ中心線Ypと一致するように、ダクト支持手段(支柱)211を介して船体1の船尾部2に取り付けられる。
図8(c)のダクト220は、中心角が210度であり、ダクト中心線Ydが、船体1を後方から前方視した状態でプロペラ10の上下方向のプロペラ中心線Ypに対してプロペラ10の回転方向に傾き角θを有するように、ダクト支持手段(支柱)221を介して船体1の船尾部2に取り付けられる。
プロペラ10の前方に気泡集中手段であるダクト200(210、220)を備えることによって、空気供給口40から噴出され船尾側に到達した気泡は、ダクト200(210、220)に発生する負圧によって誘引されてダクト200(210、220)内に集まり、プロペラ10の翼根部11に集中して後方に流すことができる。
なお、本実施形態によるダクト200、210、220は、内部を通過する流れを速くして気泡を周辺から誘引し、プロペラ10の作り出す旋回流の作用も利用してダクト200、210、220の中心部に気泡を集め、プロペラ10の翼根部11に気泡を集中させ後方に流す思想に基づいているため、全周ダクトでなくても実質的にプロペラ10の推進力を損なわない気泡除去効果が期待できる。
The duct 200 in FIG. 8A has a central angle of 180 degrees, and the duct center line Yd is positioned between the propeller 10 and the propeller center line Yp in the vertical direction in a state where the hull 1 is viewed from the rear. The hull 1 is attached to the stern 2 of the hull 1 through the duct support means (posts) 201 so as to have an inclination angle θ in the rotation direction.
The central angle of the duct 210 in FIG. 8B is 120 degrees. The duct center line Yd is attached to the stern portion 2 of the hull 1 via the duct support means (post) 211 so that the duct center line Yd coincides with the propeller center line Yp.
The duct 220 in FIG. 8C has a central angle of 210 degrees, and the duct center line Yd is defined by the propeller 10 with respect to the propeller center line Yp in the vertical direction of the propeller 10 in a state where the hull 1 is viewed from the rear. The hull 1 is attached to the stern 2 of the hull 1 via the duct support means (post) 221 so as to have an inclination angle θ in the rotation direction.
By providing the duct 200 (210, 220) as a bubble concentration means in front of the propeller 10, the air bubbles ejected from the air supply port 40 and reaching the stern side are generated by the negative pressure generated in the duct 200 (210, 220). It is attracted and gathers in the duct 200 (210, 220), and can concentrate on the blade root 11 of the propeller 10 and flow backward.
The ducts 200, 210, and 220 according to the present embodiment speed up the flow that passes through the interior, attract air bubbles from the surroundings, and utilize the function of the swirling flow created by the propeller 10 to make the center of the ducts 200, 210, and 220. Based on the idea of collecting air bubbles in the section and concentrating the air bubbles on the blade root 11 of the propeller 10 and flowing the air backwards, an air bubble removal effect that does not substantially impair the propulsive force of the propeller 10 is expected even if the propeller 10 is not a full circumference duct. it can.

図8(d)の複数のフィン(支柱)230は、船体1の船尾部2に取り付けられ、フィン230はプロペラ10の回転方向と同方向に捻られている。フィン230の捻りをプロペラ10の回転方向と同方向とすることで、旋回流を強めて気泡をより一層プロペラ10の翼根部11に集中させることができる。   The plurality of fins (posts) 230 in FIG. 8D are attached to the stern 2 of the hull 1, and the fins 230 are twisted in the same direction as the rotation direction of the propeller 10. By setting the twist of the fins 230 in the same direction as the rotation direction of the propeller 10, the swirling flow is strengthened, and the bubbles can be further concentrated on the blade root 11 of the propeller 10.

図9を用いて、本発明の更に他の実施形態による空気潤滑用気泡対策装置を説明する。図9は本発明の更に他の実施形態による空気潤滑用気泡対策装置のダクトを後方から前方視した状態を示す要部正面図である。なお、上記した実施形態と同一機能部材には同一符号を付して説明を省略する。
本実施形態によるダクト支持手段(支柱)300は、4つの支柱からなり、ダクト20の中心軸に対して放射状に配置される。ダクト20は、4つの支柱を介して船体1の船尾部2に取り付けられる。
また、ダクト支持手段300は、プロペラ10の回転方向と逆方向に捻られている。ダクト20に流入した流れは、プロペラ10の回転方向と逆方向に捻りを有した支持手段300によりプロペラ10の回転方向と逆向きに回転流化され、プロペラ10に対向流として流入する。したがって、気泡集中手段(ダクト)20に発生する負圧によって気泡を集め、プロペラ10の翼根部11に集中して後方に流すことでプロペラ効率を向上させると共に、流れがプロペラ10に対向流として流入することで、プロペラ効率の一層の向上が図れる。
With reference to FIG. 9, an air lubricating bubble countermeasure device according to still another embodiment of the present invention will be described. FIG. 9 is a main part front view showing a state in which a duct of an air lubricating air bubble countermeasure device according to still another embodiment of the present invention is viewed from the rear and forward. Note that the same reference numerals are given to the same functional members as in the above-described embodiment, and the description is omitted.
The duct support means (post) 300 according to the present embodiment includes four posts, and is arranged radially with respect to the central axis of the duct 20. The duct 20 is attached to the stern 2 of the hull 1 via four columns.
The duct support means 300 is twisted in a direction opposite to the direction of rotation of the propeller 10. The flow that has flowed into the duct 20 is turned into a rotational flow in the direction opposite to the rotation direction of the propeller 10 by the support means 300 having a twist in the direction opposite to the rotation direction of the propeller 10, and flows into the propeller 10 as a counterflow. Therefore, the bubbles are collected by the negative pressure generated in the bubble concentration means (duct) 20 and concentrated on the blade root 11 of the propeller 10 to flow backward, thereby improving the propeller efficiency, and the flow flows into the propeller 10 as a counterflow. By doing so, the propeller efficiency can be further improved.

以上のように、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト等の気泡集中手段20によって気泡の集まり易いプロペラ10の翼根部11への気泡の流入が促され、気泡はプロペラ10の翼根部11に集中して後方に流れる。プロペラ10において翼根部11の部分が発生する推力は他の部分が発生する推力に比べて小さいので、プロペラ10への気泡流入を防止するのではなく、気泡集中手段20を設けてプロペラ10の翼根部11への気泡の流入を促し、気泡を翼根部11に集中させてプロペラ10の後方に流すことによって、プロペラ10の推力を大きく発生させる部分の気泡を確実かつ簡便に除去することができる。したがって、気泡がプロペラ10の推力発生に寄与する部分に流入することによるプロペラ効率の悪化を抑制でき、気泡集中手段20も小型化が可能となる。   As described above, according to the air-lubricating bubble countermeasure device according to the present embodiment, the bubble concentration means 20 such as a duct promotes the flow of bubbles into the blade root portion 11 of the propeller 10 where bubbles are easily collected, and the bubbles are removed from the propeller. It flows rearward concentrated on the wing roots 11 of 10. Since the thrust generated by the blade root portion 11 in the propeller 10 is smaller than the thrust generated by the other portions, instead of preventing air bubbles from flowing into the propeller 10, a bubble concentrating means 20 is provided to provide the blades of the propeller 10. By encouraging air bubbles to flow into the root portion 11 and concentrating the air bubbles on the blade root portion 11 and flowing the air behind the propeller 10, the air bubbles in the portion where the thrust of the propeller 10 generates a large amount of force can be reliably and simply removed. Therefore, it is possible to suppress the deterioration of the propeller efficiency due to the bubbles flowing into the portion of the propeller 10 that contributes to the generation of the thrust, and the bubble concentration unit 20 can be downsized.

また、本実施の形態による空気潤滑用気泡対策装置によれば、気泡集中手段を船体1とプロペラ10の間に設けた円筒状を成したダクト20としたことで、ダクト20に発生する負圧によって気泡が誘引され、ダクト20内に気泡が集まり、気泡はプロペラ10の翼根部11に集中して後方に流れる。また、ダクト20を設けることでプロペラ10への流入面における流れが遅くなり、伴流係数が良化してプロペラ効率が向上する。   Further, according to the air lubricating air bubble countermeasure apparatus according to the present embodiment, since the air bubble concentrating means is a cylindrical duct 20 provided between the hull 1 and the propeller 10, the negative pressure generated in the duct 20 is reduced. As a result, air bubbles are attracted, the air bubbles are collected in the duct 20, and the air bubbles concentrate on the blade root 11 of the propeller 10 and flow backward. Further, by providing the duct 20, the flow on the inflow surface to the propeller 10 is slowed, the wake coefficient is improved, and the propeller efficiency is improved.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト20の後端部21の直径をプロペラ10の直径Dpの50%以下としたことで、ダクト20を出た気泡がプロペラ10の翼根部11以外の部分に流れることが防止され、気泡はより一層プロペラ10の翼根部11に集中して後方に流れる。したがって、気泡がプロペラ10の推力を発生させる部分に流れることをより確実に防止でき、ダクト20も小型のものとできる。   Further, according to the air lubricating air bubble countermeasure device according to the present embodiment, the diameter of the rear end 21 of the duct 20 is set to 50% or less of the diameter Dp of the propeller 10, so that the air bubbles that have exited the duct 20 can be reduced. The air bubbles are prevented from flowing to portions other than the blade root 11, and the air bubbles are further concentrated on the blade root 11 of the propeller 10 and flow backward. Therefore, air bubbles can be more reliably prevented from flowing to the portion of the propeller 10 that generates thrust, and the duct 20 can be made smaller.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト20を船体1の船尾部2に支持する捻られた形状を成すダクト支持手段(支柱)22をダクト20の内側にさらに備えたことで、旋回流が作られ、気泡はその旋回流の流速の遅い中心に集められる。したがって、気泡をより一層プロペラ10の翼根部11に集中させることができる。   Further, according to the air lubricating air bubble countermeasure device according to the present embodiment, the duct 20 is further provided on the inner side of the duct 20 with a twisted shape for supporting the duct 20 on the stern portion 2 of the hull 1. As a result, a swirling flow is created, and the bubbles are collected at the center of the low velocity of the swirling flow. Therefore, the air bubbles can be further concentrated on the blade root 11 of the propeller 10.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト支持手段22をプロペラ10の回転方向と同方向に捻ることで、ダクト支持手段22により発生する旋回流が強まり、気泡をより一層プロペラ10の翼根部11に集中させることができる。   Further, according to the air lubricating air bubble countermeasure device according to the present embodiment, by twisting the duct support means 22 in the same direction as the rotation direction of the propeller 10, the swirling flow generated by the duct support means 22 is strengthened, and the air bubbles are further reduced. It can be further concentrated on the blade root 11 of the propeller 10.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト20の断面形状を内側に凸を成す翼型としたことで、流速を増し気泡を中心に集め、プロペラ10の翼根部11に集中させて後方に流すことができるとともに、分力として船体1を前方に推進する揚力を増加させることができる。   In addition, according to the air lubricating air bubble countermeasure device according to the present embodiment, the duct 20 has an airfoil shape in which the cross-sectional shape is convex inward, so that the flow velocity is increased and the air bubbles are collected mainly, and the blade root 11 of the propeller 10 is formed. And can be made to flow backward, and the lift force for propelling the hull 1 forward can be increased as a component force.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト20を、上流側の内直径よりも下流側の内直径が小さい加速型ダクトとしたことで、流れを加速し、気泡をより一層、中心寄りに集め、プロペラ10の翼根部11に集中させることができる。   Further, according to the air lubricating air bubble countermeasure device according to the present embodiment, the duct 20 is an accelerating type duct whose inner diameter on the downstream side is smaller than the inner diameter on the upstream side, thereby accelerating the flow and reducing bubbles. It can be gathered closer to the center and concentrated on the blade root 11 of the propeller 10.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト20の中心をプロペラ10の軸心と一致させたことで、気泡をプロペラ10の翼根部11に正しく集中させて後方に流すことができるとともに、ダクト20の製作や設置が容易となる。   According to the air lubricating air bubble countermeasure device of the present embodiment, since the center of the duct 20 is aligned with the axis of the propeller 10, air bubbles are correctly concentrated on the blade root 11 of the propeller 10 and flow backward. And the manufacture and installation of the duct 20 are facilitated.

また、本実施の形態による空気潤滑用気泡対策装置によれば、プロペラ20のピッチHを、プロペラ10の翼根部11で最大値となり翼端部12で最小値となる、半径方向に減少する逓減ピッチとしたことで、プロペラ10の翼根部11のピッチが増し、翼根部11付近での旋回流を強くして気泡をより一層、旋回流の中心寄りに集め、プロペラ10の翼根部11に集中させることができる。   Further, according to the air lubricating bubble countermeasure device according to the present embodiment, the pitch H of the propeller 20 decreases gradually in the radial direction so that the pitch H becomes the maximum value at the blade root 11 of the propeller 10 and the minimum value at the blade tip 12. By setting the pitch, the pitch of the blade root 11 of the propeller 10 is increased, the swirling flow near the blade root 11 is strengthened, and the bubbles are further collected near the center of the swirling flow and concentrated on the blade root 11 of the propeller 10. Can be done.

また、本実施の形態による空気潤滑用気泡対策装置によれば、プロペラ10を支持するプロペラボス13の表面にさらに気泡の集中を促進する凹部14を設けたことで、プロペラ10の回転と共に回転するプロペラボス13に低圧となる部分が形成され、気泡をより一層プロペラ10の翼根部11に集中させることができる。   Further, according to the air lubricating air bubble countermeasure device according to the present embodiment, the surface of the propeller boss 13 supporting the propeller 10 is provided with the concave portion 14 that further promotes the concentration of air bubbles, and thus rotates with the rotation of the propeller 10. A low pressure portion is formed in the propeller boss 13, so that air bubbles can be further concentrated on the blade root portion 11 of the propeller 10.

また、本実施の形態による空気潤滑用気泡対策装置によれば、ダクト支持手段22をプロペラ10の回転方向と逆方向に捻った場合には、流れを対向流化してプロペラ効率を向上させることができる。   Further, according to the air lubricating bubble countermeasure device according to the present embodiment, when the duct support means 22 is twisted in the direction opposite to the rotation direction of the propeller 10, the flow can be made counter-current to improve the propeller efficiency. it can.

また、本実施の形態による空気潤滑用気泡対策装置を船舶に備えたことで、船体1の周囲に空気を噴出して摩擦抵抗を低減する空気潤滑法の効果を維持しつつ、噴出した気泡がプロペラ10に流入することによるプロペラ効率への悪影響を合理的に防止する空気潤滑用気泡対策装置を備えた船舶を提供できる。   In addition, the provision of the air lubricating air bubble countermeasure apparatus according to the present embodiment in the ship allows the jetted air bubbles to be released while maintaining the effect of the air lubrication method of jetting air around the hull 1 to reduce frictional resistance. It is possible to provide a ship provided with an air lubricating bubble countermeasure device that rationally prevents the propeller efficiency from being adversely affected by flowing into the propeller 10.

本発明の空気潤滑用気泡対策装置を備えた船舶は、気泡を翼根部に集中させてプロペラの後方に流すことによって、プロペラの推力を大きく発生させる部分の気泡を確実かつ簡便に除去することができるので、気泡がプロペラに流入することによるプロペラ効率の悪化を抑制できる。したがって、船体の周囲に空気を噴出して摩擦抵抗を低減する空気潤滑法を用いる船舶のみならず空気膜式の船底から溢流してプロペラに流入する気泡の対策にも適用できる。   The ship provided with the air lubricating air bubble countermeasure device of the present invention can reliably and easily remove air bubbles in a portion that generates a large thrust of the propeller by causing air bubbles to concentrate on the blade root and flow behind the propeller. Since it is possible, deterioration of propeller efficiency due to air bubbles flowing into the propeller can be suppressed. Therefore, the present invention can be applied not only to a ship using an air lubrication method that blows air around the hull to reduce frictional resistance, but also to measures against bubbles flowing from the bottom of an air film type ship and flowing into a propeller.

1 船体
2 船尾部
10 プロペラ
11 翼根部
14 凹部
20 気泡集中手段(ダクト)
21 後端部
22 ダクト支持手段(支柱)
DESCRIPTION OF SYMBOLS 1 Hull 2 Stern part 10 Propeller 11 Wing root part 14 Recess 20 Bubbles concentration means (duct)
21 rear end 22 duct support means (post)

Claims (8)

船体の周囲に気泡を噴出して摩擦抵抗を低減する空気潤滑に用いる気泡を噴出する空気供給口を備え、
さらに、空気潤滑用気泡対策装置として、前記船体の船尾に設けたプロペラと、前記空気供給口からの前記プロペラに流入する前記気泡を集中させ前記プロペラの翼根部に前記気泡を流す前記プロペラの前方に設けた気泡集中手段とを備え、前記気泡集中手段が負圧によって前記気泡を誘引する構造を有し、前記気泡集中手段は、前記船体と前記プロペラの間に設けたダクトであり、前記ダクトを前記船体の船尾部に支持する捻られた形状を成すダクト支持手段を前記ダクトの内側にさらに備え、前記ダクト支持手段は、前記プロペラの回転方向と同方向に捻られていることを特徴とする空気潤滑用気泡対策装置を備えた船舶。
Equipped with an air supply port that ejects bubbles used for air lubrication to reduce frictional resistance by blowing bubbles around the hull,
Further, as an air lubricating bubble countermeasure device, a propeller provided at the stern of the hull, and the air bubbles flowing into the propeller from the air supply port are concentrated to forward the air bubbles to the blade root portion of the propeller. And a bubble concentrating means provided in the vessel, wherein the bubble concentrating means has a structure for inducing the bubbles by negative pressure , wherein the bubble concentrating means is a duct provided between the hull and the propeller, and the duct The duct further comprises a duct supporting means having a twisted shape for supporting the stern of the hull inside the duct, wherein the duct supporting means is twisted in the same direction as the rotation direction of the propeller. Ships equipped with air lubricating air bubble countermeasures.
前記ダクト、円筒状を成したダクトであることを特徴とする請求項1に記載の空気潤滑用気泡対策装置を備えた船舶。 It said duct is a vessel provided with a bubble countermeasure device for air lubrication according to claim 1, characterized in that the duct forms a circular cylindrical shape. 前記ダクトの後端部の直径が、前記プロペラの直径の50%以下であることを特徴とする請求項2に記載の空気潤滑用気泡対策装置を備えた船舶。   3. The ship according to claim 2, wherein the rear end of the duct has a diameter of 50% or less of the diameter of the propeller. 前記ダクトの断面形状を内側に凸を成す翼型としたことを特徴とする請求項2又は請求項に記載の空気潤滑用気泡対策装置を備えた船舶。 The ship provided with the air lubricating bubble countermeasure device according to claim 2 or 3 , wherein a cross-sectional shape of the duct is an airfoil having a convex shape inward. 前記ダクトを、上流側の内直径よりも下流側の内直径が小さい加速型ダクトとしたことを特徴とする請求項2から請求項のうちの1項に記載の空気潤滑用気泡対策装置を備えた船舶。 The air-lubricating air bubble countermeasure device according to any one of claims 2 to 4 , wherein the duct is an acceleration duct having a downstream inner diameter smaller than an upstream inner diameter. Equipped ship. 前記ダクトの中心を前記プロペラの軸心と一致させたことを特徴とする請求項2から請求項のうちの1項に記載の空気潤滑用気泡対策装置を備えた船舶。 The ship provided with the air lubricating bubble countermeasure device according to any one of claims 2 to 5 , wherein a center of the duct is aligned with an axis of the propeller. 前記プロペラのピッチを、前記プロペラの前記翼根部で最大値となり翼端部で最小値となる、半径方向に減少する逓減ピッチとしたことを特徴とする請求項1から請求項のうちの1項に記載の空気潤滑用気泡対策装置を備えた船舶。 The pitch of the propeller, the minimum value to the maximum value and becomes blade tip at the blade root portion of the propeller, one of claims 1 to 6, characterized in that a diminishing pitch that decreases in the radial direction A ship equipped with the air lubrication bubble control device according to the above item. 前記プロペラを支持するプロペラボスの表面にさらに前記気泡の集中を促進する凹部を設けたことを特徴とする請求項1から請求項のうちの1項に記載の空気潤滑用気泡対策装置を備えた船舶。 The air-lubricating air bubble countermeasure device according to any one of claims 1 to 7 , further comprising a concave portion provided on a surface of the propeller boss supporting the propeller to promote the concentration of the air bubbles. Ship.
JP2015057264A 2015-03-20 2015-03-20 Ship equipped with air lubrication control device Active JP6663144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057264A JP6663144B2 (en) 2015-03-20 2015-03-20 Ship equipped with air lubrication control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057264A JP6663144B2 (en) 2015-03-20 2015-03-20 Ship equipped with air lubrication control device

Publications (2)

Publication Number Publication Date
JP2016175539A JP2016175539A (en) 2016-10-06
JP6663144B2 true JP6663144B2 (en) 2020-03-11

Family

ID=57068940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057264A Active JP6663144B2 (en) 2015-03-20 2015-03-20 Ship equipped with air lubrication control device

Country Status (1)

Country Link
JP (1) JP6663144B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505656B2 (en) * 1991-03-01 1996-06-12 三菱重工業株式会社 Screw propeller
US7798875B1 (en) * 2006-10-20 2010-09-21 Brunswick Corporation Helical marine strut
JP4953296B2 (en) * 2006-12-08 2012-06-13 独立行政法人海上技術安全研究所 Hull frictional resistance reduction device
DE202008006069U1 (en) * 2008-03-10 2008-07-17 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a ship
CN104995087B (en) * 2013-01-25 2017-08-29 国立研究开发法人海上·港湾·航空技术研究所 Ship with low profile catheter and the low profile catheter application determination methods to ship

Also Published As

Publication number Publication date
JP2016175539A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5311540B2 (en) Air bubble entrainment prevention device for ships
JP2009214874A (en) Device for reducing drive power requirement of ship
JP2013103717A (en) Device for reducing drive power requirement of watercraft
JP2010195153A (en) Reaction fin device for ship and ship
JPWO2013014938A1 (en) Small ducted propeller and ship
US20160325811A1 (en) Marine propulsion unit
JP5360887B2 (en) Pod propeller
KR101292911B1 (en) The stern appendage to improve ship's speed and wake field on the stern of ships
SE0900180A1 (en) Propulsion device for a surface watercraft
JP6663144B2 (en) Ship equipped with air lubrication control device
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
JP6873459B2 (en) Ship
KR101506050B1 (en) Duct Structure for Ship
KR102260442B1 (en) Propulsion efficiency enhancing apparatus
KR20130002144U (en) Propeller for Ship
US20160325810A1 (en) Propulsion device for proximity twin-screw vessel having shaft bracket and ship
KR102531811B1 (en) Stern geometry and vessel with stern duct
JP6025630B2 (en) Water jet propulsion device and water jet propulsion ship
KR101689935B1 (en) High efficiency duct propulsion applied coanda effect for ship and duct for the same
JP6704303B2 (en) Reaction fin device
KR20180002090U (en) Thruster for ship without blade
KR102456860B1 (en) Ship's rudder
JP2013129408A (en) Ship and manufacturing method thereof
KR102350695B1 (en) Boat engine combined type high efficiency thruster duct
ES2927020T3 (en) Cavitation and noise reduction in axial flow rotors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6663144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250