JP6662211B2 - Radiation imaging equipment - Google Patents
Radiation imaging equipment Download PDFInfo
- Publication number
- JP6662211B2 JP6662211B2 JP2016122215A JP2016122215A JP6662211B2 JP 6662211 B2 JP6662211 B2 JP 6662211B2 JP 2016122215 A JP2016122215 A JP 2016122215A JP 2016122215 A JP2016122215 A JP 2016122215A JP 6662211 B2 JP6662211 B2 JP 6662211B2
- Authority
- JP
- Japan
- Prior art keywords
- switching
- operation mode
- switching frequency
- signal
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 title claims description 162
- 238000003384 imaging method Methods 0.000 title claims description 52
- 238000005070 sampling Methods 0.000 claims description 68
- 238000001514 detection method Methods 0.000 claims description 40
- 238000000605 extraction Methods 0.000 claims description 32
- 230000000875 corresponding effect Effects 0.000 claims description 31
- 230000002596 correlated effect Effects 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 5
- 238000013459 approach Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 15
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 230000010356 wave oscillation Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000015654 memory Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Measurement Of Radiation (AREA)
Description
本発明は、放射線画像撮影装置に関する。 The present invention relates to a radiographic imaging device.
従来、被検体を介して照射されたX線等の放射線を二次元配列された放射線検出素子により検出して、当該検出結果から被検体の診断に用いられる放射線画像の画像データを生成する放射線画像撮影装置がある。放射線画像撮影装置における放射線画像の画像データの生成は、例えば、入射した放射線量に応じて放射線検出素子から出力された画素信号を相関二重サンプリングにより抽出し、当該抽出された信号をデジタル信号に変換することにより行われる。ここで、相関二重サンプリングにおけるサンプリング間隔は、放射線画像の撮影条件に応じて適宜変更することができる。例えば、放射線画像を連続撮影する場合におけるサンプリング間隔は、放射線画像に係る画像データの生成処理時間を短縮させるために、静止画を撮影する場合におけるサンプリング間隔よりも小さく設定される。 2. Description of the Related Art Conventionally, a radiation image that detects radiation such as X-rays radiated through a subject by a two-dimensionally arranged radiation detecting element and generates image data of a radiation image used for diagnosis of the subject from the detection result There is a shooting device. The generation of image data of a radiation image in a radiation image capturing apparatus is performed, for example, by extracting a pixel signal output from a radiation detection element according to an incident radiation dose by correlated double sampling, and converting the extracted signal into a digital signal. This is done by conversion. Here, the sampling interval in the correlated double sampling can be appropriately changed according to the imaging condition of the radiation image. For example, the sampling interval in the case of continuously taking a radiation image is set smaller than the sampling interval in the case of taking a still image in order to shorten the processing time for generating image data related to a radiation image.
また、放射線画像撮影装置は、入力された直流電圧を所定の電源電圧に変換して出力するDC−DCコンバーターを備え、当該変換後の電源電圧により放射線検出素子及びその駆動回路などの各部が動作する構成とすることができる。ここで、DC−DCコンバーターとしては、コイル及びダイオードを組み合わせた回路に対する直流電圧の供給と停止をスイッチング素子によって所定の切替周波数で切り替えることで電圧を変換する方式のものが用いられる(例えば、特許文献1)。 In addition, the radiation image capturing apparatus includes a DC-DC converter that converts an input DC voltage into a predetermined power supply voltage and outputs the converted power supply voltage. Each unit such as a radiation detection element and a drive circuit thereof is operated by the converted power supply voltage. Configuration. Here, as the DC-DC converter, a type that converts a voltage by switching a supply and a stop of a DC voltage to a circuit combining a coil and a diode at a predetermined switching frequency by a switching element is used (for example, Patent Reference 1).
しかしながら、上記従来の放射線画像撮影装置では、相関二重サンプリングを行う信号抽出部において相関二重サンプリングのサンプリング間隔が変更されると、当該信号抽出部における周波数に応じた信号の利得が変動するため、変更後のサンプリング間隔によっては、DC−DCコンバーターの動作に起因して生じる切替周波数のノイズが信号抽出部において増幅される。この結果、信号抽出部により抽出された信号に含まれる切替周波数のノイズが増大して放射線画像の画質が低下するという課題がある。 However, in the above-described conventional radiographic imaging apparatus, when the sampling interval of correlated double sampling is changed in the signal extracting unit that performs correlated double sampling, the signal gain in the signal extracting unit according to the frequency fluctuates. Depending on the sampling interval after the change, the noise of the switching frequency generated due to the operation of the DC-DC converter is amplified in the signal extraction unit. As a result, there is a problem that noise at the switching frequency included in the signal extracted by the signal extraction unit increases and the image quality of the radiation image deteriorates.
この発明の目的は、より安定して放射線画像におけるノイズの発生を抑制することができる放射線画像撮影装置を提供することにある。 An object of the present invention is to provide a radiographic image capturing apparatus that can more stably suppress generation of noise in a radiographic image.
上記目的を達成するため、請求項1に記載の放射線画像撮影装置の発明は、
入射した放射線量に応じた画素信号を各々出力する二次元配列された複数の放射線検出素子を有する放射線検出部と、
前記複数の放射線検出素子から出力された前記画素信号を相関二重サンプリングにより抽出する信号抽出部と、
直流電圧が入力される回路の構成を所定の切替周波数で切り替えることにより、入力された直流電圧を所定の電源電圧に変換して出力する電圧変換部と、
前記相関二重サンプリングにおけるサンプリング間隔が互いに異なる複数の動作モードで前記信号抽出部を動作させ、前記信号抽出部が前記複数の動作モードのうち何れの動作モードで動作している期間においても、前記切替周波数に対する前記信号抽出部の利得を、1よりも小さい所定の上限利得以下に制御する制御部と、
を備えることを特徴としている。
In order to achieve the above object, the invention of the radiation image capturing apparatus according to
A radiation detection unit having a plurality of radiation detection elements arranged two-dimensionally, each of which outputs a pixel signal corresponding to the amount of incident radiation,
A signal extraction unit that extracts the pixel signals output from the plurality of radiation detection elements by correlated double sampling,
By switching the configuration of a circuit to which a DC voltage is input at a predetermined switching frequency, a voltage conversion unit that converts the input DC voltage to a predetermined power supply voltage and outputs the converted voltage,
The sampling interval in the correlated double sampling operates the signal extraction unit in a plurality of operation modes different from each other, even during a period in which the signal extraction unit is operating in any one of the plurality of operation modes, A control unit that controls a gain of the signal extraction unit with respect to a switching frequency to be equal to or less than a predetermined upper limit gain smaller than 1.
It is characterized by having.
請求項2に記載の発明は、請求項1に記載の放射線画像撮影装置において、
前記放射線検出部は、第1の方向に延在する複数の走査線、及び前記第1の方向と交差する第2の方向に延在する複数の信号線を有し、
前記複数の放射線検出素子の各々は、前記複数の走査線の何れか一つ及び前記複数の信号線の何れか一つと接続され、
前記制御部は、
前記信号抽出部の動作モードに対応する選択周期で前記複数の走査線に対して順に所定の選択信号を供給することにより、当該選択信号が供給された走査線に接続されている前記放射線検出素子から前記信号線に前記画素信号を出力させ、
前記信号抽出部が前記一の動作モードで動作している期間における前記切替周波数は、前記一の動作モードに対応する前記選択周期に係るナイキスト周波数よりも大きい
ことを特徴としている。
According to a second aspect of the present invention, in the radiation image capturing apparatus according to the first aspect,
The radiation detection unit includes a plurality of scanning lines extending in a first direction, and a plurality of signal lines extending in a second direction that intersects the first direction.
Each of the plurality of radiation detection elements is connected to any one of the plurality of scanning lines and any one of the plurality of signal lines,
The control unit includes:
The radiation detection element connected to the scanning line to which the selection signal is supplied by sequentially supplying a predetermined selection signal to the plurality of scanning lines in a selection cycle corresponding to an operation mode of the signal extraction unit. To output the pixel signal to the signal line,
The switching frequency during a period in which the signal extraction unit is operating in the one operation mode is higher than a Nyquist frequency related to the selection cycle corresponding to the one operation mode.
請求項3に記載の発明は、請求項1又は2に記載の放射線画像撮影装置において、
前記制御部は、前記信号抽出部を前記複数の動作モードのうち何れの動作モードで動作させる場合においても、前記電圧変換部により同一の前記切替周波数で前記回路の構成の切り替えを行わせることを特徴としている。
According to a third aspect of the present invention, in the radiation image capturing apparatus according to the first or second aspect,
The control unit, when operating the signal extraction unit in any one of the plurality of operation modes, causes the voltage conversion unit to switch the configuration of the circuit at the same switching frequency. Features.
請求項4に記載の発明は、請求項1又は2に記載の放射線画像撮影装置において、
前記制御部は、前記信号抽出部の動作モードを切り替える場合に、切り替え後の動作モードにおける前記利得が前記上限利得以下となるように前記電圧変換部における前記切替周波数を調整することを特徴としている。
According to a fourth aspect of the present invention, in the radiation image capturing apparatus according to the first or second aspect,
The control unit is characterized in that when switching the operation mode of the signal extraction unit, the switching frequency in the voltage conversion unit is adjusted such that the gain in the operation mode after switching is equal to or less than the upper limit gain. .
請求項5に記載の発明は、請求項2に記載の放射線画像撮影装置において、
前記制御部は、前記信号抽出部の動作モードを切り替える場合に、切り替え後の動作モードにおける前記利得が前記上限利得以下となり、かつ、前記切替周波数が、前記切り替え後の動作モードに対応する前記選択周期に係るナイキスト周波数よりも大きくなるように、前記電圧変換部における前記切替周波数を調整することを特徴としている。
According to a fifth aspect of the present invention, in the radiation image capturing apparatus according to the second aspect,
The control unit, when switching the operation mode of the signal extraction unit, the gain in the operation mode after the switching is equal to or less than the upper limit gain, and the switching frequency, the selection corresponding to the operation mode after the switching. The switching frequency in the voltage conversion unit is adjusted so as to be higher than the Nyquist frequency related to a cycle.
請求項6に記載の発明は、請求項4又は5に記載の放射線画像撮影装置において、
前記複数の動作モードに対応付けられて予め定められた複数の前記切替周波数を記憶する記憶部を備え、
前記制御部は、前記信号抽出部の動作モードを切り替える場合に、前記記憶部を参照して、前記切り替え後の動作モードに対応付けられた前記切替周波数を選択する
ことを特徴としている。
According to a sixth aspect of the present invention, in the radiation image capturing apparatus according to the fourth or fifth aspect,
A storage unit that stores a plurality of the predetermined switching frequencies associated with the plurality of operation modes,
When switching the operation mode of the signal extraction unit, the control unit refers to the storage unit and selects the switching frequency associated with the operation mode after the switching.
請求項7に記載の発明は、請求項4又は5に記載の放射線画像撮影装置において、
前記制御部は、前記切り替え後の動作モードにおける前記サンプリング間隔に基づいて、当該切り替え後の動作モードにおける前記利得が前記上限利得以下となる前記切替周波数を算出することを特徴としている。
According to a seventh aspect of the present invention, in the radiation image capturing apparatus according to the fourth or fifth aspect,
The control unit is configured to calculate the switching frequency at which the gain in the operation mode after the switching is equal to or less than the upper limit gain, based on the sampling interval in the operation mode after the switching.
請求項8に記載の発明は、請求項7に記載の放射線画像撮影装置において、
前記制御部は、前記信号抽出部が切り替え前の動作モードで動作している期間における前記切替周波数に対し、前記切り替え後の動作モードにおける前記利得を算出し、当該算出された利得が前記上限利得よりも大きい場合に、前記切り替え後の動作モードにおける前記利得が前記上限利得以下となる前記切替周波数を算出することを特徴としている。
The invention according to
The control unit calculates the gain in the operation mode after the switching with respect to the switching frequency during a period in which the signal extraction unit is operating in the operation mode before the switching, and the calculated gain is the upper limit gain. The switching frequency at which the gain in the operation mode after the switching is less than or equal to the upper limit gain is calculated when the switching frequency is greater than the upper limit gain.
請求項9に記載の発明は、請求項7又は8に記載の放射線画像撮影装置において、
前記制御部は、前記切り替え後の動作モードにおける前記サンプリング間隔と前記切替周波数との積が整数に近付くように前記切替周波数を調整することを特徴としている。
According to a ninth aspect of the present invention, in the radiation image capturing apparatus according to the seventh or eighth aspect,
The control unit adjusts the switching frequency such that a product of the sampling interval and the switching frequency in the operation mode after the switching approaches an integer.
請求項10に記載の発明は、請求項5に記載の放射線画像撮影装置において、
前記制御部は、前記切り替え後の動作モードにおける前記サンプリング間隔、及び当該切り替え後の動作モードに対応する前記選択周期に基づいて、当該切り替え後の動作モードに対応する前記切替周波数を算出することを特徴としている。
According to a tenth aspect of the present invention, in the radiation image capturing apparatus according to the fifth aspect,
The control unit calculates the switching frequency corresponding to the operation mode after switching based on the sampling interval in the operation mode after switching and the selection cycle corresponding to the operation mode after switching. Features.
請求項11に記載の発明は、請求項1〜10の何れか一項に記載の放射線画像撮影装置において、
前記信号抽出部による前記画素信号の抽出結果に基づいて放射線画像の画像データを生成する画像データ生成部を備え、
前記制御部は、
前記画像データ生成部により静止画の放射線画像の画像データを生成させる静止画撮影モードにおいて、前記複数の動作モードのうち所定の第1の動作モードで前記信号抽出部を動作させ、前記画像データ生成部により放射線画像の画像データを連続して生成させる連続撮影モードにおいて、前記複数の動作モードのうち前記サンプリング間隔が前記第1の動作モードにおけるサンプリング間隔よりも小さい第2の動作モードで前記信号抽出部を動作させ、
前記静止画撮影モードと前記連続撮影モードとを切り替える場合に、前記信号抽出部の動作モードを切り替える
ことを特徴としている。
The invention according to claim 11 is the radiation image capturing apparatus according to any one of
An image data generating unit that generates image data of a radiation image based on an extraction result of the pixel signal by the signal extracting unit,
The control unit includes:
In a still image capturing mode in which the image data generating unit generates image data of a still image radiation image, the signal extracting unit is operated in a predetermined first operation mode among the plurality of operation modes, and the image data generation is performed. In the continuous imaging mode in which the image data of the radiation image is continuously generated by the unit, the signal extraction is performed in a second operation mode in which the sampling interval is smaller than the sampling interval in the first operation mode among the plurality of operation modes. Operate the part,
When switching between the still image shooting mode and the continuous shooting mode, an operation mode of the signal extraction unit is switched.
本発明に従うと、より安定して放射線画像におけるノイズの発生を抑制することができるという効果がある。 ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that generation | occurrence | production of the noise in a radiographic image can be suppressed more stably.
以下、本発明の放射線画像撮影装置に係る実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the radiation image capturing apparatus according to the present invention will be described with reference to the drawings.
図1は、本発明の実施形態である放射線画像撮影装置の外観を示す斜視図である。
放射線画像撮影装置1は、放射線検出素子7(図2)が配列されたセンサーパネルや、放射線画像撮影装置1の各部の動作を制御する制御回路等が筐体2内に収納されて構成されている。筐体2の一方の側面には、電源スイッチ25、放射線画像撮影装置1の撮影モードの切り替えを行うための切替スイッチ26、外部機器との有線通信に用いられるコネクター27、バッテリー状態や放射線画像撮影装置1の稼働状態等を表示するLED等で構成されたインジケーター28、等が設けられている。また、筐体2の反対側の側面には、外部機器との無線通信に用いられるアンテナ29(図2)が設けられている。
FIG. 1 is a perspective view illustrating an appearance of a radiation image capturing apparatus according to an embodiment of the present invention.
The radiation
図2は、放射線画像撮影装置1の構成を示すブロック図である。放射線画像撮影装置1は、放射線検出部3と、走査線駆動回路15と、読み出しIC16と、制御部22(画像データ生成部)と、記憶部23と、電源回路24(電圧変換部)と、通信部30などを備える。
FIG. 2 is a block diagram illustrating a configuration of the radiation
放射線検出部3は、図2の左右方向(第1の方向)に延在するように形成された複数の走査線5と、図1の上下方向(第2の方向)に延在するように形成された複数の信号線6と、複数の信号線6及び複数の信号線6の交差に対応する位置に設けられ二次元マトリクス状に配列された複数の放射線検出素子7とを有する。走査線5、信号線6及び放射線検出素子7は、例えば基材であるガラス基板上に形成される。なお、複数の放射線検出素子7は、マトリクス状に代えて、例えばハニカム状といった他の態様で二次元配列されていても良い。
The
放射線検出素子7は、当該放射線検出素子7の形成領域に入射した放射線の量に応じた電荷を発生させる。放射線検出素子7は、例えばpin型のフォトダイオードにより構成することができる。また、放射線検出素子7としては、放射線検出素子7の放射線入射側に設けられた図示略のシンチレーターにより放射線を可視光の波長域の電磁波に変換し、当該電磁波の量を検出する方式のものを用いても良いし、放射線を直接検出して電荷を発生させる方式のものを用いても良い。
The
各放射線検出素子7は、薄膜トランジスター8(Thin Film Transistor。以下、TFTと記す。)を介して一つの走査線5及び一つの信号線6に接続されている。即ち、TFT8のソースSに放射線検出素子7の第1電極7aが接続されているとともに、TFT8のゲートGが走査線5に、またドレインDが信号線6にそれぞれ接続されている。また、放射線検出素子7の第2電極7bは、バイアス線9に接続されており、バイアス線9に接続された結線10を介して電源回路24から逆バイアス電圧が印加されるようになっている。
Each
複数の走査線5は、走査線駆動回路15に接続されている。走査線駆動回路15は、複数の走査線5に対して、所定の選択周期で順にオン電圧(選択信号)を供給して走査線5を順番に選択する。また、走査線駆動回路15は、選択していない走査線5に対しては、オフ電圧を供給する。
走査線5にオン電圧が供給されると、当該走査線5にゲートGが接続されたTFT8のソースS−ドレインD間が導通状態となり(以下では、この状態をオン状態とも記す。)、放射線検出素子7内に蓄積された電荷が信号線6に放出されることにより、放射線検出素子7から画素信号が出力される。この後、走査線5にオフ電圧が供給されると、TFT8のソースS−ドレインD間が非導通状態となり、放射線検出素子7内で発生した電荷が放射線検出素子7内に蓄積される。
The plurality of
When an on-voltage is supplied to the
ここで、本実施形態の走査線駆動回路15は、放射線画像撮影装置1の撮影モード等に応じて異なる選択周期で走査線5を順番に選択する。例えば、放射線画像撮影装置1の撮影モードが、静止画の放射線画像を撮影する静止画撮影モードである場合には、第1の選択周期Tg1で走査線5を選択し、放射線画像撮影装置1の撮影モードが、放射線画像を連続して生成する連続撮影モードである場合には、第2の選択周期Tg2(<Tg1)で走査線を選択する。これにより、連続撮影モードにおいて生成される動画のフレームレートを増大させることができる。
なお、走査線駆動回路15による走査線5の選択周期は、上記第1及び第2の選択周期に限られない。例えば、放射線画像撮影装置1の撮影モードが連続撮影モードである場合における選択周期は、放射線画像撮影装置1において生成される放射線画像のフレームレートに応じて互いに異なる値とされても良い。
Here, the scanning
The selection cycle of the
読み出しIC16は、複数の信号線6に対応する複数の読み出し回路17と、アナログマルチプレクサー20と、A/D変換器21とを備える。このうち複数の読み出し回路17の各々は、対応する一つの信号線6に接続されており、増幅回路18と、相関二重サンプリング回路19(信号抽出部)(以下では「CDS19(Correlated Double Sampling)」と記す。)とを有する。
増幅回路18は、放射線検出素子7から放出された電荷に応じた電圧信号をCDS19に出力する。
CDS19は、増幅回路18から出力された電圧信号を相関二重サンプリングにより抽出(サンプリング)し、アナログ信号の画素データとしてアナログマルチプレクサー20に出力する。
アナログマルチプレクサー20は、CDS19により出力された画素データを、A/D変換器21に順次送信する。
A/D変換器21は、入力されたアナログ信号の画素データをデジタル信号の画素データに変換して制御部22に出力する。
The read
The amplifying
The
The
The A /
図3は、一の放射線検出素子7と、読み出しIC16のうち当該一の放射線検出素子7に対応する部分の構成を示すブロック図である。なお、図3中では、アナログマルチプレクサー20は省略されている。
FIG. 3 is a block diagram showing a configuration of one
本実施形態では、増幅回路18は、電源回路24から供給される電源電圧で動作するオペアンプ18aと、オペアンプ18aに並列に設けられたコンデンサー18bと、コンデンサー18bの電極間の導通及び非導通を切り替える電荷リセット用スイッチ18cと、オペアンプ18aとCDS19との導通及び非導通を切り替えるスイッチ18dとを有するチャージアンプ回路で構成されている。オペアンプ18aの入力側の反転入力端子には、信号線6が接続されている。
In the present embodiment, the
増幅回路18の電荷リセット用スイッチ18cは、制御部22によりオン/オフが制御されるようになっている。また、スイッチ18dは、電荷リセット用スイッチ18cと連動するように切り替えられ、電荷リセット用スイッチ18cがオン状態となっているときにオフ状態となり、電荷リセット用スイッチ18cがオフ状態となっているときにオン状態となるように制御部22により制御される。
On / off of the charge reset
放射線画像撮影装置1では、放射線検出素子7内に残存する電荷を除去するための各放射線検出素子7のリセット処理を行う場合には、図4に示されるように、電荷リセット用スイッチ18cがオン状態(従って、スイッチ18dがオフ状態)とされた状態で、各TFT8がオン状態とされる。すると、オン状態とされた各TFT8を介して放射線検出素子7から電荷が信号線6に放出され、増幅回路18の電荷リセット用スイッチ18cを通過してオペアンプ18aの出力端子側からオペアンプ18a内を通り、非反転入力端子から出てアースされたり、オペアンプ18aに接続された電源回路24に流出したりする。このようにして、各放射線検出素子7のリセット処理が行われる。
In the radiation
また、放射線検出素子7からの画素信号の読み出し処理を行う場合には、図5(a)に示されるように、増幅回路18の電荷リセット用スイッチ18cがオフ状態(従って、スイッチ18dがオン状態)とされた状態で、オン状態とされたTFT8を介して放射線検出素子7から電荷が信号線6に放出され、電荷が増幅回路18のコンデンサー18bに蓄積される。
When the pixel signal is read from the
増幅回路18では、コンデンサー18bに蓄積された電荷量に応じた電圧値がオペアンプ18aの出力端子から出力される。即ち、増幅回路18では、放射線検出素子7から流出した電荷量が、電圧信号に変換される。
In the
増幅回路18の出力側に設けられたCDS19は、制御部22からのパルス信号Sp1(図5)の入力に応じて、上述したリセット処理の後、かつ放射線検出素子7から電荷が流出する前の時点において増幅回路18から出力されている電圧値V1を、図示略の第1のサンプルホールド回路により保持する。また、その後、制御部22からのパルス信号Sp2(図5)の入力に応じて、上述した読み出し処理により放射線検出素子7から流出した電荷が増幅回路18のコンデンサー18bに蓄積された後の時点において増幅回路18から出力されている電圧値V2を図示略の第2のサンプルホールド回路により保持する。そして、CDS19は、第1及び第2のサンプルホールド回路により保持された電圧値の差分V2−V1を算出し、当該差分V2−V1をアナログ値の画素データとして後段の回路(図2のアナログマルチプレクサー20)に出力する。
このように、CDS19は、放射線検出素子7から出力された画素信号を相関二重サンプリングにより抽出する。以下では、パルス信号Sp1及びパルス信号Sp2が入力される時間間隔を、相関二重サンプリングのサンプリング間隔とも記す。
The
Thus, the
ここで、本実施形態のCDS19は、放射線画像撮影装置1の撮影モード等に応じて異なる複数の動作モードで動作する。即ち、CDS19は、放射線画像撮影装置1の撮影モードが静止画撮影モードである場合には、図5(a)に示されるように、サンプリング間隔がTc1である第1の動作モードで動作し、放射線画像撮影装置1の撮影モードが連続撮影モードである場合には、図5(b)に示されるように、サンプリング間隔がTc2(<Tc1)である第2の動作モードで動作する。
なお、CDS19の動作モードは、上記第1及び第2の動作モードに限られない。例えば、放射線画像撮影装置1の撮影モードが連続撮影モードである場合におけるCDS19の動作モードは、放射線画像撮影装置1において生成される放射線画像のフレームレートに応じてサンプリング間隔が互いに異なる2以上の動作モードから、当該フレームレートに対応して選択されても良い。
Here, the
Note that the operation mode of the
制御部22は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)及びこれらを接続するバスなどを備える。CPUは、ROMに記憶された各種制御用のプログラムや設定データを読み出してRAMに記憶させ、当該プログラムを実行して各種演算処理を行う。また、CPUは、走査線駆動回路15、読み出しIC16、記憶部23、電源回路24といった放射線画像撮影装置1の各部の動作を統括制御する。RAMは、CPUに作業用のメモリー空間を提供し、一時データを記憶する。ROMは、CPUにより実行される各種制御用のプログラムや設定データ等を格納する。この設定データとしては、CDS19におけるサンプリング間隔及び走査線5の選択周期と、DC−DCコンバーター24aの切替周波数とが対応付けられて記憶された後述するテーブルデータが含まれる。なお、ROMに代えてEEPROM(Electrically Erasable Programmable Read Only Memory)やフラッシュメモリー等の書き換え可能な不揮発性メモリーが用いられても良い。また、制御部22は、FPGA(Field Programmable Gate Array)により構成されても良い。
The
記憶部23は、制御部22に接続され、読み出しIC16から制御部22に出力された画素データからなる放射線画像の画像データが記憶される。記憶部23としては、例えばSRAM(Static Random Access Memory)やSDRAM(Synchronous Dynamic Random Access Memory)などが用いられる。
The
電源回路24は、放射線画像撮影装置1の外部に設けられた外部電源40に接続され、外部電源40から入力された直流電圧をDC−DCコンバーターにより複数の所定の電源電圧に変換して走査線駆動回路15、読み出しIC16、制御部22、記憶部23等の各部に供給する。なお、外部電源40に代えて、放射線画像撮影装置1の内部に設けられたバッテリーや電池が用いられても良い。
The
図6は、電源回路24におけるDC−DCコンバーター24aの構成及び動作を説明する図である。
図6(a)に示されるDC−DCコンバーター24aは、三角波発振回路241と、三角波発振回路241の出力が一方の入力端子に入力されるコンパレーター242と、コンパレーター242の出力電圧に応じてオン/オフ動作するスイッチング素子としてのTFT243と、TFT243のドレインと接地電位との間に設けられたダイオード244と、TFT243のドレインに一端が接続されたコイル245と、コイル245の他端と接地電位との間に直列に設けられた抵抗246,247とを備える。TFT243のソースには、外部電源40から直流電圧が入力される。また、コンパレーター242の他方の入力端子には、コイル245の他端の電圧を抵抗246,247により分圧した電圧が入力される。また、三角波発振回路241の発振周波数は、制御部22により制御される。
コンパレーター242は、三角波発振回路241から出力される電圧の値に応じてTFT243をオン状態とする電圧及びオフ状態とする電圧を交互に出力する。
TFT243がオン状態となっている場合には、外部電源40からコイル245に流れる電流によりコイルにエネルギーが蓄えられ、TFT243がオフ状態となると、コイル245の誘導起電力による誘導電流がダイオード244及びコイル245を流れる。DC−DCコンバーター24aでは、この動作が繰り返されることにより、TFT243がオフ状態となっている期間の割合に応じて入力電圧が降圧されて出力端子から出力される。
FIG. 6 is a diagram illustrating the configuration and operation of the DC-
The DC-
The
When the
図6(b)は、コンパレーター242からTFT243のゲートに出力される信号を示す図である。このように、コンパレーター242からは、三角波発振回路の発振周波数に対応する切替周波数の矩形波が出力される。本実施形態では、三角波発振回路241の発振周波数は、制御部22により制御され、当該制御に従ってDC−DCコンバーター24aにおける切替周波数が変更される。
また、電源回路24は、出力する電源電圧の種類に対応する数のDC−DCコンバーター24aを備える。なお、電源回路24では、昇圧型のDC−DCコンバーターが用いられても良い。また、チャージポンプ等の他の方式のDC−DCコンバーターが用いられても良い。
FIG. 6B is a diagram illustrating a signal output from the
In addition, the
通信部30は、アンテナ29を介して外部と無線方式を行い、またコネクター27を介して外部と有線通信を行う。放射線画像撮影装置1では、通信部30を介して、生成された放射線画像の画像データの送信や、放射線画像撮影装置1の動作を指示する制御命令の受信が行われる。
The
次に、放射線画像撮影装置1における電源回路24の切替周波数の調整について説明する。
放射線画像撮影装置1では、CDS19における相関二重サンプリングのサンプリング間隔に応じて、CDS19における周波数に応じた信号の利得が変動する。このため、撮影モードの切り替え等によってCDS19におけるサンプリング間隔が変更されると、変更後のサンプリング間隔によっては、電源回路24のDC−DCコンバーター24aの動作に起因して生じる切替周波数のノイズがCDS19において増幅される。この結果、CDS19において抽出された信号に含まれる切替周波数のノイズが増大して放射線画像の画質が低下してしまう。
そこで、本実施形態の放射線画像撮影装置1では、CDS19におけるノイズの発生が抑制されるようにDC−DCコンバーター24aの切替周波数が調整される。以下では、この切替周波数の調整方法について説明する。
Next, adjustment of the switching frequency of the
In the radiation
Therefore, in the radiation
CDS19における周波数Fの信号の利得gは、相関二重サンプリングのサンプリング間隔をTcとして下記の式(1)により表される。
g=[2−2cos{2π(F×Tc)}]^(1/2)…(1)
式(1)に示されるように、利得gは、周波数Fとサンプリング間隔Tcとの積が整数となる場合に、CDS19における差分V2−V1の算出時に信号がキャンセルされることに起因して最小値(0)となる。他方で、利得gは、周波数Fとサンプリング間隔Tcとの積が1/2の奇数倍となる場合に最大値(2)となる。
The gain g of the signal of the frequency F in the
g = [2-2 cos {2π (F × Tc)}] ^ (1/2) (1)
As shown in Expression (1), when the product of the frequency F and the sampling interval Tc is an integer, the gain g is minimized due to the fact that the signal is canceled when the difference V2−V1 is calculated in the
図7は、CDS19における周波数に応じた信号の利得の例を示す図である。図7(a)は、放射線画像撮影装置1が静止画撮影モードである場合における利得を示し、図7(b)は、放射線画像撮影装置1が連続撮影モードである場合における利得を示す。本実施形態の静止画撮影モードでは、サンプリング間隔Tcが175[μs]に設定され、連続撮影モードでは、サンプリング間隔Tcが31.6[μs]に設定される。また、静止画撮影モードでは、走査線5の選択周期Tgが280[μs]に設定され、連続撮影モードでは、走査線5の選択周期Tgが50[μs]に設定される。
FIG. 7 is a diagram illustrating an example of a signal gain according to a frequency in the
図7(a)に示されるように、放射線画像撮影装置1が静止画撮影モードとなっている場合のCDS19における利得gは、周波数Fに対して0と2との間で周期的に変動し、周波数Fが1/175[μs]≒5.7[kHz]の整数倍となる場合に0となる。このため、DC−DCコンバーター24aにおける切替周波数を、図7(a)において利得gが1未満となる範囲(例えば、図7(a)における周波数範囲R1a,R1b,R1c等)内で調整することにより、DC−DCコンバーター24aの動作により発生する切替周波数のノイズを、CDS19において低減させることができる。特に、切替周波数を利得gが0となる周波数、即ち5.7[kHz]の整数倍とすることにより、切替周波数のノイズを最も効果的に低減させることができる。
As shown in FIG. 7A, the gain g in the
また、本実施形態では、切替周波数は、走査線5の選択周期Tgに係るナイキスト周波数Fn=1/(2Tg)よりも大きい周波数の範囲内で調整される。切替周波数をナイキスト周波数Fnよりも大きくすることにより、選択周期Tgで切替周波数のノイズが画素信号に混入(サンプリング)される際に、ナイキスト周波数を超える周波数成分に折り返し(エイリアシング)が生じるため、画素信号に混入した上記ノイズの空間周波数をナイキスト周波数Fnに対応する周波数未満に抑制することができる。
本実施形態では、静止画撮影モードにおけるナイキスト周波数Fn1は、1/(2×280[μs])≒1.8[kHz]であり、この周波数よりも大きい周波数の範囲で切替周波数が調整される。
Further, in the present embodiment, the switching frequency is adjusted within a range of a frequency higher than the Nyquist frequency Fn = 1 / (2Tg) related to the selection cycle Tg of the
In the present embodiment, the Nyquist frequency Fn1 in the still image shooting mode is 1 / (2 × 280 [μs]) ≒ 1.8 [kHz], and the switching frequency is adjusted within a frequency range larger than this frequency. .
また、図7(b)に示されるように、放射線画像撮影装置1が連続撮影モードとなっている場合のCDS19における利得gは、周波数Fが1/31.6[μs]≒31.6[kHz]の整数倍となる場合に0となる。連続撮影モードにおいても、利得gが1未満であり、かつナイキスト周波数Fn2(Fn2=1/(2×50)=10[kHz])よりも大きい範囲(例えば、図7(b)における周波数範囲R2等)内で切替周波数が調整される。特に、切替周波数を利得gが0となる周波数、即ち31.6[kHz]の整数倍とすることにより、切替周波数のノイズを最も効果的に低減させることができる。
As shown in FIG. 7B, the gain g in the
図8は、切替周波数の設定に用いられるテーブルデータの例を示す図である。
このテーブルデータでは、放射線画像撮影装置1の複数の撮影モード(静止画撮影1,2、連続撮影1,2,…,m)の各々において設定されるCDS19のサンプリング間隔(a1,a2,…,an)及び走査線5の選択周期(b1,b2,…,bn)に対して、上記の方法により決定された最適なDC−DCコンバーター24aの切替周波数が対応付けられている。また、このテーブルデータは、制御部のROMに記憶され、撮影モードの切り替えが行われる場合にCPUにより参照されて、切り替え後の撮影モードにおけるサンプリング間隔、選択周期及び切替周波数の設定に用いられる。
FIG. 8 is a diagram illustrating an example of table data used for setting the switching frequency.
In the table data, the sampling intervals (a1, a2,...) Of the
なお、図8に示されるように2種類の静止画撮影モード(静止画撮影1,2)が設けられる例としては、放射線画像撮影装置1を外部の放射線照射装置における放射線照射開始動作と連携させて撮影動作を開始させる場合(連携時)と、外部の放射線照射装置とは連携させずに、入射した放射線量を検知して撮影動作を開始させる場合(非連携時)とで放射線画像撮影装置1の動作設定を異ならせる場合が挙げられる。この例では、非連携時において放射線の曝射を検出する間隔を空けて感度を高めるために、CDS19のサンプリング間隔や走査線5の選択周期が、連携時に対して相対的に大きい値に設定される。
また、複数の連続撮影モード(動画撮影1,2,…,m)が設けられる例としては、連続撮影時に生成される放射線画像のフレームレートの大きさに応じて放射線画像撮影装置1の動作設定を異ならせる場合が挙げられる。この例では、フレームレートが大きいほどCDS19のサンプリング間隔や走査線5の選択周期が小さい値に設定される。
なお、図8は、テーブルデータの一例を示すものであってこれに限定されず、少なくとも2つの切替周波数が定められているものであれば良い。例えば、放射線画像撮影装置1の撮影モードは、2つ(例えば、一つの静止画撮影モード及び一つの連続撮影モード)又は3つ以上の任意の数とすることができる。また、同一の撮影モードに対して、撮影モード以外のパラメーターに応じて、サンプリング間隔及び選択周期のうち少なくともサンプリング間隔が異なる2つの設定を用意し、当該設定ごとに切替周波数が定められていても良い。
As an example in which two types of still image shooting modes (still image shooting 1 and 2) are provided as shown in FIG. 8, the radiation
Further, as an example in which a plurality of continuous imaging modes (moving image capturing 1, 2,..., M) are provided, the operation setting of the radiation
FIG. 8 shows an example of the table data, and the present invention is not limited to this example. Any table data may be used as long as at least two switching frequencies are determined. For example, the number of imaging modes of the radiation
続いて、放射線画像撮影装置1により実行される放射線画像撮影処理の制御部22による制御手順について説明する。ここでは、上述した連携時における処理を例に挙げて説明する。
Subsequently, a control procedure by the
図9は、放射線画像撮影処理の制御手順を示すフローチャートである。
放射線画像撮影処理が開始されると、制御部22は、撮影モードの設定の入力を受け付ける(ステップS101)。撮影モードの設定の入力は、例えば、切替スイッチ26による入力操作により行われる。
FIG. 9 is a flowchart illustrating a control procedure of the radiation image capturing process.
When the radiation image photographing process is started, the
制御部22は、撮影モードの設定の入力が行われたか否かを判別し(ステップS102)、撮影モードの設定の入力が行われていないと判別された場合には(ステップS102で“NO”)、処理をステップS105に移行させる。
The
撮影モードの設定の入力が行われたと判別された場合には(ステップS102で“YES”)、制御部22は、記憶部23に記憶されたテーブルデータから、切り替え後の撮影モードに対応する切替周波数を取得する(ステップS103)。また、制御部22は、DC−DCコンバーター24aにおける切替周波数の設定を変更し、ステップS103で取得された切替周波数でDC−DCコンバーター24aを動作させる(ステップS104)。
When it is determined that the input of the setting of the shooting mode has been performed (“YES” in step S102), the
ステップS104の処理が終了すると、制御部22は、外部の制御装置から通信部30を介して撮影開始命令が入力されたか否かを判別し(ステップS105)、撮影開始命令が入力されていないと判別された場合には(ステップS105で“NO”)、処理をステップS101に移行させる。
When the process of step S104 is completed, the
撮影開始命令が入力されたと判別された場合には(ステップS105で“YES”)、制御部22は、放射線画像の撮影を行う(ステップS106)。即ち、制御部22は、放射線検出素子7のリセット処理を完了させ、全ての走査線5に対してオフ電圧を供給させて、放射線検出素子7内において放射線量に応じた電荷を蓄積させる。続いて、制御部22は、上述した読み出し処理を実行し、放射線検出素子7から出力された画素信号を抽出して放射線画像の画像データを生成する。制御部22は、撮影モードの設定に応じて、生成された画像データを記憶部23に記憶させ、また通信部30を介して外部に出力する。
ステップS106において、撮影モードの設定に応じた枚数の放射線画像の撮影が終了すると、制御部22は、放射線画像撮影処理を終了させる。
When it is determined that the imaging start command has been input (“YES” in step S105), the
In step S106, when the imaging of the number of radiation images according to the setting of the imaging mode ends, the
(変形例1)
次に、上記実施形態の変形例1について説明する。この変形例では、切替周波数の調整においてテーブルデータを参照せず、放射線画像撮影装置1の撮影モードに対応して設定されたサンプリング間隔及び走査線5の選択周期から直接切替周波数を算出する点で上記実施形態と異なる。その他の点は上記実施形態と同様であるため、以下では上記実施形態との差異点について説明する。
(Modification 1)
Next, a first modification of the above embodiment will be described. In this modified example, the switching frequency is not directly referred to in the adjustment of the switching frequency, and the switching frequency is directly calculated from the sampling interval and the selection period of the
図10は、本変形例に係る放射線画像撮影処理の制御手順を示すフローチャートである。このフローチャートは、上記実施形態に係る図9のフローチャートにおけるステップS103をステップS103aに変更し、ステップS107を追加したものである。以下では、図9と同一のステップについては説明を省略する。 FIG. 10 is a flowchart illustrating a control procedure of the radiation image capturing process according to the present modification. This flowchart is obtained by changing step S103 in the flowchart of FIG. 9 according to the above embodiment to step S103a and adding step S107. Hereinafter, description of the same steps as those in FIG. 9 will be omitted.
本変形例の放射線画像撮影処理では、撮影モードの設定の入力がなされると(ステップS102で“YES”)、制御部22は、切り替え後の撮影モードにおいて、現在の切替周波数に対するCDS19の利得gが1以上であるか否かを判別する(ステップS107)。即ち、制御部22は、上記の式(1)におけるTcを、切り替え後の撮影モードに係るサンプリング間隔とし、また式(1)におけるFを、現在の設定に係る切替周波数とした場合の利得gが1以上であるか否かを判別する。当該利得gが1未満であると判別された場合には(ステップS107で“NO”)、制御部22は、処理をステップS105に移行させる。
In the radiographic image capturing process according to the present modification, when an input of an image capturing mode is input (“YES” in step S102), the
上記利得gが1以上であると判別された場合には(ステップS107で“YES”)、制御部22は、切り替え後の撮影モードに対応して設定されているサンプリング間隔及び走査線5の選択周期に基づいて、CDS19における利得gが1未満となる切替周波数を算出する(ステップS103a)。即ち、制御部22は、上記の式(1)におけるTcを、切り替え後の撮影モードに係るサンプリング間隔とした場合において、利得gが1未満となり、かつ走査線5の選択期間に係るナイキスト周波数よりも大きい周波数Fを算出する。典型的には、上記条件を満たし利得gが0となるような最小の周波数Fを算出する。そして、制御部22は、DC−DCコンバーター24aにおける切替周波数の設定を変更し、ステップS103aで算出された切替周波数でDC−DCコンバーター24aを動作させる(ステップS104)。
When it is determined that the gain g is 1 or more (“YES” in step S107), the
(変形例2)
次に、上記実施形態の変形例2について説明する。この変形例では、放射線画像撮影装置1において設定され得る全ての撮影モードにおいて、切替周波数に対するCDS19の利得が1未満となり、かつ切替周波数が走査線5の選択周期に係るナイキスト周波数よりも大きくなるように、予め一の切替周波数が設定され、DC−DCコンバーター24aは、各撮影モードにおいて当該一の切替周波数で動作する。即ち、DC−DCコンバーター24aは、CDS19の動作モードに関わらず同一の切替周波数で動作する。その他の点は、上記実施形態と同様である。
(Modification 2)
Next, a second modification of the above embodiment will be described. In this modification, in all imaging modes that can be set in the radiation
ここでは、放射線画像撮影装置1の撮影モードが、一つの静止画撮影モード及び一つの連続撮影モードのみであり、静止画撮影モードでのCDS19における信号の利得gが図7(a)により表され、連続撮影モードでのCDS19における信号の利得gが図7(b)により表される場合を例に挙げて説明する。
Here, the
この場合には、静止画撮影モードのナイキスト周波数Fn1及び連続撮影モードのナイキスト周波数Fn2の何れよりも大きく、かつ静止画撮影モード及び連続撮影モードにおける利得gが何れも1未満となるような周波数範囲、即ち図7(a)における周波数範囲R1b,R1cから上記一の切替周波数が設定される。この切替周波数は、例えば、図7(a)における利得gが0となるような周波数に設定される。あるいは、静止画撮影モード及び連続撮影モードにおける利得gが等しくなるような周波数に設定されても良い。 In this case, the frequency range is higher than either the Nyquist frequency Fn1 in the still image shooting mode or the Nyquist frequency Fn2 in the continuous shooting mode, and the gain g in the still image shooting mode or the continuous shooting mode is less than 1. That is, the one switching frequency is set from the frequency ranges R1b and R1c in FIG. This switching frequency is set, for example, to a frequency at which the gain g in FIG. Alternatively, the frequency may be set such that the gain g in the still image shooting mode and the continuous shooting mode becomes equal.
以上のように、本実施形態に係る放射線画像撮影装置1は、入射した放射線量に応じた画素信号を各々出力する二次元配列された複数の放射線検出素子7を有する放射線検出部3と、複数の放射線検出素子7から出力された画素信号を相関二重サンプリングにより抽出するCDS19と、直流電圧が入力される回路の構成を所定の切替周波数で切り替えることにより、入力された直流電圧を所定の電源電圧に変換して出力する電源回路24と、相関二重サンプリングにおけるサンプリング間隔が互いに異なる複数の動作モードでCDS19を動作させ、CDS19が複数の動作モードのうち何れの動作モードで動作している期間においても、当該期間における切替周波数に対するCDS19の利得を1未満に制御する制御部22と、を備える。
このような構成によれば、CDS19におけるサンプリング間隔によらず、切替周波数に対するCDS19の利得が1未満となるため、CDS19が何れの動作モードで動作している場合においても、CDS19において、電源回路24の動作に起因して生じる切替周波数のノイズを低減させることができる。この結果、放射線画像撮影装置1により生成される放射線画像におけるノイズの発生を、より安定して抑制することができる。
As described above, the radiation
According to such a configuration, the gain of the
また、放射線検出部3は、第1の方向に延在する複数の走査線5、及び第1の方向と交差する第2の方向に延在する複数の信号線6を有し、複数の放射線検出素子7の各々は、複数の走査線5の何れか一つ及び複数の信号線6の何れか一つと接続され、制御部22は、CDS19の動作モードに対応する選択周期で複数の走査線5に対して順にオン電圧を供給することにより、当該オン電圧が供給された走査線5に接続されている放射線検出素子7から信号線6に画素信号を出力させ、CDS19が一の動作モードで動作している期間における切替周波数は、一の動作モードに対応する選択周期に係るナイキスト周波数よりも大きい。これにより、上記選択周期で切替周波数のノイズが画素信号に混入(サンプリング)される際に、ナイキスト周波数を超える周波数成分に折り返し(エイリアシング)が生じるため、画素信号に混入した上記ノイズの空間周波数をナイキスト周波数に対応する周波数未満に抑制することができる。この結果、放射線画像におけるノイズをより低減させ、また視認されにくくすることができる。
The
また、制御部22は、CDS19を複数の動作モードのうち何れの動作モードで動作させる場合においても、電源回路24により同一の切替周波数で回路の構成の切り替えを行わせる。このような構成によれば、撮影モードの切り替え等に従ってCDS19の動作モードを切り替える場合に、電源回路24において切替周波数を変更することなく放射線画像におけるノイズの発生を安定して抑制することができる。よって、より簡易な制御により放射線画像におけるノイズの発生を抑制することができる。
Further, even when the
また、制御部22は、CDS19の動作モードを切り替える場合に、切り替え後の動作モードにおける利得が1未満となるように電源回路24における切替周波数を調整する。これにより、CDS19の動作モードの切り替えに応じて、ノイズを低減させることが可能な適切な切替周波数で電源回路24を動作させることができる。よって、CDS19が複数の動作モードにおいて多数の異なるサンプリング間隔で動作する場合においても、安定して放射線画像におけるノイズの発生を抑制することができる。
Further, when switching the operation mode of the
また、制御部22は、CDS19の動作モードを切り替える場合に、切り替え後の動作モードにおける利得が1未満となり、かつ、切替周波数が、切り替え後の動作モードに対応する選択周期に係るナイキスト周波数よりも大きくなるように、電源回路24における切替周波数を調整する。このような構成によれば、CDS19が複数の動作モードにおいて多数の異なるサンプリング間隔で動作する場合においても、安定して放射線画像におけるノイズをより低減させ、また視認されにくくすることができる。
Further, when switching the operation mode of the
また、複数の動作モードに対応付けられて予め定められた複数の切替周波数を記憶する記憶部23を備え、制御部22は、CDS19の動作モードを切り替える場合に、記憶部23を参照して、切り替え後の動作モードに対応付けられた切替周波数を選択する。これにより、CDS19の動作モードの切り替え時に、簡易な処理によりノイズを低減できる適切な切替周波数を選択して電源回路24を動作させることができる。
The
また、制御部22は、切り替え後の動作モードにおけるサンプリング間隔に基づいて、当該切り替え後の動作モードにおける利得が1未満となる切替周波数を算出する。これにより、CDS19におけるサンプリング間隔に応じて、ノイズを低減できる適切な切替周波数を設定することができる。
Further, the
また、制御部22は、CDS19が切り替え前の動作モードで動作している期間における切替周波数に対し、切り替え後の動作モードにおける利得を算出し、当該算出された利得が1以上である場合に、切り替え後の動作モードにおける利得が1未満となる切替周波数を算出する。これによれば、切替後の動作モードで動作するCDS19において切替周波数のノイズが低減されない場合にのみ、切替周波数の調整が行われる。よって、切替周波数の調整頻度を低減させることができる。
Further, the
また、制御部22は、切り替え後の動作モードにおけるサンプリング間隔と切替周波数との積が整数に近付くように切替周波数を調整する。これにより、切り替え後の動作モードで動作するCDS19において、切替周波数の利得を0に近付けることができる。この結果、放射線画像におけるノイズの発生をより効果的に抑制することができる。
Further, the
また、制御部22は、切り替え後の動作モードにおけるサンプリング間隔、及び当該切り替え後の動作モードに対応する選択周期に基づいて、当該切り替え後の動作モードに対応する切替周波数を算出する。これにより、CDS19におけるサンプリング間隔及び走査線5の選択周期に応じて、ノイズを低減できる適切な切替周波数を設定することができる。
Further, the
また、制御部22は、CDS19による画素信号の抽出結果に基づいて放射線画像の画像データを生成し(画像データ生成部)、静止画の放射線画像の画像データを生成する静止画撮影モードにおいて、複数の動作モードのうち所定の第1の動作モードでCDS19を動作させ、放射線画像の画像データを連続して生成する連続撮影モードにおいて、複数の動作モードのうちサンプリング間隔が第1の動作モードにおけるサンプリング間隔よりも小さい第2の動作モードでCDS19を動作させ、静止画撮影モードと連続撮影モードとを切り替える場合に、CDS19の動作モードを切り替える。このような構成により、静止画撮影モード及び連続撮影モードの双方において、安定して放射線画像におけるノイズの発生を抑制することができる。
The
なお、本発明は、上記実施形態及び各変形例に限られるものではなく、様々な変更が可能である。
例えば、上記実施形態及び各変形例では、切替周波数に対するCDS19の利得gが1未満となるように切替周波数を設定する例を用いて説明したが、これに限定する趣旨ではなく、1未満の所定の上限利得以下となるように切替周波数を設定しても良い。このような上限利得は、特には限られないが、例えばノイズを30%以下に低減可能となる「0.3」とすることができる。
Note that the present invention is not limited to the above-described embodiment and each of the modifications, and various modifications are possible.
For example, in the above-described embodiment and each of the modifications, the example in which the switching frequency is set so that the gain g of the
また、上記実施形態及び各変形例では、切替周波数に対するCDS19の利得gが所定の上限利得以下となり、かつ走査線5の選択周期に係るナイキスト周波数よりも大きくなるように切替周波数が設定される例を用いて説明したが、これに限定する趣旨ではない。例えば、切替周波数に対するCDS19の利得gが所定の上限利得以下となる条件のみを考慮して切替周波数を設定しても良い。
In the above-described embodiment and each of the modifications, the switching frequency is set such that the gain g of the
また、上記実施形態及び各変形例では、センサーパネルが筐体内に収納されて持ち運び可能とされた、いわゆる可搬型の放射線画像撮影装置を例に挙げて説明したが、これに限定する趣旨ではなく、例えば、撮影室に設置され、支持台等と一体的に形成された放射線画像撮影装置に対しても本発明を適用することができる。 Further, in the above-described embodiment and each of the modifications, the so-called portable radiation image capturing apparatus in which the sensor panel is housed in the housing and is portable has been described as an example, but the present invention is not limited to this. For example, the present invention can be applied to a radiographic imaging apparatus that is installed in an imaging room and is integrally formed with a support base or the like.
本発明のいくつかの実施形態を説明したが、本発明の範囲は、上述の実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。 Although some embodiments of the present invention have been described, the scope of the present invention is not limited to the above-described embodiments, but includes the scope of the invention described in the claims and equivalents thereof .
1 放射線画像撮影装置
3 放射線検出部
5 走査線
6 信号線
7 放射線検出素子
8 TFT
14 電源回路(電圧変換部)
15 走査線駆動回路
17 読み出し回路
18 増幅回路
19 CDS(信号抽出部)
20 アナログマルチプレクサー
21 A/D変換器
22 制御部(画像データ生成部)
23 記憶部
24 電源回路
24a DC−DCコンバーター
40 外部電源
DESCRIPTION OF
14. Power supply circuit (voltage converter)
15 Scanning
20 analog multiplexer 21 A /
23
Claims (11)
前記複数の放射線検出素子から出力された前記画素信号を相関二重サンプリングにより抽出する信号抽出部と、
直流電圧が入力される回路の構成を所定の切替周波数で切り替えることにより、入力された直流電圧を所定の電源電圧に変換して出力する電圧変換部と、
前記相関二重サンプリングにおけるサンプリング間隔が互いに異なる複数の動作モードで前記信号抽出部を動作させ、前記信号抽出部が前記複数の動作モードのうち何れの動作モードで動作している期間においても、前記切替周波数に対する前記信号抽出部の利得を、1よりも小さい所定の上限利得以下に制御する制御部と、
を備えることを特徴とする放射線画像撮影装置。 A radiation detection unit having a plurality of radiation detection elements arranged two-dimensionally, each of which outputs a pixel signal corresponding to the amount of incident radiation,
A signal extraction unit that extracts the pixel signals output from the plurality of radiation detection elements by correlated double sampling,
By switching the configuration of a circuit to which a DC voltage is input at a predetermined switching frequency, a voltage conversion unit that converts the input DC voltage to a predetermined power supply voltage and outputs the converted voltage,
The sampling interval in the correlated double sampling operates the signal extraction unit in a plurality of operation modes different from each other, even during a period in which the signal extraction unit is operating in any one of the plurality of operation modes, A control unit that controls a gain of the signal extraction unit with respect to a switching frequency to be equal to or less than a predetermined upper limit gain smaller than 1.
A radiographic imaging apparatus comprising:
前記複数の放射線検出素子の各々は、前記複数の走査線の何れか一つ及び前記複数の信号線の何れか一つと接続され、
前記制御部は、
前記信号抽出部の動作モードに対応する選択周期で前記複数の走査線に対して順に所定の選択信号を供給することにより、当該選択信号が供給された走査線に接続されている前記放射線検出素子から前記信号線に前記画素信号を出力させ、
前記信号抽出部が前記一の動作モードで動作している期間における前記切替周波数は、前記一の動作モードに対応する前記選択周期に係るナイキスト周波数よりも大きい
ことを特徴とする請求項1に記載の放射線画像撮影装置。 The radiation detection unit includes a plurality of scanning lines extending in a first direction, and a plurality of signal lines extending in a second direction that intersects the first direction.
Each of the plurality of radiation detection elements is connected to any one of the plurality of scanning lines and any one of the plurality of signal lines,
The control unit includes:
The radiation detection element connected to the scanning line to which the selection signal is supplied by sequentially supplying a predetermined selection signal to the plurality of scanning lines in a selection cycle corresponding to an operation mode of the signal extraction unit. To output the pixel signal to the signal line,
The switching frequency during a period when the signal extraction unit is operating in the one operation mode is higher than a Nyquist frequency related to the selection cycle corresponding to the one operation mode. Radiation imaging equipment.
前記制御部は、前記信号抽出部の動作モードを切り替える場合に、前記記憶部を参照して、前記切り替え後の動作モードに対応付けられた前記切替周波数を選択する
ことを特徴とする請求項4又は5に記載の放射線画像撮影装置。 A storage unit that stores a plurality of the predetermined switching frequencies associated with the plurality of operation modes,
The switching unit, when switching the operation mode of the signal extraction unit, refers to the storage unit and selects the switching frequency associated with the operation mode after the switching. Or the radiographic image capturing apparatus according to 5.
前記制御部は、
前記画像データ生成部により静止画の放射線画像の画像データを生成させる静止画撮影モードにおいて、前記複数の動作モードのうち所定の第1の動作モードで前記信号抽出部を動作させ、前記画像データ生成部により放射線画像の画像データを連続して生成させる連続撮影モードにおいて、前記複数の動作モードのうち前記サンプリング間隔が前記第1の動作モードにおけるサンプリング間隔よりも小さい第2の動作モードで前記信号抽出部を動作させ、
前記静止画撮影モードと前記連続撮影モードとを切り替える場合に、前記信号抽出部の動作モードを切り替える
ことを特徴とする請求項1〜10の何れか一項に記載の放射線画像撮影装置。 An image data generating unit that generates image data of a radiation image based on an extraction result of the pixel signal by the signal extracting unit,
The control unit includes:
In a still image capturing mode in which the image data generating unit generates image data of a still image radiation image, the signal extracting unit is operated in a predetermined first operation mode among the plurality of operation modes, and the image data generation is performed. In the continuous imaging mode in which the image data of the radiation image is continuously generated by the unit, the signal extraction is performed in a second operation mode in which the sampling interval is smaller than the sampling interval in the first operation mode among the plurality of operation modes. Operate the part,
The radiation image capturing apparatus according to any one of claims 1 to 10, wherein when switching between the still image capturing mode and the continuous capturing mode, an operation mode of the signal extracting unit is switched.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016122215A JP6662211B2 (en) | 2016-06-21 | 2016-06-21 | Radiation imaging equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016122215A JP6662211B2 (en) | 2016-06-21 | 2016-06-21 | Radiation imaging equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017228863A JP2017228863A (en) | 2017-12-28 |
JP6662211B2 true JP6662211B2 (en) | 2020-03-11 |
Family
ID=60892093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016122215A Active JP6662211B2 (en) | 2016-06-21 | 2016-06-21 | Radiation imaging equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6662211B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7073725B2 (en) * | 2018-01-10 | 2022-05-24 | コニカミノルタ株式会社 | Radiation image imaging device and control method of radiation image imaging device |
JP7077719B2 (en) * | 2018-03-30 | 2022-05-31 | コニカミノルタ株式会社 | Radiation imaging device |
JP2022012179A (en) * | 2020-07-01 | 2022-01-17 | キヤノン電子管デバイス株式会社 | Radiation detector |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4717846B2 (en) * | 2007-03-01 | 2011-07-06 | キヤノン株式会社 | Imaging device |
JP5178394B2 (en) * | 2008-08-20 | 2013-04-10 | キヤノン株式会社 | Imaging apparatus and control method thereof |
JP5609358B2 (en) * | 2010-07-20 | 2014-10-22 | ソニー株式会社 | IMAGING DEVICE, CONTROL DEVICE, AND IMAGING DEVICE CONTROL METHOD |
JP5595940B2 (en) * | 2011-01-14 | 2014-09-24 | 富士フイルム株式会社 | Radiation imaging equipment |
JP2015115736A (en) * | 2013-12-11 | 2015-06-22 | キヤノン株式会社 | Imaging device, imaging element, and driving method for imaging device |
JP2015126367A (en) * | 2013-12-26 | 2015-07-06 | キヤノン株式会社 | Image processing apparatus, control method thereof, and control program, and imaging apparatus |
JP2016039495A (en) * | 2014-08-07 | 2016-03-22 | キヤノン株式会社 | Imaging device and control method therefor |
-
2016
- 2016-06-21 JP JP2016122215A patent/JP6662211B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017228863A (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10653372B2 (en) | Radiation imaging system | |
JP5950840B2 (en) | Radiation imaging apparatus and imaging system | |
JP6016673B2 (en) | Radiation imaging apparatus and radiation imaging system | |
JP2019091969A (en) | Radiation imaging device | |
JP6662211B2 (en) | Radiation imaging equipment | |
CN104811632B (en) | Radiation imaging apparatus, control method therefor, and control system | |
US9654689B2 (en) | Method and apparatus for camera actuator driver mode control synchronized with imaging sensor frame | |
JP5459066B2 (en) | Radiation imaging equipment | |
JP6549918B2 (en) | Radiation imaging apparatus and control method thereof | |
US8436314B2 (en) | Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program | |
JP2019024926A5 (en) | ||
EP3226548B1 (en) | Radiation detector | |
JP5811653B2 (en) | Radiation imaging equipment | |
US20120075600A1 (en) | Imaging apparatus, imaging system, and method for controlling imaging apparatus | |
JP2013078410A (en) | Radiation image capturing system and radiation image capturing apparatus | |
US20150288890A1 (en) | Imaging unit and imaging method | |
JP2012510198A (en) | X-ray detector | |
US10209370B2 (en) | Radiation imaging apparatus and radiation imaging system | |
JP4242258B2 (en) | Solid-state image sensor | |
JP5720429B2 (en) | Radiation imaging equipment | |
JP2014171549A5 (en) | Control device, radiation imaging apparatus, radiation imaging system, control method and program for radiation imaging apparatus | |
JP2011176761A (en) | Solid-state imaging apparatus and camera system | |
JP2015126367A (en) | Image processing apparatus, control method thereof, and control program, and imaging apparatus | |
JP2016103717A (en) | Radiation detector | |
JP2013128727A (en) | Radiographic imaging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6662211 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |