JP6655942B2 - Battery deterioration diagnosis device - Google Patents

Battery deterioration diagnosis device Download PDF

Info

Publication number
JP6655942B2
JP6655942B2 JP2015205779A JP2015205779A JP6655942B2 JP 6655942 B2 JP6655942 B2 JP 6655942B2 JP 2015205779 A JP2015205779 A JP 2015205779A JP 2015205779 A JP2015205779 A JP 2015205779A JP 6655942 B2 JP6655942 B2 JP 6655942B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
storage battery
ripple
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205779A
Other languages
Japanese (ja)
Other versions
JP2017078600A (en
Inventor
彰訓 加藤
彰訓 加藤
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2015205779A priority Critical patent/JP6655942B2/en
Publication of JP2017078600A publication Critical patent/JP2017078600A/en
Application granted granted Critical
Publication of JP6655942B2 publication Critical patent/JP6655942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電池の劣化状態を診断する蓄電池劣化診断装置に関し、特に無負荷状態で診断できる蓄電池劣化診断装置に関する。   The present invention relates to a storage battery deterioration diagnosis device for diagnosing a deterioration state of a storage battery, and more particularly to a storage battery deterioration diagnosis device capable of performing a diagnosis under no-load conditions.

データセンタや電気自動車、ハイブリッド車、電動自転車等において蓄電池が使用されているし、近年節電や安定した電力の安定化の観点から、太陽光発電や風力発電を系統連系するだけでなく、発電した電力を蓄える蓄電池がある。このように、蓄電池の用途は多様化しており、その劣化状態を正確に把握することが重要となっている。
この蓄電池の劣化を判断する従来の方法に特許文献1の技術がある。これは、蓄電池の充電電圧を一時的に下げ、一定時間経過後に上昇させてリプル電流を発生させることで、蓄電池を流れる電流の変化からインピーダンスを算出して劣化状態を診断するものであった。
Storage batteries are used in data centers, electric vehicles, hybrid vehicles, electric bicycles, etc.In recent years, from the viewpoint of power saving and stable power stabilization, not only solar power generation and wind power generation There is a storage battery that stores the generated power. As described above, the use of the storage battery is diversified, and it is important to accurately grasp the deterioration state.
As a conventional method for determining the deterioration of the storage battery, there is a technique disclosed in Patent Document 1. In this method, a charging voltage of a storage battery is temporarily lowered and then increased after a lapse of a predetermined time to generate a ripple current, whereby impedance is calculated from a change in current flowing through the storage battery to diagnose a deterioration state.

特開2002−101571号公報JP-A-2002-101571

上記特許文献1の技術は、それまでは負荷を接続して実際に通電して判定していた劣化の判断を負荷を接続することなく診断できた。しかしながら、サイリスタ整流器に対して蓄電池の充電電圧を制御する電圧支持信号発生手段に加えて、蓄電池の内部抵抗を算出する内部抵抗算出手段が必要であり、CPUを使用した複雑な演算回路が必要であった。   The technology of Patent Document 1 described above can diagnose the deterioration that has been determined by connecting a load and actually energizing without connecting the load. However, in addition to the voltage support signal generating means for controlling the charging voltage of the storage battery with respect to the thyristor rectifier, an internal resistance calculation means for calculating the internal resistance of the storage battery is required, and a complicated arithmetic circuit using a CPU is required. there were.

そこで、本発明はこのような問題点に鑑み、蓄電池の劣化を簡易な回路で判定できる蓄電池劣化診断装置を提供することを目的としている。   In view of the foregoing, an object of the present invention is to provide a storage battery deterioration diagnosis device that can determine deterioration of a storage battery with a simple circuit.

上記課題を解決する為に、請求項1の発明に係る蓄電池劣化診断装置は、蓄電池に対してリプル電圧を発生させるために一定の交流電流を供給するリプル発生手段と、供給された交流電流により蓄電池に発生したリプル電圧から蓄電池の劣化を判定する劣化判定回路とを有し、劣化判定回路が、発生したリプル電圧を増幅するリプル電圧増幅回路と、リプル電圧増幅回路の出力電圧を平滑化する平滑回路と、直列接続された複数のLEDから成る表示部、及び平滑回路の出力電圧によりLEDを個々に駆動する駆動回路とを有し、更にリプル電圧増幅回路が、非反転増幅回路から成る第1増幅回路、当該第1増幅回路の出力信号を増幅する反転増幅回路から成る第2増幅回路、及び蓄電池の出力電圧を最大値として、第1増幅回路及び第2増幅回路の出力により変動する電圧を平滑回路に出力する出力回路を有し、平滑回路は、出力回路の出力を受けて、リプル電圧の振幅が増大したら、リプル電圧の振幅に反比例して低下する電圧を出力し、表示部の点灯するLED数が減少することを特徴とする。
この構成によれば、蓄電池の内部インピーダンスの変化をリプル電圧を発生させて検出し、このリプル電圧を受けて発光するLEDの数を変化させて劣化度を診断するため、デジタル演算回路を使用すること無く簡易な回路で蓄電池の劣化状態の判定が可能となり、安価に構成できる。
In order to solve the above problem, a storage battery deterioration diagnosis apparatus according to the first aspect of the present invention includes a ripple generation unit that supplies a constant AC current to generate a ripple voltage for a storage battery, and a supply of the AC current. A deterioration determination circuit for determining deterioration of the storage battery from the ripple voltage generated in the storage battery, wherein the deterioration determination circuit smoothes an output voltage of the ripple voltage amplification circuit that amplifies the generated ripple voltage and an output voltage of the ripple voltage amplification circuit A smoothing circuit, a display unit including a plurality of LEDs connected in series, and a drive circuit for individually driving the LEDs by an output voltage of the smoothing circuit; and a ripple voltage amplifier circuit including a non-inverting amplifier circuit. A first amplifier circuit, a second amplifier circuit including an inverting amplifier circuit for amplifying an output signal of the first amplifier circuit, and a first amplifier circuit and a second amplifier circuit with the output voltage of the storage battery being the maximum value. An output circuit that outputs a voltage that fluctuates due to an output of the circuit to a smoothing circuit. The smoothing circuit receives the output of the output circuit, and when the amplitude of the ripple voltage increases, the voltage decreases in inverse proportion to the amplitude of the ripple voltage. Is output, and the number of lit LEDs of the display unit is reduced .
According to this configuration, a digital arithmetic circuit is used to detect a change in the internal impedance of the storage battery by generating a ripple voltage and changing the number of LEDs that emit light in response to the ripple voltage to diagnose the degree of deterioration. It is possible to judge the deterioration state of the storage battery with a simple circuit without any trouble, and the configuration can be made at low cost.

また、リプル電圧増幅回路が2個のオペアンプで構成でき簡易な回路構成で済む。 Further, the ripple voltage amplifier circuit can be composed of two operational amplifiers, so that a simple circuit configuration is sufficient.

加えて、点灯するLEDの数の減少により劣化の進行を認識でき、発光するLED数が蓄電池の状態を現し判断し易い。 In addition, the progress of the deterioration can be recognized by the decrease in the number of illuminated LEDs, and the number of illuminated LEDs indicates the state of the storage battery and is easily determined.

本発明によれば、蓄電池の内部インピーダンスの変化をリプル電圧を発生させて検出し、このリプル電圧を受けて発光するLEDの数を変化させて劣化度を診断するため、デジタル演算回路を使用すること無く簡易な回路で蓄電池の劣化状態の判定が可能となる。そして、アナログ回路により判定回路を構成できるため安価に構成できる。   According to the present invention, a digital arithmetic circuit is used to detect a change in the internal impedance of a storage battery by generating a ripple voltage and to change the number of LEDs that emit light in response to the ripple voltage to diagnose the degree of deterioration. This makes it possible to determine the state of deterioration of the storage battery with a simple circuit without any problem. Further, since the determination circuit can be configured by an analog circuit, it can be configured at a low cost.

本発明に係る蓄電池劣化診断装置の一例を示す回路図である。It is a circuit diagram showing an example of a storage battery deterioration diagnosis device according to the present invention. リプル電圧増幅回路の説明図である。FIG. 3 is an explanatory diagram of a ripple voltage amplifier circuit. 図2に示す回路の主要点の波形説明図であり、(a)は蓄電池の劣化が小さい場合、(b)は劣化が大きい場合を示している。3A and 3B are waveform explanatory diagrams of main points of the circuit shown in FIG. 2, wherein FIG. 3A shows a case where deterioration of a storage battery is small, and FIG.

本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る蓄電池劣化診断装置の一例を示す回路図であり、1は診断対象の蓄電池、2は蓄電池1にリプル電圧を発生させるリプル電流供給回路(リプル発生手段)、3は劣化判定回路であり、リプル電流供給回路2と劣化判定回路3とで蓄電池劣化診断装置を構成している。   Embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an example of a storage battery deterioration diagnosis apparatus according to the present invention. 1 is a storage battery to be diagnosed, 2 is a ripple current supply circuit (ripple generation means) for generating a ripple voltage in the storage battery 1, and 3 is deterioration. This is a determination circuit, and the ripple current supply circuit 2 and the deterioration determination circuit 3 constitute a storage battery deterioration diagnosis device.

リプル電流供給回路2は、例えば周波数1Hzの交流電流を出力して蓄電池1に供給する。   The ripple current supply circuit 2 outputs, for example, an alternating current having a frequency of 1 Hz and supplies the alternating current to the storage battery 1.

劣化判定回路3は、リプル電流が供給されることで蓄電池1に発生するリプル電圧を増幅するリプル電圧増幅回路31と、増幅された電圧によりLED発光させて劣化状態を表示する劣化度表示部32とを有している。   The deterioration determination circuit 3 includes a ripple voltage amplifying circuit 31 that amplifies a ripple voltage generated in the storage battery 1 when a ripple current is supplied, and a deterioration degree display unit 32 that causes the amplified voltage to emit LED light to display a deterioration state. And

リプル電圧増幅回路31は、非反転増幅回路から成る第1増幅回路Q1、及びこの第1増幅回路Q1の出力を増幅する反転増幅回路から成る第2増幅回路Q2を備えた2段の増幅回路と、直列接続された3個のダイオード(第1ダイオードD1、第2ダイオードD2、第3ダイオードD3)から成り、双方の増幅回路Q1,Q2の出力電圧を基に劣化度表示部32の駆動電圧を発生する出力回路31aとを有している。   The ripple voltage amplifying circuit 31 includes a two-stage amplifying circuit including a first amplifying circuit Q1 including a non-inverting amplifying circuit, and a second amplifying circuit Q2 including an inverting amplifying circuit for amplifying an output of the first amplifying circuit Q1. And three diodes (a first diode D1, a second diode D2, and a third diode D3) connected in series. Based on the output voltages of the two amplifier circuits Q1 and Q2, the drive voltage of the deterioration degree display unit 32 is determined. And an output circuit 31a.

また劣化度表示部32は、直列接続された複数のLED列(ここでは5個のLED)から成る表示部32a、それぞれのLEDを駆動させる駆動回路32b、表示部32aを安定して発光させるために出力回路31aの変動する出力電圧を平滑化する平滑回路32cを有している。   Further, the deterioration degree display unit 32 includes a display unit 32a including a plurality of LED strings (here, five LEDs) connected in series, a driving circuit 32b for driving each LED, and a display unit 32a for stably emitting light. And a smoothing circuit 32c for smoothing the fluctuating output voltage of the output circuit 31a.

このように構成されたリプル電圧増幅回路31は具体的に以下の様に動作する。図2、図3を参照して説明する。図2はリプル電圧増幅回路31を抜き出した回路図、図3は図2に示す回路の主要点の波形説明図であり、(a)は蓄電池の劣化が小さい場合、(b)は劣化が大きい場合を示している。
図3におけるS1からS6の波形は図2に示す個々の点の波形であり、S1点は蓄電池1に発生したリプル電圧の波形であり、この波形が第1増幅回路Q1に入力される。S2点は第1増幅回路Q1の出力電圧波形、S3点は第2ダイオードD2のアノード電圧波形、S4は第2ダイオードD2のカソード電圧波形、S5は出力回路31aの出力電圧波形、S6は平滑回路32cの出力波形であり、表示部32aの駆動電圧波形である。また、M点は蓄電池1の端子電圧(例えば、12ボルト)にほぼ等しい一定の電圧が印加されている。
但し、第1増幅回路Q1、及び第2増幅回路Q2の増幅率Avを共に1とし、先ず蓄電池1の劣化度が小さい(劣化していない状態を含む)場合から説明する。
The ripple voltage amplifying circuit 31 configured as above operates specifically as follows. This will be described with reference to FIGS. 2 is a circuit diagram extracted from the ripple voltage amplifying circuit 31, FIG. 3 is a waveform explanatory diagram of the main points of the circuit shown in FIG. 2, (a) when the deterioration of the storage battery is small, and (b) is large. Shows the case.
The waveforms of S1 to S6 in FIG. 3 are the waveforms at the individual points shown in FIG. 2, and the point S1 is the waveform of the ripple voltage generated in the storage battery 1, and this waveform is input to the first amplifier circuit Q1. Point S2 is the output voltage waveform of the first amplifier circuit Q1, point S3 is the anode voltage waveform of the second diode D2, S4 is the cathode voltage waveform of the second diode D2, S5 is the output voltage waveform of the output circuit 31a, and S6 is the smoothing circuit. 32C is an output waveform of the display section 32a. At the point M, a constant voltage substantially equal to the terminal voltage of the storage battery 1 (for example, 12 volts) is applied.
However, the amplification factors Av of the first amplifier circuit Q1 and the second amplifier circuit Q2 are both set to 1, and the case where the deterioration degree of the storage battery 1 is small (including the state where the storage battery 1 is not deteriorated) will be described first.

<劣化度が小さい場合>
第1増幅回路Q1の利得が1であるため、S1点の波形に対してS2点は同一の波形となる。尚、リプル電流供給回路2が出力する一定の交流電流により、S1点に発生するリプル電圧の振幅は1ボルトとして説明する。
一方、第2増幅回路Q1の出力は、S2点がプラス波形の時はマイナス波形となるし、逆にS2点がマイナス波形の時はプラス波形となる。この結果、S3点の電圧はS2点がプラス波形のピーク時はほぼM点の電圧となり、S3点から電圧の低いS4点に電流(図2に示す矢印H1)が流れる。
<When the degree of deterioration is small>
Since the gain of the first amplifier circuit Q1 is 1, the waveform at point S2 is the same as the waveform at point S1. The amplitude of the ripple voltage generated at the point S1 due to the constant AC current output from the ripple current supply circuit 2 is 1 volt.
On the other hand, the output of the second amplifier circuit Q1 has a minus waveform when the point S2 has a plus waveform, and has a plus waveform when the point S2 has a minus waveform. As a result, the voltage at the point S3 becomes substantially the voltage at the point M when the positive waveform of the point S2 is at the peak, and a current (arrow H1 shown in FIG. 2) flows from the point S3 to the lower voltage point S4.

また、S2点がマイナス波形の時、S4点はS3点より高電位となるが、第2ダイオードD2を逆流しないため、第3ダイオードD3を介してM点に向けて電流が流れる(図2に示す矢印H2)。そのため、矢印H1に示す電流の流れが発生した時のS4点の電圧を基準(電圧をVaとする)にすると、図3(a)に示すようにS3点では第2ダイオードD2の電圧降下Vfを加えたVa+Vfの電圧を最大値、Va+Vf−2ボルトの電圧を最小値とする振幅1ボルトのリプル電圧が発生する。   When point S2 has a negative waveform, point S4 has a higher potential than point S3, but does not flow backward through the second diode D2, so that current flows toward point M via the third diode D3 (see FIG. 2). Arrow H2). Therefore, when the voltage at the point S4 when the current flow indicated by the arrow H1 occurs is set as a reference (the voltage is defined as Va), the voltage drop Vf of the second diode D2 at the point S3 as shown in FIG. , A ripple voltage having an amplitude of 1 volt is generated with the voltage of Va + Vf as the maximum value and the voltage of Va + Vf-2 volts as the minimum value.

尚、この電圧を蓄電池1が出力する電圧を基準に見ると、M点の電圧は蓄電池1の出力電圧にほぼ等しい一定電圧(Vmとする)が印加されているため、S3点には抵抗R4及び第1ダイオードD1の電圧降下分を引いた直流電圧が印加されている。そのため、Vm−Vfを最大値とする振幅1ボルトのリプル電圧が発生すると見ることもできる。   When this voltage is viewed on the basis of the voltage output from the storage battery 1, the voltage at point M is a constant voltage (Vm) substantially equal to the output voltage of the storage battery 1. A DC voltage obtained by subtracting the voltage drop of the first diode D1 is applied. Therefore, it can be considered that a ripple voltage having an amplitude of 1 volt having a maximum value of Vm-Vf is generated.

一方、S4点で発生する電圧は、矢印H1の電流によりコンデンサC2が充電され電圧が上昇し、S1点がマイナスの波形になる時点でVm+Vfの電圧となり、矢印H2で示す電流の流れが発生する。
こうしてS4点は図3(a)に示す波形となり、S5点の波形はS3点の波形に準ずる変動を示し、Va+Vfをピークとする振幅1ボルトの変化を示す。そして、このVa+VfはM点の電圧Vmにほぼ等しく、S5点はVm〜Vm−2ボルトの間で変動するとみることができる。
そしてS6点の電圧波形は、S5点の電圧波形が平滑回路32cにより平滑化されてVm−1ボルトの電圧に近い直流電圧Vdの高い電圧となる。この結果、表示部32aは例えば5個全てのダイオードが発光する。
On the other hand, the voltage generated at the point S4 becomes the voltage of Vm + Vf when the capacitor C2 is charged by the current of the arrow H1 and the voltage rises, and the point S1 becomes a negative waveform, and the current flow indicated by the arrow H2 occurs. .
Thus, the waveform at the point S4 becomes the waveform shown in FIG. 3A, the waveform at the point S5 shows a fluctuation similar to the waveform at the point S3, and shows a change in amplitude of 1 volt having a peak at Va + Vf. This Va + Vf is substantially equal to the voltage Vm at the point M, and the point S5 can be considered to fluctuate between Vm and Vm-2 volts.
The voltage waveform at the point S6 is smoothed by the smoothing circuit 32c at the point S5, and becomes a high DC voltage Vd close to the voltage of Vm-1 volt. As a result, in the display section 32a, for example, all five diodes emit light.

<劣化度が大きい場合>
次に蓄電池1の劣化が進んだ場合を説明する。蓄電池1が劣化すると次のような動作となる。劣化が進行すると内部インピーダンスが増加するため、印加するリプル電流が上記劣化小の場合と同一であっても、発生するリプル電圧は大きくなる。図3(b)では、S1点の電圧波形が一例として振幅2ボルトの場合を示している。
このときS2点の波形はS1点と同一の波形が出力されるが、第2増幅回路Q2の出力は、上述したように反転した波形となる。この結果、S3点の電圧はS2点がプラス波形の時はほぼM点の電圧となり、S3点からS4点に電流(図2に示す矢印H1)が流れる。
<When the degree of deterioration is large>
Next, a case where the deterioration of the storage battery 1 has progressed will be described. When the storage battery 1 deteriorates, the following operation is performed. As the deterioration progresses, the internal impedance increases. Therefore, even if the applied ripple current is the same as the case where the deterioration is small, the generated ripple voltage increases. FIG. 3B shows a case where the voltage waveform at the point S1 has an amplitude of 2 volts as an example.
At this time, the waveform at the point S2 is the same as the waveform at the point S1, but the output of the second amplifier circuit Q2 is the inverted waveform as described above. As a result, the voltage at the point S3 becomes substantially the voltage at the point M when the point S2 has a positive waveform, and a current (arrow H1 shown in FIG. 2) flows from the point S3 to the point S4.

また、S2点がマイナス波形の時、S4点はS3点より高電位となるが、第2ダイオードD2を逆流しないため、第3ダイオードD3を介してM点に向けて電流が流れる(図2に示す矢印H2)。そのため、劣化度が小さい場合と同様に、矢印H1の電流の流れが発生した時のS4点の電圧を基準(電圧をVbとする)にすると、S3点では第2ダイオードD2の電圧降下Vfを加えたVb+Vfの電圧を最大値とするリプル電圧が発生する。   When point S2 has a negative waveform, point S4 has a higher potential than point S3, but does not flow backward through the second diode D2, so that current flows toward point M via the third diode D3 (see FIG. 2). Arrow H2). Therefore, as in the case where the degree of deterioration is small, when the voltage at the point S4 when the current flow of the arrow H1 occurs is set as a reference (the voltage is Vb), the voltage drop Vf of the second diode D2 at the point S3 is A ripple voltage having the added voltage Vb + Vf as a maximum value is generated.

尚、この電圧を蓄電池1が出力する電圧を基準に見ると、M点の電圧はVmであるため、S3点の電圧は抵抗R4及び第1ダイオードD1に電圧降下分を引いた直流電圧が印加されており、Vm−Vfを最大値とする振幅2ボルト弱の波形が発生すると見ることができる。   When this voltage is viewed with reference to the voltage output from the storage battery 1, since the voltage at the point M is Vm, the voltage at the point S3 is a DC voltage obtained by subtracting a voltage drop from the resistor R4 and the first diode D1. It can be seen that a waveform having an amplitude of slightly less than 2 volts with Vm-Vf as the maximum value is generated.

一方、S4点で発生する電圧は、矢印H1の電流によりコンデンサC2が充電されて電圧が上昇し、S1点がマイナスの波形になる時点でVm+Vfの電圧となり、矢印H2の電流の流れが発生する。こうしてS3,S4点は図3(b)に示す波形となり、S5点の波形はS3点の波形に準ずる変動を示す。
但し、S4点の電圧はVm+Vfより高い電圧と成ることがないため、S1点のプラス側波形に追従した波形とならず、プラス側はリプル電圧に比例しなくなる。一方、マイナス側波形はS1に追従して変化する。
On the other hand, the voltage generated at the point S4 becomes the voltage of Vm + Vf when the capacitor C2 is charged by the current of the arrow H1 and the voltage rises and the point S1 becomes a negative waveform, and the current of the arrow H2 occurs. . Thus, points S3 and S4 have the waveforms shown in FIG. 3 (b), and the waveform at point S5 shows a variation similar to the waveform at point S3.
However, since the voltage at the point S4 does not become higher than Vm + Vf, the waveform does not follow the plus side waveform at the point S1, and the plus side is not proportional to the ripple voltage. On the other hand, the negative waveform changes following S1.

その結果、S5点の波形(及びS3点の波形も)もプラス側は大きく変化せずマイナス側の振幅のみ入力に比例して大きくなり、S5点はVm〜Vm−4ボルトの間で変動するとみることができる。
よって、平滑回路32cによりS6点の電圧はVm−2ボルトの電圧に近い直流電圧Veの電圧となる。この結果、表示部32aは例えば5個のダイオードのうち2個が発光する。
As a result, the waveform at the point S5 (and also the waveform at the point S3) does not largely change on the plus side but increases only on the minus side in proportion to the input. When the point S5 fluctuates between Vm and Vm-4 volts, You can see.
Therefore, the voltage at the point S6 becomes a DC voltage Ve close to the voltage of Vm-2 volts by the smoothing circuit 32c. As a result, in the display section 32a, for example, two of the five diodes emit light.

このように、蓄電池1の内部インピーダンスの変化をリプル電圧を発生させて検出し、このリプル電圧を受けて表示部32aの発光LEDの数を変化させて劣化度を診断するため、デジタル演算回路を使用すること無く簡易な回路で蓄電池の劣化状態の判定が可能となり安価に構成できる。
また、リプル電圧増幅回路31が2個のオペアンプで構成でき簡易な回路構成で済むし、点灯するLEDの数の減少により劣化の進行を認識でき、発光するLED数が蓄電池の状態を現し判断し易い。
As described above, a digital arithmetic circuit is used to detect a change in the internal impedance of the storage battery 1 by generating a ripple voltage and detecting the degree of deterioration by receiving the ripple voltage and changing the number of light emitting LEDs of the display unit 32a. The deterioration state of the storage battery can be determined with a simple circuit without using it, and the configuration can be made inexpensively.
In addition, the ripple voltage amplifier circuit 31 can be composed of two operational amplifiers, and a simple circuit configuration can be used. The reduction in the number of illuminated LEDs allows the progress of deterioration to be recognized, and the number of illuminated LEDs indicates the state of the storage battery. easy.

尚、上記実施形態は、増幅回路Q1,Q2の増幅率をいずれも1として説明したが、増幅率の設定は任意である。また発生させるリプル電圧に於いても、正常時は振幅1ボルトとしたが、この発生させるリプル電圧も任意である。
また、リプル電流供給回路2が出力する電流の周波数を1Hzとしたが、0.5〜5Hzの周波数であれば、蓄電池1のインピーダンス上昇を検出し易く劣化を判断し易い。
In the above embodiment, the amplification factors of the amplification circuits Q1 and Q2 are both set to 1. However, the amplification factor can be set arbitrarily. The ripple voltage to be generated is also 1 volt in the normal state, but the ripple voltage to be generated is also arbitrary.
Further, the frequency of the current output from the ripple current supply circuit 2 is set to 1 Hz. However, if the frequency is 0.5 to 5 Hz, it is easy to detect an increase in the impedance of the storage battery 1 and to judge deterioration.

1・・蓄電池、2・・リプル電流供給回路(リプル発生手段)、3・・劣化判定回路、31・・リプル電圧増幅回路、32・・劣化度表示部、32a・・表示部、32b・・駆動回路、32c・・平滑回路、Q1・・第1増幅回路、Q2・・第2増幅回路。   1. Storage battery, 2. Ripple current supply circuit (ripple generation means), 3. Deterioration determination circuit, 31 Ripple voltage amplifier circuit, 32 Deterioration degree display part, 32a Display part, 32b ... Driving circuit, 32c ... smoothing circuit, Q1 ... first amplifier circuit, Q2 ... second amplifier circuit.

Claims (1)

蓄電池に対してリプル電圧を発生させるために一定の交流電流を供給するリプル発生手段と、
供給された交流電流により蓄電池に発生したリプル電圧から蓄電池の劣化を判定する劣化判定回路とを有し、
前記劣化判定回路が、発生したリプル電圧を増幅するリプル電圧増幅回路と、
前記リプル電圧増幅回路の出力電圧を平滑化する平滑回路と、
直列接続された複数のLEDから成る表示部、及び前記平滑回路の出力電圧により前記LEDを個々に駆動する駆動回路とを有し、
更に前記リプル電圧増幅回路が、非反転増幅回路から成る第1増幅回路、当該第1増幅回路の出力信号を増幅する反転増幅回路から成る第2増幅回路、及び前記蓄電池の出力電圧を最大値として、前記第1増幅回路及び前記第2増幅回路の出力により変動する電圧を前記平滑回路に出力する出力回路を有し、
前記平滑回路は、前記出力回路の出力を受けて、前記リプル電圧の振幅が増大したら、前記リプル電圧の振幅に反比例して低下する電圧を出力し、前記表示部の点灯するLED数が減少することを特徴とする蓄電池劣化診断装置。
A ripple generating means for supplying a constant alternating current to generate a ripple voltage for the storage battery,
A deterioration determination circuit that determines the deterioration of the storage battery from the ripple voltage generated in the storage battery by the supplied AC current,
The degradation determination circuit, a ripple voltage amplification circuit that amplifies the generated ripple voltage,
A smoothing circuit for smoothing the output voltage of the ripple voltage amplifier circuit,
A display unit including a plurality of LEDs connected in series, and a driving circuit that individually drives the LEDs by an output voltage of the smoothing circuit,
Further, the ripple voltage amplifier circuit includes a first amplifier circuit including a non-inverting amplifier circuit, a second amplifier circuit including an inverting amplifier circuit for amplifying an output signal of the first amplifier circuit, and an output voltage of the storage battery as a maximum value. An output circuit that outputs a voltage that fluctuates according to outputs of the first amplifier circuit and the second amplifier circuit to the smoothing circuit,
The smoothing circuit receives the output of the output circuit, and when the amplitude of the ripple voltage increases, outputs a voltage that decreases in inverse proportion to the amplitude of the ripple voltage, and the number of lighted LEDs of the display unit decreases. A storage battery deterioration diagnosis device characterized by the above-mentioned.
JP2015205779A 2015-10-19 2015-10-19 Battery deterioration diagnosis device Active JP6655942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205779A JP6655942B2 (en) 2015-10-19 2015-10-19 Battery deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205779A JP6655942B2 (en) 2015-10-19 2015-10-19 Battery deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JP2017078600A JP2017078600A (en) 2017-04-27
JP6655942B2 true JP6655942B2 (en) 2020-03-04

Family

ID=58666189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205779A Active JP6655942B2 (en) 2015-10-19 2015-10-19 Battery deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP6655942B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212844A1 (en) * 2016-06-10 2017-12-14 Ntn株式会社 Battery degradation determination device and charger
US10578678B1 (en) 2019-03-04 2020-03-03 Ford Global Technologies, Llc System and method for detecting degradation of power source in vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146374U (en) * 1974-10-03 1976-04-06
JPS5466877A (en) * 1977-11-07 1979-05-29 Matsushita Electric Ind Co Ltd Light emitting diode level meter circuit
JPS56126768A (en) * 1980-03-11 1981-10-05 Toshiba Corp Simplified level-indicating circuit
JPH04102783U (en) * 1991-02-15 1992-09-04 日東工器株式会社 DC battery driven hand tool
JPH09133741A (en) * 1995-11-10 1997-05-20 Tokyo Eletec Kk Device for determining battery failure
JPH09133739A (en) * 1995-11-10 1997-05-20 Tokyo Eletec Kk Method and device for determining life of battery
JP2000341867A (en) * 1999-05-28 2000-12-08 Ntt Data Corp Method and apparatus for discriminating state of secondary battery
JP2003004827A (en) * 2001-06-26 2003-01-08 Yuasa Corp Detector for deterioration state of storage battery

Also Published As

Publication number Publication date
JP2017078600A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US8587917B2 (en) Static eliminator and static elimination control method
US20070290668A1 (en) Maxium power point tracking method and tracking device thereof for a solar power system
WO2013183118A1 (en) Electric motor control device
JPS59215674A (en) Temperature control device of fuel cell
CN108233724A (en) Motor drive
JP6655942B2 (en) Battery deterioration diagnosis device
JP2008064539A (en) Electronic ammeter
JP2007309859A (en) Measuring circuit and testing device
CN107211499A (en) The drive circuit used of surge protection arrangement can be monitored
KR101264174B1 (en) LED apparatus operating by alternating current and control method of operating current thereof
KR20140112985A (en) System for lighting using light emitting diode
JP6509191B2 (en) Power management between source and load
JPWO2013039250A1 (en) Control device for power conversion circuit
CN107949966B (en) Power supply device
TWI572875B (en) Failure detection circuit and method for detecting a circuit using the same
JP2012052831A (en) Battery degradation diagnosis device
US9864420B2 (en) Energy tracking circuit
JP2012070477A (en) Rechargeable electric apparatus
JP5771769B2 (en) Lighting device, lighting fixture, lighting system
JP5575607B2 (en) Forward voltage measuring device and forward voltage measuring method
JP2014149165A (en) Dc power supply apparatus, degradation determination method of storage battery in dc power supply apparatus, storage battery degradation determination apparatus
US20150364950A1 (en) Auxiliary excitation device of a generator and method for controlling power excitation of the same
JP5937305B2 (en) Battery voltage monitoring device
JP6832657B2 (en) Current measuring device and current measuring method
JP5915267B2 (en) Power circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6655942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250