JP6656037B2 - Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst - Google Patents

Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst Download PDF

Info

Publication number
JP6656037B2
JP6656037B2 JP2016061138A JP2016061138A JP6656037B2 JP 6656037 B2 JP6656037 B2 JP 6656037B2 JP 2016061138 A JP2016061138 A JP 2016061138A JP 2016061138 A JP2016061138 A JP 2016061138A JP 6656037 B2 JP6656037 B2 JP 6656037B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
composite oxide
ammonia synthesis
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016061138A
Other languages
Japanese (ja)
Other versions
JP2017170378A (en
Inventor
昌稔 池田
昌稔 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016061138A priority Critical patent/JP6656037B2/en
Publication of JP2017170378A publication Critical patent/JP2017170378A/en
Application granted granted Critical
Publication of JP6656037B2 publication Critical patent/JP6656037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニア合成に用いられる触媒および該触媒を用いたアンモニアの合成方法に関する。   The present invention relates to a catalyst used for ammonia synthesis and a method for synthesizing ammonia using the catalyst.

アンモニアは従来、ハーバーボッシュ法により工業レベルで広く製造されている。ハーバーボッシュ法は、二重促進鉄触媒を用いて水素と窒素とを400〜600℃、20〜100MPaの高圧条件で反応させてアンモニアを得るものである(非特許文献1)。
ルテニウムを活性金属に用いた触媒を利用することで、より低温・低圧でのアンモニア合成を実現した例もある(特許文献1)。また、ルテニウムを活性金属に用いた触媒において、セリア等のランタノイド酸化物やアルカリ土類金属を含む担体を用いることで、高い活性を実現した例もある(特許文献2および非特許文献2〜4)。このように、従来のハーバーボッシュ法に用いる触媒においては、マグネシアとランタノイドやアルカリ土類金属を共存させた触媒を用いることにより高活性化を実現できるとされている。
Ammonia has heretofore been widely produced at the industrial level by the Haberbosch process. In the Haberbosch method, ammonia is obtained by reacting hydrogen and nitrogen at 400 to 600 ° C. and a high pressure of 20 to 100 MPa using a double-promoted iron catalyst (Non-Patent Document 1).
There is also an example in which ammonia synthesis at lower temperature and lower pressure is realized by using a catalyst using ruthenium as an active metal (Patent Document 1). Further, in a catalyst using ruthenium as an active metal, there is an example in which a high activity is realized by using a carrier containing a lanthanoid oxide such as ceria or an alkaline earth metal (Patent Document 2 and Non-Patent Documents 2 to 4). ). As described above, in the catalyst used in the conventional Haberbosch method, it is said that high activation can be realized by using a catalyst in which magnesia and a lanthanoid or an alkaline earth metal coexist.

一方、近年、発明者らにより電場中に設置した触媒を用いたアンモニアの合成方法が提案されている(特許文献3)。この当該電場触媒反応によるアンモニアの合成方法は、一対の電極間に設置された触媒に放電を生じない電圧を印加すること(以後、単に“電場印加”と称することがある)により小スケールや低温低圧といった、従来のハーバーボッシュ法による合成ではエネルギー効率的に不利となる条件においても、アンモニア合成促進効果を得ることが可能となる。加えて、反応の開始や停止にも柔軟に対応できるため、断続的な電力供給、例えば発電変動がある再生可能エネルギーによる発電設備等と組み合わせた場合において好適に使用できる。このような反応方法においては、触媒が一定の導電性を持つ必要があり、特許文献3においてはCe0.5Zr0.5複合酸化物を担体に用いた触媒が開示されている。 On the other hand, recently, the inventors have proposed a method for synthesizing ammonia using a catalyst installed in an electric field (Patent Document 3). In this method of synthesizing ammonia by the electric field catalytic reaction, a small scale or low temperature is applied by applying a voltage that does not cause discharge to a catalyst provided between a pair of electrodes (hereinafter, sometimes simply referred to as “electric field application”). It is possible to obtain the effect of promoting ammonia synthesis even under conditions such as low pressure, which are disadvantageous in terms of energy efficiency in the conventional Haberbosch synthesis. In addition, since it is possible to flexibly cope with the start and stop of the reaction, it can be suitably used in combination with intermittent power supply, for example, a power generation facility using renewable energy having power generation fluctuation. In such a reaction method, the catalyst needs to have a certain conductivity, and Patent Document 3 discloses a catalyst using a Ce 0.5 Zr 0.5 O 2 composite oxide as a carrier.

特開平2−258066号公報JP-A-2-258066 特開平6−79177号公報JP-A-6-79177 特開2014−141361号公報JP 2014-141361 A

「触媒便覧」 講談社 2008年12月10日発行 pp.68"Catalyst Handbook" Kodansha Published December 10, 2008 pp. 68 Journal of Fuel Chemistry and Technology Vol.40,pp.848−854,2012年Journal of Fuel Chemistry and Technology Vol. 40, pp. 848-854, 2012 Catalysis Letters Vol.106,pp.107−110,2006年Catalysis Letters Vol. 106 pp. 107-110, 2006 Catalysis Letters Vol.141,pp.1275−1281,2011年Catalysis Letters Vol. 141 pp. 1275-1281,2111

しかし、ハーバーボッシュ法をはじめとするアンモニア合成プロセスは高エネルギー消費プロセスであり、依然として触媒の活性向上によるエネルギー効率の向上が求められている。特に、電場触媒反応によるアンモニア合成方法においては、触媒の反応活性が低いため、ハーバーボッシュ法に対してエネルギー効率の面で劣るという問題がある。電場触媒反応では、従来のハーバーボッシュ法で有効とされるマグネシア担体や、酸化ランタンやセリアなどのランタノイドからなる酸化物を担体に用いた触媒では、触媒の絶縁性が高すぎるため放電が起こり、電場印加によるアンモニア合成促進効果を得ることができない上、投入した電気エネルギーの大半がガス中分子の電離に使用されることになり、エネルギー効率が大幅に低下する。そのため、より電場印加の効果を有効に活用でき、高活性を実現できるアンモニア合成用の触媒が求められている。   However, the ammonia synthesis process such as the Haberbosch process is a high energy consumption process, and there is still a demand for improvement in energy efficiency by improving the activity of the catalyst. In particular, in the ammonia synthesis method using an electric field catalytic reaction, there is a problem that the reaction efficiency of the catalyst is low, so that the energy efficiency is inferior to the Haberbosch method. In the field-catalyzed reaction, a magnesia carrier that is effective in the conventional Haberbosch method, or a catalyst using an oxide composed of lanthanoids such as lanthanum oxide and ceria as a carrier, a discharge occurs because the insulating property of the catalyst is too high, The effect of promoting the synthesis of ammonia by applying an electric field cannot be obtained, and most of the input electric energy is used for ionizing molecules in the gas, resulting in a significant decrease in energy efficiency. Therefore, there is a need for a catalyst for ammonia synthesis that can effectively utilize the effect of applying an electric field and achieve high activity.

発明者らは上記課題に鑑み鋭意検討した結果、アンモニア合成、特に電場触媒反応によるアンモニア合成において、パイロクロア構造および/またはアパタイト構造を有する複合酸化物を含有する触媒を用いることで活性が有意に向上するという効果を見出し、発明を完成するに至った。   The present inventors have conducted intensive studies in view of the above problems, and found that in ammonia synthesis, particularly ammonia synthesis by an electric field catalytic reaction, the activity was significantly improved by using a catalyst containing a composite oxide having a pyrochlore structure and / or an apatite structure. And found that the invention was completed.

本発明を以下に示す。
[1]少なくとも触媒活性成分と複合酸化物とを含み、当該複合酸化物としてパイロクロア構造および/またはアパタイト構造を有する複合酸化物を用いることを特徴とするアンモニア合成用触媒。
[2]一対の電極間に触媒を設け、水素と窒素の存在下に当該電極間に放電を生じない電圧を印加してアンモニアを合成するために用いる前記[1]に記載のアンモニア合成用触媒。
[3]前記パイロクロア構造および/またはアパタイト構造を有する複合酸化物が、ランタノイドを含む複合酸化物であることを特徴とする前記[1]または[2]に記載のアンモニア合成用触媒。
[4]前記アンモニア合成用触媒において、さらに助触媒としてアルカリ金属、アルカリ土類金属、ランタノイドから選ばれる少なくとも1つの元素を含有することを特徴とする前記[1]〜[3]のいずれかに記載のアンモニア合成用触媒。
[5]前記触媒活性成分が、ルテニウム、鉄、コバルト、ニッケル、白金、パラジウム、ロジウム、イリジウムから選ばれる少なくとも1つの元素を含有することを特徴とする前記[1]〜[4]のいずれかに記載のアンモニア合成用触媒。
[6]一対の電極間に触媒を設け、水素と窒素の存在下に当該電極間に放電を生じない電圧を印加してアンモニアを合成する方法であって、前記[1]〜[5]のいずれかに記載のアンモニア合成用触媒を用いることを特徴とするアンモニアの合成方法。
The present invention is described below.
[1] An ammonia synthesis catalyst comprising at least a catalytically active component and a composite oxide, wherein a composite oxide having a pyrochlore structure and / or an apatite structure is used as the composite oxide.
[2] The catalyst for ammonia synthesis according to [1], wherein a catalyst is provided between a pair of electrodes, and a voltage that does not cause a discharge is applied between the electrodes in the presence of hydrogen and nitrogen to synthesize ammonia. .
[3] The catalyst for ammonia synthesis according to [1] or [2], wherein the composite oxide having a pyrochlore structure and / or an apatite structure is a composite oxide containing a lanthanoid.
[4] The ammonia synthesis catalyst according to any one of [1] to [3], further including at least one element selected from an alkali metal, an alkaline earth metal, and a lanthanoid as a cocatalyst. The catalyst for ammonia synthesis as described above.
[5] The catalyst according to any one of [1] to [4], wherein the catalytically active component contains at least one element selected from ruthenium, iron, cobalt, nickel, platinum, palladium, rhodium, and iridium. A catalyst for ammonia synthesis according to 1.
[6] A method in which a catalyst is provided between a pair of electrodes, and ammonia is synthesized by applying a voltage that does not cause a discharge between the electrodes in the presence of hydrogen and nitrogen, the method comprising the steps of [1] to [5]. A method for synthesizing ammonia, comprising using the catalyst for ammonia synthesis according to any one of the above.

本発明に係るアンモニア合成用触媒を用いることにより、アンモニア合成、特に電場触媒反応によるアンモニア合成において、アンモニア生成速度を従来よりも大幅に向上させることが可能となる。   By using the catalyst for ammonia synthesis according to the present invention, it is possible to greatly improve the rate of ammonia generation in the synthesis of ammonia, particularly in the synthesis of ammonia by an electric field catalytic reaction, as compared with the conventional case.

以下、本発明にかかるアンモニア合成用触媒およびアンモニア合成方法について詳しく説明するが、本発明の範囲はこれらの説明に限定されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。
本実施形態では、本発明の一態様であるアンモニア合成用触媒およびアンモニア合成方法の一例について説明する。
Hereinafter, the catalyst for ammonia synthesis and the method for synthesizing ammonia according to the present invention will be described in detail, but the scope of the present invention is not limited to these descriptions, and a range other than the following examples does not impair the spirit of the present invention. Can be appropriately changed and implemented.
In this embodiment, an example of an ammonia synthesis catalyst and an ammonia synthesis method which are one embodiment of the present invention will be described.

[アンモニア合成用触媒]
アンモニア合成用触媒としては、触媒活性成分と、パイロクロア構造および/またはアパタイト構造を有する複合酸化物とを含むものであれば、特に限定されない。
[Ammonia synthesis catalyst]
The catalyst for ammonia synthesis is not particularly limited as long as it contains a catalytically active component and a composite oxide having a pyrochlore structure and / or an apatite structure.

触媒活性成分としては、ルテニウム、鉄、コバルト、ニッケル、白金、パラジウム、ロジウム、イリジウムなどが挙げられ、ルテニウム、鉄、コバルト、ニッケルが好ましく、ルテニウム、鉄が特に好ましい。
前記触媒活性成分の含有量としては、本発明の効果を有すれば特に限定されないが、アンモニア合成用触媒に対して0.01〜40wt%が好ましく、0.1〜30wt%がより好ましく、1〜25wt%がさらに好ましい。
Examples of the catalytically active component include ruthenium, iron, cobalt, nickel, platinum, palladium, rhodium, iridium, and the like. Ruthenium, iron, cobalt, and nickel are preferred, and ruthenium and iron are particularly preferred.
The content of the catalytically active component is not particularly limited as long as it has the effect of the present invention, but is preferably 0.01 to 40% by weight, more preferably 0.1 to 30% by weight, based on the ammonia synthesis catalyst. ~ 25 wt% is more preferred.

パイロクロア構造を有する複合酸化物としては、LaZr、NdZr、SmZr、GdZr、LaTi、NdTi、SmZr、GdZr7、LaCe、CaNb、SrNb、BaNb、BiTiなどが挙げられ、LaZr、NdZr、SmZr、GdZr、LaCeが好ましく、LaZr、NdZrが特に好ましい。
アパタイト構造を有する複合酸化物としては、La10Si27、Nd10Si27、Sm10Si27、La10Ge27、Nd10Ge27、Sm10Ge27などが挙げられ、La10Si27、Nd10Si27、Sm10Si27が好ましく、La10Si27が特に好ましい。
As the composite oxide having a pyrochlore structure, La 2 Zr 2 O 7, Nd 2 Zr 2 O 7, Sm 2 Zr 2 O 7, Gd 2 Zr 2 O 7, La 2 Ti 2 O 7, Nd 2 Ti 2 O 7 , Sm 2 Zr 2 O 7 , Gd 2 Zr 2 O 7, La 2 Ce 2 O 7 , Ca 2 Nb 2 O 7 , Sr 2 Nb 2 O 7 , Ba 2 Nb 2 O 7 , Bi 2 Ti 2 O 7 and the like, preferably La 2 Zr 2 O 7, Nd 2 Zr 2 O 7, Sm 2 Zr 2 O 7, Gd 2 Zr 2 O 7, La 2 Ce 2 O 7 is, La 2 Zr 2 O 7, Nd 2 Zr 2 O 7 is particularly preferred.
As the composite oxide having an apatite structure, La 10 Si 6 O 27, Nd 10 Si 6 O 27, Sm 10 Si 6 O 27, La 10 Ge 6 O 27, Nd 10 Ge 6 O 27, Sm 10 Ge 6 O 27, and the like. La 10 Si 6 O 27 , Nd 10 Si 6 O 27 , and Sm 10 Si 6 O 27 are preferable, and La 10 Si 6 O 27 is particularly preferable.

当該複合酸化物の調製方法としては、特に限定されず、以下に述べる方法が挙げられる。例えば、オキシカルボン酸を過剰に含むグリコール溶液中に金属塩を溶解させ、金属オキシカルボン酸錯体を形成させる。この溶液を加熱するとポリエステル高分子ゲルが得られる。得られた高分子ゲルを高温で熱分解させることで複合酸化物粉体が得ることができる(錯体重合法)。この他、複合酸化物を構成する元素の酸化物や炭酸塩などの固体原料同士を混合し焼成する方法(固相反応法)、複合酸化物を構成する元素の一つの酸化物に別の構成元素の塩を含む水溶液を含浸し、乾燥、焼成する方法(含浸法)、複合酸化物の構成元素の塩を含む水溶液を混合し、pH調整し沈殿物を得た後、沈殿物を乾燥、焼成する方法(共沈法)などがある。好ましくは錯体重合法、固相反応法、共沈法である。これら方法において、焼成温度としては、800〜1200℃が好ましく、再現性と比表面積の観点から900〜1200℃がより好ましい。これら複合酸化物の比表面積は0.5〜50m/gが好ましく、5〜50m/gがより好ましい。 The method for preparing the composite oxide is not particularly limited, and includes the following methods. For example, a metal salt is dissolved in a glycol solution containing an excess of oxycarboxylic acid to form a metal oxycarboxylic acid complex. When this solution is heated, a polyester polymer gel is obtained. A composite oxide powder can be obtained by thermally decomposing the obtained polymer gel at a high temperature (complex polymerization method). In addition, a method of mixing and baking solid raw materials such as oxides and carbonates of the elements constituting the composite oxide (solid-state reaction method), a method of mixing one element of the composite oxide into another oxide A method of impregnating an aqueous solution containing a salt of an element, drying and calcining (impregnation method), mixing an aqueous solution containing a salt of a constituent element of the composite oxide, adjusting the pH, obtaining a precipitate, drying the precipitate, There is a firing method (coprecipitation method) and the like. Preferably, a complex polymerization method, a solid phase reaction method, and a coprecipitation method are used. In these methods, the firing temperature is preferably from 800 to 1200C, and more preferably from 900 to 1200C from the viewpoint of reproducibility and specific surface area. The specific surface area of these composite oxides is preferably 0.5~50m 2 / g, 5~50m 2 / g is more preferable.

また、前記パイロクロアおよび/またはアパタイト構造を有する複合酸化物の含有量としては、アンモニア合成用触媒に対して60〜99.99wt%が好ましく、70〜99.9wt%がより好ましく、75〜99wt%がさらに好ましい。   The content of the composite oxide having a pyrochlore and / or apatite structure is preferably 60 to 99.99 wt%, more preferably 70 to 99.9 wt%, and more preferably 75 to 99 wt% based on the catalyst for ammonia synthesis. Is more preferred.

本発明におけるアンモニア合成用触媒としては、さらに助触媒を含有することができる。助触媒としては、一般にアンモニア合成用触媒に用いられるものであれば特に限定されない。一例として、カリウム、ナトリウム、ルビジウム、セシウムなどのアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、イットリビウムなどの希土類を用いることができ、カリウム、ナトリウム、セシウム、カルシウム、ストロンチウム、バリウム、ランタン、セリウム、ネオジムが好ましく、セシウム、バリウム、ランタン、セリウム、ネオジムが特に好ましい。
これらの助触媒の形態は特に限定されず、金属、酸化物、水酸化物、炭酸塩などの形態として含有することができる。
The catalyst for ammonia synthesis in the present invention may further contain a co-catalyst. The promoter is not particularly limited as long as it is generally used for a catalyst for ammonia synthesis. As an example, potassium, sodium, rubidium, alkali metals such as cesium, magnesium, calcium, strontium, alkaline earth metals such as barium, lanthanum, cerium, praseodymium, neodymium, samarium, rare earths such as yttrium can be used, potassium , Sodium, cesium, calcium, strontium, barium, lanthanum, cerium and neodymium are preferred, and cesium, barium, lanthanum, cerium and neodymium are particularly preferred.
The form of these cocatalysts is not particularly limited, and they can be contained as forms such as metals, oxides, hydroxides, and carbonates.

当該アンモニア合成用触媒の調製方法としては、特に限定されず、この種の触媒の調製に一般的に用いられる方法を用いることができる。例えば、(1)Ru前駆体を含む溶液と複合酸化物を混合し含浸担持する方法、(2)Ru前駆体と助触媒前駆体とを含む溶液と複合酸化物を混合し含浸担持する方法、(3)Ru前駆体と助触媒とを含む溶液と複合酸化物を混合し、酸または塩基により沈殿形成して担持する方法、(4)Ru前駆体を前記の方法で複合酸化物上に担持させた後に助触媒前駆体を含む溶液をさらに含浸担持させる方法などが挙げられる。これら触媒の形状は特に限定はなく、粉体状であってもよいし、粉体等を押し出し成形法や打錠成形法により円柱状、リング状、球状などの一定の形状に成形した成型体や、一定形状に成形した後に破砕した不定形体等であってもよい。
Ru前駆体や助触媒前駆体を担持させた後、空気中で200〜600℃程度の温度で焼成してもよい。また、反応前に水素を含むガス流通下、50〜600℃の範囲において還元処理を行ってもよい。
The method for preparing the ammonia synthesis catalyst is not particularly limited, and a method generally used for preparing this type of catalyst can be used. For example, (1) a method of mixing a solution containing a Ru precursor and a composite oxide to carry out impregnation, (2) a method of mixing a solution containing a Ru precursor and a cocatalyst precursor and a composite oxide to carry out impregnation, (3) a method in which a solution containing a Ru precursor and a co-catalyst is mixed with a composite oxide and precipitated by an acid or a base to form a support, and (4) a Ru precursor is supported on the composite oxide by the method described above. After that, a method of further impregnating and supporting a solution containing the promoter precursor is exemplified. The shape of these catalysts is not particularly limited, and may be in the form of a powder, or a molded product obtained by molding a powder or the like into a fixed shape such as a columnar shape, a ring shape, a spherical shape by an extrusion molding method or a tablet molding method. Or, it may be an irregularly shaped body or the like which is crushed after being formed into a fixed shape.
After supporting the Ru precursor or the cocatalyst precursor, it may be calcined at a temperature of about 200 to 600 ° C. in air. Before the reaction, the reduction treatment may be performed at a temperature in the range of 50 to 600 ° C. under a gas flow containing hydrogen.

[アンモニアの合成方法]
本発明におけるアンモニア合成方法は、後述の反応器に原料ガスを流通させ、一対の電極間に放電を生じない電圧を印加させることでアンモニアを合成するにあたり、前記したアンモニア合成用触媒を用いてアンモニアを合成する方法である。
[Synthesis method of ammonia]
In the ammonia synthesis method of the present invention, when synthesizing ammonia by flowing a raw material gas through a reactor described below and applying a voltage that does not cause discharge between a pair of electrodes, the ammonia is synthesized using the ammonia synthesis catalyst described above. Is a method of synthesizing

なお、本明細書における放電とは、電極間に流通させた原料ガス中の窒素分子、水素分子などが印加電圧によって、絶縁破壊が生じてイオン化、電子放出が起こり、電流が流れることをいう。放電が発生した場合には、しばしば同時に発光現象が観察できる。本発明における印加電圧は、絶縁破壊が生じる電圧すなわち絶縁破壊電圧より低い電圧である。   Note that discharge in this specification means that nitrogen, hydrogen, and the like in a source gas passed between electrodes cause dielectric breakdown due to an applied voltage, ionization and electron emission occur, and a current flows. When a discharge occurs, a light emission phenomenon can often be observed at the same time. The applied voltage in the present invention is a voltage at which dielectric breakdown occurs, that is, a voltage lower than the dielectric breakdown voltage.

本発明に使用する反応器としては、一対の電極と、当該電極間に電圧を印加する電圧印加手段と、当該電極間に設置するアンモニア合成用触媒、原料ガス導入口および生成アンモニア含有ガス排出口から構成される。当該反応器はさらに、触媒を好ましい位置に保持するための触媒支持体を含んでいてもよい。   The reactor used in the present invention includes a pair of electrodes, a voltage applying means for applying a voltage between the electrodes, an ammonia synthesis catalyst installed between the electrodes, a raw material gas inlet and a generated ammonia-containing gas outlet. Consists of The reactor may further include a catalyst support for holding the catalyst in a preferred position.

前記一対の電極としては、導電性の材料からなり、前記触媒を含む空間に電場を形成できる形状および配置であればよい。電極材料の一例としては、鉄、ステンレス、チタン、ハステロイ(登録商標)を用いることができ、耐腐食性とコスト面からステンレスが好ましい。電極の形状の一例としては、棒状電極、筒状電極、板状電極、メッシュ状電極などを用いることができ、ガス流通性や装置の体積効率の面から棒状電極、筒状電極、メッシュ状電極が好ましい。電極の配置の一例としては、流通式反応器の流れ方向に一対の電極を配置し間に触媒を配置する方法のほか、同心上に配置された棒状電極と筒状電極からなる一対の電極の間に触媒を配置する方法などがある。   The pair of electrodes may be made of a conductive material and have any shape and arrangement capable of forming an electric field in the space containing the catalyst. As an example of the electrode material, iron, stainless steel, titanium, and Hastelloy (registered trademark) can be used, and stainless steel is preferable in terms of corrosion resistance and cost. As an example of the shape of the electrode, a rod-shaped electrode, a cylindrical electrode, a plate-shaped electrode, a mesh-shaped electrode, and the like can be used. From the viewpoint of gas flowability and volumetric efficiency of the device, a rod-shaped electrode, a cylindrical electrode, and a mesh-shaped electrode can be used. Is preferred. As an example of the arrangement of the electrodes, in addition to a method of arranging a pair of electrodes in the flow direction of the flow type reactor and arranging the catalyst, a pair of electrodes composed of a rod electrode and a cylindrical electrode arranged concentrically. There is a method of disposing a catalyst between them.

触媒支持体としては、触媒を電極間に固定し、反応に悪影響を与えないものであれば形状、材質を問わない。一例として、石英ウール、ガラスウール、粒状シリカ、ガス流通用の穴を設けたアルミナ、ジルコニア、マグネシアなどの板を触媒の前後に配置することができる。   The catalyst support may be of any shape and material as long as the catalyst is fixed between the electrodes and does not adversely affect the reaction. As an example, a plate of quartz wool, glass wool, granular silica, alumina, zirconia, magnesia or the like provided with holes for gas flow can be arranged before and after the catalyst.

電圧印加手段は、一対の電極間に電圧を引加できるものであれば特に制限されず、例えば市販の高電圧電源を用いることができる。高電圧電源としては、直流電源、交流電源、極短パルス発生器を用いることができるが、電場形成のためには直流電源を用いることが好ましい。   The voltage applying means is not particularly limited as long as a voltage can be applied between the pair of electrodes. For example, a commercially available high voltage power supply can be used. As the high-voltage power supply, a DC power supply, an AC power supply, or an ultrashort pulse generator can be used, but it is preferable to use a DC power supply for forming an electric field.

原料ガスとしては、アンモニアの原料となる水素原子と窒素原子を含むガスであればよく、原料ガス中の水素原子/窒素原子のモル比は、0.01以上10以下のものが好ましく、より好ましくは0.1以上3.0以下である。当該水素原子/窒素原子のモル比が0.01未満ではアンモニア生成速度が平衡の制約により大きく低下するため好ましくなく、逆に3より大きくになると印加電圧が高くなるため好ましくない。   The raw material gas may be a gas containing hydrogen atoms and nitrogen atoms, which is a raw material for ammonia, and the molar ratio of hydrogen atoms / nitrogen atoms in the raw material gas is preferably from 0.01 to 10 and more preferably. Is 0.1 or more and 3.0 or less. If the molar ratio of hydrogen atoms / nitrogen atoms is less than 0.01, the rate of ammonia production is undesirably greatly reduced due to the restriction of equilibrium. Conversely, if it is greater than 3, the applied voltage becomes undesirably high.

水素原子と窒素原子を含む成分がそれぞれ別個の成分として存在する混合物のガスでも良いし、同一の成分の中に水素原子と窒素原子の両方を含むものを用いても良いし、それらの混合物を用いても良い。入手容易性や経済性、触媒耐久性の観点から、窒素原子を含むガスとして窒素分子を、水素原子を含むガスとして水素分子を用い、それらの混合ガスを原料ガスとして触媒層へ導入するが好ましい。   A mixture gas in which components containing a hydrogen atom and a nitrogen atom are present as separate components may be used, or a mixture containing both a hydrogen atom and a nitrogen atom in the same component may be used. May be used. From the viewpoint of availability, economy, and catalyst durability, it is preferable to use a nitrogen molecule as a gas containing a nitrogen atom and a hydrogen molecule as a gas containing a hydrogen atom, and to introduce a mixed gas thereof into the catalyst layer as a source gas. .

原料ガス供給手段としては、反応に必要な任意のガスを反応器内に導入する方法を備えることができる。一例として、窒素ガスと水素ガスからアンモニアを合成する場合には、窒素供給源として窒素ガスボンベ、産業用の窒素発生装置等を用いることができ、水素供給源としては、水素ガスボンベ、炭化水素をはじめとする含水素化合物を改質して得られた水素含有ガス、アルカリ水電解や水蒸気電解によって得られた水素含有ガス等を用いることができる。   As the raw material gas supply means, a method of introducing an arbitrary gas necessary for the reaction into the reactor can be provided. As an example, when synthesizing ammonia from nitrogen gas and hydrogen gas, a nitrogen gas cylinder, an industrial nitrogen generator, or the like can be used as a nitrogen supply source. Examples of the hydrogen supply source include a hydrogen gas cylinder, a hydrocarbon, and the like. A hydrogen-containing gas obtained by reforming a hydrogen-containing compound described above, a hydrogen-containing gas obtained by alkaline water electrolysis or steam electrolysis, or the like can be used.

本発明におけるアンモニア合成は、常圧で行ってもよいが、圧力を加えて行う場合に、より効果的である。具体的には、反応器内の圧力を102kPa〜40MPa、好ましくは102kPa〜5MPaにして、アンモニアを合成する場合に有利である。   The ammonia synthesis in the present invention may be performed at normal pressure, but is more effective when performed under pressure. Specifically, it is advantageous when the pressure in the reactor is 102 kPa to 40 MPa, preferably 102 kPa to 5 MPa to synthesize ammonia.

また、本発明の方法によるアンモニア合成は、加温装置を用いて加温して行ってもよい。一例として、触媒層温度を20〜600℃、好ましくは20〜450℃、更に好ましくは20〜400℃にして、アンモニアの合成を行うことができる。温度が上昇するにつれて触媒活性が向上し、アンモニア生成量も増加するが、600℃より高温になると、アンモニア合成反応が熱力学的に不利となるため好ましくない。また、低温での反応は熱力学的には有利であるが、触媒活性が低くなるため、上記の温度範囲において、使用する触媒の活性や経済性を考慮し適切な反応温度を設定すればよい。
得られたアンモニアを含むガスは、必要に応じて、アンモニアのみを公知の方法で分離しても良い。さらに、残ったガスのうち原料ガスをさらに分離し、再度原料ガスとして利用するリサイクル過程を含めても良い。
Further, the ammonia synthesis according to the method of the present invention may be performed by heating using a heating device. As an example, ammonia can be synthesized at a catalyst layer temperature of 20 to 600C, preferably 20 to 450C, and more preferably 20 to 400C. As the temperature rises, the catalytic activity increases and the amount of produced ammonia also increases. However, if the temperature is higher than 600 ° C., the ammonia synthesis reaction is disadvantageously thermodynamically disadvantageous. In addition, the reaction at a low temperature is thermodynamically advantageous, but the catalytic activity is low.Therefore, in the above temperature range, an appropriate reaction temperature may be set in consideration of the activity and economy of the catalyst used. .
In the obtained gas containing ammonia, if necessary, only ammonia may be separated by a known method. Further, a recycle process may be included in which the source gas is further separated from the remaining gas and reused as the source gas.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例により制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that is compatible with the gist of the present invention. It is also possible and they are all included in the technical scope of the present invention.

(複合酸化物の調製)
以下の方法により、各複合酸化物を調製した。なお、実施例、比較例においては、当該複合酸化物を使用した。
<La10Si27
酸化ランタン、二酸化ケイ素をLa:Si=10:6となるよう秤量・混合し、1100℃で10h 空気雰囲気下で焼成した後、エタノール中で湿式粉砕してLa10Si27粉体を得た。BET法で測定したLa10Si27の比表面積は10.7m/gであった。粉末XRD測定により、得られた複合酸化物がアパタイト構造を有することを確認した。
<LaZr
酸化ランタン、酸化ジルコニウムをLa:Zr=1:1となるよう秤量・混合し、1100℃で10h 空気雰囲気下で焼成した後、エタノール中で湿式粉砕してLaZr粉体を得た。BET法で測定したLaZrの比表面積は13.9m/gであった。粉末XRD測定により、得られた複合酸化物がパイロクロア構造を有することを確認した。
<CaZrO
炭酸カルシウム、酸化ジルコニウムをCa:Zr=1:1となるよう秤量・混合し、1100℃で10h 空気雰囲気下で焼成した後、エタノール中で湿式粉砕してCaZrO粉体を得た。BET法で測定したCaZrOの比表面積は14.8m/gであった。粉末XRD測定により、得られた複合酸化物がペロブスカイト構造を有することを確認した。
<Ce0.5Zr0.5
酸化セリウム、酸化ジルコニウムをCe:Zr=1:1となるよう秤量・混合し、1100℃で10h 空気雰囲気下で焼成した後、エタノール中で湿式粉砕してCe0.5Zr0.5粉体を得た。BET法により測定したCe0.5Zr0.5の比表面積は29.0m/gであった。粉末XRD測定により、得られた複合酸化物が立方晶構造を有することを確認した。
(Preparation of composite oxide)
Each composite oxide was prepared by the following method. The composite oxide was used in Examples and Comparative Examples.
<La 10 Si 6 O 27 >
Lanthanum oxide and silicon dioxide are weighed and mixed so that La: Si = 10: 6, calcined at 1100 ° C. for 10 hours in an air atmosphere, and wet-ground in ethanol to obtain La 10 Si 6 O 27 powder. Was. The specific surface area of La 10 Si 6 O 27 measured by the BET method was 10.7 m 2 / g. The powder XRD measurement confirmed that the obtained composite oxide had an apatite structure.
<La 2 Zr 2 O 7 >
Lanthanum oxide and zirconium oxide are weighed and mixed so that La: Zr = 1: 1, calcined at 1100 ° C. for 10 hours in an air atmosphere, and wet-ground in ethanol to obtain La 2 Zr 2 O 7 powder. Was. The specific surface area of La 2 Zr 2 O 7 measured by the BET method was 13.9 m 2 / g. By powder XRD measurement, it was confirmed that the obtained composite oxide had a pyrochlore structure.
<CaZrO 3 >
Calcium carbonate and zirconium oxide were weighed and mixed so that Ca: Zr = 1: 1, calcined at 1100 ° C. for 10 hours in an air atmosphere, and wet-pulverized in ethanol to obtain CaZrO 3 powder. The specific surface area of CaZrO 3 measured by the BET method was 14.8 m 2 / g. By powder XRD measurement, it was confirmed that the obtained composite oxide had a perovskite structure.
<Ce 0.5 Zr 0.5 O 2>
Cerium oxide and zirconium oxide are weighed and mixed so that Ce: Zr = 1: 1, fired at 1100 ° C. for 10 hours in an air atmosphere, and wet-ground in ethanol to obtain Ce 0.5 Zr 0.5 O 2. A powder was obtained. The specific surface area of Ce 0.5 Zr 0.5 O 2 measured by the BET method was 29.0 m 2 / g. By powder XRD measurement, it was confirmed that the obtained composite oxide had a cubic structure.

[比表面積測定]
BET比表面積計として株式会社マウンテック製 Macsorb model−1210を用いて比表面積を測定した。
[X線回折測定]
スペクトリス社製X‘pertPRO MPDを用いて、Cu−Kα放射線(X線出力:45kV−40mA、Kα1線波長:1.5406Å)を使用して測定した。
[Specific surface area measurement]
The specific surface area was measured using Macsorb Model-1210 manufactured by Mountech Co., Ltd. as a BET specific surface area meter.
[X-ray diffraction measurement]
The measurement was performed using Cu-Kα radiation (X-ray output: 45 kV-40 mA, Kα1 ray wavelength: 1.5406 °) using X'pert PRO MPD manufactured by Spectris.

(実施例1)
トリス(アセチルアセトナト)ルテニウム錯体のアセトン溶液をLa10Si27 100重量部に対してトリス(アセチルアセトナト)ルテニウム錯体(Ru金属換算) 7重量部となるよう含浸担持した。得られたサンプルを120℃で10時間乾燥した後、450℃で2時間空気雰囲気にて焼成し、Ru/La10Si27触媒を得た。XRD測定にて確認した結果、複合酸化物は触媒調製後もアパタイト構造を維持していたことを確認した。
当該触媒0.2gを外径10mm、内径6mmの石英管反応器に充填し、内径とほぼ同じ大きさの一対のSUS304製多孔質平板状電極で触媒層を挟むよう配置した。
本反応器に水素ガスと窒素ガスの混合ガスを導入し、0.8MPaGに加圧した。市販の高圧電源(松定プレシジョン製HAR−20N7.5)を用いて定電流モードで2mA通電して電圧を印加し、触媒層温度が300℃または350℃となるよう加温装置を用いて加温しながら30分反応させた。導入ガス中の水素原子/窒素原子のモル比は1とし、全ガス流量240ml/minとしてアンモニア合成反応を行った。結果を表1に示す。
アンモニア生成速度は、触媒層通過後のガス中に含まれるアンモニアを0.1Mホウ酸水溶液に捕捉し、溶液中のアンモニウムイオン濃度を陽イオンクロマトグラフィーにより定量することで、反応時間中のアンモニア生成速度の平均値として算出した。
(Example 1)
The acetone solution of the tris (acetylacetonato) ruthenium complex was impregnated and supported so that the tris (acetylacetonato) ruthenium complex (in terms of Ru metal) was 7 parts by weight with respect to 100 parts by weight of La 10 Si 6 O 27 . After the obtained sample was dried at 120 ° C. for 10 hours, it was fired at 450 ° C. for 2 hours in an air atmosphere to obtain a Ru / La 10 Si 6 O 27 catalyst. As a result of the XRD measurement, it was confirmed that the composite oxide maintained the apatite structure even after the preparation of the catalyst.
0.2 g of the catalyst was charged into a quartz tube reactor having an outer diameter of 10 mm and an inner diameter of 6 mm, and the catalyst layer was placed between a pair of SUS304 porous flat plate electrodes having the same size as the inner diameter.
A mixed gas of hydrogen gas and nitrogen gas was introduced into the reactor and pressurized to 0.8 MPaG. Using a commercially available high-voltage power supply (Matsusada Precision's HAR-20N7.5), apply a voltage of 2 mA in a constant current mode in a constant current mode, apply a voltage, and use a heating device so that the catalyst layer temperature becomes 300 ° C. or 350 ° C. The reaction was carried out for 30 minutes while warming. The molar ratio of hydrogen atoms / nitrogen atoms in the introduced gas was set to 1, and an ammonia synthesis reaction was performed at a total gas flow rate of 240 ml / min. Table 1 shows the results.
The ammonia generation rate is determined by capturing the ammonia contained in the gas after passing through the catalyst layer in a 0.1 M boric acid aqueous solution and quantifying the ammonium ion concentration in the solution by cation chromatography, so that the ammonia generation rate during the reaction time is determined. It was calculated as the average value of the speed.

(実施例2)
実施例1において、La10Si27の代わりにLaZrを用いた以外は同様の方法で触媒調製を行い、Ru/LaZr触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、触媒調製後も複合酸化物はパイロクロア構造を維持していたことを確認した。
(Example 2)
A catalyst was prepared in the same manner as in Example 1 except that La 2 Zr 2 O 7 was used instead of La 10 Si 6 O 27 to obtain a Ru / La 2 Zr 2 O 7 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained a pyrochlore structure even after preparation of the catalyst.

(比較例1)
実施例1において、La10Si27の代わりにCaZrOを用いた以外は同様の方法で触媒調製を行い、Ru/CaZrO触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もペロブスカイト構造を維持していたことを確認した。
(Comparative Example 1)
A catalyst was prepared in the same manner as in Example 1 except that CaZrO 3 was used instead of La 10 Si 6 O 27 to obtain a Ru / CaZrO 3 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the perovskite structure even after preparation of the catalyst.

(実施例3)
トリス(アセチルアセトナト)ルテニウム錯体のアセトン溶液と酢酸セリウム1水和物の水溶液とLa10Si27を、La10Si27 100重量部に対してトリス(アセチルアセトナト)ルテニウム錯体(Ru金属換算) 7重量部、酢酸セリウム(CeO換算)8重量部となる割合で混合し、含浸担持した。得られたサンプルを乾燥後、450℃で2時間空気中にて焼成し、CeO−Ru/La10Si27触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もアパタイト構造を維持していたことを確認した。
(Example 3)
An acetone solution of a tris (acetylacetonato) ruthenium complex, an aqueous solution of cerium acetate monohydrate and La 10 Si 6 O 27 were mixed with 100 parts by weight of La 10 Si 6 O 27 to prepare a tris (acetylacetonato) ruthenium complex ( 7 parts by weight (Ru metal conversion) and 8 parts by weight of cerium acetate (CeO 2 conversion) were mixed and impregnated and supported. The obtained sample was dried and calcined at 450 ° C. for 2 hours in the air to obtain a CeO 2 —Ru / La 10 Si 6 O 27 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the apatite structure even after preparation of the catalyst.

(実施例4)
実施例3において、La10Si27の代わりにLaZrを用いた以外は同様の方法で触媒調製を行い、CeO−Ru/LaZr触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もパイロクロア構造を維持していたことを確認した。
(Example 4)
A catalyst was prepared in the same manner as in Example 3 except that La 2 Zr 2 O 7 was used instead of La 10 Si 6 O 27 to obtain a CeO 2 —Ru / La 2 Zr 2 O 7 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the pyrochlore structure even after preparation of the catalyst.

(比較例2)
実施例3において、La10Si27の代わりにCaZrOを用いた以外は同様の方法で触媒調製を行い、CeO−Ru/CaZrO触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もペロブスカイト構造を維持していたことを確認した。
(Comparative Example 2)
A catalyst was prepared in the same manner as in Example 3 except that CaZrO 3 was used instead of La 10 Si 6 O 27 to obtain a CeO 2 —Ru / CaZrO 3 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the perovskite structure even after preparation of the catalyst.

(比較例3)
実施例3において、La10Si27の代わりにCe0.5Zr0.5を用いた以外は同様の方法で触媒調製を行い、CeO−Ru/Ce0.5Zr0.5触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後も立方晶の結晶構造を取っていることが確認された。
(Comparative Example 3)
A catalyst was prepared in the same manner as in Example 3 except that Ce 0.5 Zr 0.5 O 2 was used instead of La 10 Si 6 O 27 , and CeO 2 —Ru / Ce 0.5 Zr 0. 5 O 2 catalyst was obtained. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide had a cubic crystal structure even after preparation of the catalyst.

(実施例5)
トリス(アセチルアセトナト)ルテニウム錯体のアセトン溶液と水酸化セシウム水溶液とLa10Si27を、La10Si27 100重量部に対してトリス(アセチルアセトナト)ルテニウム錯体(Ru金属換算) 7重量部、水酸化セシウム(Cs金属換算) 12重量部となる割合で混合し、含浸担持した。得られたサンプルを乾燥後、450℃で2時間空気中にて焼成し、Cs−Ru/La10Si27触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もアパタイト構造を維持していたことを確認した。
(Example 5)
A tris (acetylacetonato) ruthenium complex, an aqueous solution of cesium hydroxide and an aqueous solution of cesium hydroxide and La 10 Si 6 O 27 were mixed with 100 parts by weight of La 10 Si 6 O 27 to obtain a tris (acetylacetonato) ruthenium complex (in terms of Ru metal). 7 parts by weight and 12 parts by weight of cesium hydroxide (in terms of Cs metal) were mixed and impregnated and supported. After drying the obtained sample, it was baked in air at 450 ° C. for 2 hours to obtain a Cs-Ru / La 10 Si 6 O 27 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the apatite structure even after preparation of the catalyst.

(実施例6)
実施例5において、La10Si27の代わりにLaZrを用いた以外は同様の方法で触媒調製を行い、Cs−Ru/LaZr触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もパイロクロア構造を維持していたことを確認した。
(Example 6)
A catalyst was prepared in the same manner as in Example 5 except that La 2 Zr 2 O 7 was used instead of La 10 Si 6 O 27 to obtain a Cs-Ru / La 2 Zr 2 O 7 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the pyrochlore structure even after preparation of the catalyst.

(比較例4)
実施例5において、La10Si27の代わりにCaZrOを用いた以外は同様の方法で触媒調製を行い、Cs−Ru/CaZrO触媒を得た。得られた触媒は実施例1と同様の方法で反応し、アンモニア生成速度を算出した。結果を表1に示す。
なお、触媒の結晶構造をXRD測定にて確認した結果、複合酸化物は触媒調製後もペロブスカイト構造を維持していたことを確認した。
(Comparative Example 4)
In Example 5, except for using CaZrO 3 in place of La 10 Si 6 O 27 performs a catalyst prepared in the same manner to obtain a Cs-Ru / CaZrO 3 catalyst. The obtained catalyst reacted in the same manner as in Example 1, and the ammonia generation rate was calculated. Table 1 shows the results.
In addition, as a result of confirming the crystal structure of the catalyst by XRD measurement, it was confirmed that the composite oxide maintained the perovskite structure even after preparation of the catalyst.

(実施例7)
実施例5において、導入ガス中の水素原子/窒素原子のモル比を3とし、全ガス流量60ml/minに変更した以外は同様にしてアンモニア生成速度を算出した。結果を表1に示す。
(Example 7)
In Example 5, the ammonia generation rate was calculated in the same manner except that the molar ratio of hydrogen atoms / nitrogen atoms in the introduced gas was changed to 3, and the total gas flow rate was changed to 60 ml / min. Table 1 shows the results.

(比較例5)
比較例4において、導入ガス中の水素原子/窒素原子のモル比を3とし、全ガス流量60ml/minに変更した以外は同様にしてアンモニア生成速度を算出した。結果を表1に示す。
(Comparative Example 5)
In Comparative Example 4, the ammonia generation rate was calculated in the same manner except that the molar ratio of hydrogen atoms / nitrogen atoms in the introduced gas was changed to 3, and the total gas flow rate was changed to 60 ml / min. Table 1 shows the results.

(実施例8)
実施例5において、通電せずに電圧を印加しなかった以外は同様にしてアンモニア生成速度を算出した。結果を表2に示す。
(Example 8)
The ammonia generation rate was calculated in the same manner as in Example 5, except that no voltage was applied without supplying electricity. Table 2 shows the results.

(比較例6)
比較例4において、通電せずに電圧を印加しなかった以外は同様にしてアンモニア生成速度を算出した。結果を表2に示す。
(Comparative Example 6)
In Comparative Example 4, the ammonia generation rate was calculated in the same manner except that no voltage was applied without energization. Table 2 shows the results.

Figure 0006656037
※アンモニア生成速度:触媒1gあたり1時間でのアンモニア生成量(マイクロモル)
Figure 0006656037
* Ammonia production rate: Amount of ammonia produced per gram of catalyst per hour (micromol)

Figure 0006656037
※アンモニア生成速度:触媒1gあたり1時間でのアンモニア生成量(マイクロモル)
Figure 0006656037
* Ammonia production rate: Amount of ammonia produced per gram of catalyst per hour (micromol)

表1および表2のように、本発明の複合酸化物を触媒に含有させることにより、従来の触媒と比較して高い活性を示すことが明らかとなった。   As shown in Tables 1 and 2, it was revealed that the inclusion of the composite oxide of the present invention in the catalyst exhibited higher activity than the conventional catalyst.

本発明によるアンモニア合成用触媒を用いることで、従来のアンモニア合成用触媒と比較して効率よくアンモニアを合成することができ、エネルギー効率を高めることができる。従って、従来は効率や経済性の面で適用が困難であった供給過剰時の再生可能エネルギーの貯蔵、再生可能エネルギーを用いた僻地での肥料用アンモニア供給システム、車載用NOx還元用アンモニア合成装置などにおいて、電場触媒反応を用いたアンモニア合成を行うに当たり、好適な触媒として使用することができる。   By using the catalyst for ammonia synthesis according to the present invention, ammonia can be synthesized more efficiently than conventional catalysts for ammonia synthesis, and the energy efficiency can be increased. Therefore, storage of renewable energy during oversupply, ammonia supply system for fertilizer in remote areas using renewable energy, and ammonia synthesis device for on-board NOx reduction, which were conventionally difficult to apply in terms of efficiency and economy For example, in performing ammonia synthesis using an electric field catalytic reaction, it can be used as a suitable catalyst.

Claims (7)

電極間に触媒を設け、水素原子と窒素原子を含むガスの存在下に当該電極間に電圧を印加してアンモニアを合成するために用いるアンモニア合成用触媒であって、
少なくとも触媒活性成分と複合酸化物とを含み、当該複合酸化物としてパイロクロア構造および/またはアパタイト構造を有する複合酸化物を用いることを特徴とするアンモニア合成用触媒。
An ammonia synthesis catalyst used to provide a catalyst between the electrodes and apply a voltage between the electrodes in the presence of a gas containing a hydrogen atom and a nitrogen atom to synthesize ammonia,
A catalyst for ammonia synthesis comprising at least a catalytically active component and a composite oxide, wherein a composite oxide having a pyrochlore structure and / or an apatite structure is used as the composite oxide.
上記触媒が一対の電極間に設けられていることを特徴とする請求項1に記載のアンモニア合成用触媒。 The catalyst for ammonia synthesis according to claim 1, wherein the catalyst is provided between a pair of electrodes . 上記電圧が放電を生じないものであることを特徴とする請求項1または2に記載のアンモニア合成用触媒。The catalyst for ammonia synthesis according to claim 1 or 2, wherein the voltage does not cause discharge. 前記パイロクロア構造および/またはアパタイト構造を有する複合酸化物が、ランタノイドを含む複合酸化物であることを特徴とする請求項1〜3のいずれか1項に記載のアンモニア合成用触媒。 The catalyst for ammonia synthesis according to any one of claims 1 to 3, wherein the composite oxide having a pyrochlore structure and / or an apatite structure is a composite oxide containing a lanthanoid. 前記アンモニア合成用触媒において、さらに助触媒としてアルカリ金属、アルカリ土類金属、ランタノイドから選ばれる少なくとも1つの元素を含有することを特徴とする請求項1〜のいずれか1項に記載のアンモニア合成用触媒。 The ammonia synthesis catalyst according to any one of claims 1 to 4 , wherein the ammonia synthesis catalyst further contains at least one element selected from an alkali metal, an alkaline earth metal, and a lanthanoid as a cocatalyst. Catalyst. 前記触媒活性成分が、ルテニウム、鉄、コバルト、ニッケル、白金、パラジウム、ロジウム、イリジウムから選ばれる少なくとも1つの元素を含有することを特徴とする請求項1〜のいずれか1項に記載のアンモニア合成用触媒。 The ammonia according to any one of claims 1 to 5 , wherein the catalytically active component contains at least one element selected from ruthenium, iron, cobalt, nickel, platinum, palladium, rhodium, and iridium. Catalyst for synthesis. 一対の電極間に触媒を設け、水素原子と窒素原子を含むガスの存在下に当該電極間に放電を生じない電圧を印加してアンモニアを合成する方法であって、請求項1〜のいずれか1項に記載のアンモニア合成用触媒を用いることを特徴とするアンモニアの合成方法。 The catalyst provided between the pair of electrodes, a method of synthesizing ammonia by applying a voltage that does not cause a discharge between the electrodes in the presence of a gas containing hydrogen and nitrogen atoms, one of the claims 1-6 A method for synthesizing ammonia, comprising using the catalyst for ammonia synthesis according to claim 1.
JP2016061138A 2016-03-25 2016-03-25 Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst Active JP6656037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061138A JP6656037B2 (en) 2016-03-25 2016-03-25 Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061138A JP6656037B2 (en) 2016-03-25 2016-03-25 Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst

Publications (2)

Publication Number Publication Date
JP2017170378A JP2017170378A (en) 2017-09-28
JP6656037B2 true JP6656037B2 (en) 2020-03-04

Family

ID=59969806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061138A Active JP6656037B2 (en) 2016-03-25 2016-03-25 Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst

Country Status (1)

Country Link
JP (1) JP6656037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762185B2 (en) * 2016-09-28 2020-09-30 株式会社日本触媒 Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and method for ammonia synthesis
WO2021140732A1 (en) * 2020-01-07 2021-07-15 株式会社村田製作所 Hydrocarbon reforming catalyst, hydrocarbon reforming device, and method for regenerating hydrocarbon reforming catalyst poisoned by sulfur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244282A (en) * 2003-02-14 2004-09-02 Honda Motor Co Ltd Oxide ion conductor and its manufacturing process
US10131545B2 (en) * 2013-01-22 2018-11-20 Nippon Shokubai Co., Ltd. Ammonia synthesis method and catalyst for ammonia synthesis

Also Published As

Publication number Publication date
JP2017170378A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2014115582A1 (en) Ammonia synthesis method and catalyst for ammonia synthesis
US10857523B2 (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
US11964260B2 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
JP6285101B2 (en) Catalyst for ammonia synthesis
Bagherzadeh et al. Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP2015525668A (en) High pressure method for carbon dioxide reforming of hydrocarbons in the presence of iridium containing actives
JP6762185B2 (en) Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and method for ammonia synthesis
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
KR101579776B1 (en) Manufacturing method of perovskite-type nickel based catalysts
AU2015293227A1 (en) Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane
JP6656037B2 (en) Ammonia synthesis catalyst and method for synthesizing ammonia using the catalyst
JP2022094211A (en) Co2 methanation catalyst and method for producing the same, and method for producing methane
JP3818710B2 (en) Alumina-supported ruthenium catalyst
JP3784859B2 (en) Hydrocarbon steam reforming catalyst
RU2594161C1 (en) Method of producing synthesis gas with high-temperature catalytic oxidative conversion of methane
JPWO2019156029A1 (en) Method for producing composites, catalysts and ammonia
JP2007054685A (en) Catalyst for water gas shift reaction
JP6168519B2 (en) Catalyst, method for producing catalyst, method for producing hydrogen-containing gas, hydrogen production apparatus and fuel cell system
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP6570361B2 (en) Ammonia synthesis method
JP2024048691A (en) Catalyst and method for producing butadiene
KR20120022015A (en) Process of cobalt based catalyst
JP6727079B2 (en) Catalyst for producing unsaturated alcohol and method for producing unsaturated alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150