JP6654004B2 - Endoscope light source device, endoscope system, and method of operating endoscope light source device - Google Patents

Endoscope light source device, endoscope system, and method of operating endoscope light source device Download PDF

Info

Publication number
JP6654004B2
JP6654004B2 JP2015150941A JP2015150941A JP6654004B2 JP 6654004 B2 JP6654004 B2 JP 6654004B2 JP 2015150941 A JP2015150941 A JP 2015150941A JP 2015150941 A JP2015150941 A JP 2015150941A JP 6654004 B2 JP6654004 B2 JP 6654004B2
Authority
JP
Japan
Prior art keywords
light
wavelength band
spectrum
light source
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150941A
Other languages
Japanese (ja)
Other versions
JP2016144624A (en
Inventor
健一 大谷
健一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to US15/009,659 priority Critical patent/US9977232B2/en
Publication of JP2016144624A publication Critical patent/JP2016144624A/en
Application granted granted Critical
Publication of JP6654004B2 publication Critical patent/JP6654004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)

Description

本発明は、観察対象に照射する照明光を複数の光源を用いて形成する内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法に関する。   The present invention relates to an endoscope light source device, an endoscope system, and an operation method of an endoscope light source device that form illumination light for irradiating an observation target using a plurality of light sources.

医療分野においては、内視鏡光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムを用いた診断が広く行われている。内視鏡光源装置は、体腔の粘膜等の観察対象に照射する光(以下、照明光という)を発生する装置である。内視鏡光源装置には、従来、キセノンランプ等の広帯域な連続スペクトルを有する光(以下、連続スペクトル光という)を発する光源が用いられてきたが、近年では、キセノンランプ等の広帯域光源の代わりに、LED(Light Emitting Diode)等の半導体光源が用いられつつある。光源に半導体光源を用いる場合には、例えば、青色LED、緑色LED、及び赤色LEDなどの互いに異なる色の光を発光する複数の半導体光源を組み合わせて用いることにより、これらの光を重ね合わせた分光スペクトルを有する光(以下、多色スペクトル光という)が照明光になる。   In the medical field, diagnosis using an endoscope system including an endoscope light source device, an endoscope, and a processor device is widely performed. The endoscope light source device is a device that generates light (hereinafter, referred to as illumination light) for irradiating an observation target such as a mucous membrane of a body cavity. In the endoscope light source device, a light source that emits light having a broadband continuous spectrum (hereinafter referred to as “continuous spectrum light”) such as a xenon lamp has been used. Semiconductor light sources such as LEDs (Light Emitting Diodes) are being used. When a semiconductor light source is used as the light source, for example, by using a plurality of semiconductor light sources that emit light of different colors such as a blue LED, a green LED, and a red LED in combination, the light is superposed on each other. Light having a spectrum (hereinafter, referred to as multicolor spectrum light) becomes illumination light.

例えば、特許文献1の内視鏡システムは、内視鏡光源装置に4個の独立制御可能な半導体光源を搭載し、各々の発光量を制御することで照明光の分光スペクトル(波長毎の光量分布)を調整することで、取得したい画像特性に応じた最適な特性を有する照明光を観察対象に照射できるようにしている。具体的には、明るさに対するダイナミックレンジの大きな画像、色温度が低い画像、色温度が高い画像、特殊な狭帯域波長を狭いエリアに照射した場合の画像を得るために、それぞれ照明光の分光スペクトル等を調節している。   For example, the endoscope system disclosed in Patent Document 1 includes four independently controllable semiconductor light sources mounted on an endoscope light source device, and controls the amount of light emitted from each of the semiconductor light sources to control the spectral spectrum of illumination light (the amount of light for each wavelength) By adjusting the (distribution), it is possible to irradiate the observation target with illumination light having optimal characteristics according to the image characteristics to be acquired. Specifically, in order to obtain an image with a large dynamic range with respect to brightness, an image with a low color temperature, an image with a high color temperature, and an image in which a special narrow-band wavelength is applied to a narrow area, the spectral distribution of the illumination light is obtained. Adjust the spectrum etc.

また、特許文献2の内視鏡システムは、複数の独立制御可能な半導体光源を搭載しており、内視鏡の機種を識別し、内視鏡の機種に応じて各半導体光源の駆動条件を設定している。具体的には、機種によって照明光を伝搬するライトガイドの光透過特性が異なるので、内視鏡の機種を識別して、ライトガイドの光透過特性に応じた各半導体光源の光量比を設定している。   Further, the endoscope system of Patent Document 2 is equipped with a plurality of independently controllable semiconductor light sources, identifies the endoscope model, and determines the driving conditions of each semiconductor light source according to the endoscope model. You have set. Specifically, since the light transmission characteristics of a light guide that propagates illumination light differ depending on the model, the endoscope model is identified, and the light amount ratio of each semiconductor light source is set according to the light transmission characteristics of the light guide. ing.

特開2013−255655号公報JP 2013-255655 A 特開2013−202166号公報JP 2013-202166 A

上記のように、内視鏡システムで用いる照明光は、従来のキセノンランプ等による連続スペクトル光から、複数の半導体光源による多色スペクトル光になりつつあるが、連続スペクトル光と多色スペクトル光とでは、それぞれ分光スペクトルが異なっているので、連続スペクトル光を照射して撮像した観察対象の画像と、多色スペクトル光を照射して撮像した観察対象の画像とでは、同じ観察対象であっても見え方が異なる場合がある。連続スペクトル光を照明光に用いる場合と、多色スペクトル光を照明光に用いる場合とでの観察対象の見え方の違いは一概にどちらが優れているとは言えないが、複数の半導体光源が独立制御可能であり、観察対象等に応じて分光スペクトルを調節できる分、多色スペクトル光を照明光に用いる場合の方が柔軟に観察できる利点がある。   As described above, the illumination light used in the endoscope system is changing from continuous spectrum light by a conventional xenon lamp or the like to multicolor spectrum light by a plurality of semiconductor light sources. Since the spectral spectra are different from each other, the image of the observation target captured by irradiating continuous spectrum light and the image of the observation target captured by irradiating multicolor spectrum light are the same observation target. The appearance may be different. The difference in the appearance of the observation object between the case where continuous spectrum light is used as the illumination light and the case where multicolor spectrum light is used as the illumination light is not necessarily superior, but multiple semiconductor light sources are independent. The use of multi-color spectrum light as illumination light has the advantage that the observation can be performed more flexibly, since it is controllable and the spectral spectrum can be adjusted according to the observation target or the like.

一方、内視鏡システムでは、キセノンランプ等による連続スペクトル光を照明光として用いてきた期間が長いので、多くの医師はキセノンランプ等による連続スペクトル光を照射した場合の観察対象の見え方に慣れている。このため、複数の半導体光源による多色スペクトル光を照明光に用いる場合でも従前のキセノンランプ等による広帯域な連続スペクトル光を照明光に用いた場合と同様に観察できるようにしておくことが望まれている。また、過去の症例として蓄積されている内視鏡画像の多くも、キセノンランプ等による連続スペクトル光によって撮影されているので、複数の半導体光源による多色スペクトル光を照明光に用いる場合でも、過去の症例と単純に比較しやすくするために、広帯域な連続スペクトル光を照明光に用いた場合と同様の内視鏡画像を得られるようにしておくことが望まれている。   On the other hand, endoscope systems have long used continuous spectrum light from a xenon lamp or the like as illumination light, so many doctors have become accustomed to the appearance of the observation target when irradiating continuous spectrum light from a xenon lamp or the like. ing. For this reason, it is desired that even in the case where the multicolor spectrum light from the plurality of semiconductor light sources is used for the illumination light, it can be observed in the same manner as in the case where the conventional wide-band continuous spectrum light from the xenon lamp or the like is used for the illumination light. ing. In addition, many of the endoscope images accumulated as past cases are also photographed with continuous spectrum light from a xenon lamp or the like. In order to make it easy to simply compare with the above case, it is desired to obtain an endoscope image similar to that obtained when broadband continuous spectrum light is used as illumination light.

上記の要望に応えるためには、複数の半導体光源で広帯域な連続スペクトル光の分光スペクトルを再現できれば良いが、実際には、複数の半導体光源で広帯域な連続スペクトル光の分光スペクトルを完全に再現することはできない。例えば、中心波長から離れた波長ほど光量が小さくなる青色LED及び緑色LEDを光源として用いる場合、これらの中間色(青色と緑色の中間付近の波長)の光量は、青色LEDと緑色LEDの光量を調節しただけでは変化し難く、青色LED及び緑色LEDの各中心波長を広帯域な連続スペクトル光の光量に近づけると、青色と緑色の中間色の光量は広帯域な連続スペクトル光の光量を大幅に下回る。逆に、青色と緑色の中間色の光量を広帯域な連続スペクトル光に近づけるために青色LEDと緑色LEDの光量を増大させると、青色LEDの中心波長付近の色や緑色LEDの中心波長の色では広帯域な連続スペクトル光の光量を大幅に超過してしまう。   In order to meet the above demand, it is only necessary that a plurality of semiconductor light sources can reproduce a broad spectrum of continuous spectrum light. However, in practice, a plurality of semiconductor light sources completely reproduce a broad spectrum of continuous spectrum light. It is not possible. For example, when a blue LED and a green LED whose light amount becomes smaller as the wavelength is farther from the center wavelength are used as the light source, the light amount of the intermediate color (the wavelength near the middle between blue and green) is adjusted by adjusting the light amount of the blue LED and the green LED. If the center wavelengths of the blue LED and the green LED are made close to the light amount of the broadband continuous spectrum light, the light amount of the intermediate color between blue and green is significantly lower than the light amount of the broadband continuous spectrum light. Conversely, when the light amounts of the blue LED and the green LED are increased in order to bring the light amount of the intermediate color between blue and green closer to the broadband continuous spectrum light, the color near the center wavelength of the blue LED and the color of the center wavelength of the green LED become broader. The amount of light of a continuous spectrum light is greatly exceeded.

本発明は、互いに異なる色の光を独立して発光する複数の光源を用いて、これらの光を重ね合わせた多色スペクトル光を照明光として用いる場合でも、広帯域な連続スペクトル光を照明光に用いた場合とほぼ同様に観察対象を観察可能にする内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法を提供することを目的とする。   The present invention uses a plurality of light sources that independently emit light of different colors and uses a multicolor spectrum light obtained by superimposing these lights as illumination light. It is an object of the present invention to provide an endoscope light source device, an endoscope system, and an operation method of an endoscope light source device that enable an observation target to be observed almost in the same manner as when used.

本発明の内視鏡光源装置は、互いに異なる色の光を独立して発光する複数の光源を有し、複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、1多色スペクトル光の第1波長帯域の光量積分値を、白色光源が発光する白色光である連続スペクトル光の第1波長帯域の光量積分値と一致させ、かつ、第1多色スペクトル光の第1波長帯域とは異なる第2波長帯域の光量積分値を、連続スペクトル光の第2波長帯域の光量積分値と一致させるように複数の光源の光量をそれぞれ制御する光源制御部と、複数の光源が発する光の光量をそれぞれ検出する光量検出部と、を備え、光源制御部は、光量検出部による検出結果を用いて、複数の光源のうち、第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する。 An endoscope light source device according to the present invention includes a plurality of light sources that independently emit light of different colors, and a first multicolor having a first multicolor spectrum obtained by superposing light emitted by the plurality of light sources. A light source unit that emits spectrum light, and the light quantity integral of the first wavelength band of the first multicolor spectrum light is made to match the light quantity integral of the first wavelength band of continuous spectrum light that is white light emitted by the white light source; In addition, the light amounts of the plurality of light sources are respectively adjusted so that the light intensity integrated value of the second wavelength band different from the first wavelength band of the first multicolor spectrum light matches the light intensity integrated value of the second wavelength band of the continuous spectrum light. A light source control unit that controls the light source and a light amount detection unit that detects the light amount of the light emitted by the plurality of light sources. Light intensity to form multicolor spectrum light For the specified value, in accordance with the quantity of the largest uppermost degradation sources insufficient quantity of light, to set the amount of the remaining light sources.

白色光は、キセノンランプが発する光であることが好ましい。   The white light is preferably light emitted from a xenon lamp.

第1波長帯域は、紫色波長帯域及び青色波長帯域を合わせた波長帯域であり、第2波長帯域は、緑色波長帯域であることが好ましい。   The first wavelength band is preferably a wavelength band combining a violet wavelength band and a blue wavelength band, and the second wavelength band is preferably a green wavelength band.

複数の光源は、紫色光を発する紫色光源と、青色光を発する青色光源とを含み、第1多色スペクトル光の第1波長帯域は、紫色光及び青色光を含む波長帯域であることが好ましい。   The plurality of light sources include a violet light source emitting violet light and a blue light source emitting blue light, and the first wavelength band of the first multicolor spectrum light is preferably a wavelength band including violet light and blue light. .

光源制御部は、第1波長帯域及び第2波長帯域に加えて、さらに、第1多色スペクトルの第1波長帯域及び第2波長帯域とは異なる第3波長帯域の光量積分値と、連続スペクトル光の第3波長帯域の光量積分値とを一致させることが好ましい。   The light source control unit further includes, in addition to the first wavelength band and the second wavelength band, an integrated light amount value of a third wavelength band different from the first wavelength band and the second wavelength band of the first multicolor spectrum, and a continuous spectrum. It is preferable to make the light intensity integral value of the third wavelength band of the light coincide.

第3波長帯域は、赤色波長帯域であることが好ましい。   The third wavelength band is preferably a red wavelength band.

光源部は、複数の光源によって、第1多色スペクトル光及び連続スペクトル光とは分光スペクトルが異なる第2多色スペクトルを有する第2多色スペクトル光を発し、光源制御部は、第2多色スペクトル光の第1波長帯域の光量積分値を、連続スペクトル光の第1波長帯域の光量積分値よりも大きくし、かつ、第2多色スペクトル光の第2波長帯域の光量積分値を、連続スペクトル光の第2波長帯域の光量積分値と一致させることが好ましい。   The light source unit emits, by a plurality of light sources, a second multicolor spectrum light having a second multicolor spectrum having a spectrum different from the first multicolor spectrum light and the continuous spectrum light. The light quantity integral of the first wavelength band of the spectrum light is made larger than the light quantity integral of the first wavelength band of the continuous spectrum light, and the light quantity integral of the second wavelength band of the second multicolor spectrum light is made continuous. It is preferable to match the integrated light amount of the spectrum light in the second wavelength band.

光量検出部は、複数の光源が発光している間、複数の光源が発光する光の光量の検出を繰り返し行うことが好ましい。   It is preferable that the light amount detection unit repeatedly detects the light amount of the light emitted by the plurality of light sources while the plurality of light sources emits light.

第1多色スペクトル光の第1波長帯域の光量積分値が連続スペクトル光の第1波長帯域の光量積分値に一致し、かつ、第1多色スペクトル光の第2波長帯域の光量積分値が、連続スペクトル光の第2波長帯域の光量積分値と一致しているか否かを検証する検証部を備えることが好ましい。   The integrated light amount of the first polychromatic spectrum light in the first wavelength band matches the integrated light amount of the continuous spectral light in the first wavelength band, and the integrated light amount of the first polychromatic spectral light in the second wavelength band is It is preferable to include a verification unit that verifies whether or not the light intensity integration value of the continuous spectrum light in the second wavelength band matches.

光源制御部は、検証部による検証結果を用いて複数の光源を制御することが好ましい。   It is preferable that the light source control unit controls the plurality of light sources using the verification result by the verification unit.

本発明の内視鏡システムは、互いに異なる色の光を独立して発光する複数の光源を有し、複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、1多色スペクトル光の第1波長帯域の光量積分値を、白色光源が発光する白色光である連続スペクトル光の第1波長帯域の光量積分値と一致させ、かつ、第1多色スペクトル光の第1波長帯域とは異なる第2波長帯域の光量積分値を、連続スペクトル光の第2波長帯域の光量積分値と一致させるように複数の光源の光量をそれぞれ制御する光源制御部と、複数の光源が発する光の光量をそれぞれ検出する光量検出部と、を備え、光源制御部は、光量検出部による検出結果を用いて、複数の光源のうち、第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する。 An endoscope system according to the present invention includes a plurality of light sources that independently emit light of different colors, and a first multicolor spectrum having a first multicolor spectrum obtained by superimposing light emitted by the plurality of light sources. A light source unit that emits light, the light quantity integral value of the first wavelength band of the first multicolor spectrum light is made to match the light quantity integral value of the first wavelength band of the continuous spectrum light that is white light emitted by the white light source, and Controlling the light intensities of the plurality of light sources so that the light intensity integral of the second wavelength band different from the first wavelength band of the first multicolor spectrum light coincides with the light intensity integral of the second wavelength band of the continuous spectrum light. A light source control unit for detecting the amount of light emitted from the plurality of light sources . The light source control unit uses the detection result of the light amount detection unit to determine a first light source among the plurality of light sources. The amount of light that forms the color spectrum light For the specified value, in accordance with the quantity of the largest uppermost degradation sources insufficient quantity of light, to set the amount of the remaining light sources.

光源部は、複数の光源によって、第1多色スペクトル光及び連続スペクトル光とは分光スペクトルが異なる第2多色スペクトルを有する第2多色スペクトル光を発し、光源制御部は、第2多色スペクトル光の第1波長帯域の光量積分値を、連続スペクトル光の第1波長帯域の光量積分値よりも大きくし、かつ、第2多色スペクトル光の第2波長帯域の光量積分値を、連続スペクトル光の第2波長帯域の光量積分値と一致させることが好ましい。   The light source unit emits, by a plurality of light sources, a second multicolor spectrum light having a second multicolor spectrum having a spectrum different from the first multicolor spectrum light and the continuous spectrum light. The light quantity integral of the first wavelength band of the spectrum light is made larger than the light quantity integral of the first wavelength band of the continuous spectrum light, and the light quantity integral of the second wavelength band of the second multicolor spectrum light is made continuous. It is preferable to match the integrated light amount of the spectrum light in the second wavelength band.

接続された内視鏡の機種を検出し、検出結果を光源制御部に入力する内視鏡機種検出部を備え、光源制御部は、内視鏡機種検出部によって検出された内視鏡の機種によって、光源部が発する光を、第1多色スペクトル光と第2多色スペクトル光とで切り替えることが好ましい。   An endoscope model detection unit that detects a model of the connected endoscope and inputs a detection result to the light source control unit, wherein the light source control unit detects the model of the endoscope detected by the endoscope model detection unit It is preferable that the light emitted from the light source unit is switched between the first multicolor spectrum light and the second multicolor spectrum light.

光源制御部は、内視鏡の機種が、連続スペクトル光で使用する機種である場合に、光源部が発する光を第1多色スペクトル光にし、かつ、内視鏡の機種が、連続スペクトル光で使用する機種でない場合に、光源部が発する光を第2多色スペクトル光にすることが好ましい。   When the model of the endoscope is a model that uses continuous spectrum light, the light source control unit sets the light emitted by the light source unit to the first multicolor spectrum light, and the model of the endoscope uses the continuous spectrum light. It is preferable that the light emitted from the light source unit be the second multicolor spectrum light when the model is not the model used in the above.

本発明の内視鏡光源装置の作動方法は、互いに異なる色の光を独立して発光する複数の光源と、複数の光源が発する光の光量をそれぞれ検出する光量検出部と、を有し、複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する複数の光源を有する内視鏡光源装置の作動方法であり、光源制御部が、1多色スペクトル光の第1波長帯域の光量積分値を、白色光源が発光する白色光である連続スペクトル光の第1波長帯域の光量積分値と一致させ、かつ、第1多色スペクトル光の第1波長帯域とは異なる第2波長帯域の光量積分値を、連続スペクトル光の第2波長帯域の光量積分値と一致させるように複数の光源の光量をそれぞれ制御して、第1多色スペクトル光を発光させるステップと、光源制御部が、光量検出部による検出結果を用いて、複数の光源のうち、第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定するステップと、を備える。
The operation method of the endoscope light source device of the present invention includes a plurality of light sources that independently emit light of different colors, and a light amount detection unit that detects the amount of light emitted by the plurality of light sources, a method of operating the endoscope light source device in which a plurality of light source has a plurality of light sources emitting first polychromatic spectrum light having a first polychromatic spectrum superimposed light emitted, the light source control section, the first multiple The light quantity integrated value of the first wavelength band of the color spectrum light is made to match the light quantity integrated value of the first wavelength band of the continuous spectrum light that is white light emitted from the white light source, and the amount integral value of a different second wavelength band than the wavelength band, and controls the amount of light of a plurality of light sources so that match the light amount integrated value of the second wavelength band of the continuous spectrum light, respectively, the first polychromatic spectrum light Emitting light and controlling the light source However, using the detection result of the light amount detection unit, the light amount of the most deteriorated light source having the largest shortage of the light amount is determined for the specified value of the light amount forming the first multicolor spectrum light among the plurality of light sources. Setting the light amounts of the remaining light sources.

本発明の内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法は、少なくとも2つの波長帯域で、多色スペクトル光の光量積分値と、広帯域な連続スペクトル光の光量積分値とを一致させることにより、多色スペクトル光を照明光として用いる場合でも、連続スペクトル光を照明光に用いた場合とほぼ同様に観察対象を観察可能にすることができる。   An endoscope light source device, an endoscope system, and an operation method of an endoscope light source device according to the present invention include a light intensity integral value of a polychromatic spectrum light and a light intensity integral value of a broadband continuous spectrum light in at least two wavelength bands. By making the values coincide with each other, it is possible to make the observation target observable even in the case where the multi-color spectrum light is used as the illumination light, as in the case where the continuous spectrum light is used as the illumination light.

内視鏡システムの外観図である。It is an outline view of an endoscope system. 内視鏡システムの機能を示すブロック図である。FIG. 2 is a block diagram illustrating functions of the endoscope system. 多色スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of a polychromatic spectrum light. キセノンランプの連続スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the continuous spectrum light of a xenon lamp. 第1多色スペクトル光の分光スペクトルを示すグラフである。5 is a graph showing a spectrum of the first multicolor spectrum light. 第1多色スペクトル光とキセノンランプの連続スペクトル光の関係を示す説明図である。FIG. 4 is an explanatory diagram showing a relationship between first multicolor spectrum light and continuous spectrum light of a xenon lamp. 帯域制限部121を設けた内視鏡システムのブロック図である。FIG. 2 is a block diagram of an endoscope system provided with a band limiting unit 121. 第2多色スペクトル光とキセノンランプの連続スペクトル光の関係を示す説明図である。FIG. 4 is an explanatory diagram showing a relationship between second polychromatic spectrum light and continuous spectrum light of a xenon lamp. 内視鏡の機種によって第1多色スペクトル光と第2多色スペクトル光を切り替える内視鏡システムのブロック図である。FIG. 2 is a block diagram of an endoscope system that switches between first multicolor spectrum light and second multicolor spectrum light depending on the type of endoscope. 内視鏡の機種によって第1多色スペクトル光と第2多色スペクトル光を切り替える内視鏡システムのブロック図である。FIG. 2 is a block diagram of an endoscope system that switches between first multicolor spectrum light and second multicolor spectrum light depending on the type of endoscope. 半導体光源の経時劣化を示すグラフである。4 is a graph showing the deterioration over time of a semiconductor light source. 半導体光源の経時劣化に対応した第1多色スペクトル光を発光する内視鏡システムのブロック図である。FIG. 2 is a block diagram of an endoscope system that emits first multicolor spectrum light corresponding to the deterioration over time of a semiconductor light source. 半導体光源が経時劣化した場合の第1多色スペクトル光の分光スペクトルを示すグラフである。5 is a graph showing a spectrum of the first multicolor spectrum light when the semiconductor light source deteriorates with time. 最も経時劣化した光源に合わせて光量を調節した第1多色スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the 1st polychromatic spectrum light which adjusted the light quantity according to the light source which deteriorated with time most. 検証部を有する内視鏡システムのブロック図である。FIG. 2 is a block diagram of an endoscope system having a verification unit. カプセル内視鏡の概略図である。It is a schematic diagram of a capsule endoscope.

[第1実施形態]
図1に示すように、内視鏡システム10は、内視鏡12と、内視鏡光源装置14と、プロセッサ装置16と、モニタ18と、コンソール19とを有する。内視鏡12は内視鏡光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作によって、先端部12dが所望の方向に向けられる。また、操作部12bには、アングルノブ12eの他、ズーム操作部13等が設けられている。
[First Embodiment]
As shown in FIG. 1, the endoscope system 10 includes an endoscope 12, an endoscope light source device 14, a processor device 16, a monitor 18, and a console 19. The endoscope 12 is optically connected to the endoscope light source device 14 and is also electrically connected to the processor device 16. The endoscope 12 includes an insertion portion 12a inserted into the subject, an operation portion 12b provided at a base end portion of the insertion portion 12a, a bending portion 12c provided at a distal end side of the insertion portion 12a, and a distal end portion. 12d. By operating the angle knob 12e of the operation section 12b, the bending section 12c performs a bending operation. By this bending operation, the tip 12d is directed in a desired direction. The operation unit 12b is provided with a zoom operation unit 13 and the like in addition to the angle knob 12e.

プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、各観察モードの画像や画像に付帯する画像情報等を出力表示する。コンソール19は、機能設定等の入力操作を受け付けるユーザインタフェースとして機能する。なお、プロセッサ装置16には、画像や画像情報等を記録する外付けの記録部(図示省略)を接続してもよい。   The processor device 16 is electrically connected to a monitor 18 and a console 19. The monitor 18 outputs and displays images in each observation mode, image information attached to the images, and the like. The console 19 functions as a user interface that receives input operations such as function settings. Note that an external recording unit (not shown) for recording images, image information, and the like may be connected to the processor device 16.

図2に示すように、内視鏡光源装置14は、観察対象に照射する照明光を発生する装置であり、複数の光源を有する光源部20と、光源部20の各光源を制御する光源制御部22と、光源部20が発する光の光路を結合する光路結合部23とを備えている。   As shown in FIG. 2, the endoscope light source device 14 is a device that generates illumination light for irradiating an observation target. The light source unit 20 includes an optical path coupling unit 23 that couples an optical path of light emitted from the light source unit 20.

光源部20は、紫色LED(以下、V−LED(Violet Light Emitting Diode)という)20a、青色LED(以下、B−LED(Blue Light Emitting Diode)という)20b、緑色LED(以下、G−LED(Green Light Emitting Diode)という)20c、及び、赤色LED(以下、R−LED(Red Light Emitting Diode)という)20dの4色のLEDを有する。   The light source unit 20 includes a purple LED (hereinafter, referred to as V-LED (Violet Light Emitting Diode)) 20a, a blue LED (hereinafter, referred to as B-LED (Blue Light Emitting Diode)) 20b, and a green LED (hereinafter, G-LED (hereinafter, G-LED)). The LED has four colors of LED 20c and a red LED (hereinafter referred to as R-LED (Red Light Emitting Diode)) 20d.

図3に示すように、V−LED20aは、中心波長405nm、波長帯域380〜420nmの紫色光(以下、V光という)を発光する紫色光源である。B−LED20bは、中心波長460nm、波長帯域420〜500nmの青色光(以下、B光という)を発する青色光源である。G−LED20cは、波長帯域が480〜600nmに及ぶ緑色光(以下、G光という)を発する緑色光源である。R−LED20dは、中心波長620〜630nmで、波長帯域が600〜650nmに及び赤色光(以下、R光という)を発光する赤色光源である。なお、V−LED20a及びB−LED20bの中心波長は±5nmから±10nm程度の幅を有する。   As shown in FIG. 3, the V-LED 20a is a violet light source that emits violet light (hereinafter, referred to as V light) having a center wavelength of 405 nm and a wavelength band of 380 to 420 nm. The B-LED 20b is a blue light source that emits blue light (hereinafter, referred to as B light) having a center wavelength of 460 nm and a wavelength band of 420 to 500 nm. The G-LED 20c is a green light source that emits green light (hereinafter, referred to as G light) having a wavelength band ranging from 480 to 600 nm. The R-LED 20d is a red light source that emits red light (hereinafter, referred to as R light) having a center wavelength of 620 to 630 nm and a wavelength band of 600 to 650 nm. Note that the center wavelength of the V-LED 20a and the B-LED 20b has a width of about ± 5 nm to ± 10 nm.

光源部20は、これらの互いに異なる色の光を独立して発光する複数の光源によって、V光、B光、G光、及びR光を重ね合わせた多色スペクトルを有する多色スペクトル光25を発する。各LED20a〜20dの発光量(以下、単に光量という)はそれぞれ独立に制御可能であるため、多色スペクトル光25の分光スペクトルは、各LED20a〜20dの光量を変えることによって変化させることができる。本実施形態では、光源部20は、図4に示す従来の内視鏡システムが用いてきたキセノンランプが発する白色光の広帯域な連続スペクトル光26を照明光として用いて観察する場合を模倣するバランスで、V光、B光、G光、及びR光を発光して多色スペクトル光25を発光する。このキセノンエミュレートモードで光源部20が発する多色スペクトル光25を、以下では第1多色スペクトル光という。   The light source unit 20 generates a multicolor spectrum light 25 having a multicolor spectrum obtained by superimposing V light, B light, G light, and R light by a plurality of light sources that independently emit light of these different colors. Emit. Since the light emission amount (hereinafter simply referred to as light amount) of each of the LEDs 20a to 20d can be independently controlled, the spectral spectrum of the multicolor spectrum light 25 can be changed by changing the light amount of each of the LEDs 20a to 20d. In the present embodiment, the light source unit 20 is a balance that simulates the case of observing using wide band continuous spectrum light 26 of white light emitted by a xenon lamp used as a conventional endoscope system shown in FIG. 4 as illumination light. Then, V light, B light, G light, and R light are emitted, and the multi-color spectrum light 25 is emitted. The polychromatic spectrum light 25 emitted from the light source unit 20 in the xenon emulation mode is hereinafter referred to as a first polychromatic spectrum light.

光源制御部22は、光源部20が有する各LED20a〜20dの駆動電流や駆動電圧、駆動電流または駆動電圧を各LED20a〜20dにパルス入力する際のパルス幅やパルス長等を個別に制御する。これにより、光源制御部22は、各LED20a〜20dが発する各光の発光タイミングや光量を制御する。具体的には、光源制御部22は、光源部20の各LED20a〜20dを制御し、これらの各LED20a〜20dが発するV光、B光、G光、及びR光を重ね合わせた第1多色スペクトル光を発生させる。第1多色スペクトル光を発生させる場合、光源制御部22は、各LED20a〜20dの発光タイミングや光量を制御して、第1多色スペクトル光の第1波長帯域の光量積分値を、連続スペクトル光の第1波長帯域の光量積分値と一致させ、かつ、第1多色スペクトルの第2波長帯域の光量積分値を、連続スペクトル光の第2波長帯域の光量積分値と一致させる。   The light source control unit 22 individually controls a drive current and a drive voltage of each of the LEDs 20a to 20d included in the light source unit 20, and a pulse width and a pulse length when the drive current or the drive voltage is pulse-input to each of the LEDs 20a to 20d. Thereby, the light source control unit 22 controls the light emission timing and light amount of each light emitted from each of the LEDs 20a to 20d. Specifically, the light source control unit 22 controls the LEDs 20a to 20d of the light source unit 20, and generates a first light obtained by superimposing the V light, the B light, the G light, and the R light emitted from each of the LEDs 20a to 20d. Generates color spectrum light. When generating the first multicolor spectrum light, the light source control unit 22 controls the light emission timing and the light quantity of each of the LEDs 20a to 20d to calculate the light quantity integral value of the first multicolor spectrum light in the first wavelength band to the continuous spectrum. The light intensity integrated value of the first wavelength band of the light is made to coincide with the light intensity integrated value of the second wavelength band of the first multicolor spectrum, and the light intensity integrated value of the continuous spectrum light in the second wavelength band.

光量積分値とは、第1波長帯域または第2波長帯域等の予め定められた特定の波長帯域内の各波長における相対光量を、特定の波長帯域内で積分した値である。本実施形態では、光量積分値は、光源部20が出射する光の相対光量を特定の波長帯域内で積分した値であるが、光伝搬中の損失等を考慮して、観察対象に照射される光の相対光量を特定の波長帯域内で積分した値を光量積分値としても良い。また、撮像センサ48に入射する光(観察対象や観察対象を模したファントムからの戻り光)の各波長の相対光量を特定の波長帯域内で積分した値を光量積分値としても良い。さらに、撮像センサ48の画素にカラーフィルタが設けられている場合には、観察対象や観察対象を模したファントムからの戻り光がカラーフィルタを通過した後の光、すなわち撮像センサ48の各画素で光電変換に用いる光の各波長の相対光量を、特定の波長帯域内で積分した値を光量積分値としても良い。これらの光量積分値は、LED20a〜20dの特性、光伝搬中の損失や撮像センサ48の感度(カラーフィルタの特性を含む)等が定まった実際の内視鏡システムにおいては、実質的に同じ役割を果たす数値である。   The light intensity integration value is a value obtained by integrating the relative light intensity at each wavelength within a predetermined specific wavelength band such as the first wavelength band or the second wavelength band within the specific wavelength band. In the present embodiment, the light quantity integral value is a value obtained by integrating the relative light quantity of the light emitted from the light source unit 20 within a specific wavelength band. The value obtained by integrating the relative light amount of the light within a specific wavelength band may be used as the light amount integrated value. In addition, a value obtained by integrating the relative light amount of each wavelength of the light (the observation object or the return light from the phantom simulating the observation object) incident on the image sensor 48 within a specific wavelength band may be used as the light amount integration value. Further, when a color filter is provided in the pixel of the imaging sensor 48, the light after the observation target or the phantom simulating the observation target passes through the color filter, that is, each pixel of the imaging sensor 48 A value obtained by integrating the relative light amount of each wavelength of light used for photoelectric conversion within a specific wavelength band may be used as the light amount integrated value. These light quantity integral values have substantially the same role in an actual endoscope system in which the characteristics of the LEDs 20a to 20d, the loss during light propagation, the sensitivity of the image sensor 48 (including the characteristics of the color filter), and the like are determined. Is a numerical value that fulfills

連続スペクトルとは白色光源が発光する光の少なくとも一部の波長帯域を有する光の分光スペクトルであり、連続スペクトル光とは連続スペクトルを有する光である。白色光源とは、1つの光源から可視光域(例えば400nmから700nm)にわたってなだらかな分布の光を出す光源である。より具体的には、白色光源とは、キセノンランプや、ハロゲンランプ、または白色LED等である。また、白色光源が発光する光の少なくとも一部の波長帯域を有する光とは、白色光源が発光する光からカラーフィルタ等によって抽出した光をいう。   The continuous spectrum is a spectral spectrum of light having at least a part of the wavelength band of light emitted from the white light source, and the continuous spectrum light is light having a continuous spectrum. A white light source is a light source that emits light having a gentle distribution from one light source over a visible light range (for example, 400 nm to 700 nm). More specifically, the white light source is a xenon lamp, a halogen lamp, a white LED, or the like. The light having at least a part of the wavelength band of the light emitted by the white light source is light extracted from the light emitted by the white light source with a color filter or the like.

多色スペクトルとは、複数の光源がそれぞれ発光する光の分光スペクトルを重ね合わせて得る1つの分光スペクトルであり、複数の光源が発光する光を重ね合わせた光が多色スペクトル光である。さらに、広帯域とは、光源部20で用いる複数の光源(LED20a〜20d)のうち少なくとも1個の光源が発光する光の波長帯域よりも波長帯域が広いことを表す。キセノンランプが発する白色光は、LED20aが発光するV光の波長帯域(紫色波長帯域)、LED20bが発光するB光の波長帯域(青色波長帯域)、LED20cが発光するG光の波長帯域(緑色波長帯域)、及び、LED20dが発光するR光の波長帯域(赤色波長帯域)の各波長帯域よりも波長帯域が広く、これら全ての波長帯域(波長350nm以上700nm未満)の各波長の成分を含み、かつ、可視光域にわたってなだらかな分布を有する光である。したがって、キセノンランプが発光する白色光は、広帯域な連続スペクトル光26である。広帯域な連続スペクトル光は、キセノンランプが発する白色光に限定されるものではなく、従来の内視鏡システムで利用されている白色光等を含む。   The multicolor spectrum is one spectrum obtained by superimposing the spectrums of the light emitted by the plurality of light sources, and the light obtained by superimposing the light emitted by the plurality of light sources is the multicolor spectrum light. Further, the broadband indicates that the wavelength band is wider than the wavelength band of light emitted by at least one of the plurality of light sources (LEDs 20a to 20d) used in the light source unit 20. The white light emitted by the xenon lamp includes a wavelength band of V light (violet wavelength band) emitted by the LED 20a, a wavelength band of B light emitted by the LED 20b (blue wavelength band), and a wavelength band of G light emitted by the LED 20c (green wavelength band). Band), and a wavelength band wider than each wavelength band of the R light emitted by the LED 20d (red wavelength band), and includes components of each wavelength in all these wavelength bands (350 nm or more and less than 700 nm), In addition, the light has a gentle distribution over the visible light range. Therefore, the white light emitted by the xenon lamp is a broadband continuous spectrum light 26. The broadband continuous spectrum light is not limited to white light emitted from a xenon lamp, but includes white light used in a conventional endoscope system.

第1波長帯域は予め定められた特定の波長範囲であり、第2波長帯域もまた予め定められた特定の波長範囲であるが、第2波長帯域は第1波長帯域とは異なる波長帯域である。第1波長帯域と第2波長帯域は、完全に一致していなければ任意に定めることができる。例えば、第1波長帯域と第2波長帯域は一部が重複していても良い。また、例えば、第1波長帯域または第2波長帯域の一方の波長帯域が、他方の波長帯域に全部含まれていても良い。例えば、第1波長帯域と第2波長帯域の境界の少なくとも一方が異なるが、第1波長帯域(第2波長帯域)が第2波長帯域(第1波長帯域)の一部を形成する場合がこれに該当する。本実施形態では、第1波長帯域は紫色波長帯域及び青色波長帯域を合わせた波長帯域(波長350nm以上480nm未満の波長帯域)であり、第2波長帯域は緑色波長帯域(波長480nm以上600nm未満の波長帯域)である。また、赤色波長帯域(波長600nm以上700nm未満の波長帯域)を第3波長帯域という。   The first wavelength band is a predetermined specific wavelength range, and the second wavelength band is also a predetermined specific wavelength range. However, the second wavelength band is a wavelength band different from the first wavelength band. . The first wavelength band and the second wavelength band can be arbitrarily determined if they do not completely match. For example, the first wavelength band and the second wavelength band may partially overlap. Further, for example, one wavelength band of the first wavelength band or the second wavelength band may be entirely included in the other wavelength band. For example, at least one of the boundaries between the first wavelength band and the second wavelength band is different, but the first wavelength band (second wavelength band) forms a part of the second wavelength band (first wavelength band). Corresponds to. In the present embodiment, the first wavelength band is a combined wavelength band of the violet wavelength band and the blue wavelength band (wavelength band of wavelength 350 nm or more and less than 480 nm), and the second wavelength band is a green wavelength band (wavelength of 480 nm or more and less than 600 nm). Wavelength band). The red wavelength band (wavelength band from 600 nm to less than 700 nm) is referred to as a third wavelength band.

光源制御部22は、光源部20の各LED20a〜20dの光量のバランスを制御して、上記のように第1多色スペクトル光を発生させ、第1多色スペクトル光を照明光にすることで、キセノンランプが発する白色光で観察対象を観察する場合とほぼ同様に、内視鏡システム10で観察対象を観察することができるようにしている。   The light source control unit 22 controls the balance of the light amounts of the LEDs 20a to 20d of the light source unit 20, generates the first multicolor spectrum light as described above, and turns the first multicolor spectrum light into illumination light. The observation object can be observed by the endoscope system 10 in substantially the same manner as when observing the observation object with white light emitted from a xenon lamp.

光源部20が発する多色スペクトル光(第1多色スペクトル光)は、光路結合部23を介して挿入部12a内に挿通されたライトガイド41に入射される。ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と内視鏡光源装置14及びプロセッサ装置16とを接続するコード)内に内蔵されており、光路結合部23から導光される照明光を内視鏡12の先端部12dまで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた経がφ0.3〜0.5mmの細径なファイバケーブルを使用することができる。   The multicolor spectrum light (first multicolor spectrum light) emitted from the light source unit 20 is incident on the light guide 41 inserted into the insertion unit 12a via the optical path coupling unit 23. The light guide 41 is built in the endoscope 12 and a universal cord (cord connecting the endoscope 12 with the endoscope light source device 14 and the processor device 16), and is guided from the optical path coupling unit 23. The illumination light propagates to the distal end portion 12d of the endoscope 12. Note that a multimode fiber can be used as the light guide 41. As an example, a small-diameter fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of 0.3 to 0.5 mm including a protective layer serving as an outer cover can be used.

内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41によって伝搬された照明光は観察対象に照射される。撮像光学系30bは、対物レンズ46、ズームレンズ47、撮像センサ48を有している。観察対象からの戻り光(反射光の他、観察対象等から発生する蛍光を含む光)は、対物レンズ46及びズームレンズ47を介して撮像センサ48に入射する。これにより、撮像センサ48に観察対象が結像される。なお、ズームレンズ47は、ズーム操作部13を操作することで、テレ端とワイド端の間で自在に移動され、撮像センサ48に結像する観察対象を拡大または縮小する。   An illumination optical system 30a and an imaging optical system 30b are provided at a distal end portion 12d of the endoscope 12. The illumination optical system 30a has an illumination lens 45, and the illumination light propagated by the light guide 41 is radiated to the observation target via the illumination lens 45. The imaging optical system 30b has an objective lens 46, a zoom lens 47, and an imaging sensor 48. Light returned from the observation target (light including fluorescence generated from the observation target in addition to reflected light) enters the image sensor 48 via the objective lens 46 and the zoom lens 47. Thereby, the observation target is imaged on the image sensor 48. The zoom lens 47 is freely moved between the telephoto end and the wide end by operating the zoom operation unit 13 to enlarge or reduce an observation target formed on the image sensor 48.

撮像センサ48は、異なる色に感度を有する複数色の画素を有するカラー撮像センサであり、観察対象からの戻り光を撮像して画像信号を出力する。撮像センサ48としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、撮像センサ48は、R(赤色)カラーフィルタ,G(緑色)カラーフィルタ,及びB(青色)カラーフィルタの3色のカラーフィルタのいずれか各画素に設けられており、観察対象からの戻り光を撮像して色毎の画像信号を出力する。すなわち、撮像センサ48は、Rカラーフィルタが設けられたR画素(赤色画素)と、Gカラーフィルタが設けられたG画素(緑色画素)と、Bカラーフィルタが設けられたB画素(青色画素)とを有し、各画素からそれぞれ画像信号を出力することにより、RGB画像信号を出力する。   The imaging sensor 48 is a color imaging sensor having pixels of a plurality of colors having sensitivity to different colors, and captures return light from an observation target to output an image signal. As the image sensor 48, a charge coupled device (CCD) image sensor or a complementary metal-oxide semiconductor (CMOS) image sensor can be used. The image sensor 48 is provided for each pixel of any one of three color filters of an R (red) color filter, a G (green) color filter, and a B (blue) color filter. It captures light and outputs an image signal for each color. That is, the image sensor 48 includes an R pixel (red pixel) provided with an R color filter, a G pixel (green pixel) provided with a G color filter, and a B pixel (blue pixel) provided with a B color filter. And an image signal is output from each pixel to output an RGB image signal.

より具体的には、観察対象には第1多色スペクトル光が照射されるので、撮像センサ48は、第1多色スペクトル光のうちV光とB光の各戻り光をB画素で受光し、青色画像信号(以下、B画像信号という)を出力する。同様に、第1多色スペクトル光のうちG光の戻り光をG画素で受光し、緑色画像信号(以下、G画像信号という)を出力し、R光の戻り光をR画素で受光し、赤色画像信号(以下、R画像信号という)を出力する。   More specifically, since the observation target is irradiated with the first multicolor spectrum light, the image sensor 48 receives each return light of the V light and the B light in the first multicolor spectrum light by the B pixel. , And outputs a blue image signal (hereinafter, referred to as a B image signal). Similarly, of the first multicolor spectrum light, the G light is received by the G pixel, a green image signal (hereinafter, referred to as a G image signal) is output, and the R light is received by the R pixel. A red image signal (hereinafter, referred to as an R image signal) is output.

なお、原色のカラー撮像センサである撮像センサ48の代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるので、補色−原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換することにより、撮像センサ48と同様のRGB画像信号を得ることができる。また、撮像センサ48の代わりに、カラーフィルタを設けていないモノクロセンサを用いても良い。この場合、光源制御部22は、必要に応じて、V光、B光、G光、R光を時分割で点灯させる。但し、V光とB光はどちらもB画素で受光されるので、V光とB光は同時に点灯させても良い。   Instead of the image sensor 48, which is a primary color image sensor, a complementary color image sensor having complementary color filters of C (cyan), M (magenta), Y (yellow) and G (green) may be used. When a complementary color image sensor is used, image signals of four colors of CMYG are output. Therefore, the image signals of four colors of CMYG are converted into image signals of three colors of RGB by complementary color-primary color conversion. An RGB image signal similar to that of the image sensor 48 can be obtained. Further, instead of the image sensor 48, a monochrome sensor having no color filter may be used. In this case, the light source control unit 22 lights the V light, the B light, the G light, and the R light in a time-division manner as necessary. However, since both the V light and the B light are received by the B pixel, the V light and the B light may be turned on at the same time.

撮像センサ48から出力される画像信号は、CDS/AGC回路50に送信される。CDS/AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS;Correlated Double Sampling)や自動利得制御(AGC;Automatic Gain Control)を行う。CDS/AGC回路50を経た画像信号は、A/Dコンバータ51により、デジタル画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置16に入力される。   The image signal output from the image sensor 48 is transmitted to the CDS / AGC circuit 50. The CDS / AGC circuit 50 performs correlated double sampling (CDS; Correlated Double Sampling) and automatic gain control (AGC; Automatic Gain Control) on an image signal that is an analog signal. The image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by the A / D converter 51. The digital image signal after the A / D conversion is input to the processor device 16.

プロセッサ装置16は、受信部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像生成部62と、映像信号生成部66とを備えている。   The processor device 16 includes a receiving unit 53, a DSP (Digital Signal Processor) 56, a noise removing unit 58, an image generating unit 62, and a video signal generating unit 66.

受信部53は、内視鏡12からデジタルのRGB画像信号を受信する。DSP56は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、及びデモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施されたRGB画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後のRGB画像信号に特定のゲインを乗じることにより信号レベルが整えられる。ゲイン補正処理後のRGB画像信号には、色再現性を高めるリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。リニアマトリクス処理後のRGB画像信号には、デモザイク処理(等方化処理、同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。   The receiving unit 53 receives a digital RGB image signal from the endoscope 12. The DSP 56 performs various kinds of signal processing such as defect correction processing, offset processing, gain correction processing, linear matrix processing, gamma conversion processing, and demosaic processing on the received image signal. In the defect correction processing, the signal of the defective pixel of the image sensor 48 is corrected. In the offset processing, a dark current component is removed from the RGB image signal subjected to the defect correction processing, and an accurate zero level is set. In the gain correction processing, the signal level is adjusted by multiplying the RGB image signal after the offset processing by a specific gain. The RGB image signal after the gain correction processing is subjected to a linear matrix processing for improving color reproducibility. Thereafter, brightness and saturation are adjusted by gamma conversion processing. Demosaic processing (also referred to as isotropic processing or synchronization processing) is performed on the RGB image signal after the linear matrix processing, and a signal of a color insufficient for each pixel is generated by interpolation. By this demosaic processing, all pixels have signals of RGB colors.

ノイズ除去部58は、DSP56でデモザイク処理等が施されたRGB画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等による)を施すことによって、RGB画像信号からノイズを除去する。ノイズが除去されたRGB画像信号は、画像生成部62に送信される。   The noise removing unit 58 removes noise from the RGB image signal by performing a noise removing process (for example, by a moving average method or a median filter method) on the RGB image signal subjected to the demosaic processing or the like by the DSP 56. The RGB image signal from which noise has been removed is transmitted to the image generation unit 62.

画像生成部62は、RGB画像信号に対して、色変換処理、色彩強調処理、及び構造強調処理を行い、画像(以下、内視鏡画像という)を生成する。色変換処理では、RGB画像信号に対して3×3のマトリックス処理、階調変換処理、及び3次元LUT(ルックアップテーブル)処理などにより色変換処理を行う。色彩強調処理は、色変換処理済みのRGB画像信号に対して行われる。構造強調処理は、例えば表層血管やピットパターン等の観察対象の構造を強調する処理であり、色彩強調処理後のRGB画像信号に対して行われる。上記のように、構造強調処理まで各種画像処理等を施したRGB画像信号を用いたカラー画像が内視鏡画像である。映像信号生成部66は、画像生成部62が生成した内視鏡画像をモニタ18で表示可能な画像として表示するための映像信号に変換する。この映像信号を用いて、モニタ18は内視鏡画像を表示する。   The image generation unit 62 performs a color conversion process, a color enhancement process, and a structure enhancement process on the RGB image signal to generate an image (hereinafter, referred to as an endoscope image). In the color conversion process, a color conversion process is performed on the RGB image signal by a 3 × 3 matrix process, a gradation conversion process, a three-dimensional LUT (look-up table) process, or the like. The color enhancement processing is performed on the RGB image signal that has been subjected to the color conversion processing. The structure emphasis process is a process of emphasizing a structure to be observed, such as a surface blood vessel or a pit pattern, and is performed on the RGB image signal after the color emphasis process. As described above, a color image using an RGB image signal that has been subjected to various kinds of image processing until the structure enhancement processing is an endoscope image. The video signal generation unit 66 converts the endoscope image generated by the image generation unit 62 into a video signal to be displayed as an image that can be displayed on the monitor 18. The monitor 18 displays an endoscope image using the video signal.

次に、本実施形態の内視鏡システム10がキセノンエミュレートモードの照明光として使用する第1多色スペクトル光の特性を説明する。第1多色スペクトル光27は、図5に示す光量のバランスでV光、B光、G光、及びR光を発光し、これらの重ね合わせによって得られる光である。図5では二点鎖線で示すキセノンランプの連続スペクトル光26と比較すると、第1多色スペクトル光27は、キセノンランプの連続スペクトル光26と分光スペクトルの形状の違いは大きい。第1多色スペクトル光27は、キセノンランプの連続スペクトル光26と分光スペクトルの形状を一致させてはいない。これは、光源部20に搭載するLEDが4個という少数であり、V光、B光、G光、及びR光の光量を調節するだけでは、キセノンランプの連続スペクトル光26を完全に再現することができないからでもあるが、キセノンランプの連続スペクトル光26の分光スペクトルの形状を完全に再現しなくても、キセノンランプの連続スペクトル光26を用いる場合と同様に観察対象を観察することができるからである。   Next, characteristics of the first multicolor spectrum light used as the xenon emulation mode illumination light by the endoscope system 10 of the present embodiment will be described. The first multicolor spectrum light 27 emits V light, B light, G light, and R light with the balance of the light amounts shown in FIG. 5 and is light obtained by superimposing them. Compared to the xenon lamp continuous spectrum light 26 indicated by the two-dot chain line in FIG. 5, the first multicolor spectrum light 27 has a large difference in the shape of the spectral spectrum from the xenon lamp continuous spectrum light 26. The first multicolor spectrum light 27 does not match the shape of the spectral spectrum with the continuous spectrum light 26 of the xenon lamp. This is because the number of LEDs mounted on the light source unit 20 is as small as four, and the continuous spectrum light 26 of the xenon lamp is completely reproduced only by adjusting the light amounts of the V light, the B light, the G light, and the R light. Although it is not possible, even if the shape of the spectrum of the continuous spectrum light 26 of the xenon lamp is not completely reproduced, the observation target can be observed in the same manner as in the case of using the continuous spectrum light 26 of the xenon lamp. Because.

このように、分光スペクトルの形状を完全に再現することなく、第1多色スペクトル光27によって、キセノンランプの連続スペクトル光26を照明光にする場合を模倣するために、光源制御部22は、光源部20の各LED20a〜20dの光量を制御する。具体的には、図6に示すように、光源制御部22は、各LED20a〜20dの光量を制御して、青色波長帯域である第1波長帯域、緑色波長帯域である第2波長帯域、及び赤色波長帯域である第3波長帯域において、第1多色スペクトル光27の光量積分値と、キセノンランプの連続スペクトル光26の光量積分値とを一致させる。すなわち、観察対象に照射する(あるいは光源部20が出射する)第1多色スペクトル光27の第1波長帯域の光量積分値S1Eと、キセノンランプの連続スペクトル光26の第1波長帯域における光量積分値S1Xを一致させ(S1E≒S1X)、かつ、第1多色スペクトル光27の第2波長帯域の光量積分値S2Eと、キセノンランプの連続スペクトル光26の第2波長帯域における光量積分値S2Xを一致させる(S2E≒S2X)。さらに、本実施形態では、光源制御部22は、第1多色スペクトル光27の第3波長帯域の光量積分値S3Eと、キセノンランプの連続スペクトル光26の第3波長帯域における光量積分値S3Xとを一致させる(S3E≒S3X)。 As described above, in order to imitate the case where the continuous spectrum light 26 of the xenon lamp is used as the illumination light by the first multicolor spectrum light 27 without completely reproducing the shape of the spectral spectrum, the light source control unit 22 The light amount of each of the LEDs 20a to 20d of the light source unit 20 is controlled. Specifically, as shown in FIG. 6, the light source control unit 22 controls the amount of light of each of the LEDs 20a to 20d, and outputs a first wavelength band that is a blue wavelength band, a second wavelength band that is a green wavelength band, and In the third wavelength band, which is a red wavelength band, the light intensity integrated value of the first polychromatic spectrum light 27 and the light intensity integrated value of the continuous spectrum light 26 of the xenon lamp are matched. That is, the light quantity integral S1 E of the first polychromatic spectrum light 27 irradiating the observation target (or emitted by the light source unit 20) in the first wavelength band and the light quantity of the continuous spectrum light 26 of the xenon lamp in the first wavelength band. The integrated value S1 X is made equal (S1 E ≒ S1 X ), and the light intensity integrated value S2 E of the first multicolor spectrum light 27 in the second wavelength band and the xenon lamp continuous spectrum light 26 in the second wavelength band are obtained. The light intensity integrated value S2 X is matched (S2 E ≒ S2 X ). Further, in the present embodiment, the light source control unit 22 determines the integrated light amount S3 E of the first multicolor spectrum light 27 in the third wavelength band and the integrated light amount S3 of the continuous spectrum light 26 of the xenon lamp in the third wavelength band. X is matched (S3 E ES3 X ).

上記のように、第1波長帯域、第2波長帯域、及び第3波長帯域において、光量積分値がキセノンランプの連続スペクトル光26と一致した第1多色スペクトル光27によれば、分光スペクトルの形状がキセノンランプの連続スペクトル光26を再現していなくても、キセノンランプの連続スペクトル光26を用いる場合とほぼ同様に観察対象を観察することができる。   As described above, in the first wavelength band, the second wavelength band, and the third wavelength band, according to the first polychromatic spectrum light 27 whose light intensity integrated value matches the continuous spectrum light 26 of the xenon lamp, Even if the shape does not reproduce the continuous spectrum light 26 of the xenon lamp, the observation target can be observed almost in the same manner as when the continuous spectrum light 26 of the xenon lamp is used.

なお、上記第1実施形態では、赤色波長帯域である第3波長帯域まで、第1多色スペクトル光27とキセノンランプの連続スペクトル光26の光量積分値を一致させているが、少なくとも第1波長帯域及び第2波長帯域において第1多色スペクトル光27とキセノンランプの連続スペクトル光26の光量積分値を一致させれば、第1多色スペクトル光27によってキセノンランプの連続スペクトル光26とほぼ同様に観察対象を観察することができる。これは、内視鏡画像で重要な診断の指針となる血管やピットパターン等の組織や構造の情報はほぼ第1波長帯域の光及び第2波長帯域の光が持っており、第3波長帯域の光はほとんどこれらの情報を持っていないので、血管等をキセノンランプの連続スペクトル光26を用いる場合と同様に観察することができれば、第1多色スペクトル光27はキセノンランプの連続スペクトル光26をほぼ模倣していると言えるからである。   In the above-described first embodiment, the light intensity integrated values of the first polychromatic spectrum light 27 and the continuous spectrum light 26 of the xenon lamp are matched up to the third wavelength band which is a red wavelength band. If the first polychromatic spectrum light 27 and the integrated light quantity of the continuous spectrum light 26 of the xenon lamp are matched in the band and the second wavelength band, the first polychromatic spectrum light 27 is almost the same as the continuous spectrum light 26 of the xenon lamp. The observation target can be observed at the same time. This is because information on tissues and structures, such as blood vessels and pit patterns, which serve as important diagnostic guidelines in endoscopic images, is substantially contained in light in the first wavelength band and light in the second wavelength band. Since the light of this type hardly has such information, if the blood vessels and the like can be observed in the same manner as when the continuous spectrum light 26 of the xenon lamp is used, the first multicolor spectrum light 27 becomes the continuous spectrum light 26 of the xenon lamp. Is almost imitated.

上記第1実施形態では、第1多色スペクトル光27の第1波長帯域の光量積分値S1Eと、キセノンランプの連続スペクトル光26の第1波長帯域の光量積分値S1Xとを一致させているが、第1多色スペクトル光27の第1波長帯域は概ねV光とB光の2色の光で形成されているので、第1多色スペクトル光27の第1波長帯域の光量積分値S1Eを保ったまま、V光とB光の光量のバランスを変更することができる。このため、少なくとも第1波長帯域においては、キセノンランプの連続スペクトル光26の分光スペクトル形状にできる限り合致するように、V光とB光の光量のバランスを調節することが好ましい。具体的には、キセノンランプの連続スペクトル光26が、第1波長帯域において短波長ほど光量が小さくなることに合わせて、B光の光量よりもV光の光量を小さくすることが好ましい。さらに、V光の分光スペクトルの短波長側の形状が、キセノンランプの連続スペクトル光26の分光スペクトル形状にできる限り一致するようにV光の光量を設定した後、設定されたV光の光量と、キセノンランプの連続スペクトル光26の第1波長帯域の光量積分値S1Xとを用いて、B光の光量を設定することが好ましい。こうすると、第1多色スペクトル光27による観察対象の見え方を、さらに、キセノンランプの連続スペクトル光26を用いる場合の観察対象の見え方に近づけることができる。 In the first embodiment, the light quantity integral S1 E of the first multicolor spectrum light 27 in the first wavelength band and the light quantity integral S1 X of the first wavelength band of the continuous spectrum light 26 of the xenon lamp are matched. However, since the first wavelength band of the first multicolor spectrum light 27 is generally formed of two colors of light, V light and B light, the light intensity integrated value of the first multicolor spectrum light 27 in the first wavelength band while maintaining the S1 E, it is possible to change the balance of the amount of V and B lights. Therefore, in at least the first wavelength band, it is preferable to adjust the balance of the light amounts of the V light and the B light so as to match as much as possible the spectral shape of the continuous spectrum light 26 of the xenon lamp. Specifically, it is preferable that the light amount of the V light be smaller than the light amount of the B light in accordance with the light amount of the continuous spectrum light 26 of the xenon lamp becoming shorter as the wavelength becomes shorter in the first wavelength band. Further, after setting the light quantity of the V light so that the shape on the short wavelength side of the spectral spectrum of the V light matches the spectral spectrum shape of the continuous spectrum light 26 of the xenon lamp as much as possible, the light quantity of the set V light It is preferable to set the light amount of the B light using the light amount integration value S1 X of the first wavelength band of the continuous spectrum light 26 of the xenon lamp. In this manner, the appearance of the observation target by the first multicolor spectrum light 27 can be made closer to the appearance of the observation target when the continuous spectrum light 26 of the xenon lamp is used.

また、第1多色スペクトル光27の第1波長帯域は概ねV光とB光の2色の光で形成されているので、第1波長帯域を、V光の波長帯域を含む第1短波長側帯域(第1波長帯域のうち短波長側の波長帯域)と、B光の波長帯域を含む第1長波長側帯域(第1波長帯域のうち長波長側の波長帯域)の2つの波長帯域に分けても良い。この場合、第1多色スペクトル光27の第1短波長側帯域の光量積分値を、キセノンランプの連続スペクトル光26の第1短波長側帯域の光量積分値と一致させ、かつ、第1多色スペクトル光27の第1長波長側帯域の光量積分値を、キセノンランプの連続スペクトル光26の第1長波長側帯域の光量積分値と一致させる。こうすれば、第1多色スペクトル光27の第1波長帯域の光量積分値S1Eを、キセノンランプの連続スペクトル光26の第1波長帯域の光量積分値S1Xと一致させることができる。 Further, since the first wavelength band of the first multicolor spectrum light 27 is substantially formed of two colors of light of V light and B light, the first wavelength band is defined as the first short wavelength including the wavelength band of V light. Two wavelength bands, a side band (a shorter wavelength band in the first wavelength band) and a first longer wavelength side band including the B light wavelength band (a longer wavelength band in the first wavelength band). May be divided into In this case, the integrated light amount of the first multicolor spectrum light 27 in the first short-wavelength band is matched with the integrated light amount of the continuous spectrum light 26 of the xenon lamp in the first short-wavelength band. The integrated light amount of the color spectrum light 27 in the first long-wavelength band is matched with the integrated light amount of the continuous spectrum light 26 of the xenon lamp in the first long-wavelength band. This makes it possible to make the light intensity integral S1 E of the first multicolor spectrum light 27 in the first wavelength band coincide with the light intensity integral S1 X of the xenon lamp continuous spectrum light 26 in the first wavelength band.

なお、上記第1実施形態では、B−LED20bが発するB光をそのまま第1多色スペクトル光27に利用しているが、約450nmから約500nmの波長の光は表層血管やピットパターン等の構造のコントラストを低下させてしまう。このため、図7に示す内視鏡システム100のように、B−LED20bの光路中に、約450nmから約500nmの波長の光を低減する帯域制限部121を配置することによって、B−LED20bが発するB光から、約450nmから約500nmの波長成分を低減したBs光を生成し、Bs光を第1多色スペクトル光27に用いることが好ましい。この場合、B−LED20bが発するB光を用いて、第1波長帯域の光量積分値を算出しても良く、帯域制限部121を通過後のBs光を用いて第1波長帯域の光量積分値を算出してもよい。   In the first embodiment, the B light emitted from the B-LED 20b is used as it is for the first multicolor spectrum light 27, but the light having a wavelength of about 450 nm to about 500 nm is used for a structure such as a surface blood vessel or a pit pattern. Lowers the contrast. Therefore, as in the endoscope system 100 shown in FIG. 7, by disposing the band limiting unit 121 that reduces light having a wavelength of about 450 nm to about 500 nm in the optical path of the B-LED 20 b, the B-LED 20 b It is preferable to generate Bs light in which wavelength components of about 450 nm to about 500 nm are reduced from the emitted B light, and use the Bs light as the first multicolor spectrum light 27. In this case, the integrated light amount of the first wavelength band may be calculated using the B light emitted from the B-LED 20b, and the integrated light amount of the first wavelength band may be calculated using the Bs light passed through the band limiting unit 121. May be calculated.

なお、第1多色スペクトル光27の第1波長帯域の光量積分値S1Eは、キセノンランプの連続スペクトル光26の第1波長帯域の光量積分値S1Xに対して少なくとも5%〜10%程度の誤差を許容できる。また、第1多色スペクトル光27の第2波長帯域の光量積分値S2Eは、キセノンランプの連続スペクトル光26の第2波長帯域における光量積分値S2Xに対して少なくとも5%〜10%程度の誤差を許容できる。同様に、第1多色スペクトル光27の第3波長帯域の光量積分値S3Eは、キセノンランプの連続スペクトル光26の第3波長帯域における光量積分値S3Xに対して少なくとも5%〜10%程度の誤差を許容できる。すなわち、視覚が色差の違いに比較的鈍感であることもあり、誤差が上記程度であれば、観察対象の見え方はキセノンランプの連続スペクトル光26を用いた場合とほぼ同じになるので、上記各光量積分値は一致していると見做せる。したがって、本明細書等で言う、光量積分値の「一致」とは上記誤差を含んだ「ほぼ一致」を含む。 Incidentally, the light amount integrated value S1 E of the first wavelength band of the first polychromatic spectrum light 27 is at least about 5% to 10% relative to the amount of light integrated value S1 X of the first wavelength band of the xenon lamp of the continuous spectrum light 26 Can be tolerated. Further, the light amount integrated value S2 E of the second wavelength band of the first polychromatic spectrum light 27 is at least about 5% to 10% relative to the amount of light integrated value S2 X in the second wavelength band of the xenon lamp of the continuous spectrum light 26 Can be tolerated. Similarly, the light amount integrated value S3 E in the third wavelength band of the first polychromatic spectrum light 27 is at least 5% to 10% relative to the amount of light integrated value S3 X in the third wavelength band of the xenon lamp of the continuous spectrum light 26 A degree of error is acceptable. That is, the visual sense may be relatively insensitive to the difference in color difference, and if the error is about the above, the appearance of the observation target is almost the same as when using the continuous spectrum light 26 of the xenon lamp. It can be considered that the respective light intensity integrated values match. Therefore, the term “match” of the light intensity integrated value referred to in this specification and the like includes “substantially match” including the above error.

[第2実施形態]
上記第1実施形態では、光源制御部22は、光源部20の各LED20a〜20dによって、キセノンランプの連続スペクトル光26を用いる場合を模倣する第1多色スペクトル光27を発生させているが、光源制御部22は、光源部20の各LED20a〜20dによって、第1多色スペクトル光27と切り替えて、第1多色スペクトル光27及びキセノンランプの連続スペクトル光26とは異なる第2多色スペクトルを有する第2多色スペクトル光を発生させるようにしても良い。
[Second embodiment]
In the first embodiment, the light source control unit 22 generates the first multicolor spectrum light 27 imitating the case of using the continuous spectrum light 26 of the xenon lamp by the LEDs 20a to 20d of the light source unit 20, The light source control unit 22 switches between the first multicolor spectrum light 27 and the second multicolor spectrum different from the first multicolor spectrum light 27 and the continuous spectrum light 26 of the xenon lamp by the LEDs 20 a to 20 d of the light source unit 20. May be generated.

第2多色スペクトル光は、従来のキセノンランプを用いた内視鏡システムにはない固有の分光スペクトルで観察対象を照明する光であり、例えば、光源制御部22は、図8に示すように、第2多色スペクトル光201の第1波長帯域の光量積分値S1Uを、キセノンランプの連続スペクトル光26の第1波長帯域における光量積分値S1Xよりも大きくし(S1U>S1X)、かつ、第2多色スペクトル光201の第2波長帯域の光量積分値S2Uを、キセノンランプの連続スペクトル光26の第2波長帯域における光量積分値S2Xと一致させる(S2U≒S2X)。さらに、本実施形態では、光源制御部22は、第2多色スペクトル光201の第3波長帯域の光量積分値S3Uを、キセノンランプの連続スペクトル光26の第3波長帯域における光量積分値S3Xと一致させる(S3U≒S3X)。 The second polychromatic spectrum light is light that illuminates the observation target with a unique spectral spectrum that is not available in an endoscope system using a conventional xenon lamp. For example, the light source control unit 22 the second light amount integrated value S1 U of the first wavelength band of the polychromatic spectrum light 201, and larger than the light amount integrated value S1 X in the first wavelength band of the xenon lamp of the continuous spectrum light 26 (S1 U> S1 X) In addition, the light intensity integral S2 U of the second multicolor spectrum light 201 in the second wavelength band is made to coincide with the light intensity integral S2 X of the xenon lamp continuous spectrum light 26 in the second wavelength band (S2 U US2 X ). Further, in the present embodiment, the light source control unit 22 calculates the light intensity integral S3 U of the second polychromatic spectrum light 201 in the third wavelength band in the third wavelength band of the continuous spectrum light 26 of the xenon lamp. X and match (S3 U ≒ S3 X).

上記の第2多色スペクトル光201を用いて観察対象を観察すれば、粘膜表層にある血管やピットパターンの情報を多く持った第1波長帯域の光量積分値が、キセノンランプの連続スペクトル光26よりも大きくなっているので、これらの構造等を、キセノンランプの連続スペクトル光26を用いる場合よりも明瞭に観察することができる。このため、第1多色スペクトル光27と第2多色スペクトル光201と切り替え可能にしておけば、上記のような多色スペクトル光を用いる場合の特有の利点をも享受できる。   When the observation target is observed using the above-mentioned second multicolor spectrum light 201, the integrated light amount of the first wavelength band having much information of blood vessels and pit patterns in the surface layer of the mucous membrane becomes the continuous spectrum light 26 of the xenon lamp. Therefore, these structures and the like can be observed more clearly than when the continuous spectrum light 26 of the xenon lamp is used. For this reason, if the first multicolor spectrum light 27 and the second multicolor spectrum light 201 can be switched, it is possible to enjoy the unique advantages when using the multicolor spectrum light as described above.

本実施形態の第1多色スペクトル光27と第2多色スペクトル光201との切り替えは、内視鏡12の操作部12bに設けた観察モード切り替えスイッチ(図示しない)等を用いて、任意に切り替えられるようにすることができるが、特に、内視鏡システム10で用いる内視鏡12の機種に応じて自動的に第1多色スペクトル光27と第2多色スペクトル光201とを切り替えることが好ましい。   The switching between the first multicolor spectrum light 27 and the second multicolor spectrum light 201 of the present embodiment is arbitrarily performed using an observation mode changeover switch (not shown) provided on the operation unit 12b of the endoscope 12, or the like. It is possible to switch between the first multicolor spectrum light 27 and the second multicolor spectrum light 201 automatically according to the model of the endoscope 12 used in the endoscope system 10, in particular. Is preferred.

このように、内視鏡12の機種によって第1多色スペクトル光27と第2多色スペクトル光201を自動的に切り替える場合、図9に示す内視鏡システム210のように、内視鏡12には機種を示すID(Identification Data)を記憶するID記憶部211を設け、内視鏡光源装置14には、内視鏡機種検出部212を設ける。内視鏡機種検出部212は、内視鏡12が内視鏡光源装置14に接続された場合に、ID記憶部211から内視鏡12のIDを読み出すことによって、接続された内視鏡12の機種を検出し、検出結果を光源制御部22に入力する。そして、光源制御部22は、内視鏡機種検出部212によって検出された内視鏡12の機種によって、光源部20で発生させる照明光を第1多色スペクトル光27と第2多色スペクトル光201とで切り替える。より具体的には、光源制御部22は、内視鏡12の機種が、キセノンランプの連続スペクトル光を用いる従来の内視鏡システムで使用する機種である場合は、光源部20で発生させる照明光を第1多色スペクトル光27に自動設定し、かつ、内視鏡12の機種が上記以外の機種である場合(多色スペクトル光を用いる内視鏡システムでだけ用いられる機種の場合等)には、光源部20で発生させる照明光を第2多色スペクトル光201に自動設定することが好ましい。   As described above, when the first multicolor spectrum light 27 and the second multicolor spectrum light 201 are automatically switched depending on the model of the endoscope 12, like the endoscope system 210 shown in FIG. Is provided with an ID storage unit 211 for storing an ID (Identification Data) indicating a model, and the endoscope light source device 14 is provided with an endoscope model detection unit 212. When the endoscope 12 is connected to the endoscope light source device 14, the endoscope model detection unit 212 reads out the ID of the endoscope 12 from the ID storage unit 211, and thereby the connected endoscope 12. Is detected, and the detection result is input to the light source control unit 22. Then, the light source control unit 22 converts the illumination light generated by the light source unit 20 into the first multicolor spectrum light 27 and the second multicolor spectrum light according to the model of the endoscope 12 detected by the endoscope model detection unit 212. Switch with 201. More specifically, when the model of the endoscope 12 is a model used in a conventional endoscope system using a continuous spectrum light of a xenon lamp, the light source control unit 22 generates the illumination generated by the light source unit 20. When the light is automatically set to the first multicolor spectrum light 27 and the model of the endoscope 12 is a model other than the above (such as a model used only in an endoscope system using multicolor spectrum light). Preferably, the illumination light generated by the light source unit 20 is automatically set to the second polychromatic spectrum light 201.

キセノンランプを用いる従来の内視鏡システムで使用する内視鏡を接続する場合、医師は使い慣れた従来の内視鏡システムと同様に観察対象を観察できることを望むことが多く、多色スペクトル光を照明光として使用する内視鏡システムでだけ用いる内視鏡を接続する場合は、医師は多色スペクトル光の利点を活かした観察を望むことが多い。このため、上記のように、内視鏡12の機種によって照明光を第1多色スペクトル光27と第2多色スペクトル光201とで自動的に切り替えると、操作や設定等をせずに、ニーズに合った内視鏡画像を自動的に提供することができる。もちろん、初期設定を上記のように内視鏡12の機種に応じて自動設定し、その後は、医師の判断で手動切り替えられるようにすることがさらに好ましい。   When connecting an endoscope used in a conventional endoscope system using a xenon lamp, a physician often desires to be able to observe the observation target in the same manner as a familiar conventional endoscope system, so that a multicolor spectrum light is used. When connecting an endoscope that is used only in an endoscope system that is used as illumination light, a doctor often wants to observe the image taking advantage of the multicolor spectrum light. For this reason, as described above, if the illumination light is automatically switched between the first multicolor spectrum light 27 and the second multicolor spectrum light 201 depending on the model of the endoscope 12, without performing any operation or setting, An endoscope image that meets the needs can be automatically provided. Of course, it is more preferable that the initial setting is automatically set according to the model of the endoscope 12 as described above, and thereafter, the manual setting can be manually switched at the discretion of the doctor.

図9の内視鏡システム210では、内視鏡光源装置14が内視鏡機種検出部212によって内視鏡12の接続を検知し、かつ、内視鏡12からIDを読み出して内視鏡12の機種を検出しているが、図10に示す内視鏡システム210のように、プロセッサ装置16にID読取部213を設け、ID読取部213によって内視鏡12の接続を検知し、かつ、内視鏡12からIDを読み出しても良い。この場合、内視鏡機種検出部212は、プロセッサ装置16のID読取部213から内視鏡12のIDを取得し、その機種を検出すれば良い。   In the endoscope system 210 of FIG. 9, the endoscope light source device 14 detects the connection of the endoscope 12 by the endoscope model detection unit 212 and reads the ID from the endoscope 12 to read the endoscope 12. However, as in the endoscope system 210 shown in FIG. 10, an ID reading unit 213 is provided in the processor device 16, and the connection of the endoscope 12 is detected by the ID reading unit 213, and The ID may be read from the endoscope 12. In this case, the endoscope model detection unit 212 may acquire the ID of the endoscope 12 from the ID reading unit 213 of the processor device 16 and detect the model.

[第3実施形態]
LED等の半導体光源は、キセノンランプ等の従来の光源と比較すると長寿命であるが、LED等の半導体光源であっても、図11に示すように経時的に劣化して、既定の駆動電流や既定の駆動電圧で駆動しても、光量が低下する。また、半導体光源の種類(発光する光の波長等)によっても経時劣化の程度は異なる。経時劣化を無視すると、光源制御部22が例えば第1多色スペクトル光27を発光させるための既定の制御をしても、第1多色スペクトル光27の条件を満たさない多色スペクトル光が発せられてしまうことがある。このため、光源制御部22は、光源部20の各LED20a〜20dの経時劣化を考慮して、第1多色スペクトル光27や第2多色スペクトル光201を発光させることが好ましい。
[Third embodiment]
A semiconductor light source such as an LED has a longer life than a conventional light source such as a xenon lamp, but even a semiconductor light source such as an LED deteriorates over time as shown in FIG. Also, even when driven at a predetermined drive voltage, the light amount decreases. Further, the degree of deterioration with time also differs depending on the type of semiconductor light source (wavelength of light to be emitted). If the deterioration over time is neglected, even if the light source control unit 22 performs predetermined control for emitting the first multicolor spectrum light 27, for example, the multicolor spectrum light that does not satisfy the condition of the first multicolor spectrum light 27 is emitted. It may be done. For this reason, it is preferable that the light source control unit 22 emits the first multicolor spectrum light 27 and the second multicolor spectrum light 201 in consideration of the aging of the LEDs 20a to 20d of the light source unit 20.

上記のように光源部20の各LED20a〜20dに経時劣化があっても第1実施形態や第2実施形態の条件を満たす第1多色スペクトル光27や第2多色スペクトル光201を発光させるためには、例えば、図12に示す内視鏡システム300のように、内視鏡光源装置14に光量検出部301を設け、光源制御部22には経時劣化検出部304を設ける。   As described above, even if the LEDs 20a to 20d of the light source unit 20 deteriorate with time, the first multicolor spectrum light 27 and the second multicolor spectrum light 201 satisfying the conditions of the first embodiment and the second embodiment are emitted. For this purpose, for example, as in an endoscope system 300 shown in FIG.

光量検出部301は、V−LED20aの光量を検出するV光量検出部302aと、B−LED20bの光量を検出するB光量検出部302bと、G−LED20cの光量を検出するG光量検出部302cと、R−LED20dの光量を検出するR光量検出部302dとを備える。V光量検出部302aは、ミラー303aを介してV光の一部を取得することで、V−LED20aが発光したV光の光量を検出する。ミラー303aは、V−LED20aの光路中に配置され、V−LED20aが発光したV光の一部を反射してV光量検出部302aに入射させ、かつ、残りのV光を光路結合部23に向けて透過する。同様に、B−LED20b、G−LED20c、及びR−LED20dの光路中には、これらが発光した各色光の一部を反射してB光量検出部302b、G光量検出部302c、及びR光量検出部302dにそれぞれ入射させ、残りの各色光を光路結合部23に向けて透過するミラー303b、ミラー303c、及びミラー303dが配置される。B光量検出部302bは、ミラー303bを介してB光の一部を取得してB−LED20bが発光したB光の光量を検出する。G光量検出部302cは、ミラー303cを介してG光の一部を取得してG−LED20cが発光したG光の光量を検出する。R光量検出部302dは、ミラー303dを介してR光の一部を取得してR−LED20dが発光したR光の光量を検出する。   The light amount detection unit 301 includes a V light amount detection unit 302a that detects the light amount of the V-LED 20a, a B light amount detection unit 302b that detects the light amount of the B-LED 20b, and a G light amount detection unit 302c that detects the light amount of the G-LED 20c. , R-LED 20d. The V light amount detection unit 302a detects the amount of V light emitted by the V-LED 20a by acquiring a part of the V light via the mirror 303a. The mirror 303a is arranged in the optical path of the V-LED 20a, reflects a part of the V light emitted by the V-LED 20a and makes it enter the V light amount detection unit 302a, and transmits the remaining V light to the optical path coupling unit 23. Transmitted toward Similarly, in the optical path of the B-LED 20b, the G-LED 20c, and the R-LED 20d, a part of each color light emitted from the B-LED 20b, the B-light detector 302b, the G-light detector 302c, and the R-light detector A mirror 303b, a mirror 303c, and a mirror 303d that are respectively incident on the unit 302d and transmit the remaining color lights toward the optical path coupling unit 23 are arranged. The B light amount detection unit 302b acquires a part of the B light via the mirror 303b and detects the light amount of the B light emitted by the B-LED 20b. The G light amount detection unit 302c acquires a part of the G light via the mirror 303c and detects the light amount of the G light emitted by the G-LED 20c. The R light amount detection unit 302d acquires a part of the R light via the mirror 303d and detects the light amount of the R light emitted by the R-LED 20d.

光量検出部301は、各色用の光量検出部302a〜302dが検出したV光、B光、G光、及びR光の光量を光源制御部22に入力する。光源制御部22では、経時劣化検出部304が、第1多色スペクトル光27を発光する各LED20a〜20dの駆動電流等の駆動条件と、光量検出部301で実際に検出された各色光の光量とを用いて、各LED20a〜20dの経時劣化を検出する。具体的には、経時劣化検出部304は、各LED20a〜20dのうち、既定の光量に対して最も光量が低下した最劣化光源を検出する。光源制御部22は、経時劣化検出部304で検出した最劣化光源の光量に合わせて、残りの光源の光量を設定する。例えば、図13に示すように、光源制御部22が第1多色スペクトル光27を発光する駆動条件で各LED20a〜20dを駆動することで各LED20a〜20dの光量を指定したにも関わらず、R−LED20dの経時劣化のためにR光の光量が第1多色スペクトル光27を形成する指定の光量に満たず、かつ、V光、B光、及びG光は第1多色スペクトル光27を形成する指定の光量が発光した多色スペクトル光326になっていたとする。この場合、光源制御部22では、経時劣化検出部304がR−LED20dを最劣化光源として検出する。このため、図14に示すように、光源制御部22は、R−LED20dが発光するR光の光量に合わせて、V光、B光、及びG光の光量を低減することにより、経時劣化したR−LED20dが発するR光の光量と、V光、B光、及びG光の光量のバランスを保たれた新たな第1多色スペクトル光327を発光させる。すなわち、各LED20a〜20dの少なくともいずれか1つに光量の不足が検出された場合、光源制御部22は、第1多色スペクトル光27を形成する各LED20a〜20dの光量の指定値に対して、光量の不足量が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する。これにより、各色光のバランスが保たれた第1多色スペクトル光327を発光させる。   The light amount detection unit 301 inputs the light amounts of the V light, the B light, the G light, and the R light detected by the light amount detection units 302a to 302d for the respective colors to the light source control unit 22. In the light source control unit 22, the temporal deterioration detection unit 304 determines the driving conditions such as the driving current of each of the LEDs 20 a to 20 d emitting the first multicolor spectrum light 27 and the light amount of each color light actually detected by the light amount detection unit 301. Is used to detect the deterioration over time of each of the LEDs 20a to 20d. Specifically, the temporal deterioration detection unit 304 detects the most deteriorated light source whose light quantity has decreased the most with respect to the predetermined light quantity among the LEDs 20a to 20d. The light source control unit 22 sets the light amounts of the remaining light sources in accordance with the light amounts of the most deteriorated light sources detected by the temporal deterioration detection unit 304. For example, as shown in FIG. 13, although the light source control unit 22 drives each of the LEDs 20 a to 20 d under the driving condition of emitting the first multicolor spectrum light 27, the light amount of each of the LEDs 20 a to 20 d is designated, Due to the deterioration with time of the R-LED 20d, the light amount of the R light is less than the specified light amount for forming the first multicolor spectrum light 27, and the V light, the B light, and the G light are the first multicolor spectrum light 27. Is assumed to be the emitted multicolor spectrum light 326. In this case, in the light source control unit 22, the temporal deterioration detection unit 304 detects the R-LED 20d as the most deteriorated light source. Therefore, as shown in FIG. 14, the light source control unit 22 deteriorates with time by reducing the light amounts of the V light, the B light, and the G light in accordance with the light amount of the R light emitted by the R-LED 20d. A new first multicolor spectrum light 327 in which the light amount of the R light emitted from the R-LED 20d and the light amounts of the V light, the B light, and the G light are balanced is emitted. That is, when the shortage of the light amount is detected in at least one of the LEDs 20a to 20d, the light source control unit 22 determines the light amount of the LEDs 20a to 20d forming the first multicolor spectrum light 27 with respect to the specified value of the light amount. The light amounts of the remaining light sources are set in accordance with the light amounts of the most deteriorated light sources having the largest shortage of light amounts. Thus, the first multicolor spectrum light 327 in which the balance of each color light is maintained is emitted.

上記のように、各LED20a〜20dが発光する各色光の光量を検出し、これら各LED20a〜20dの中で最も経時劣化した光源の光量に合わせて残りの光源の光量を設定することで、光源制御部22は、光源部20によって常に各色光のバランスが保たれた第1多色スペクトル光27や第2多色スペクトル光201を安定して発光させることができる。また、上記のようにすれば、常に各色光のバランスが保たれた第1多色スペクトル光27及び327や第2多色スペクトル光201が安定して発光されるので、マトリックス処理で用いるマトリックス等、内視鏡画像を生成するために用いる信号処理パラメータや画像処理パラメータを再計算したり、複数用意したりしておく必要がない。また、撮像センサ48のカラーフィルタに混色がある場合には、内視鏡画像を生成するために用いる信号処理パラメータや画像処理パラメータを再計算したり、複数用意したりしておいても補正しきれないが、上記のようにすれば、常に安定して観察対象を観察することができる。   As described above, the light amount of each color light emitted from each of the LEDs 20a to 20d is detected, and the light amounts of the remaining light sources are set in accordance with the light amounts of the light sources which have deteriorated with time among the LEDs 20a to 20d, thereby obtaining the light source. The control unit 22 can stably emit the first multicolor spectrum light 27 and the second multicolor spectrum light 201 in which the balance of each color light is always maintained by the light source unit 20. Further, according to the above, the first multicolor spectrum lights 27 and 327 and the second multicolor spectrum light 201 in which the balance of each color light is always maintained are stably emitted. In addition, there is no need to recalculate or prepare a plurality of signal processing parameters or image processing parameters used for generating an endoscope image. If there is a color mixture in the color filter of the image sensor 48, the signal processing parameters and image processing parameters used for generating the endoscope image are recalculated or corrected even if a plurality of parameters are prepared. Although it is not possible, the object can always be stably observed in the above manner.

上記第3実施形態で光量検出部301が行う各色光の光量検出は、少なくともキャリブレーション時に行うことが好ましい。特に、光量検出部301は、観察対象を観察するために各LED20a〜20dが発光している間、各色光の光量検出を繰り返し行なって、光源制御部22にフィードバックして、リアルタイムに第1多色スペクトル光27等のバランスを整えることが好ましい。   It is preferable that the light amount detection of each color light performed by the light amount detection unit 301 in the third embodiment is performed at least at the time of calibration. In particular, while the LEDs 20a to 20d are emitting light for observing the observation target, the light amount detection unit 301 repeatedly performs the light amount detection of each color light, feeds back the light amount to the light source control unit 22, and outputs the first light amount in real time. It is preferable to balance the color spectrum light 27 and the like.

[第4実施形態]
上記第3実施形態の内視鏡システム300では、LED20a〜20dの経時劣化を検出しているが、LED20a〜20dの経時劣化以外の要因によって、正確な第1多色スペクトル光27が発光できない場合もある。この場合、図15に示す内視鏡システム400のように、第3実施形態の内視鏡システム300と同様の光量検出部301等を設け、光源制御部22には経時劣化検出部304の代わりに、検証部404を設ける。
[Fourth embodiment]
In the endoscope system 300 of the third embodiment, the deterioration with time of the LEDs 20a to 20d is detected. However, when the accurate first multicolor spectrum light 27 cannot be emitted due to factors other than the deterioration with time of the LEDs 20a to 20d. There is also. In this case, like the endoscope system 400 shown in FIG. 15, the same light amount detection unit 301 as the endoscope system 300 of the third embodiment is provided, and the light source control unit 22 is replaced with the temporal deterioration detection unit 304. Is provided with a verification unit 404.

検証部404は、模倣対象であるキセノンランプの連続スペクトル光26の第1波長帯域の光量積分値S1X、第2波長帯域の光量積分値S2X、及び第3波長帯域の光量積分値S3Xを、光量積分値テーブル406に予め記憶している。 The verification unit 404 includes a light intensity integrated value S1 X of the first wavelength band, a light intensity integrated value S2 X of the second wavelength band, and a light intensity integrated value S3 X of the third wavelength band of the continuous spectrum light 26 of the xenon lamp to be imitated. Is stored in advance in the light intensity integration value table 406.

検証部404は、この光量積分値テーブル406と光量検出部301の検出結果を用いて、実際に発光した多色スペクトル光が第1多色スペクトル光27になっているかを検証する。具体的には、検証部404は、光量検出部301の検出結果である各LED20a〜20dの実際の光量を用いて第1波長帯域の光量積分値S1Eを算出し、光量積分値テーブル406に記憶した連続スペクトル光26の第1波長帯域の光量積分値S1Xと比較する。同様に、第2波長帯域の光量積分値S2Eを算出して、光量積分値テーブル406に記憶した連続スペクトル光26の第2波長帯域の光量積分値S2Xと比較し、第3波長帯域の光量積分値S3Eを算出して、光量積分値テーブル406に記憶した連続スペクトル光26の第3波長帯域の光量積分値S3Xと比較する。 The verification unit 404 verifies whether the actually emitted multicolor spectrum light is the first multicolor spectrum light 27 using the light amount integration value table 406 and the detection result of the light amount detection unit 301. Specifically, the verifying unit 404 calculates the light intensity integrated value S1 E of the first wavelength band using the actual light amount of each of the LEDs 20a to 20d, which is the detection result of the light amount detecting unit 301. A comparison is made with the stored light quantity integrated value S1 X of the first wavelength band of the continuous spectrum light 26. Similarly, the light intensity integrated value S2 E of the second wavelength band is calculated and compared with the light intensity integrated value S2 X of the second wavelength band of the continuous spectrum light 26 stored in the light intensity integrated value table 406 to obtain the third wavelength band. It calculates the amount of light integrated value S3 E, compared with the light intensity integral value S3 X in the third wavelength band of the continuous spectrum light 26 stored in the light amount integrated value table 406.

これらの比較の結果、連続スペクトル光26の光量積分値S1Xに対する光量積分値S1Eの誤差、光量積分値S2Xに対する光量積分値S2Eの誤差、及び光量積分値S3Xに対する光量積分値S3Eの誤差が、いずれも許容範囲内(例えば、誤差10%程度以下)の場合、検証部404は、第1多色スペクトル光27が適切に発光していると判断する。この場合、光源制御部22は、第1多色スペクトル光27の発光を継続する。 The results of these comparisons, the light amount integrated value to the error of the light amount integrated value S1 E for light amount integrated value S1 X of the continuous spectrum light 26, the light amount integrated value S2 E for light amount integrated value S2 X error, and the light quantity integrated value S3 X S3 If the error of E is within the allowable range (for example, the error is about 10% or less), the verification unit 404 determines that the first multicolor spectrum light 27 is appropriately emitted. In this case, the light source control unit 22 continues to emit the first multicolor spectrum light 27.

一方、連続スペクトル光26の光量積分値S1Xに対する光量積分値S1Eの誤差、光量積分値S2Xに対する光量積分値S2Eの誤差、及び光量積分値S3Xに対する光量積分値S3Eの誤差のうちのいずれかが許容範囲外である場合、検証部404は適切な第1多色スペクトル光27が発光されていないと判断する。この場合、光源制御部22は、検証部404の検証結果を用いてLED20a〜20dをフィードバック制御する。すなわち、光源制御部22は、検証部404で算出した連続スペクトル光26の光量積分値S1Xに対する光量積分値S1Eの誤差、光量積分値S2Xに対する光量積分値S2Eの誤差、及び光量積分値S3Xに対する光量積分値S3Eの誤差に基づいて、各LED20a〜20dの光量を調整した制御をする。これにより、照明光は常に適切な第1多色スペクトル光27に補正される。 On the other hand, the light amount integrated value S1 E for light amount integrated value S1 X of the continuous spectrum light 26 errors, the light amount integrated value S2 E for light amount integrated value S2 X error, and the light amount integrated value S3 E for light amount integrated value S3 X of the error If any of them is out of the allowable range, the verification unit 404 determines that the appropriate first multicolor spectrum light 27 has not been emitted. In this case, the light source control unit 22 performs feedback control of the LEDs 20a to 20d using the verification result of the verification unit 404. That is, the light source control unit 22, the error of the light amount integrated value S1 E for light amount integrated value S1 X of the continuous spectrum light 26 calculated by the verification unit 404, the light amount integrated value S2 E for light amount integrated value S2 X error, and the light quantity integration based on an error of the light amount integrated value S3 E for the value S3 X, the control to adjust the light amount of each LED20a~20d. Thus, the illumination light is always corrected to the appropriate first multicolor spectrum light 27.

上記第4実施形態の内視鏡システム400では、検証部404が、連続スペクトル光26の光量積分値S1Xに対する光量積分値S1Eの誤差、及び、光量積分値S2Xに対する光量積分値S2Eの誤差だけでなく、さらに、光量積分値S3Xに対する光量積分値S3Eの誤差を求め、適切な第1多色スペクトル光27が発光されているか否かの検証に利用しているが、光量積分値S3Xに対する光量積分値S3Eの誤差を用いずに、連続スペクトル光26の光量積分値S1Xに対する光量積分値S1Eの誤差、及び、光量積分値S2Xに対する光量積分値S2Eの誤差を用いて適切な第1多色スペクトル光27が発光されているか否かを検証しても良い。 In the endoscope system 400 according to the fourth embodiment, the verification unit 404 determines the error of the light intensity integral S1 E with respect to the light intensity integral S1 X of the continuous spectrum light 26 and the light intensity integral S2 E with respect to the light intensity integral S2 X. of well errors, further obtains the error of the light amount integrated value S3 E for light amount integrated value S3 X, but the first polychromatic spectrum light 27 appropriate is used to verify whether being light-emitting, light intensity The error of the light intensity integral S1 E with respect to the light intensity integral S1 X of the continuous spectrum light 26 and the error of the light intensity integral S2 E with respect to the light intensity integral S2 X are used without using the error of the light intensity integral S3 E with respect to the integral S3 X. Whether or not the appropriate first multicolor spectrum light 27 is emitted may be verified using the error.

また、上記第4実施形態の内視鏡システム400では、光量検出部301によって各LED20a〜20dの光量を検出しているが、各LED20a〜20dの光量の代わりに、各LED20a〜20dが発光する各光の分光スペクトルを検出しても良い。この場合も、上記第4実施形態と同様に、適切な第1多色スペクトル光27が発光されているか否かの検証をすることができる。   Also, in the endoscope system 400 of the fourth embodiment, the light amount of each of the LEDs 20a to 20d is detected by the light amount detection unit 301, but each of the LEDs 20a to 20d emits light instead of the light amount of each of the LEDs 20a to 20d. The spectrum of each light may be detected. Also in this case, similarly to the fourth embodiment, it is possible to verify whether the appropriate first multicolor spectrum light 27 is emitted.

上記各実施形態及び変形例では、撮像センサ48が設けられた内視鏡12を被検体内に挿入して観察を行う内視鏡システムによって本発明を実施しているが、カプセル内視鏡システムでも本発明は好適である。例えば、図16に示すように、カプセル内視鏡システムでは、カプセル内視鏡500と、プロセッサ装置(図示しない)とを少なくとも有する。   In each of the above embodiments and modifications, the present invention is implemented by the endoscope system that performs observation by inserting the endoscope 12 provided with the imaging sensor 48 into the subject, but the capsule endoscope system However, the present invention is preferred. For example, as shown in FIG. 16, the capsule endoscope system has at least a capsule endoscope 500 and a processor device (not shown).

カプセル内視鏡500は、光源502と光源制御部503と、撮像センサ504と、画像生成部506と、送受信アンテナ508とを備えている。光源502は、上記各実施形態及び変形例の光源部20と同様に、紫色光Vを発するV−LEDと、青色光Bを発するB−LEDと、緑色光Gを発するG−LEDと、赤色光Rを発するR−LEDと、を有している。   The capsule endoscope 500 includes a light source 502, a light source control unit 503, an image sensor 504, an image generation unit 506, and a transmission / reception antenna 508. The light source 502 includes a V-LED that emits violet light V, a B-LED that emits blue light B, a G-LED that emits green light G, and a red light, similarly to the light source unit 20 of each of the above embodiments and modifications. An R-LED that emits light R.

光源制御部503は、上記各実施形態及び変形例の光源制御部22と同様にして光源502の駆動を制御する。また、光源制御部503は、送受信アンテナ508によって、カプセル内視鏡システムのプロセッサ装置と無線で通信可能である。カプセル内視鏡システムのプロセッサ装置は、上記各実施形態及び変形例のプロセッサ装置16とほぼ同様であるが、画像生成部506はカプセル内視鏡500に設けられ、生成された内視鏡画像は、送受信アンテナ508を介してプロセッサ装置に送信される。撮像センサ504は上記各実施形態及び変形例の撮像センサ48と同様に構成される。   The light source control unit 503 controls the driving of the light source 502 in the same manner as the light source control unit 22 in each of the above embodiments and modifications. Further, the light source control unit 503 can wirelessly communicate with the processor device of the capsule endoscope system by the transmission / reception antenna 508. The processor device of the capsule endoscope system is almost the same as the processor device 16 of each of the above-described embodiments and modifications, but the image generation unit 506 is provided in the capsule endoscope 500, and the generated endoscope image is Are transmitted to the processor device via the transmission / reception antenna 508. The image sensor 504 is configured similarly to the image sensor 48 of each of the above-described embodiments and modified examples.

なお、上記各実施形態及び変形例では、光源制御部22は、キセノンランプの白色光を模倣する第1多色スペクトル光27を発生させているが、キセノンランプの白色光の代わりに、他の連続スペクトル光を模倣する第1多色スペクトル光27を発生さても良い。例えば、従来の内視鏡システムでは、キセノンランプ以外のハロゲンランプを用いる場合がある。キセノンランプ以外のハロゲンランプを模倣する第1多色スペクトル光を発生させても良く、模倣するランプの種類を医師等が選択できるようにしても良い。同様に、励起光を発する励起光光源と、励起光の照射によって蛍光を発する蛍光体を組み合わせた広帯域光源や、半導体光源からなる広帯域光源が発する連続スペクトル光を模倣することもできる。蛍光体に励起光を照射して広帯域光源は、例えば、紫外光、紫色光、または青色光等を発光する励起光光源と、紫外光、紫色光、または青色光等の照射によって緑色から黄色(あるいは赤色)の蛍光を発光する蛍光体を組み合わせて構成される。半導体光源からなる広帯域光源は、例えば、白色光を発生する半導体光源である。上記のように、キセノンランプ以外の連続スペクトル光(実質的に白色に見える擬似白色光やその他白色以外の光を含む)を模倣する場合も、上記実施形態のキセノンランプの白色光を模倣する場合と同様にして第1多色スペクトル光を発生させることができる。   In each of the above-described embodiments and modifications, the light source control unit 22 generates the first multicolor spectrum light 27 that imitates the white light of the xenon lamp. A first multicolor spectrum light 27 that mimics continuous spectrum light may be generated. For example, in a conventional endoscope system, a halogen lamp other than a xenon lamp may be used. The first multicolor spectrum light that imitates a halogen lamp other than a xenon lamp may be generated, and a doctor or the like may be able to select the type of lamp to be imitated. Similarly, a broadband light source combining an excitation light source that emits excitation light and a phosphor that emits fluorescence upon irradiation with the excitation light, or a continuous spectrum light emitted by a broadband light source made of a semiconductor light source can be imitated. The broadband light source that irradiates the phosphor with excitation light emits, for example, an excitation light source that emits ultraviolet light, violet light, or blue light, and a green to yellow light (e.g., ultraviolet, violet, or blue light). Or red) fluorescent material. The broadband light source composed of a semiconductor light source is, for example, a semiconductor light source that generates white light. As described above, even when imitating continuous spectrum light other than the xenon lamp (including pseudo white light that looks substantially white and other non-white light), when imitating the white light of the xenon lamp of the above embodiment. The first multicolor spectrum light can be generated in the same manner as described above.

上記各実施形態及び変形例では、V−LED20a、B−LED20b、G−LED20c、R−LED20dの4色のLEDを用いているが、内視鏡光源装置14に用いる複数の光源が発光する光の色(波長)は、これ以外の色及び組み合わせでも良い。また、LEDの代わりに、LD(Laser Diode)等の他の半導体光源を用いても良い。   In each of the above embodiments and modifications, four-color LEDs of the V-LED 20a, the B-LED 20b, the G-LED 20c, and the R-LED 20d are used, but light emitted by a plurality of light sources used in the endoscope light source device 14 is used. May be other colors and combinations. Further, instead of the LED, another semiconductor light source such as an LD (Laser Diode) may be used.

上記各実施形態及び変形例では、キセノンランプの連続スペクトル光26と同様に観察対象を観察できるように調節した第1多色スペクトル光27を観察対象に照射する。すなわち、観察対象に照射する照明光の段階でキセノンランプを模倣しているが、観察対象からの戻り光を撮像センサ48で受光する段階でキセノンランプの連続スペクトル光26を模倣しても良い。このように、観察対象からの戻り光を撮像センサ48で受光する段階でキセノンランプの連続スペクトル光26を模倣する場合も、観察対象に照射する照明光の段階でキセノンランプを模倣する場合と同様の信号を撮像センサ48から得ることができる。   In each of the above embodiments and modifications, the observation target is irradiated with the first polychromatic spectrum light 27 adjusted so that the observation target can be observed, similarly to the continuous spectrum light 26 of the xenon lamp. That is, although the xenon lamp is imitated at the stage of the illumination light applied to the observation target, the continuous spectrum light 26 of the xenon lamp may be imitated at the stage of receiving the return light from the observation target by the image sensor 48. As described above, also in the case where the continuous spectrum light 26 of the xenon lamp is imitated at the stage where the return light from the observation target is received by the imaging sensor 48, similarly to the case where the xenon lamp is imitated at the stage of the illumination light irradiated to the observation target Can be obtained from the image sensor 48.

例えば、光源制御部22は、第1多色スペクトル光27を観察対象に照射する場合に撮像センサ48に入射する戻り光と、キセノンランプの連続スペクトル光26を観察対象に照射した場合の戻り光とで、第1波長帯域及び第2波長帯域の各光量積分値が一致するように各LED20a〜20dの光量を制御する。こうすると、観察対象から撮像センサ48に入射する戻り光の段階で、キセノンの連続スペクトル光26を模倣することができるので、結果として、キセノンランプの連続スペクトル光26を観察対象に照射した場合と同様に観察対象を観察することができる。   For example, the light source control unit 22 returns light that enters the imaging sensor 48 when irradiating the first multicolor spectrum light 27 to the observation target and return light that irradiates the observation target with the xenon lamp continuous spectrum light 26. Thus, the light amounts of the LEDs 20a to 20d are controlled such that the light amount integrated values of the first wavelength band and the second wavelength band match. In this way, the continuous spectrum light 26 of xenon can be imitated at the stage of the return light that enters the image sensor 48 from the observation target, and as a result, the case where the continuous spectrum light 26 of the xenon lamp is irradiated on the observation target is obtained. Similarly, the observation target can be observed.

また、光源制御部22は、撮像センサ48の各画素に設けられた各色のカラーフィルタの特性を加味して、各LED20a〜20dの光量を制御しても良い。具体的には、光源制御部22は、第1多色スペクトル光27を観察対象に照射する場合に第1色カラーフィルタ(例えばBカラーフィルタ)が設けられた第1色画素(例えばB画素)で得られる信号と、キセノンランプの連続スペクトル光26を観察対象に照射する場合に第1画素で得られる信号とを一致させ、かつ、第1多色スペクトル光27を観察対象に照射する場合に第2色カラーフィルタ(例えばGカラーフィルタ)が設けられた第2色画素(例えばG画素)で得られる信号と、キセノンランプの連続スペクトル光26を観察対象に照射する場合に第2色画素で得られる信号と、を一致させる。すなわち、上記各実施形態の第1波長帯域、第2波長帯域、及び第3波長帯域を撮像センサ48のRGBカラーセンサの波長帯域に設定する。   Further, the light source control unit 22 may control the light amount of each of the LEDs 20a to 20d in consideration of the characteristics of the color filter of each color provided for each pixel of the image sensor 48. Specifically, when irradiating the observation target with the first multicolor spectrum light 27, the light source control unit 22 controls the first color pixel (for example, the B pixel) provided with the first color filter (for example, the B color filter). And the signal obtained at the first pixel when irradiating the observation target with the xenon lamp continuous spectrum light 26, and irradiating the observation target with the first multicolor spectrum light 27 A signal obtained from a second color pixel (for example, a G pixel) provided with a second color filter (for example, a G color filter) and a signal obtained by irradiating a continuous spectrum light 26 of a xenon lamp to an observation target with a second color pixel And the resulting signal. That is, the first wavelength band, the second wavelength band, and the third wavelength band of each of the above embodiments are set to the wavelength bands of the RGB color sensors of the image sensor 48.

こうすると、第1色画素で得られる信号は、第1波長帯域の光量積分値であり、第2色画素で得られる信号は第2波長帯域の光量積分値であり、第3色画素で得られる信号は第3波長帯域の光量積分値である。このため、第1色画素で得られる信号を第1色画素で得られる光量積分値という。同様に、第2色画素で得られる信号を第2色画素で得られる光量積分値といい、第3色画素で得られる信号を第3色画素で得られる光量積分値という。これら各色画素の光量積分値は、各画素での露光時間まで含めた値(時間で積分した値)になるが、上記実施形態及び変形例の光量積分値と実質的に同じ役割を果たす。第1色画素、第2色画素、または第3色画素でそれぞれ露光時間を異ならせる場合でも、露光時間まで各画素の露光時間まで考慮して各画素で得られる光量積分値が調節される。   In this case, the signal obtained from the first color pixel is the integrated light amount in the first wavelength band, the signal obtained from the second color pixel is the integrated light amount in the second wavelength band, and the signal obtained from the third color pixel is obtained. The signal obtained is an integrated light amount value of the third wavelength band. For this reason, the signal obtained by the first color pixel is referred to as an integrated light amount value obtained by the first color pixel. Similarly, a signal obtained by the second color pixel is called an integrated light amount value obtained by the second color pixel, and a signal obtained by the third color pixel is called an integrated light amount value obtained by the third color pixel. The light intensity integrated value of each color pixel is a value including the exposure time of each pixel (a value obtained by integrating with time), but has substantially the same role as the light intensity integrated value of the above-described embodiment and modified examples. Even when the exposure time is different for each of the first color pixel, the second color pixel, and the third color pixel, the integrated light amount value obtained for each pixel is adjusted in consideration of the exposure time of each pixel up to the exposure time.

[付記項]
互いに異なる色の光を独立して発光する複数の光源を有し、前記複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、
第1色カラーフィルタが設けられた第1色画素と、前記第1色カラーフィルタとは異なる第2色カラーフィルタが設けられた第2色画素とを有し、前記第1多色スペクトル光が照射された観察対象を撮像する撮像センサと、
前記複数の光源を制御し、前記第1多色スペクトル光を前記観察対象に照射した場合に前記撮像センサの前記第1色画素で得られる光量積分値と、連続スペクトル光を前記観察対象に照射した場合に前記撮像センサの前記第1色画素で得られる光量積分値とを一致させ、かつ、前記第1多色スペクトル光を前記観察対象に照射した場合に前記撮像センサの前記第2色画素で得られる光量積分値と、連続スペクトル光を前記観察対象に照射した場合に前記撮像センサの前記第2色画素で得られる光量積分値と、を一致させる光源制御部と、
を備える内視鏡システム。
[Appendix]
A light source unit that has a plurality of light sources that independently emit light of different colors, and emits a first multicolor spectrum light having a first multicolor spectrum in which the light emitted by the plurality of light sources is superimposed;
A first color pixel provided with a first color filter; and a second color pixel provided with a second color filter different from the first color filter. An imaging sensor for imaging the irradiated observation target;
Controlling the plurality of light sources, and irradiating the observation target with a light intensity integrated value obtained by the first color pixel of the image sensor when the first multicolor spectrum light is irradiated onto the observation target; In this case, the light quantity integral value obtained by the first color pixel of the image sensor is matched, and the second color pixel of the image sensor is irradiated when the first multicolor spectrum light is irradiated on the observation target. And a light source control unit that matches the light intensity integrated value obtained at step 2 and the light intensity integrated value obtained at the second color pixel of the image sensor when the observation target is irradiated with continuous spectrum light.
An endoscope system comprising:

10,100,210,300,400 内視鏡システム
20 光源部
22 光源制御部
25,326 多色スペクトル光
26 連続スペクトル光
27,327 第1多色スペクトル光
201 第2多色スペクトル光
212 内視鏡機種検出部
301 光量検出部
304 経時劣化検出部
404 検証部
406 光量積分値テーブル
500 カプセル内視鏡
10, 100, 210, 300, 400 Endoscope system 20 Light source unit 22 Light source control unit 25, 326 Multicolor spectrum light 26 Continuous spectrum light 27, 327 First multicolor spectrum light 201 Second multicolor spectrum light 212 Endoscope Mirror model detecting unit 301 Light amount detecting unit 304 Aging deterioration detecting unit 404 Verification unit 406 Light amount integral value table 500 Capsule endoscope

Claims (15)

互いに異なる色の光を独立して発光する複数の光源を有し、前記複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、
記第1多色スペクトル光の第1波長帯域の光量積分値を、白色光源が発光する白色光である連続スペクトル光の前記第1波長帯域の光量積分値に一致させ、かつ、前記第1多色スペクトル光の前記第1波長帯域とは異なる第2波長帯域の光量積分値を、前記連続スペクトル光の前記第2波長帯域の光量積分値と一致させるように前記複数の光源の光量をそれぞれ制御する光源制御部と、
前記複数の光源が発する光の光量をそれぞれ検出する光量検出部と、
を備え、
前記光源制御部は、前記光量検出部による検出結果を用いて、前記複数の光源のうち、前記第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する内視鏡光源装置。
A light source unit that has a plurality of light sources that independently emit light of different colors, and emits a first multicolor spectrum light having a first multicolor spectrum in which the light emitted by the plurality of light sources is superimposed;
The quantity integrated value of the first wavelength band before Symbol first polychromatic spectrum light, white light source to match the light amount integrated value of the first wavelength band of the continuous spectrum light is white light emitted, and the first The light intensity of each of the plurality of light sources is adjusted so that the light intensity integral of a second wavelength band different from the first wavelength band of the polychromatic spectrum light coincides with the light intensity integral of the second wavelength band of the continuous spectrum light. A light source control unit for controlling;
A light amount detection unit that detects a light amount of light emitted by the plurality of light sources,
With
The light source control unit uses the detection result of the light amount detection unit to determine, among the plurality of light sources, a maximum deterioration in which the shortage of the light amount is the largest with respect to a designated value of the light amount forming the first multicolor spectrum light. An endoscope light source device that sets the light amounts of the remaining light sources according to the light amounts of the light sources.
前記白色光は、キセノンランプが発する光である請求項1に記載の内視鏡光源装置。   The endoscope light source device according to claim 1, wherein the white light is light emitted from a xenon lamp. 前記第1波長帯域は、紫色波長帯域及び青色波長帯域を合わせた波長帯域であり、前記第2波長帯域は、緑色波長帯域である請求項1または2に記載の内視鏡光源装置。   The endoscope light source device according to claim 1, wherein the first wavelength band is a wavelength band combining a violet wavelength band and a blue wavelength band, and the second wavelength band is a green wavelength band. 前記複数の光源は、紫色光を発する紫色光源と、青色光を発する青色光源とを含み、
前記第1多色スペクトル光の前記第1波長帯域は、前記紫色光及び前記青色光を含む波長帯域である請求項1〜3のいずれか1項に記載の内視鏡光源装置。
The plurality of light sources include a purple light source that emits purple light, and a blue light source that emits blue light.
The endoscope light source device according to any one of claims 1 to 3, wherein the first wavelength band of the first multicolor spectrum light is a wavelength band including the violet light and the blue light.
前記光源制御部は、前記第1波長帯域及び前記第2波長帯域に加えて、さらに、前記第1多色スペクトル光の前記第1波長帯域及び前記第2波長帯域とは異なる第3波長帯域の光量積分値と、前記連続スペクトル光の前記第3波長帯域の光量積分値とを一致させる請求項1〜4のいずれか1項に記載の内視鏡光源装置。   The light source control unit may further include, in addition to the first wavelength band and the second wavelength band, a third wavelength band different from the first wavelength band and the second wavelength band of the first multicolor spectrum light. The endoscope light source device according to any one of claims 1 to 4, wherein an integrated light amount value and an integrated light amount value of the continuous spectrum light in the third wavelength band are matched. 前記第3波長帯域は、赤色波長帯域である請求項5に記載の内視鏡光源装置。   The endoscope light source device according to claim 5, wherein the third wavelength band is a red wavelength band. 前記光源部は、前記複数の光源によって、前記第1多色スペクトル光及び前記連続スペクトル光とは分光スペクトルが異なる第2多色スペクトルを有する第2多色スペクトル光を発し、
前記光源制御部は、前記第2多色スペクトル光の前記第1波長帯域の光量積分値を、前記連続スペクトル光の前記第1波長帯域の光量積分値よりも大きくし、かつ、前記第2多色スペクトル光の前記第2波長帯域の光量積分値を、前記連続スペクトル光の前記第2波長帯域の光量積分値と一致させる請求項1〜6のいずれか1項に記載の内視鏡光源装置。
The light source unit emits, by the plurality of light sources, a second polychromatic spectrum light having a second polychromatic spectrum having a different spectral spectrum from the first polychromatic spectrum light and the continuous spectrum light,
The light source control unit sets a light quantity integral of the second multicolor spectrum light in the first wavelength band larger than a light quantity integral of the continuous spectrum light in the first wavelength band, and The endoscope light source device according to any one of claims 1 to 6, wherein a light intensity integrated value of the second wavelength band of the color spectrum light is made to match a light intensity integrated value of the second wavelength band of the continuous spectrum light. .
前記光量検出部は、前記複数の光源が発光している間、前記複数の光源が発光する光の光量の検出を繰り返し行う請求項1〜7のいずれか1項に記載の内視鏡光源装置。   The endoscope light source device according to any one of claims 1 to 7, wherein the light amount detection unit repeatedly detects a light amount of light emitted by the plurality of light sources while the plurality of light sources emits light. . 前記第1多色スペクトル光の第1波長帯域の光量積分値が前記連続スペクトル光の前記第1波長帯域の光量積分値に一致し、かつ、前記第1多色スペクトル光の前記第2波長帯域の光量積分値が、前記連続スペクトル光の前記第2波長帯域の光量積分値と一致しているか否かを検証する検証部を備える請求項1〜8のいずれか1項に記載の内視鏡光源装置。   The light intensity integral of the first multicolor spectrum light in the first wavelength band matches the light intensity integral of the continuous spectrum light in the first wavelength band, and the second wavelength band of the first multicolor spectrum light The endoscope according to any one of claims 1 to 8, further comprising a verification unit configured to verify whether or not the integrated light amount of the continuous spectrum light is equal to the integrated amount of light in the second wavelength band. Light source device. 前記光源制御部は、前記検証部による検証結果を用いて前記複数の光源を制御する請求項9に記載の内視鏡光源装置。   The endoscope light source device according to claim 9, wherein the light source control unit controls the plurality of light sources using a result of the verification by the verification unit. 互いに異なる色の光を独立して発光する複数の光源を有し、前記複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、
記第1多色スペクトル光の第1波長帯域の光量積分値を、白色光源が発光する白色光である連続スペクトル光の前記第1波長帯域の光量積分値と一致させ、かつ、前記第1多色スペクトル光の前記第1波長帯域とは異なる第2波長帯域の光量積分値を、前記連続スペクトル光の前記第2波長帯域の光量積分値と一致させるように前記複数の光源の光量をそれぞれ制御する光源制御部と、
前記複数の光源が発する光の光量をそれぞれ検出する光量検出部と、
を備え、
前記光源制御部は、前記光量検出部による検出結果を用いて、前記複数の光源のうち、前記第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する内視鏡システム。
A light source unit that has a plurality of light sources that independently emit light of different colors, and emits a first multicolor spectrum light having a first multicolor spectrum in which the light emitted by the plurality of light sources is superimposed;
The quantity integrated value of the first wavelength band before Symbol first polychromatic spectrum light, white light source to match the light amount integrated value of the first wavelength band of the continuous spectrum light is white light emitted, and the first The light intensity of each of the plurality of light sources is adjusted so that the light intensity integral of a second wavelength band different from the first wavelength band of the polychromatic spectrum light coincides with the light intensity integral of the second wavelength band of the continuous spectrum light. A light source control unit for controlling;
A light amount detection unit that detects a light amount of light emitted by the plurality of light sources,
With
The light source control unit uses the detection result of the light amount detection unit to determine, among the plurality of light sources, a maximum deterioration in which the shortage of the light amount is the largest with respect to a designated value of the light amount forming the first multicolor spectrum light. An endoscope system that sets the light intensity of the remaining light sources according to the light intensity of the light source.
前記光源部は、前記複数の光源によって、前記第1多色スペクトル光及び前記連続スペクトル光とは分光スペクトルが異なる第2多色スペクトルを有する第2多色スペクトル光を発し、
前記光源制御部は、前記第2多色スペクトル光の前記第1波長帯域の光量積分値を、前記連続スペクトル光の前記第1波長帯域の光量積分値よりも大きくし、かつ、前記第2多色スペクトル光の前記第2波長帯域の光量積分値を、前記連続スペクトル光の前記第2波長帯域の光量積分値と一致させる請求項11に記載の内視鏡システム。
The light source unit emits, by the plurality of light sources, a second polychromatic spectrum light having a second polychromatic spectrum having a different spectral spectrum from the first polychromatic spectrum light and the continuous spectrum light,
The light source control unit sets a light quantity integral of the second multicolor spectrum light in the first wavelength band larger than a light quantity integral of the continuous spectrum light in the first wavelength band, and The endoscope system according to claim 11, wherein an integral value of the light amount of the second wavelength band of the color spectrum light is made equal to an integral value of the light amount of the second wavelength band of the continuous spectrum light.
接続された内視鏡の機種を検出し、検出結果を前記光源制御部に入力する内視鏡機種検出部を備え、
前記光源制御部は、前記内視鏡機種検出部によって検出された前記内視鏡の機種によって、前記光源部が発する光を、前記第1多色スペクトル光と前記第2多色スペクトル光とで切り替える請求項12に記載の内視鏡システム。
An endoscope model detection unit that detects the model of the connected endoscope and inputs the detection result to the light source control unit,
The light source control unit, by the endoscope model detected by the endoscope model detection unit, the light emitted by the light source unit, the first multicolor spectrum light and the second multicolor spectrum light The endoscope system according to claim 12, which is switched.
前記光源制御部は、前記内視鏡の機種が、前記連続スペクトル光で使用する機種である場合に、前記光源部が発する光を前記第1多色スペクトル光にし、かつ、前記内視鏡の機種が、前記連続スペクトル光で使用する機種でない場合に、前記光源部が発する光を前記第2多色スペクトル光にする請求項13に記載の内視鏡システム。   The light source control unit, when the model of the endoscope is a model used with the continuous spectrum light, the light emitted by the light source unit to the first polychromatic spectrum light, and, of the endoscope 14. The endoscope system according to claim 13, wherein when the model is not the model used for the continuous spectrum light, the light emitted from the light source unit is the second multicolor spectrum light. 互いに異なる色の光を独立して発光する複数の光源を有し、前記複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、前記複数の光源が発する光の光量をそれぞれ検出する光量検出部と、を有する内視鏡光源装置の作動方法において、
光源制御部が、記第1多色スペクトル光の第1波長帯域の光量積分値を、白色光源が発光する白色光である連続スペクトル光の前記第1波長帯域の光量積分値と一致させ、かつ、前記第1多色スペクトル光の前記第1波長帯域とは異なる第2波長帯域の光量積分値を、前記連続スペクトル光の前記第2波長帯域の光量積分値と一致させるように前記複数の光源の光量をそれぞれ制御して、前記第1多色スペクトル光を発光させるステップと、
前記光源制御部が、前記光量検出部による検出結果を用いて、前記複数の光源のうち、前記第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定するステップと、
を備える内視鏡光源装置の作動方法。
A light source unit having a plurality of light sources that independently emit light of different colors, and a light source unit that emits a first multicolor spectrum light having a first multicolor spectrum obtained by superimposing light emitted by the plurality of light sources; In a method of operating an endoscope light source device having a light amount detection unit that detects a light amount of light emitted by each of the plurality of light sources,
Light source control unit, a light intensity integral value of the first wavelength band before Symbol first polychromatic spectrum light, white light source to match the light amount integrated value of the first wavelength band of the continuous spectrum light is white light emitted, and, wherein the plurality of light intensity integral value of a different second wavelength band from the first wavelength band of the first polychromatic spectrum light, to so that to match the light amount integrated value of the second wavelength band of the continuous spectrum light Controlling the respective light amounts of the light sources to emit the first polychromatic spectrum light;
The light source control unit uses the detection result of the light amount detection unit to determine, among the plurality of light sources, a maximum deterioration in which the shortage of the light amount is the largest with respect to a designated value of the light amount forming the first multicolor spectrum light. Setting the light intensity of the remaining light sources according to the light intensity of the light source;
An operation method of an endoscope light source device comprising:
JP2015150941A 2015-01-29 2015-07-30 Endoscope light source device, endoscope system, and method of operating endoscope light source device Active JP6654004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/009,659 US9977232B2 (en) 2015-01-29 2016-01-28 Light source device for endoscope, endoscope system, and method for operating light source device for endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015178 2015-01-29
JP2015015178 2015-01-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2018073810A Division JP6706283B2 (en) 2015-01-29 2018-04-06 Endoscope system and operating method of endoscope system
JP2019093881A Division JP2019136555A (en) 2015-01-29 2019-05-17 Endoscope light source device, endoscope system, and method of operating endoscope light source device

Publications (2)

Publication Number Publication Date
JP2016144624A JP2016144624A (en) 2016-08-12
JP6654004B2 true JP6654004B2 (en) 2020-02-26

Family

ID=56685854

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015150941A Active JP6654004B2 (en) 2015-01-29 2015-07-30 Endoscope light source device, endoscope system, and method of operating endoscope light source device
JP2018073810A Active JP6706283B2 (en) 2015-01-29 2018-04-06 Endoscope system and operating method of endoscope system
JP2019093881A Abandoned JP2019136555A (en) 2015-01-29 2019-05-17 Endoscope light source device, endoscope system, and method of operating endoscope light source device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018073810A Active JP6706283B2 (en) 2015-01-29 2018-04-06 Endoscope system and operating method of endoscope system
JP2019093881A Abandoned JP2019136555A (en) 2015-01-29 2019-05-17 Endoscope light source device, endoscope system, and method of operating endoscope light source device

Country Status (1)

Country Link
JP (3) JP6654004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136555A (en) * 2015-01-29 2019-08-22 富士フイルム株式会社 Endoscope light source device, endoscope system, and method of operating endoscope light source device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762816B2 (en) * 2016-09-08 2020-09-30 富士フイルム株式会社 Endoscopic system and how to operate it
JP7191978B2 (en) 2018-11-12 2022-12-19 オリンパス株式会社 Endoscope light source device, endoscope device, and light intensity adjustment method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253402A (en) * 1998-03-10 1999-09-21 Olympus Optical Co Ltd Endoscope
JP2001208985A (en) * 2000-01-27 2001-08-03 Olympus Optical Co Ltd Endoscope device
JP2001201697A (en) * 2000-01-17 2001-07-27 Olympus Optical Co Ltd Endoscope light source device
JP2006166940A (en) * 2004-12-10 2006-06-29 Olympus Corp Lighting device for endoscope
JP2008181933A (en) * 2007-01-23 2008-08-07 Seiko Epson Corp Method of driving laser light source device, laser light source device, image display device, monitor and illumination apparatus
EP2116176B1 (en) * 2007-02-26 2011-12-28 Olympus Medical Systems Corp. Capsule endoscope
CN101449961A (en) * 2007-12-06 2009-06-10 硕颉科技股份有限公司 Multiple wavelength light-source endoscope system for assistant diagnosis
JP5767775B2 (en) * 2009-07-06 2015-08-19 富士フイルム株式会社 Endoscope device
JP5306447B2 (en) * 2009-07-23 2013-10-02 オリンパスメディカルシステムズ株式会社 Transmittance adjusting device, observation device, and observation system
JP5401205B2 (en) * 2009-08-10 2014-01-29 富士フイルム株式会社 Endoscope device
WO2011087801A1 (en) * 2009-12-22 2011-07-21 Integrated Endoscopy, Inc. Endoscope with different color light sources
JP5454785B2 (en) * 2010-03-26 2014-03-26 日本電気硝子株式会社 Glass plate sorting device
JP5485835B2 (en) * 2010-09-07 2014-05-07 富士フイルム株式会社 Endoscope light source device and light amount control method thereof, endoscope system and control method thereof
JP5198694B2 (en) * 2011-02-09 2013-05-15 オリンパスメディカルシステムズ株式会社 Light source device
WO2012161028A1 (en) * 2011-05-26 2012-11-29 オリンパスメディカルシステムズ株式会社 Light source device
JP5749633B2 (en) * 2011-11-28 2015-07-15 富士フイルム株式会社 Endoscope light source device
JP5467181B1 (en) * 2012-03-29 2014-04-09 オリンパスメディカルシステムズ株式会社 Endoscope system
WO2015005277A1 (en) * 2013-07-11 2015-01-15 オリンパスメディカルシステムズ株式会社 Light source device
JP6340424B2 (en) * 2014-07-09 2018-06-06 オリンパス株式会社 Endoscope system and light source device for endoscope
JP6654004B2 (en) * 2015-01-29 2020-02-26 富士フイルム株式会社 Endoscope light source device, endoscope system, and method of operating endoscope light source device
JP2017012395A (en) * 2015-06-30 2017-01-19 富士フイルム株式会社 Endoscope system and method of operating endoscope system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136555A (en) * 2015-01-29 2019-08-22 富士フイルム株式会社 Endoscope light source device, endoscope system, and method of operating endoscope light source device

Also Published As

Publication number Publication date
JP6706283B2 (en) 2020-06-03
JP2018110925A (en) 2018-07-19
JP2016144624A (en) 2016-08-12
JP2019136555A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP2017012395A (en) Endoscope system and method of operating endoscope system
JP6461739B2 (en) Image processing apparatus, endoscope system, and method of operating image processing apparatus
JP6013382B2 (en) Endoscope system and operating method thereof
JP6243364B2 (en) Endoscope processor, operation method, and control program
JP6206691B2 (en) Endoscope system and operating method thereof
JP2015061569A (en) Endoscope system and operation method of endoscope system
JP6362274B2 (en) Endoscope system and method for operating endoscope system
US9962070B2 (en) Endoscope system, processor device, and method for operating endoscope system
US10010245B2 (en) Endoscope system, processor device, and method for operating endoscope system
JP6690003B2 (en) Endoscope system and operating method thereof
JP6085649B2 (en) Endoscope light source device and endoscope system
JP6085648B2 (en) Endoscope light source device and endoscope system
JP6581952B2 (en) Endoscope system and operating method thereof
JP6706283B2 (en) Endoscope system and operating method of endoscope system
JP2016007355A (en) Light source device, endoscope system, operation method of light source device, and operation method of endoscope system
US9977232B2 (en) Light source device for endoscope, endoscope system, and method for operating light source device for endoscope
JP2019030406A (en) Endoscope system
JP6254502B2 (en) Endoscope light source device and endoscope system
JP6616071B2 (en) Endoscope processor device, operation method of endoscope processor device, control program for endoscope
JP7196016B2 (en) Information processing device and its operating method, endoscope system and its operating method
JP2016158837A (en) Endoscope light source device, endoscope system, and operation method of endoscope light source device
JP6905038B2 (en) Light source device and endoscopic system
JP6039605B2 (en) Endoscope system and operating method thereof
JP6874087B2 (en) Endoscope system and how to operate the endoscope system
JP6602939B2 (en) Endoscope system and method for operating endoscope system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190524

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200129

R150 Certificate of patent or registration of utility model

Ref document number: 6654004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250