JP6656724B2 - Liquefaction determination method - Google Patents

Liquefaction determination method Download PDF

Info

Publication number
JP6656724B2
JP6656724B2 JP2016011610A JP2016011610A JP6656724B2 JP 6656724 B2 JP6656724 B2 JP 6656724B2 JP 2016011610 A JP2016011610 A JP 2016011610A JP 2016011610 A JP2016011610 A JP 2016011610A JP 6656724 B2 JP6656724 B2 JP 6656724B2
Authority
JP
Japan
Prior art keywords
liquefaction
drilling
torque
load
resistance ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016011610A
Other languages
Japanese (ja)
Other versions
JP2017133168A (en
Inventor
良行 柳浦
良行 柳浦
久志 千葉
久志 千葉
学 武政
学 武政
Original Assignee
基礎地盤コンサルタンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基礎地盤コンサルタンツ株式会社 filed Critical 基礎地盤コンサルタンツ株式会社
Priority to JP2016011610A priority Critical patent/JP6656724B2/en
Publication of JP2017133168A publication Critical patent/JP2017133168A/en
Application granted granted Critical
Publication of JP6656724B2 publication Critical patent/JP6656724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は調査地盤の液状化に対する安全率を簡易、かつ高精度で求めることができる液状化判定方法に関する。   The present invention relates to a liquefaction determination method capable of easily and accurately determining a safety factor for liquefaction of an investigation ground.

従来、地盤の液状化判定方法としては、液状化抵抗比(RL)を地震外力で除した値として安全率(FL)を求め、この安全率が1.0以上であれば液状化しないと評価する方法が取られている。   Conventionally, as a method of determining liquefaction of the ground, a safety factor (FL) is obtained as a value obtained by dividing a liquefaction resistance ratio (RL) by an external force of an earthquake. A way to be taken.

すなわち、液状化抵抗比(RL)を求めることができれば、液状化判定を行うことができる。この液状化抵抗比を求める方法として地盤のサンプリングを行い、このサンプリングした地盤サンプルに対して液状化試験を行って、液状化抵抗比を求める方法や、ボーリングを行い測定されるN値、粒度及び地盤の塑性指数から求める方法等が行われている。
しかしながら、このような液状化判定方法では調査費用が高額となり、例えば、宅地に使用することは非常に困難であった。
That is, if the liquefaction resistance ratio (RL) can be determined, liquefaction determination can be performed. As a method of obtaining the liquefaction resistance ratio, the ground is sampled, a liquefaction test is performed on the sampled ground sample, and a method of obtaining the liquefaction resistance ratio, and N value, particle size and A method of obtaining the index from the plasticity index of the ground has been used.
However, such a liquefaction determination method requires a high survey cost, and for example, it is very difficult to use the method on a residential land.

そのため、安価に調査ができるように簡易的な液状化抵抗比を求める方法としてスウェーデン式サウンディング試験(貫入試験)を行い、この試験で得られるパラメータを用いて液状化抵抗比を求める方法が考えられている。   For this reason, a simple method for calculating the liquefaction resistance ratio so that it can be investigated at a low cost is to perform a Swedish sounding test (penetration test) and determine the liquefaction resistance ratio using the parameters obtained in this test. ing.

例えば特許文献1には、「地盤の強さを示す指標である動的せん断強度比Rと、地盤に液状化を発生させる側の強さを示す指標である地震時せん断応力比Lとの比R/Lから、液状化に対する地盤の抵抗率FLを求め、このFL値に基づいて液状化の危険度を判定する液状化判定方法において、 前記動的せん断強度比Rの算出方法として、先端に貫入体を有する貫入ロッドに負荷する荷重Wを段階的に変化させながら貫入ロッドを地中に回転貫入する貫入試験により、貫入ロッドの回転トルクT、貫入量Stを測定しこれら測定値に基づいて、土の硬軟を示す指標として次式で求められるCpと、
Cp=(D・nht/δSt)/(πT/WD)
ただし、nhtは貫入ロッドの半回転数、Dは貫入ロッドの最大直径
貫入ロッドの回転貫入に伴うエネルギとして次式で求められるδEと、
δE=πT・δnht+W・δSt
回転トルクTの増加量に対する荷重Wの増加量の比率であるδT/δWDと、回転トルクTの増加量に対する貫入量Stの増加量の比率であるδT/δStと、を試験パラメータとして定義し、これら試験パラメータのうち少なくとも一つを説明変数とし、目的変数を前記動的せん断強度比Rとして重回帰分析を実行することにより求めた回帰式により、前記動的せん断強度比Rを推定し、当該動的せん断強度比Rと前記地震時せん断応力比Lとの比R/Lから、地盤の液状化に対する抵抗率FLを求めることを特徴とする液状化判定方法。」(特許文献1)が開示されている。なお、この特許文献1において動的せん断強度比Rが本願発明でいう液状化抵抗比(RL)に相当し、地震時せん断応力比が本願発明でいう地震外力に相当する。
For example, Patent Literature 1 discloses a ratio of a dynamic shear strength ratio R, which is an index indicating the strength of the ground, and an earthquake shear stress ratio L, which is an index indicating the strength of a side on which liquefaction occurs in the ground. In the liquefaction determination method for determining the resistivity FL of the ground against liquefaction from R / L and determining the degree of risk of liquefaction based on the FL value, the method for calculating the dynamic shear strength ratio R The rotational torque T and the amount of penetration St of the penetrating rod are measured by a penetrating test in which the penetrating rod is rotationally penetrated into the ground while the load W applied to the penetrating rod having the penetrating body is changed stepwise, and based on these measured values, , Cp obtained by the following equation as an index indicating the hardness of the soil,
Cp = (D · nht / δSt) / (πT / WD)
Here, nht is the half rotation number of the penetrating rod, D is the maximum diameter of the penetrating rod, δE obtained as the energy accompanying the rotational penetration of the penetrating rod, and:
δE = πT · δnht + W · δSt
ΔT / δWD, which is the ratio of the increase amount of the load W to the increase amount of the rotation torque T, and δT / δSt, which is the ratio of the increase amount of the penetration amount St to the increase amount of the rotation torque T, are defined as test parameters. At least one of these test parameters is used as an explanatory variable, and the dynamic shear strength ratio R is estimated by a regression equation obtained by executing a multiple regression analysis with the objective variable being the dynamic shear strength ratio R. A liquefaction determination method, wherein a resistivity FL against liquefaction of ground is determined from a ratio R / L of a dynamic shear strength ratio R and the shear stress ratio L during earthquake. (Patent Document 1). In this patent document 1, the dynamic shear strength ratio R corresponds to the liquefaction resistance ratio (RL) according to the present invention, and the shear stress ratio during earthquake corresponds to the external force according to the present invention.

しかし、このような液状化判定方法では、液状化抵抗比を求めるためのパラメータ(定数)が多くなり、簡易に液状化判定を行うことができなかった。
また、多くのパラメータを組み合わせて液状化抵抗比を求めるため、推定された地盤判別、力学特性、液状化特性の誤差が定数の影響であるのか、地盤自体のばらつきであるのか判断できず、高精度の液状化判定を行うことができなかった。
However, in such a liquefaction determination method, the number of parameters (constants) for obtaining the liquefaction resistance ratio increases, and the liquefaction determination cannot be performed easily.
In addition, since the liquefaction resistance ratio is obtained by combining many parameters, it is not possible to judge whether the error in the estimated ground discrimination, mechanical characteristics, and liquefaction characteristics is an effect of a constant or a variation in the ground itself. Liquefaction determination with accuracy could not be performed.

特開2015−21355号公報JP 2015-21355 A

本発明は以上のような従来の欠点に鑑み、ボーリング調査やサンプリング等を行うことなく、かつ少ない定数で高精度の液状化抵抗比を求めることができ、容易に液状化判定をすることができる液状化判定方法を提供することを目的としている。   In view of the above-described conventional disadvantages, the present invention can obtain a high-precision liquefaction resistance ratio with a small number of constants without performing a boring survey, sampling, and the like, and can easily determine liquefaction. It is intended to provide a method for determining liquefaction.

上記目的を達成するために、本発明の液状化判定方法は、削孔機械のロッドの先端に設けられた削孔具を回転させて調査地盤に調査用孔を削孔し、削孔時に前記削孔具にかかる荷重、トルク及び半回転数を測定する削孔測定工程と、該削孔測定工程で測定した前記削孔具にかかる荷重、トルク及び半回転数と前記調査地盤の有効土被り圧から液状化抵抗比を求め、液状化に対する安全率を判定する液状化判定工程からなり、前記液状化判定工程は、荷重、トルク及び半回転数を乗じ、その値の絶対値を有効土被り圧で除した値により液状化抵抗比を算出し、該液状化抵抗比を地震外力で除し、安全率を求め、液状化判定を行うことを特徴とする。 In order to achieve the above object, the liquefaction determination method of the present invention is to drill a survey hole in the survey ground by rotating a drilling tool provided at the tip of a rod of a drilling machine, A drilling measurement step of measuring the load, torque and half-revolution applied to the drilling tool, and the load, torque and half-revolution applied to the drilling tool measured in the drilling measurement step and the effective earth covering of the survey ground seeking liquefaction resistance ratio from pressure, Ri Do from liquefaction determining step of determining the safety factor for the liquefaction, the liquefaction determining step, multiplied load torque and the half speed effective soil the absolute value of the value The liquefaction resistance ratio is calculated based on the value obtained by dividing by the overburden pressure, the liquefaction resistance ratio is divided by an external earthquake force, a safety factor is obtained, and liquefaction determination is performed .

以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)請求項1に記載の発明では、削孔具にかかる荷重、トルク及び半回転数と調査地盤の有効土被り圧から液状化抵抗比を算出できる。
したがって、容易に安全率を求めることができる。
(2)貫入試験を行うだけで安全率を求めることができるので、低コストで液状化判定を行うことができる。
(3)請求項2に記載の発明も前記(1)、(2)と同様な効果が得られると共に、液状化のおそれのある地盤(液状化対象地盤)を特定することができる。
As is clear from the above description, the following effects can be obtained in the present invention.
(1) According to the first aspect of the present invention, the liquefaction resistance ratio can be calculated from the load, torque, and half-rotation applied to the drilling tool, and the effective overburden pressure of the surveyed ground.
Therefore, the safety factor can be easily obtained.
(2) Since the safety factor can be obtained simply by performing a penetration test, liquefaction determination can be performed at low cost.
(3) The invention according to claim 2 can provide the same effects as the above (1) and (2), and can also specify the ground that is liable to be liquefied (the ground to be liquefied).

図1乃至図5は本発明の第1実施形態を示す各説明図である。
図6は本発明の第2実施形態を示す各説明図である。
第1実施形態の工程図。 削孔測定工程を示す説明図。 削孔測定工程の測定結果等を示す説明図。 土質判定工程の判定結果を示す分布図。 液状化判定工程の判定結果を示す分布図。 第2実施形態の工程図。
FIG. 1 to FIG. 5 are explanatory diagrams showing a first embodiment of the present invention.
FIG. 6 is an explanatory view showing a second embodiment of the present invention.
FIG. 4 is a process chart of the first embodiment. Explanatory drawing which shows a drilling measurement process. Explanatory drawing which shows the measurement result of a drilling measurement process, etc. FIG. 4 is a distribution diagram showing a determination result of a soil determination step. FIG. 4 is a distribution diagram illustrating a determination result of a liquefaction determination step. Process drawing of 2nd Embodiment.

以下、図面に示す本発明を実施するための形態により、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings for carrying out the present invention.

図1ないし図5に示す本発明を実施するための第1の形態において、1は本願発明の液状化判定方法である。   In the first embodiment for carrying out the present invention shown in FIGS. 1 to 5, reference numeral 1 denotes a liquefaction determination method of the present invention.

この液状化判定方法1は図1に示すように、削孔機械5のロッド8の先端に設けられた削孔具6(例えばスクリュー)を回転させて調査地盤に調査用孔7を削孔し、削孔時に前記削孔具6にかかる荷重、トルク及び半回転数を測定する削孔測定工程2と、該削孔測定工程2で測定した前記削孔具にかかる荷重、トルクの増減及び半回転数の増減と、調査地盤の有効土被り圧から所定深さの調査地盤の土質を判定する土質判定工程3と、該土質判定工程3により液状化のおそれのある土質と判定された地層である場合には、前記削孔測定工程2で測定された前記削孔具にかかる荷重、トルク及び半回転数と、調査地盤の有効土被り圧から液状化抵抗比を算出して、液状化に対する安全率を判定する液状化判定工程4とで構成されている。   In this liquefaction determination method 1, as shown in FIG. 1, a drilling tool 6 (for example, a screw) provided at the tip of a rod 8 of a drilling machine 5 is rotated to drill a survey hole 7 in a survey ground. A drilling measurement step 2 for measuring the load, torque and half-rotation applied to the drilling tool 6 during drilling, and increasing and decreasing and half of the load and torque applied to the drilling tool measured in the drilling measurement step 2 Soil quality determination step 3 for determining the soil quality of the survey ground at a predetermined depth from the increase and decrease in the number of revolutions and the effective earth covering pressure of the research ground, and a formation determined to be liquefied by the soil determination step 3 In some cases, the liquefaction resistance ratio is calculated from the load applied to the drilling tool measured in the drilling measurement step 2, the torque and the half-revolution, and the effective overburden pressure of the surveyed ground. And a liquefaction determination step 4 for determining the safety factor.

前記削孔測定工程2では、図2に示すように、削孔機械5を用いて調査地盤に調査用孔7を削孔するとともに、削孔時のデータを測定する工程である。削孔機械5のロッド8の先端部に設けられたスクリュー(削孔具)6を回転させながら調査地盤に貫入させ、貫入時の荷重W、トルクT、半回転数Nsw、貫入時間Sを測定する。本実施の形態においては、その測定結果を図3に示すように、地表から13.5m貫入し、5cm毎に前記データを測定した。   In the drilling measurement step 2, as shown in FIG. 2, a drilling hole 7 is drilled in the investigation ground using a drilling machine 5, and data at the time of drilling are measured. The screw (drilling tool) 6 provided at the tip of the rod 8 of the drilling machine 5 is penetrated into the survey ground while rotating, and the load W, torque T, half-rotational speed Nsw, and penetration time S at the time of penetration are measured. I do. In the present embodiment, as shown in FIG. 3, the measurement results penetrate 13.5 m from the ground surface, and the data was measured every 5 cm.

なお、使用される削孔機械5としては、貫入時の荷重W、トルクT、半回転数Nsw、貫入時間Sを測定できるものであればどのような削孔機械を用いてもよく、本実施の形態においては、スウェーデン式サウンディング試験用の削孔機械を用いている。
また、図3のN値等は、比較のためサンプリング等により測定したものである。
前記土質判定工程3では、前記削孔測定工程2で測定されたデータから、どの土層が液状化対象土層であるかを判定する工程である。
As the drilling machine 5 to be used, any drilling machine can be used as long as it can measure the load W, torque T, half-rotational speed Nsw, and penetration time S at the time of penetration. In the embodiment, a drilling machine for a Swedish sounding test is used.
The N values and the like in FIG. 3 are measured by sampling or the like for comparison.
The soil determination step 3 is a step of determining which soil layer is the liquefaction target soil layer from the data measured in the drilling measurement step 2.

まず、液状化対象土層とは、液状化のおそれがある土層であり、建築や土木等の分野では、多くの場合細粒分含有率FCが65%以下の土層を対象土層と定めている。
この細粒分含有率とは、いわゆる粘性土分の含有率を示しており、細粒分含有率65%という場合には、粘性土分の含有率が65%であり、砂質土分が35%であることを示す。
この液状化対象土層の判定についても、従来は土層のサンプリングを行い、室内での粒度試験から細粒分含有率FCを求めていた。
First, the liquefaction target soil layer is a soil layer that is likely to be liquefied. In the fields of construction and civil engineering, a soil layer having a fine particle content FC of 65% or less is often referred to as a target soil layer. It has established.
The fine-grain content indicates the so-called cohesive soil content. When the fine-grain content is 65%, the cohesive soil content is 65%, and the sandy soil is 35%.
In the determination of the soil layer to be liquefied, conventionally, the soil layer was sampled, and the fine particle content FC was determined from an indoor particle size test.

本願発明の土質判定工程3では、荷重、トルクの変化△T及び半回転数の変化△Nswを乗じ、その値の絶対値を有効土被り圧σv’ (浮力を考慮した値)で除した値により液状化対象土層であるか否かの判定を行う。これは図2からわかるように、調査地盤にスクリューを回転させながら貫入した場合に、砂質土ほどトルク、半回転数の増減が大きくなるという性質に着目したものである。なお、トルク及び半回転数は、拘束圧の影響を受けるため、有効土被り圧で除すことにより、その影響を除外している。
|W・△T・△Nsw|/σv’
この計算式により算出した値と、実際に測定した細粒分含有率FCを比較した分布図を図4に示す。この図4からわかるように、0.1を超えていれば細粒分含有率が65%を下回っている事が確認できる。
すなわち、|W・△T・△Nsw|/σv’>0.1であれば、液状化対象土層であると判定できる。
In the soil determination step 3 of the present invention, a value obtained by multiplying the change in load and torque ΔT and the change in half-rotation speed ΔNsw, and dividing the absolute value of the value by the effective overburden pressure σv ′ (a value considering buoyancy). It is determined whether or not the liquefaction target soil layer. As can be seen from FIG. 2, when the screw is penetrated into the survey ground while rotating, the sandy soil is characterized by the fact that the torque and the half-revolution increase and decrease as the soil becomes sandy. Since the torque and the half rotation speed are affected by the constraint pressure, the influences are excluded by dividing the torque and the effective rotation by the effective earth covering pressure.
| W · △ T · △ Nsw | / σv '
FIG. 4 shows a distribution diagram comparing the value calculated by this calculation formula with the actually measured fine particle content FC. As can be seen from FIG. 4, if it exceeds 0.1, it can be confirmed that the fine particle content is less than 65%.
That is, if | W · △ T · △ Nsw | / σv ′> 0.1, it can be determined that the soil layer is a liquefaction target soil layer.

前記液状化判定工程4は、液状化対象土層であると判定された土層の液状化強度を、前記削孔測定工程2で測定されたデータから、液状化抵抗比RLを算出し液状化判定を行う。   The liquefaction determination step 4 calculates the liquefaction resistance ratio RL of the liquefaction strength of the soil layer determined to be the liquefaction target soil layer from the data measured in the drilling measurement step 2, and performs liquefaction. Make a decision.

本願発明の液状化判定工程4では、荷重、トルクT及び半回転数Nswを乗じ、その値の絶対値を有効土被り圧σv’ (浮力を考慮した値)で除した値により液状化抵抗比RLを算出し、該液状化抵抗比RLを地震外力で除し、安全率FLを求め、液状化判定を行う。これは図3からわかるように、N値とトルク、半回転数及び貫入時間に良い相関がある点に着目したものである。なお、トルク及び半回転数は、拘束圧の影響を受けるため、有効土被り圧で除すことにより、その影響を除外している。   In the liquefaction determination step 4 of the present invention, the liquefaction resistance ratio is calculated by multiplying the load, the torque T and the half-rotation speed Nsw, and dividing the absolute value of the multiplied value by the effective overburden pressure σv ′ (a value considering buoyancy). RL is calculated, the liquefaction resistance ratio RL is divided by the external force of earthquake, a safety factor FL is obtained, and liquefaction determination is performed. This focuses on the fact that there is a good correlation between the N value and the torque, the half-rotation speed and the penetration time, as can be seen from FIG. Since the torque and the half rotation speed are affected by the constraint pressure, the influences are excluded by dividing the torque and the effective rotation by the effective earth covering pressure.

W・T・Nsw/σv’
この計算式により算出した各土層の値と、実際に測定した各土層の液状化抵抗比RLを比較した分布図を図5に示す。この図5からわかるように、前記計算式から算出した値と液状化抵抗比RLは良い相関が有り、該計算式で求めた値から高精度で液状化抵抗比RLを推定することが可能である。
WT Nsw / σv '
FIG. 5 shows a distribution diagram comparing the value of each soil layer calculated by this calculation formula with the actually measured liquefaction resistance ratio RL of each soil layer. As can be seen from FIG. 5, there is a good correlation between the value calculated from the above formula and the liquefaction resistance ratio RL, and it is possible to estimate the liquefaction resistance ratio RL with high accuracy from the value obtained by the formula. is there.

液状化抵抗比RLを推定することができれば、この値を地震外力で除して安全率FLを求めることができる。前述したように安全率FL>1.0であれば、液状化しないと評価することができる。   If the liquefaction resistance ratio RL can be estimated, the safety factor FL can be obtained by dividing this value by the external force. As described above, if the safety factor FL> 1.0, it can be evaluated that liquefaction does not occur.

[発明を実施するための異なる形態]
次に、図6に示す本発明を実施するための異なる形態につき説明する。なお、これらの本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。
[Different modes for carrying out the invention]
Next, a different embodiment for carrying out the present invention shown in FIG. 6 will be described. In the description of these different embodiments for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention will be denoted by the same reference numerals, and redundant description will be omitted.

図6に示す本発明を実施するための第2の形態において、前記本発明を実施するための第1の形態と主に異なる点は、土質判定工程3を行わない液状化判定方法1Aにした点で、このような液状化判定方法1Aでも予め液状化対象土層が明確である場合や、全土層に対して液状化判定を行う場合には、適格かつ高精度に液状化判定を行うことができる。   In the second embodiment for carrying out the present invention shown in FIG. 6, the main difference from the first embodiment for carrying out the present invention is that a liquefaction determination method 1A in which the soil determination step 3 is not performed. In this regard, in the liquefaction determination method 1A as well, when the liquefaction target soil layer is clear in advance or when liquefaction determination is performed on all soil layers, the liquefaction determination should be performed appropriately and with high accuracy. Can be.

本発明は構造物を設計・施工するための液状化判定が必要な土木・建築分野などの産業で利用される。   INDUSTRIAL APPLICABILITY The present invention is used in industries such as civil engineering and construction where liquefaction determination for designing and constructing structures is required.

1、1A:液状化判定方法、 2:削孔測定工程、
3:土質判定工程、 4:液状化判定工程、
5:削孔機械、 6:削孔具、
7:調査用孔、 8:ロッド。
1, 1A: liquefaction determination method, 2: drilling measurement step,
3: soil determination process 4: liquefaction determination process
5: drilling machine, 6: drilling tool,
7: hole for investigation, 8: rod.

Claims (2)

削孔機械のロッドの先端に設けられた削孔具を回転させて調査地盤に調査用孔を削孔し、削孔時に前記削孔具にかかる荷重、トルク及び半回転数を測定する削孔測定工程と、該削孔測定工程で測定した前記削孔具にかかる荷重、トルク及び半回転数と前記調査地盤の有効土被り圧から液状化抵抗比を求め、液状化に対する安全率を判定する液状化判定工程からなり、
前記液状化判定工程は、荷重、トルク及び半回転数を乗じ、その値の絶対値を有効土被り圧で除した値により液状化抵抗比を算出し、該液状化抵抗比を地震外力で除し、安全率を求め、液状化判定を行うことを特徴とする液状化判定方法。
A drilling hole is drilled in the survey ground by rotating a drilling tool provided at the tip of a rod of a drilling machine, and a drilling hole, which measures the load, torque and half-rotation applied to the drilling tool during drilling. A liquefaction resistance ratio is determined from a measurement step, a load applied to the drilling tool measured in the drilling measurement step, a torque and a half rotation and an effective earth covering pressure of the surveyed ground, and a safety rate against liquefaction is determined. Ri Do from liquefaction determining step,
In the liquefaction determination step, the liquefaction resistance ratio is calculated by multiplying the load, the torque and the half-rotation speed, and the absolute value of the value is divided by the effective cover pressure, and the liquefaction resistance ratio is divided by the external force. A liquefaction determination method comprising: determining a safety factor; and performing liquefaction determination.
削孔機械のロッドの先端に設けられた削孔具を回転させて調査地盤に調査用孔を削孔し、削孔時に前記削孔具にかかる荷重、トルク及び半回転数を測定する削孔測定工程と、該削孔測定工程で測定した前記削孔具にかかる荷重、トルクの増減及び半回転数の増減と前記調査地盤の有効土被り圧から所定深さの調査地盤の土質をそれぞれ判定する土質判定工程と、該土質判定工程により液状化のおそれのある土質と判定された地層おいて、前記削孔測定工程で測定された前記削孔具にかかる荷重、トルク及び半回転数と前記調査地盤の有効土被り圧から液状化抵抗比を求め、液状化に対する安全率を判定する液状化判定工程からなり、
前記液状化判定工程は、荷重、トルク及び半回転数を乗じ、その値の絶対値を有効土被り圧で除した値により液状化抵抗比を算出し、該液状化抵抗比を地震外力で除し、安全率を求め、液状化判定を行い、
前記土質判定工程は、荷重、トルクの変化及び半回転数の変化を乗じ、その値の絶対値を有効土被り圧で除した値により液状化対象土層であるか否かの判定を行うことを特徴とする液状化判定方法。
A drilling hole is drilled in the survey ground by rotating a drilling tool provided at the tip of a rod of a drilling machine, and a drilling hole, which measures the load, torque and half-rotation applied to the drilling tool during drilling. The soil quality of the survey ground at a predetermined depth is determined from the measurement process, the load applied to the drilling tool measured in the drilling measurement process, the increase / decrease of the torque and the increase / decrease of the half rotation speed, and the effective cover pressure of the survey ground. In the soil determination step to be performed, in the geological layer determined to be liquefied by the soil determination step, the load applied to the drilling tool measured in the drilling measurement step, the torque and the half-revolution and the Liquefaction resistance ratio is determined from the effective overburden pressure of the surveyed ground, and the liquefaction determination process determines the safety factor against liquefaction.
In the liquefaction determination step, the liquefaction resistance ratio is calculated by multiplying the load, the torque and the half-rotation speed, and the absolute value of the value is divided by the effective cover pressure, and the liquefaction resistance ratio is divided by the external force. Safety factor, liquefaction judgment,
The soil determination step is to determine whether or not the liquefaction target soil layer by a value obtained by multiplying the load, the change in the torque and the change in the half revolution, and dividing the absolute value of the value by the effective overburden pressure. Liquefaction determination method characterized by the above-mentioned.
JP2016011610A 2016-01-25 2016-01-25 Liquefaction determination method Active JP6656724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011610A JP6656724B2 (en) 2016-01-25 2016-01-25 Liquefaction determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011610A JP6656724B2 (en) 2016-01-25 2016-01-25 Liquefaction determination method

Publications (2)

Publication Number Publication Date
JP2017133168A JP2017133168A (en) 2017-08-03
JP6656724B2 true JP6656724B2 (en) 2020-03-04

Family

ID=59502398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011610A Active JP6656724B2 (en) 2016-01-25 2016-01-25 Liquefaction determination method

Country Status (1)

Country Link
JP (1) JP6656724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102277315B1 (en) * 2020-12-22 2021-07-14 한국건설기술연구원 Ground liquefaction risk assessment system, method, and recording medium recording a computer-readable program for executing the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211281B2 (en) * 2013-03-21 2017-10-11 大和ハウス工業株式会社 Design method of ground reinforcement depth considering liquefaction
JP2015021355A (en) * 2013-07-23 2015-02-02 日東精工株式会社 Liquefaction determination method

Also Published As

Publication number Publication date
JP2017133168A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
CN109187228A (en) A kind of indoor evaluation method of shale formation drilling fluid stabilizing borehole ability
WO2015012304A1 (en) Method for determining liquefaction
RU2564423C2 (en) System and method for simulation of interaction of reamer and bit
Chung et al. Relating mobile sensor soil strength to penetrometer cone index
CN103556659A (en) Self-elevating offshore platform-based pile penetration quality dynamic-evaluation method
JP6656724B2 (en) Liquefaction determination method
CN110174503A (en) A method of determining that country rock weakens development range based on tunnel deformation
CN109086502A (en) A kind of Mechanics Parameters of Rock Mass fast determination method based on rotary-cut penetration technology
US10324006B2 (en) Method for detecting a malfunction during drilling operations
JP6339425B2 (en) Drilling condition determination method, drilling length calculation method, and geological logging method
Meyer-Heye et al. Weight distribution in reaming while drilling BHAs
Chiasson Interpretation of Falling-Head Tests in Presence of Random Measurement Error
Okewale et al. Correlation of strength properties of limestone deposit in Ogun state, Nigeria with penetration rate using linear regression analysis for engineering applications
CN109322653B (en) Ground rapid evaluation method and device for stick-slip characteristics of underground drill string
Augustesen et al. CSi—a joint industry project into CPTUs in silty soils
Hakam et al. Liquefaction Mapping Procedure Development: Density and Mean Grain Size Formulations
Zhang et al. Non-complete relief method for measuring surface stresses in surrounding rocks
JP6159089B2 (en) Soil judgment method
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
Marto et al. An Attempt of Screw Driving Sounding Test in Malaysia
CN111075424B (en) Method for correcting measurement results of measurement-while-drilling parameters
Pei et al. Constraining in-situ stresses at BETA by analysis of borehole images and downhole pressure data
Krasiński Estimation of Screw Displacement Pile-Bearing Capacity Based on Drilling Resistances
Denney Quantifying drillstring-integrity-failure risk: real-time vibration measurements
JP2023091466A (en) Method for measuring coefficient of earth pressure at rest of ground and multistage cone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6656724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250