JP6661430B2 - Cement admixture and concrete using it - Google Patents
Cement admixture and concrete using it Download PDFInfo
- Publication number
- JP6661430B2 JP6661430B2 JP2016053894A JP2016053894A JP6661430B2 JP 6661430 B2 JP6661430 B2 JP 6661430B2 JP 2016053894 A JP2016053894 A JP 2016053894A JP 2016053894 A JP2016053894 A JP 2016053894A JP 6661430 B2 JP6661430 B2 JP 6661430B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- cement
- cement admixture
- heat
- hydration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004568 cement Substances 0.000 title claims description 61
- 239000004567 concrete Substances 0.000 title claims description 51
- 238000006703 hydration reaction Methods 0.000 claims description 31
- 230000036571 hydration Effects 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 19
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 15
- 239000000292 calcium oxide Substances 0.000 claims description 9
- 235000012255 calcium oxide Nutrition 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 229920001353 Dextrin Polymers 0.000 claims description 7
- 239000004375 Dextrin Substances 0.000 claims description 7
- 235000019425 dextrin Nutrition 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 239000011405 expansive cement Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011398 Portland cement Substances 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000020169 heat generation Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 239000010440 gypsum Substances 0.000 description 5
- 229910052602 gypsum Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、主に土木・建築分野において使用されるセメント混和材、特に膨張性セメント混和材及びそれを用いたコンクリートに関する。 The present invention relates to a cement admixture mainly used in the field of civil engineering and construction, particularly to an expandable cement admixture and concrete using the same.
コンクリートを施工した場合、セメントの水和熱によりコンクリートの温度上昇が生じる。特にマスコンクリートでは、その温度上昇・下降が原因となる「温度ひび割れ」を発生させることが知られている。その対策として、(1)低発熱型のセメントを用いる、(2)混和材(剤)を使用する等が挙げられる。 When concrete is applied, the temperature of the concrete rises due to the heat of hydration of the cement. In particular, in mass concrete, it is known that "temperature cracks" are caused by the rise and fall of the temperature. As countermeasures, (1) use of low heat type cement, (2) use of admixture (agent), and the like can be mentioned.
(1)の低発熱型のセメントとしては、ポルトランドセメントに潜在水硬性を持つ高炉スラグやポゾラン物質のフライアッシュを多量に混合したものや、セメント中のビーライトの含有率を高めた低熱ポルトランドセメント等が使用されており、初期の水和発熱量を著しく低減させることができる。(2)の混和材(剤)としては、硬化コンクリートに圧縮応力を付与する膨張材や、セメントの水和発熱特性に影響を与える水和熱抑制剤が有効であると提案されている(例えば特許文献1、2)。 Examples of the low heat-generating cement of (1) are Portland cement, which is a mixture of blast furnace slag with latent hydraulic property and fly ash of pozzolanic substance in large amounts, and low heat Portland cement, which has an increased content of belite in the cement. And the like are used, and the initial calorific value of hydration can be significantly reduced. As the admixture (agent) of (2), it has been proposed that an expanding material that imparts compressive stress to hardened concrete and a hydration heat inhibitor that affects the hydration heat generation properties of cement are effective (for example, Patent Documents 1 and 2).
(1)の方法は最も一般的に行われている方策となるが、低熱セメントや中庸熱セメントは地方によっては入手困難な場合があり、また、専用のサイロを備え持つ生コン会社でなければ、生コンの出荷が出来ないといった現状がある。フライアッシュセメント等の混合セメントについては、空気量調整等のフレッシュ性状へ及ぼす影響が大きく、扱いが難しいとされている。 The method (1) is the most commonly used method, but low heat cement or moderate heat cement may be difficult to obtain in some regions, and unless it is a ready-mixed concrete company that has a dedicated silo. There is a current situation that ready-mixed concrete cannot be shipped. It is said that mixed cement such as fly ash cement has a large effect on fresh properties such as air volume adjustment and is difficult to handle.
一方、(2)の方法における水和熱抑制剤は、セメントの水和熱抑制には効果を有するものの、過剰に添加した場合はセメントの水和を抑制し強度発現性が低下すること、また有効成分の可溶性が温度の影響を受けやすいなど扱いが難しい。また、膨張材は生石灰等膨張成分の水との反応に伴う体積膨張を利用するものであるが、セメントの水和、硬化に対して、反応が速すぎると、効果的な膨張量を得ることができない。セメントの水和に影響を及ぼす水和熱抑制剤と併用した場合は、特にバランス良く調製されなければ、コンクリート全体としての発熱を抑制しながら、かつ安定した膨張量を確保することは難しい。このため、汎用の膨張材を使用した場合、温度ひび割れ効果に優れたコンクリートを得ることは難しかった。 On the other hand, although the hydration heat inhibitor in the method (2) is effective in suppressing the heat of hydration of cement, when added in an excessive amount, it suppresses the hydration of the cement and lowers the strength developability. It is difficult to handle because the solubility of the active ingredient is easily affected by temperature. In addition, the expansive material uses volume expansion accompanying the reaction of expansive components such as quicklime with water. However, if the reaction is too fast for hydration and hardening of cement, an effective expansion amount is obtained. Can not. When used in combination with a hydration heat inhibitor that affects the hydration of cement, it is difficult to suppress the heat generation of the concrete as a whole and to secure a stable expansion amount unless it is prepared particularly in a well-balanced manner. For this reason, when a general-purpose expander is used, it has been difficult to obtain concrete excellent in the temperature cracking effect.
本発明は、前記課題を解決すべく、種々検討を重ねた結果、特定のセメント混和材を用いることによって、また該セメント混和材を用いたコンクリートを製造することによって、前記課題が解消できる知見を得て、本発明を完成するに至った。ここでコンクリートとは、セメントペースト、モルタル及びコンクリートを総称するものである。 The present invention has been made through various studies to solve the above-mentioned problems, and as a result, by using a specific cement admixture, and by producing concrete using the cement admixture, a finding that the above-mentioned problems can be solved. As a result, the present invention has been completed. Here, the concrete is a generic term for cement paste, mortar and concrete.
すなわち、本発明による解決手段は以下のとおりである。
〔1〕膨張物質と水和熱抑制成分を含有し、かつ、該膨張物質の10μm以下の粒子含有率が30〜50質量%であるセメント混和材。
〔2〕前記水和熱抑制成分がデキストリンである〔1〕のセメント混和材。
〔3〕〔1〕又は〔2〕のセメント混和材を含むコンクリート。
〔4〕下記特性を有することを特徴とする〔3〕のコンクリート。
(1)膨張率が200±20×10−6であること、
(2)前記セメント混和材を含まないコンクリートの最高発熱温度(T0)に対して、前記セメント混和材を含むコンクリートの最高発熱温度(T1)の比(T1/T0)が1未満であること、
(3)前記セメント混和材を含まないコンクリートの材齢28日の圧縮強度(S0)に対する、前記セメント混和材を含むコンクリートの材齢28日の圧縮強度(S1)の比(S1/S0)が0.95以上であること。
That is, the solution according to the present invention is as follows.
[1] A cement admixture containing an expansive substance and a heat-of-hydration-inhibiting component, and having a particle content of 10 μm or less of the expansive substance of 30 to 50% by mass.
[2] The cement admixture of [1], wherein the hydration heat inhibiting component is dextrin.
[3] Concrete containing the cement admixture of [1] or [2].
[4] The concrete according to [3], which has the following characteristics.
(1) The expansion coefficient is 200 ± 20 × 10 −6 ,
(2) The ratio (T 1 / T 0 ) of the maximum heat generation temperature (T 1 ) of the concrete containing the cement admixture to the maximum heat generation temperature (T 0 ) of the concrete not containing the cement admixture is less than 1. Being,
(3) The ratio of the compressive strength (S 1 ) of the concrete containing the cement admixture at the age of 28 to the compressive strength (S 0 ) of the concrete containing the cement admixture at the age of 28 (S 1 /). S 0 ) is 0.95 or more.
本発明におけるセメント混和材を使用することにより、強度低下をおこすことなく良好な膨張性状と、水和熱抑制効果が得られ、温度ひび割れ低減効果の高いコンクリートが得られる。 By using the cement admixture of the present invention, a good expansion property without reducing strength, an effect of suppressing heat of hydration can be obtained, and concrete having a high effect of reducing temperature cracking can be obtained.
以下、本発明を詳しく説明する。
本発明のセメント混和材は、10μm以下の粒子含有率が30〜50質量%の範囲にある膨張物質と水和熱抑制成分を含有する。膨張物質と水和熱抑制成分を併用することによって、発熱が抑制され、膨張性を有するセメント組成物を得ることはできるが、温度ひび割れ性能に優れるコンクリートを得るには、所定の膨張率(具体的には、200±20×10−6)を安定的に発現させる必要がある。しかし、汎用の膨張材を使用する場合、配合調整ではなかなか難しく、種々検討した結果、膨張物質の粒度分布と水和熱抑制剤の効果に関連が見られることが分かり、その効果に最良点があることを見出した。つまり、膨張物質の細粒の含有率(10μm以下の粒子含有率)を所定の範囲に設定することで、水和熱抑制剤と併用した際に、安定した膨張率を有し、かつ水和熱が抑制され、強度低下も起こさないことを見出したものである。このメカニズムは正確には分からないが、膨張物質の微粒分制御によって、膨張材による発熱と膨張発現のタイミングが制御され、結果として水和熱抑制成分により調整されたセメントの水和による硬化、強度発現のタイミングがうまくマッチしたものと推察される。
Hereinafter, the present invention will be described in detail.
The cement admixture of the present invention contains an expanding substance having a particle content of 10 μm or less in the range of 30 to 50% by mass and a heat of hydration suppressing component. By using the expanding substance and the hydration heat suppressing component in combination, the heat generation is suppressed and a cement composition having expandability can be obtained. However, in order to obtain concrete excellent in temperature cracking performance, a predetermined expansion rate (specifically, Specifically, it is necessary to stably express 200 ± 20 × 10 −6 ). However, when using a general-purpose expanding material, it is difficult to adjust the composition, and as a result of various studies, it is found that there is a relationship between the particle size distribution of the expanding material and the effect of the heat of hydration inhibitor. I found something. In other words, by setting the content of the fine particles of the expanding substance (particle content of 10 μm or less) in a predetermined range, when used in combination with the hydration heat inhibitor, it has a stable expansion rate It has been found that heat is suppressed and strength does not decrease. Although this mechanism is not known exactly, the control of the fine particles of the expansive substance controls the timing of the heat generation and the onset of expansion by the expansive material, and as a result, the hardening and strength due to the hydration of the cement adjusted by the hydration heat suppression component. It is presumed that the expression timing matched well.
本発明で使用される膨張物質とは、水和によって結晶を生成することにより膨張性状を示すものであればよく、具体的には、生石灰、遊離生石灰を含有する膨張性焼成物、3CaO・3Al2O3・CaSO4に代表されるカルシウムサルホアルミネート系化合物、マグネシア、石膏などが挙げられ、一種又は二種以上を混合して用いられる。本発明においては、特に生石灰または遊離生石灰を含有する膨張性焼成物を主成分とするものが好ましい。さらに、石膏が加えられた生石灰−石膏系のものが好ましい。 The expansive substance used in the present invention may be any substance that exhibits expansive properties by generating crystals by hydration. Specifically, expansive calcined material containing quicklime and free quicklime, 3CaO.3Al Examples thereof include calcium sulfoaluminate-based compounds represented by 2 O 3 .CaSO 4 , magnesia, gypsum and the like, and one kind or a mixture of two or more kinds is used. In the present invention, it is particularly preferable to use an expanded calcined product containing quicklime or free quicklime as a main component. Further, a quick lime-gypsum type to which gypsum is added is preferable.
ここで遊離生石灰を含有する膨張性焼成物は、炭酸カルシウム、消石灰、生石灰等のカルシウム質原料を含む焼成原料を焼成することにより得られる焼成物である。焼成原料には、カルシウム質原料以外に、シリカ質原料、アルミナ質原料、酸化鉄原料、石膏等を添加しても良い。焼成原料を焼成するときの焼成温度は1100〜1500℃である。焼成には、ロータリーキルンや電気炉等の温度調節可能な炉が用いられる。当該焼成物は、粉砕、分級処理を行うことにより、所定の粒度に調整される。 Here, the expansive calcined product containing free quick lime is a calcined product obtained by calcining a calcining material containing a calcium-based material such as calcium carbonate, slaked lime, and quick lime. In addition to the calcium raw material, a silica raw material, an alumina raw material, an iron oxide raw material, gypsum, etc. may be added to the calcined raw material. The firing temperature when firing the firing raw material is 1100 to 1500 ° C. A furnace whose temperature can be adjusted, such as a rotary kiln or an electric furnace, is used for firing. The fired product is adjusted to a predetermined particle size by performing pulverization and classification.
本発明における膨張物質の10μm以下の粒子含有率は、30〜50質量%の範囲にある必要がある。30質量%未満の場合は、所定の膨張率を安定的に発現させることが困難となる。一方、50質量%を超える場合は、水和熱抑制効果が得られなくなり好ましくない。なお、最大粒子径は300μm以下であることが好ましい。 The particle content of 10 μm or less of the expanding material in the present invention needs to be in the range of 30 to 50% by mass. If the amount is less than 30% by mass, it is difficult to stably develop a predetermined expansion coefficient. On the other hand, if it exceeds 50% by mass, the effect of suppressing heat of hydration cannot be obtained, which is not preferable. Note that the maximum particle size is preferably 300 μm or less.
本発明における水和熱抑制成分としては、デキストリン、単糖類及びオリゴ糖等の糖類、オキシカルボン酸及びそれらの塩等が挙げられ、一種又は二種以上を混合して用いられる。この中で特にデキストリンが好ましい。 Examples of the heat of hydration suppression component in the present invention include dextrins, sugars such as monosaccharides and oligosaccharides, oxycarboxylic acids and salts thereof, and may be used alone or as a mixture of two or more. Of these, dextrin is particularly preferred.
デキストリンは、一般には加工澱粉とも呼ばれるもので、馬鈴薯、甘薯、トウモロコシ、タピオカ、小麦、その他の原料澱粉を酸分解、酸化、エステル化、エーテル化、架橋化、合成高分子の共重合化によるグラフト化等、化学的に処理し低分子化させたものである。水に可溶性のあるものが好ましい。 Dextrin is also commonly referred to as modified starch, and is obtained by grafting potato, sweet potato, corn, tapioca, wheat, and other raw starches by acid decomposition, oxidation, esterification, etherification, cross-linking, and copolymerization of synthetic polymers. Chemically treated to reduce the molecular weight. Those soluble in water are preferred.
水和熱抑制成分の含有量は、水和熱抑制ならびに強度発現性の点から、膨張物質100質量部に対して0.5〜6質量部が好ましく、1〜5質量部がより好ましい。 The content of the heat of hydration suppression component is preferably from 0.5 to 6 parts by mass, more preferably from 1 to 5 parts by mass, based on 100 parts by mass of the expansive substance, from the viewpoint of heat of hydration suppression and strength development.
本発明におけるセメント混和材を使用したコンクリートにおける配合量は、所定の膨張性の確保および初期強度発現性の点から、10〜30kg/m3が好ましく、15〜25kg/m3がより好ましい。 The amount of concrete using the cement admixture of the present invention, from the viewpoint of a predetermined expansive securing and early strength development, preferably 10~30kg / m 3, 15~25kg / m 3 and more preferably.
本発明において使用されるセメントは、種々のものを使用することができ、例えば、ポルトランドセメントや混合セメントなどを使用することができる。そのようなポルトランドセメントとしては、例えば、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメントが挙げられる。混合セメントとしては、例えば、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等が混合された各種の混合セメントが挙げられる。これらのセメントは、いずれか一種を選択して使用することもできるが、二種以上のセメントを組み合わせて使用してもよい。温度ひび割れを考慮したマスコンクリート向けには、低熱ポルトランドセメントや混合セメントが使用されることが多いが、本発明の技術によれば、汎用の普通ポルトランドセメントを用いても良好な性能が得られる。 Various cements can be used in the present invention, and for example, Portland cement and mixed cement can be used. Such Portland cements include, for example, various Portland cements such as ordinary, fast, super fast, low heat and moderate heat. Examples of the mixed cement include various mixed cements in which fly ash, blast furnace slag, silica fume, limestone fine powder, and the like are mixed. Any one of these cements can be selected and used, but two or more cements may be used in combination. For mass concrete in consideration of temperature cracking, low-heat Portland cement and mixed cement are often used. However, according to the technology of the present invention, good performance can be obtained even by using general-purpose ordinary Portland cement.
本発明におけるコンクリートを製造する場合に使用される骨材は、特に制限されるものではなく、通常のコンクリートの製造に使用される細骨材および粗骨材を何れも使用することができる。そのような細骨材および粗骨材として、例えば川砂、海砂、山砂、砕砂、人工細骨材、スラグ細骨材、再生細骨材、珪砂、川砂利、陸砂利、砕石、人工粗骨材、スラグ粗骨材、再生粗骨材等が挙げられる。骨材の配合量は、細骨材で700〜1000kg/m3、粗骨材で800〜1100kg/m3が好ましく、さらに細骨材で800〜900kg/m3、粗骨材で900〜1000kg/m3が好ましい。 The aggregate used in producing concrete in the present invention is not particularly limited, and any of fine aggregate and coarse aggregate used in ordinary production of concrete can be used. Such fine and coarse aggregates include, for example, river sand, sea sand, mountain sand, crushed sand, artificial fine aggregate, slag fine aggregate, recycled fine aggregate, silica sand, river gravel, land gravel, crushed stone, artificial coarse Aggregate, slag coarse aggregate, recycled coarse aggregate and the like can be mentioned. The amount of aggregate is preferably 800~1100kg / m 3 at 700~1000kg / m 3, the coarse aggregate fine aggregate, a further fine aggregate 800~900kg / m 3, the coarse aggregate 900~1000kg / M 3 is preferred.
本発明におけるコンクリートを製造する場合に使用される水は、特に限定されるものではなく、水道水などを使用することができる。水の配合量(単位水量)は、150〜180kg/m3とすることが、材料分離抵抗性を高めることから好ましい。また、水の配合量は、セメント100質量部に対し、40〜60質量部とすることが好ましい。 The water used when producing the concrete in the present invention is not particularly limited, and tap water or the like can be used. The blending amount of water (unit water amount) is preferably 150 to 180 kg / m 3 from the viewpoint of increasing material separation resistance. Further, the mixing amount of water is preferably 40 to 60 parts by mass with respect to 100 parts by mass of cement.
本発明においては、その特長が損なわれない範囲で各種添加剤(材)が併用されても良い。この種の添加剤としては、例えば減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤等の分散剤、凝結遅延剤、強度促進材、セメント用ポリマー、繊維、発泡剤、起泡剤、防水剤、防錆剤、収縮低減剤、増粘剤、保水剤、顔料、撥水剤、白華防止剤、消泡剤等が挙げられる。 In the present invention, various additives (materials) may be used in combination as long as the characteristics are not impaired. Examples of such additives include water reducing agents, AE water reducing agents, high-performance water reducing agents, high-performance AE water reducing agents, dispersants such as fluidizing agents, setting retarders, strength promoters, polymers for cement, fibers, and foams. Agents, foaming agents, waterproofing agents, rust inhibitors, shrinkage reducing agents, thickeners, water retention agents, pigments, water repellents, anti-whitening agents, defoaming agents, and the like.
本発明におけるコンクリートは、発熱が低減され、安定した膨張性能が得られるとともに、十分な強度が得られる。具体的には、下記のような良好な特性を得ることができる。
(1)前記セメント混和材を含まないコンクリートの最高温度(T0)に対する、前記セメント混和材を含むコンクリートの最高温度(T1)の比(T1/T0)が1未満であること。
(2)材齢7日における膨張率が200±20×10−6であること。
(3)前記セメント混和材を含まないコンクリートの材齢28日の圧縮強度(S0)に対する、前記セメント混和材を含むコンクリートの材齢28日の圧縮強度(S1)の比(S1/S0)が0.95以上であること。
In the concrete of the present invention, heat generation is reduced, stable expansion performance is obtained, and sufficient strength is obtained. Specifically, the following good characteristics can be obtained.
(1) The ratio (T 1 / T 0 ) of the maximum temperature (T 1 ) of the concrete containing the cement admixture to the maximum temperature (T 0 ) of the concrete not containing the cement admixture is less than 1.
(2) The expansion rate at the age of 7 days is 200 ± 20 × 10 −6 .
(3) The ratio of the compressive strength (S 1 ) of the concrete containing the cement admixture at the age of 28 to the compressive strength (S 0 ) of the concrete containing the cement admixture at the age of 28 (S 1 /). S 0 ) is 0.95 or more.
従って、本発明のセメント混和材を用いることによって、温度ひび割れに対する抵抗性に優れたコンクリートを得ることができ、例えば、マスコンクリートなどに好適に用いられる。 Therefore, by using the cement admixture of the present invention, it is possible to obtain concrete excellent in resistance to temperature cracks, and it is suitably used, for example, for mass concrete.
以下、実施例を挙げて本発明を詳細に説明するが、本発明は何らこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
表1に10μm以下の含有率の異なる膨張物質を示す。この膨張物質と水和熱抑制成分からなるセメント混和材を表1に示すように配合した。各単位量をセメント336kg/m3 、細骨材815kg/m3 、粗骨材968kg/m3 及び水168kg/m3 とし、減水剤をセメントに対して1.0質量%配合したコンクリートをベースコンクリートし、セメント混和材を用いる場合は、20kg/m3をセメントと置換して用いた。コンクリートの製造は、50リットルパン型ミキサを用いて行い、練り混ぜ時間は2分間とした。
評価試験としては、水和熱抑制効果試験、圧縮強度試験及び長さ変化(膨張率)試験を行った。
その結果、表2に示すように、10μm以下の含有率が30〜50%である膨張物質とデキストリンとを併用したセメント混和材を用いると、最高温度が抑えられ、良好な膨張性状と強度が得られることがわかる。
Table 1 shows expanding substances having different contents of 10 μm or less. The cement admixture comprising the swelling substance and the hydration heat inhibiting component was blended as shown in Table 1. Each unit dose cement 336kg / m 3, fine aggregates 815kg / m 3, the coarse aggregate 968kg / m 3 and water 168 kg / m 3, based on the concrete water-reducing agent was blended 1.0 weight% on cement When concrete was used and a cement admixture was used, 20 kg / m 3 was replaced with cement. The production of concrete was performed using a 50-liter pan mixer, and the mixing time was 2 minutes.
As an evaluation test, a hydration heat suppression effect test, a compressive strength test, and a length change (expansion coefficient) test were performed.
As a result, as shown in Table 2, when the cement admixture using the dextrin in combination with the swelling substance having a content of 10 μm or less of 30 to 50% is used, the maximum temperature is suppressed, and good swelling properties and strength are obtained. It can be seen that it can be obtained.
<使用材料>
(1)膨張物質:生石灰−石膏系
・膨張物質A:10μm以下の含有率は25%
・膨張物質B:10μm以下の含有率は30%
・膨張物質C:10μm以下の含有率は40%
・膨張物質D:10μm以下の含有率は50%
・膨張物質E:10μm以下の含有率は55%
(2)水和熱抑制剤:デキストリン(溶解性:50%タイプ)
(3)セメント:普通ポルトランドセメント、太平洋セメント社製、密度;3.16g/cm3
(4)粗骨材:砕石、Gmax:20mm
(5)細骨材:山砂(掛川産)
(6)減水剤:リグニンスルホン酸系AE減水剤
<Material used>
(1) Swelling substance: quicklime-gypsum / swelling substance A: The content of 10 μm or less is 25%.
・ Expansion substance B: The content of 10 μm or less is 30%.
・ Expansion substance C: The content of 10 μm or less is 40%.
・ Expansion substance D: The content of 10 μm or less is 50%.
・ Expansion substance E: content of 10 μm or less is 55%
(2) Hydration heat inhibitor: dextrin (solubility: 50% type)
(3) Cement: ordinary Portland cement, manufactured by Taiheiyo Cement Co., density: 3.16 g / cm 3
(4) Coarse aggregate: crushed stone, Gmax: 20 mm
(5) Fine aggregate: mountain sand (from Kakegawa)
(6) Water reducing agent: Lignin sulfonic acid AE water reducing agent
<試験方法>
(1)水和熱抑制効果試験:作製した生コンクリートをW28×D18×H14cm(約7リットル)の発泡容器に流し込み、簡易断熱状態とする。簡易断熱状態中のコンクリートの中心温度を測定し、水和熱抑制効果を確認した。セメント混和材を含まないコンクリートの最高温度(T0)に対する、セメント混和材を含むコンクリートの最高温度(T1)の比(T1/T0)をとって評価した。1未満を良好とした。
(2)圧縮強度試験:JIS A 1108「コンクリートの圧縮強度試験方法」に準じた。セメント混和材を含まないコンクリートの材齢28日の圧縮強度(S0)に対する、セメント混和材を含むコンクリートの材齢28日の圧縮強度(S1)の比(S1/S0)をとって評価した。0.95以上を良好とした。
(3)長さ変化(膨張率)試験:JIS A 6202「コンクリート用膨張材」参考1「膨張コンクリートの拘束膨張及び収縮試験方法」(A法)に準じた。材齢7日における膨張率で換算し、200±20×10−6を良好とした。
<Test method>
(1) Hydration heat suppression effect test: The prepared ready-mixed concrete is poured into a foaming container of W28 × D18 × H14 cm (about 7 liters) to be in a simple insulated state. The central temperature of concrete in the simple heat insulation state was measured, and the effect of suppressing hydration heat was confirmed. The ratio (T 1 / T 0 ) of the maximum temperature (T 1 ) of the concrete containing the cement admixture to the maximum temperature (T 0 ) of the concrete not containing the cement admixture was evaluated. Less than 1 was regarded as good.
(2) Compressive strength test: In accordance with JIS A 1108 “Method for testing compressive strength of concrete”. The ratio (S 1 / S 0 ) of the compressive strength (S 1 ) of the concrete containing the cement admixture at the age of 28 days to the compressive strength (S 0 ) of the concrete containing the cement admixture at the age of 28 days was calculated. Was evaluated. 0.95 or more was regarded as good.
(3) Length change (expansion coefficient) test: In accordance with JIS A 6202 “Expanding material for concrete” Reference 1 “Test method for restraining expansion and shrinkage of expanded concrete” (Method A). When converted by the expansion rate at the age of 7 days, 200 ± 20 × 10 −6 was regarded as good.
Claims (4)
(1)膨張率が200±20×10−6であること、
(2)前記膨張性セメント混和材を含まないコンクリートの最高発熱温度(T0)に対して、前記膨張性セメント混和材を含むコンクリートの最高発熱温度(T1)の比(T1/T0)が1未満であること、
(3)前記膨張性セメント混和材を含まないコンクリートの材齢28日の圧縮強度(S0)に対する、前記膨張性セメント混和材を含むコンクリートの材齢28日の圧縮強度(S1)の比(S1/S0)が0.95以上であること。 The concrete according to claim 3, which has the following properties.
(1) The expansion coefficient is 200 ± 20 × 10 −6 ,
(2) said expandable to the highest heating temperature of the concrete containing no cement admixture (T 0), the ratio of the maximum heating temperature of the concrete containing the expansive cement admixture (T 1) (T 1 / T 0 ) Is less than 1;
(3) the ratio of the compressive strength of expandable cement Compressive strength at the age of 28 days of concrete containing no admixture for (S 0), the expandable cement admixture concrete at the age of 28, including the day (S 1) (S 1 / S 0) is 0.95 or greater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016053894A JP6661430B2 (en) | 2016-03-17 | 2016-03-17 | Cement admixture and concrete using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016053894A JP6661430B2 (en) | 2016-03-17 | 2016-03-17 | Cement admixture and concrete using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017165627A JP2017165627A (en) | 2017-09-21 |
JP6661430B2 true JP6661430B2 (en) | 2020-03-11 |
Family
ID=59912696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016053894A Active JP6661430B2 (en) | 2016-03-17 | 2016-03-17 | Cement admixture and concrete using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6661430B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7181779B2 (en) * | 2018-12-10 | 2022-12-01 | 太平洋マテリアル株式会社 | Cement admixture and concrete using it |
CN111377652A (en) * | 2018-12-29 | 2020-07-07 | 江苏苏博特新材料股份有限公司 | Mass concrete hydration temperature rise inhibitor, preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2824273B2 (en) * | 1989-04-11 | 1998-11-11 | 電気化学工業株式会社 | Cement admixture |
JP2001048615A (en) * | 1999-08-13 | 2001-02-20 | Onoda Co | Cement admixture and cement composition using the same |
JP2001122649A (en) * | 1999-10-22 | 2001-05-08 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP4762953B2 (en) * | 2007-06-12 | 2011-08-31 | 電気化学工業株式会社 | Low heat generation type high strength concrete and hardened concrete using the same |
JP5263955B2 (en) * | 2008-12-26 | 2013-08-14 | 太平洋マテリアル株式会社 | Low exothermic expandable admixture |
-
2016
- 2016-03-17 JP JP2016053894A patent/JP6661430B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017165627A (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7651564B2 (en) | Gypsum-based floor underlayment | |
JP2016529200A (en) | Calcium sulfoaluminate composite binder | |
JP6137850B2 (en) | Hydraulic composition | |
JP4776426B2 (en) | Cement admixture and low expansion cement composition using the cement admixture | |
JP6661430B2 (en) | Cement admixture and concrete using it | |
JP4494743B2 (en) | Method for producing cement composition | |
JP2008222503A (en) | Concrete composition, concrete hardened body and expansive admixture | |
JP7181779B2 (en) | Cement admixture and concrete using it | |
JP4809278B2 (en) | Intumescent material, cement composition, and hardened cement body using the same | |
JP6682309B2 (en) | Grout composition | |
JP2017031037A (en) | Anti-washout underwater concrete composition and cured body thereof | |
JP6654932B2 (en) | High strength grout composition and high strength grout material | |
JP6837856B2 (en) | Expandable admixture for exposed concrete and exposed concrete containing it | |
JP2006298675A (en) | High fluidity admixture | |
JP6289897B2 (en) | Swelling composition and hydraulic composition | |
JP2001048615A (en) | Cement admixture and cement composition using the same | |
JP2004210551A (en) | Expansive clinker mineral and expansive composition containing the same | |
JP6843666B2 (en) | Durability improver for concrete, and concrete | |
JP2009001449A (en) | Expansive composition | |
JP7355690B2 (en) | Mortar or concrete compositions containing urea | |
JP2005008450A (en) | Method of producing cement slurry | |
JP4630539B2 (en) | Mortar, concrete expansion material and concrete | |
JP2019123646A (en) | Mortar composition and mortar | |
DK2664597T3 (en) | Binder blend and dry mortar composition | |
JP6974974B2 (en) | Expansion concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6661430 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |