JP6602939B2 - Endoscope system and method for operating endoscope system - Google Patents

Endoscope system and method for operating endoscope system Download PDF

Info

Publication number
JP6602939B2
JP6602939B2 JP2018216972A JP2018216972A JP6602939B2 JP 6602939 B2 JP6602939 B2 JP 6602939B2 JP 2018216972 A JP2018216972 A JP 2018216972A JP 2018216972 A JP2018216972 A JP 2018216972A JP 6602939 B2 JP6602939 B2 JP 6602939B2
Authority
JP
Japan
Prior art keywords
light
color
amount
ratio
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018216972A
Other languages
Japanese (ja)
Other versions
JP2019058689A (en
Inventor
健一 大谷
誠 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2018216972A priority Critical patent/JP6602939B2/en
Publication of JP2019058689A publication Critical patent/JP2019058689A/en
Application granted granted Critical
Publication of JP6602939B2 publication Critical patent/JP6602939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

本発明は、観察対象に照射する照明光を複数の光源を用いて形成する内視鏡システム及び内視鏡システムの作動方法に関する。   The present invention relates to an endoscope system that forms illumination light for irradiating an observation target by using a plurality of light sources, and a method for operating the endoscope system.

医療分野においては、内視鏡光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムを用いた診断が広く行われている。内視鏡光源装置は、体腔の粘膜等の観察対象に照射する光(以下、照明光という)を発生する装置である。内視鏡光源装置には、従来、キセノンランプ等の広帯域な連続スペクトルを有する光(以下、連続スペクトル光という)を発する光源が用いられてきたが、近年では、キセノンランプ等の広帯域光源の代わりに、LED(Light Emitting Diode)等の半導体光源が用いられつつある。光源に半導体光源を用いる場合には、例えば、青色LED、緑色LED、及び赤色LEDなどの互いに異なる色の光を発光する複数の半導体光源を組み合わせて用いることにより、これらの光を重ね合わせた分光スペクトルを有する光(以下、多色スペクトル光という)が照明光になる。   In the medical field, diagnosis using an endoscope system including an endoscope light source device, an endoscope, and a processor device is widely performed. An endoscope light source device is a device that generates light (hereinafter referred to as illumination light) that irradiates an observation target such as a mucous membrane of a body cavity. Conventionally, a light source that emits light having a broadband continuous spectrum (hereinafter referred to as continuous spectrum light) such as a xenon lamp has been used as an endoscope light source device. In addition, semiconductor light sources such as LEDs (Light Emitting Diodes) are being used. When a semiconductor light source is used as the light source, for example, a combination of a plurality of semiconductor light sources that emit light of different colors such as a blue LED, a green LED, and a red LED is used to superimpose these lights. Light having a spectrum (hereinafter referred to as multicolor spectrum light) becomes illumination light.

例えば、特許文献1の内視鏡システムは、内視鏡光源装置に4個の独立制御可能な半導体光源を搭載し、各々の発光量を制御することで照明光の分光スペクトル(波長毎の光量分布)を調整することで、取得したい画像特性に応じた最適な特性を有する照明光を観察対象に照射できるようにしている。具体的には、明るさに対するダイナミックレンジの大きな画像、色温度が低い画像、色温度が高い画像、及び特殊な狭帯域波長を狭いエリアに照射した場合の画像を得るために、それぞれ照明光の分光スペクトル等を調節している。   For example, the endoscope system of Patent Document 1 includes four semiconductor light sources that can be independently controlled in an endoscope light source device, and controls the light emission amount of each, thereby controlling the spectrum of illumination light (the amount of light for each wavelength). By adjusting the (distribution), it is possible to irradiate the observation target with illumination light having an optimum characteristic corresponding to the image characteristic to be acquired. Specifically, in order to obtain an image with a large dynamic range for brightness, an image with a low color temperature, an image with a high color temperature, and an image when a special narrow band wavelength is irradiated to a narrow area, The spectral spectrum is adjusted.

また、特許文献2の内視鏡システムは、複数の独立制御可能な半導体光源を搭載しており、内視鏡の機種を識別し、内視鏡の機種に応じて各半導体光源の駆動条件を設定している。具体的には、機種によって照明光を伝搬するためのライトガイドの光透過特性が異なるので、内視鏡の機種を識別して、ライトガイドの光透過特性に応じた各半導体光源の光量比を設定している。   In addition, the endoscope system of Patent Document 2 includes a plurality of independently controllable semiconductor light sources, identifies the endoscope model, and sets the driving conditions of each semiconductor light source according to the endoscope model. It is set. Specifically, since the light transmission characteristics of the light guide for propagating illumination light differ depending on the model, the endoscope model is identified, and the light intensity ratio of each semiconductor light source corresponding to the light transmission characteristics of the light guide is determined. It is set.

特開2013−255655号公報JP 2013-255655 A 特開2013−202166号公報JP 2013-202166 A

上記のように、内視鏡システムで用いる照明光は、従来のキセノンランプ等による連続スペクトル光から、複数の半導体光源による多色スペクトル光になりつつあるが、連続スペクトル光と多色スペクトル光とでは、それぞれ分光スペクトルが異なっているので、連続スペクトル光を照射して撮像した観察対象の画像と、多色スペクトル光を照射して撮像した観察対象の画像とでは、同じ観察対象であっても見え方が異なる場合がある。連続スペクトル光を照明光に用いる場合と、多色スペクトル光を照明光に用いる場合とでの観察対象の見え方の違いは一概にどちらが優れているとは言えないが、複数の半導体光源が独立制御可能であり、観察対象等に応じて分光スペクトルを調節できる分、多色スペクトル光を照明光に用いる場合の方が柔軟に観察できる利点がある。   As described above, the illumination light used in the endoscope system is becoming multicolor spectrum light by a plurality of semiconductor light sources from continuous spectrum light by a conventional xenon lamp or the like. Then, since the spectral spectra are different from each other, the observation target image captured by irradiating with continuous spectrum light and the observation target image captured by irradiating with multi-color spectrum light are the same observation target. It may look different. The difference in the appearance of the observation object between the case where continuous spectrum light is used as illumination light and the case where multicolor spectrum light is used as illumination light is generally not superior, but multiple semiconductor light sources are independent. Since it is controllable and the spectral spectrum can be adjusted according to the object to be observed, there is an advantage that the multi-color spectrum light can be observed more flexibly when used as illumination light.

一方、内視鏡システムでは、キセノンランプ等による連続スペクトル光を照明光として用いてきた期間が長いので、多くの医師はキセノンランプ等による連続スペクトル光を照射した場合の観察対象の見え方に慣れている。このため、複数の半導体光源による多色スペクトル光を照明光に用いる場合でも従前のキセノンランプ等による連続スペクトル光を照明光に用いた場合と同様に観察できるようにしておくことが望まれている。また、過去の症例として蓄積されている内視鏡画像の多くも、キセノンランプ等による連続スペクトル光によって撮影されているので、複数の半導体光源による多色スペクトル光を照明光に用いる場合でも、過去の症例と単純に比較しやすくするために、連続スペクトル光を照明光に用いた場合と同様の内視鏡画像を得られるようにしておくことが望まれている。   On the other hand, in an endoscope system, since a continuous spectrum light from a xenon lamp or the like has been used as illumination light, many doctors are accustomed to the appearance of an observation target when irradiated with a continuous spectrum light from a xenon lamp or the like. ing. For this reason, it is desired that even when multi-color spectrum light from a plurality of semiconductor light sources is used as illumination light, observation can be performed in the same manner as when continuous spectrum light from a conventional xenon lamp or the like is used as illumination light. . In addition, since many of the endoscopic images accumulated as past cases are taken with continuous spectrum light from a xenon lamp or the like, even when multicolor spectrum light from a plurality of semiconductor light sources is used as illumination light, In order to make it easy to easily compare with the above case, it is desired to obtain an endoscopic image similar to that obtained when continuous spectrum light is used as illumination light.

上記の要望に応えるためには、複数の半導体光源で連続スペクトル光の分光スペクトルを再現できれば良いが、実際には、複数の半導体光源で連続スペクトル光の分光スペクトルを完全に再現することはできない。例えば、中心波長から離れた波長ほど光量が小さくなる青色LED及び緑色LEDを光源として用いる場合、これらの中間色(青色と緑色の中間付近の波長)の光量は、青色LEDと緑色LEDの光量を調節しただけでは変化し難く、青色LED及び緑色LEDの各中心波長を連続スペクトル光の光量に近づけると、青色と緑色の中間色の光量は連続スペクトル光の光量を大幅に下回る。逆に、青色と緑色の中間色の光量を連続スペクトル光に近づけるために青色LEDと緑色LEDの光量を増大させると、青色LEDの中心波長付近の色や緑色LEDの中心波長の色では連続スペクトル光の光量を大幅に超過してしまう。   In order to meet the above demand, it is only necessary to reproduce the spectrum of continuous spectrum light with a plurality of semiconductor light sources, but in reality, the spectrum of continuous spectrum light cannot be completely reproduced with a plurality of semiconductor light sources. For example, when using a blue LED or green LED whose light quantity decreases as the wavelength is farther from the center wavelength, the light quantity of these intermediate colors (wavelengths near the middle of blue and green) adjusts the light quantity of the blue LED and green LED. If the center wavelengths of the blue LED and the green LED are brought close to the light amount of the continuous spectrum light, the light amount of the intermediate color between blue and green is significantly lower than the light amount of the continuous spectrum light. Conversely, if the light quantity of the blue LED and the green LED is increased in order to bring the light quantity of the intermediate color of blue and green closer to the continuous spectrum light, the continuous spectrum light is used for the color near the center wavelength of the blue LED and the color of the center wavelength of the green LED. The amount of light will be greatly exceeded.

本発明は、互いに異なる色の光を独立して発光する複数の光源を用いて、これらの光を重ね合わせた多色スペクトル光を照明光として用いる場合でも、連続スペクトル光を照明光に用いた場合とほぼ同様に観察対象を観察可能にする内視鏡システム及び内視鏡システムの作動方法を提供することを目的とする。   The present invention uses continuous spectrum light as illumination light even when using a plurality of light sources that independently emit light of different colors and using multicolor spectrum light obtained by superimposing these lights as illumination light. It is an object of the present invention to provide an endoscope system and an operation method of the endoscope system that make it possible to observe an observation object almost as in the case.

本発明の内視鏡システムは、第1波長帯域の紫色光であるV光を発する紫色光源、第2波長帯域の青色光であるB光を発する青色光源、緑色光であるG光を発する緑色光源、及び、赤色光であるR光を発する赤色光源を有する複数の光源を有し、複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、異なる色に感度を有する複数色の画素を有する撮像センサであって、第1色に感度を有する第1色画素と、第2色に感度を有する第2色画素と、第3色に感度を有する第3色画素とを有する撮像センサと、複数の光源を制御し、第1多色スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率を、キセノンランプ、ハロゲンランプ、または白色LEDが発光する白色光である連続スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致させる光源制御部とを備え、光源制御部は、第1多色スペクトル光の第1波長帯域の光量積分値と連続スペクトル光の第1波長帯域の光量積分値とが一致し、且つ、第1多色スペクトル光の第2波長帯域の光量積分値と連続スペクトル光の第2波長帯域の光量積分値とが一致するように、V光とB光の光量比Kv:Kbを決定し、光量比Kv:KbでV光とB光を合成した光をB2光とした場合であって、B2光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれB2b、B2g、及びB2rとし、第1多色スペクトル光のG光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれGb、Gg、及びGrとし、第1多色スペクトル光のR光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれRb、Rg、及びRrとし、連続スペクトル光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれXb、Xg、及びXrとした場合において、下記数3を満たすように、B2光、G光、及びR光の光量比Pb2:Pg:Prを算出する内視鏡システム。

Figure 0006602939
The endoscope system of the present invention includes a violet light source that emits V light that is violet light in a first wavelength band, a blue light source that emits B light that is blue light in a second wavelength band, and a green light that emits G light that is green light. A light source that has a plurality of light sources having a light source and a red light source that emits red light as R light, and that emits first multicolor spectrum light having a first multicolor spectrum obtained by superimposing light emitted from the plurality of light sources. A first color pixel having sensitivity to a first color, a second color pixel having sensitivity to a second color, and a third color. The ratio of the integrated light amount for each color obtained by controlling the plurality of light sources and receiving the first multicolor spectrum light with the plurality of pixels is controlled by xenon. White light emitted from a lamp, halogen lamp, or white LED A light source control unit that matches the ratio of the light intensity integral value for each color obtained by receiving the continuous spectrum light that is light by the pixels of the plurality of colors, and the light source control unit includes the first wavelength of the first multicolor spectrum light. The integrated light amount of the band matches the integrated light amount of the first wavelength band of the continuous spectrum light, and the integrated light value of the second wavelength band of the first multicolor spectrum light and the second wavelength band of the continuous spectrum light. The light amount ratio Kv: Kb of the V light and the B light is determined so that the integrated light amount matches, and the light obtained by combining the V light and the B light at the light amount ratio Kv: Kb is defined as B2 light, The light intensity integral values obtained by receiving the B2 light with the first color pixel, the second color pixel, and the third color pixel are B2b, B2g, and B2r, respectively, and the G light of the first multicolor spectrum light is the first color pixel. , The light intensity integral values obtained by receiving light at the second color pixel and the third color pixel, respectively b, Gg, and Gr, and Rb, Rg, and Rr are the light intensity integral values obtained by receiving the R light of the first multicolor spectrum light by the first color pixel, the second color pixel, and the third color pixel, respectively. When the integrated light quantity values obtained by receiving the continuous spectrum light with the first color pixel, the second color pixel, and the third color pixel are Xb, Xg, and Xr, respectively, B2 An endoscope system that calculates a light amount ratio Pb2: Pg: Pr of light, G light, and R light.
Figure 0006602939

光源制御部は、光量比Kv:Kbと光量比Pb2:Pg:Prを用いて、V光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを算出することが好ましい。観察対象の種類毎に光量比Cv:Cb:Cg:Crを記憶する光量比記憶部を備え、光源制御部は、観察対象の種類毎の光量比Cv:Cb:Cg:Crのなかから光量比Cv:Cb:Cg:Crを選択することが好ましい。第1色画素は青色画素、第2色画素は緑色画素、第3色画素は赤色画素であることが好ましい。   The light source controller preferably calculates the light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light using the light quantity ratio Kv: Kb and the light quantity ratio Pb2: Pg: Pr. . A light amount ratio storage unit that stores a light amount ratio Cv: Cb: Cg: Cr for each type of observation target is provided, and the light source control unit is configured to have a light amount ratio Cv: Cb: Cg: Cr for each type of observation target. It is preferable to select Cv: Cb: Cg: Cr. Preferably, the first color pixel is a blue pixel, the second color pixel is a green pixel, and the third color pixel is a red pixel.

複数の光源が発する光量をそれぞれ検出する光量検出部を備え、光源制御部は、光量検出部による検出結果を用いて、複数の光源のうち、第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定することが好ましい。光量検出部は、複数の光源が発光している間、複数の光源が発光する光の検出を繰り返し行うことが好ましい。   The light source control unit includes a light amount detection unit that detects the amount of light emitted by each of the plurality of light sources, and the light source control unit uses a detection result of the light amount detection unit to specify a light amount designation value for forming the first multicolor spectrum light among the plurality of light sources. On the other hand, it is preferable to set the light quantity of the remaining light sources in accordance with the light quantity of the most deteriorated light source having the largest light quantity shortage. It is preferable that the light amount detection unit repeatedly detects light emitted from the plurality of light sources while the plurality of light sources emit light.

第1多色スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、連続スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証する検証部を備えることが好ましい。   The ratio of the integrated amount of light for each color obtained by receiving the first multicolor spectrum light with each of the pixels of a plurality of colors is the ratio of the integrated amount of light for each color obtained by receiving the continuous spectrum light with each of the pixels of a plurality of colors. It is preferable to provide a verification unit that verifies whether or not they match.

複数の光源が発する光量をそれぞれ検出する光量検出部を備え、検証部は、光量検出部による検出結果を用いて、第1多色スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、連続スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証することが好ましい。   A light amount detection unit that detects light amounts emitted from a plurality of light sources, respectively, and the verification unit uses the detection result of the light amount detection unit to receive the first multicolor spectrum light by each of the pixels of a plurality of colors. It is preferable to verify whether or not the ratio of the light quantity integral value matches the ratio of the light quantity integral value for each color obtained by receiving continuous spectrum light with a plurality of color pixels.

検証部は、撮像センサの出力を用いて、第1多色スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、連続スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証することが好ましい。光源制御部は、検証部による検証結果を用いて複数の光源を制御することが好ましい。   Using the output of the image sensor, the verification unit receives the first multicolor spectrum light by the plurality of color pixels, and the ratio of the integrated light amount for each color, and receives the continuous spectrum light by the plurality of color pixels. It is preferable to verify whether or not the light intensity integral value ratio for each color matches. It is preferable that the light source control unit controls a plurality of light sources using the verification result by the verification unit.

第1色画素で受光する波長帯域は第1波長帯域と第2波長帯域に区切られており、第1多色スペクトル光の第1波長帯域の光量積分値と連続スペクトル光の第1波長帯域の光量積分値とは、それぞれ第1色画素の第1波長帯域で受光して得られる光量積分値であり、第1多色スペクトル光の第2波長帯域の光量積分値と連続スペクトル光の第2波長帯域の光量積分値とは、それぞれ第1色画素の第2波長帯域で受光して得られる光量積分値であることが好ましい。   The wavelength band received by the first color pixel is divided into a first wavelength band and a second wavelength band, and the integrated amount of light of the first wavelength band of the first multicolor spectrum light and the first wavelength band of the continuous spectrum light. The light amount integrated value is a light amount integrated value obtained by receiving light in the first wavelength band of the first color pixel, and the light amount integrated value of the second wavelength band of the first multicolor spectrum light and the second light of the continuous spectrum light. The light amount integral value in the wavelength band is preferably a light amount integral value obtained by receiving light in the second wavelength band of the first color pixel.

本発明は、第1波長帯域の紫色光であるV光を発する紫色光源、第2波長帯域の青色光であるB光を発する青色光源、緑色光であるG光を発する緑色光源、及び、赤色光であるR光を発する赤色光源を有する複数の光源を有し、複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、異なる色に感度を有する複数色の画素を有する撮像センサであって、第1色に感度を有する第1色画素と、第2色に感度を有する第2色画素と、第3色に感度を有する第3色画素とを有する撮像センサと、を有する内視鏡システムの作動方法において、光源制御部が複数の光源を制御し、第1多色スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率を、キセノンランプ、ハロゲンランプ、または白色LEDが発光する白色光である連続スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致させるステップであって、光源制御部は、第1多色スペクトル光の第1波長帯域の光量積分値と連続スペクトル光の第1波長帯域の光量積分値とが一致し、且つ、第1多色スペクトル光の第2波長帯域の光量積分値と連続スペクトル光の第2波長帯域の光量積分値とが一致するように、V光とB光の光量比Kv:Kbを決定し、光量比Kv:KbでV光とB光を合成した光をB2光とした場合であって、B2光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれB2b、B2g、及びB2rとし、第1多色スペクトル光のG光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれGb、Gg、及びGrとし、第1多色スペクトル光のR光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれRb、Rg、及びRrとし、連続スペクトル光を第1色画素、第2色画素、及び第3色画素で受光して得る光量積分値をそれぞれXb、Xg、及びXrとした場合において、下記数3を満たすように、B2光、G光、及びR光の光量比Pb2:Pg:Prを算出するステップを有する。

Figure 0006602939
The present invention includes a purple light source that emits V light that is purple light in the first wavelength band, a blue light source that emits B light that is blue light in the second wavelength band, a green light source that emits G light that is green light, and red A light source unit that has a plurality of light sources having a red light source that emits R light that is light, and that emits first multicolor spectrum light having a first multicolor spectrum in which light emitted from the plurality of light sources is superimposed, has a different color. An image sensor having a plurality of color pixels having sensitivity to the first color pixel, the first color pixel having sensitivity to the first color, the second color pixel having sensitivity to the second color, and the first color pixel having sensitivity to the third color. In an operating method of an endoscope system having an imaging sensor having three color pixels, a color obtained by a light source control unit controlling a plurality of light sources and receiving a first multicolor spectrum light by a plurality of color pixels, respectively. The ratio of the light intensity integral value for each xenon lamp, halogen The light source control unit is a step of matching the ratio of the light intensity integral value for each color obtained by receiving continuous spectrum light, which is white light emitted from a lamp or white LED, with each of a plurality of color pixels. The light intensity integral value of the first wavelength band of the color spectrum light matches the light intensity integral value of the first wavelength band of the continuous spectrum light, and the light intensity integral value of the second wavelength band of the first multicolor spectrum light and the continuous spectrum. The light quantity ratio Kv: Kb of the V light and the B light is determined so that the light quantity integral value of the second wavelength band of the light matches, and the light obtained by combining the V light and the B light at the light quantity ratio Kv: Kb is B2 light. In this case, B2b, B2g, and B2r are respectively integrated light amounts obtained by receiving the B2 light at the first color pixel, the second color pixel, and the third color pixel, and the first multicolor spectrum light G light for the first color pixel, the second color pixel, and the third color image Gb, Gg, and Gr are the light intensity integral values obtained by receiving light at, respectively, and the light quantity integral obtained by receiving the R light of the first multicolor spectrum light at the first color pixel, the second color pixel, and the third color pixel. In the case where the values are Rb, Rg, and Rr, respectively, and the integrated light quantity values obtained by receiving the continuous spectrum light with the first color pixel, the second color pixel, and the third color pixel are Xb, Xg, and Xr, respectively. The step of calculating the light quantity ratio Pb2: Pg: Pr of the B2 light, the G light, and the R light so as to satisfy the following expression 3 is included.
Figure 0006602939

本発明の内視鏡システム及び内視鏡システムの作動方法は、複数の光源が発光する光を重ね合わせた多色スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率を、白色光源が発光する光の少なくとも一部の波長帯域を有する連続スペクトル光を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致させることにより、多色スペクトル光を照明光として用いる場合でも、連続スペクトル光を照明光に用いた場合とほぼ同様に観察対象を観察可能にすることができる。   According to the endoscope system and the operation method of the endoscope system of the present invention, the light intensity integral value for each color obtained by receiving the multicolor spectrum light obtained by superimposing the light emitted from the plurality of light sources by the pixels of the plurality of colors, respectively. By matching the ratio to the ratio of the integrated amount of light for each color obtained by receiving the continuous spectrum light having at least a part of the wavelength band of the light emitted from the white light source with the pixels of the plurality of colors, the multicolor spectrum light Even when the light is used as illumination light, the observation object can be observed in substantially the same manner as when continuous spectrum light is used as illumination light.

内視鏡システムの外観図である。It is an external view of an endoscope system. 内視鏡システムの機能を示すブロック図である。It is a block diagram which shows the function of an endoscope system. 多色スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of multicolor spectrum light. キセノンランプが発する連続スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the continuous spectrum light which a xenon lamp emits. カラーフィルタの分光スペクトルを示すグラフである。It is a graph which shows the spectrum of a color filter. V光、B光、G光、及びR光とキセノンランプが発する連続スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the continuous spectrum light which V light, B light, G light, and R light and a xenon lamp emit. 第1多色スペクトル光のV光とB光のバランスを示すグラフである。It is a graph which shows the balance of V light and B light of 1st multicolor spectrum light. 食道の反射率を示すグラフである。It is a graph which shows the reflectance of an esophagus. V光、B光、G光、及びR光の戻り光を示すグラフである。It is a graph which shows the return light of V light, B light, G light, and R light. キセノンランプの連続スペクトル光の戻り光を示すグラフである。It is a graph which shows the return light of the continuous spectrum light of a xenon lamp. 食道の反射率を考慮した第1多色スペクトル光を示すグラフである。It is a graph which shows the 1st multicolor spectrum light which considered the reflectance of the esophagus. 食道、胃、及び大腸の反射率を示すグラフである。It is a graph which shows the reflectance of an esophagus, a stomach, and a large intestine. 観察対象の種類に対応して第1多色スペクトル光を形成する各色光の光量比を変える内視鏡システムのブロック図である。It is a block diagram of the endoscope system which changes the light quantity ratio of each color light which forms the 1st multicolor spectrum light corresponding to the kind of observation object. 補色系カラーフィルタの分光スペクトルを示すグラフである。It is a graph which shows the spectrum of a complementary color system color filter. 補色系カラーフィルタの総合感度を示すグラフである。It is a graph which shows the total sensitivity of a complementary color system color filter. 補色系カラー撮像センサ用の第1多色スペクトル光を示すグラフである。It is a graph which shows the 1st multicolor spectrum light for complementary color type color image sensors. 第2多色スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the 2nd multicolor spectrum light. 内視鏡の機種によって第1多色スペクトル光と第2多色スペクトル光を切り替える内視鏡システムのブロック図である。It is a block diagram of the endoscope system which switches 1st multicolor spectrum light and 2nd multicolor spectrum light with the model of an endoscope. 内視鏡の機種によって第1多色スペクトル光と第2多色スペクトル光を切り替える内視鏡システムのブロック図である。It is a block diagram of the endoscope system which switches 1st multicolor spectrum light and 2nd multicolor spectrum light with the model of an endoscope. 半導体光源の経時劣化を示すグラフである。It is a graph which shows deterioration with time of a semiconductor light source. 半導体光源の経時劣化に対応した第1多色スペクトル光を発光する内視鏡システムのブロック図である。It is a block diagram of the endoscope system which emits the 1st multicolor spectrum light corresponding to deterioration over time of a semiconductor light source. 半導体光源が経時劣化した場合の第1多色スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the 1st multicolor spectrum light when a semiconductor light source deteriorates with time. 最も経時劣化した光源に合わせて光量を調節した第1多色スペクトル光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of the 1st multicolor spectrum light which adjusted the light quantity according to the light source which deteriorated most with time. 検証部を有する内視鏡システムのブロック図である。It is a block diagram of the endoscope system which has a verification part. 検証部を有する内視鏡システムのブロック図である。It is a block diagram of the endoscope system which has a verification part. 帯域制限部を設けた内視鏡システムのブロック図である。It is a block diagram of an endoscope system provided with a band limiting unit. カプセル内視鏡の概略図である。It is the schematic of a capsule endoscope.

[第1実施形態]
図1に示すように、内視鏡システム10は、内視鏡12と、内視鏡光源装置14と、プロセッサ装置16と、モニタ18と、コンソール19とを有する。内視鏡12は内視鏡光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作によって、先端部12dが所望の方向に向けられる。また、操作部12bには、アングルノブ12eの他、ズーム操作部13等が設けられている。
[First Embodiment]
As shown in FIG. 1, the endoscope system 10 includes an endoscope 12, an endoscope light source device 14, a processor device 16, a monitor 18, and a console 19. The endoscope 12 is optically connected to the endoscope light source device 14 and electrically connected to the processor device 16. The endoscope 12 includes an insertion portion 12a to be inserted into a subject, an operation portion 12b provided at a proximal end portion of the insertion portion 12a, a bending portion 12c and a distal end portion provided at the distal end side of the insertion portion 12a. 12d. By operating the angle knob 12e of the operation unit 12b, the bending unit 12c performs a bending operation. By this bending operation, the distal end portion 12d is directed in a desired direction. In addition to the angle knob 12e, the operation unit 12b is provided with a zoom operation unit 13 and the like.

プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、各観察モードの画像や画像に付帯する画像情報等を出力表示する。コンソール19は、機能設定等の入力操作を受け付けるユーザインタフェースとして機能する。なお、プロセッサ装置16には、画像や画像情報等を記録する外付けの記録部(図示省略)を接続してもよい。   The processor device 16 is electrically connected to the monitor 18 and the console 19. The monitor 18 outputs and displays images in each observation mode and image information attached to the images. The console 19 functions as a user interface that receives input operations such as function settings. The processor device 16 may be connected to an external recording unit (not shown) for recording images, image information, and the like.

図2に示すように、内視鏡光源装置14は、観察対象に照射する照明光を発生する装置であり、複数の光源を有する光源部20と、光源部20の各光源を制御する光源制御部22と、光源部20が発する光の光路を結合する光路結合部23とを備えている。   As shown in FIG. 2, the endoscope light source device 14 is a device that generates illumination light that irradiates an observation target, and includes a light source unit 20 having a plurality of light sources and a light source control that controls each light source of the light source unit 20. Unit 22 and an optical path coupling unit 23 for coupling optical paths of light emitted from the light source unit 20.

光源部20は、紫色LED(以下、V−LED(Violet Light Emitting Diode)という)20a、青色LED(以下、B−LED(Blue Light Emitting Diode)という)20b、緑色LED(以下、G−LED(Green Light Emitting Diode)という)20c、及び、赤色LED(以下、R−LED(Red Light Emitting Diode)という)20dの4色のLEDを有する。   The light source unit 20 includes a purple LED (hereinafter referred to as V-LED (Violet Light Emitting Diode)) 20a, a blue LED (hereinafter referred to as B-LED (Blue Light Emitting Diode)) 20b, a green LED (hereinafter referred to as G-LED (hereinafter referred to as G-LED)). The LED has four colors, that is, a green light emitting diode (20c) 20c and a red LED (hereinafter referred to as red light emitting diode (R-LED)) 20d.

図3に示すように、V−LED20aは、中心波長405nm、波長帯域380〜420nmの紫色光(以下、V光という)を発光する紫色光源である。B−LED20bは、中心波長450nm、波長帯域420〜490nmの青色光(以下、B光という)を発する青色光源である。G−LED20cは、中心波長が524nm〜525nm、波長帯域が480nm〜590nmの緑色光(以下、G光という)を発する緑色光源である。R−LED20dは、中心波長が628〜629nmであり、波長帯域が580〜700nmの赤色光(以下、R光という)を発光する赤色光源である。なお、これらの各LED20a〜20dの中心波長は±5nmから±10nm程度の幅を有する。   As shown in FIG. 3, the V-LED 20a is a violet light source that emits violet light (hereinafter referred to as V light) having a center wavelength of 405 nm and a wavelength band of 380 to 420 nm. The B-LED 20b is a blue light source that emits blue light (hereinafter referred to as B light) having a center wavelength of 450 nm and a wavelength band of 420 to 490 nm. The G-LED 20c is a green light source that emits green light (hereinafter referred to as G light) having a center wavelength of 524 nm to 525 nm and a wavelength band of 480 nm to 590 nm. The R-LED 20d is a red light source that emits red light (hereinafter referred to as R light) having a center wavelength of 628 to 629 nm and a wavelength band of 580 to 700 nm. The center wavelengths of these LEDs 20a to 20d have a width of about ± 5 nm to ± 10 nm.

光源部20は、これらの互いに異なる色の光を独立して発光する複数の光源によって、V光、B光、G光、及びR光を重ね合わせた多色スペクトルを有する多色スペクトル光を発する。V−LED20aの波長帯域とB−LED20bの波長帯域には重複があり、B−LED20bの波長帯域とG−LED20cの波長帯域にも重複があり、かつ、G−LED20cの波長帯域とR−LED20dの波長帯域にも重複がある。また、各LED20a〜20dの発光量(以下、単に光量という)はそれぞれ独立に制御可能であるため、多色スペクトル光の分光スペクトルは、各LED20a〜20dの光量を変えることによって変化させることができる。本実施形態では、光源部20は、図4に示す従来の内視鏡システムが用いてきたキセノンランプが発する白色光の広帯域な連続スペクトル光26を照明光として用いて観察する場合を模倣する特定のバランスで、V光、B光、G光、及びR光を発光する。このキセノンエミュレートモードで光源部20が発する多色スペクトル光を、以下では第1多色スペクトル光という。図3に示す分光スペクトルを有する多色スペクトル光が、本実施形態の第1多色スペクトル光25であり、第1多色スペクトル光25の分光スペクトルが第1多色スペクトルである。   The light source unit 20 emits multicolor spectrum light having a multicolor spectrum in which V light, B light, G light, and R light are superposed by a plurality of light sources that independently emit light of different colors. . The wavelength band of the V-LED 20a and the wavelength band of the B-LED 20b overlap, the wavelength band of the B-LED 20b and the wavelength band of the G-LED 20c also overlap, and the wavelength band of the G-LED 20c and the R-LED 20d. There are also overlaps in the wavelength bands. Further, since the light emission amounts (hereinafter simply referred to as light amounts) of the LEDs 20a to 20d can be controlled independently, the spectral spectrum of the multicolor spectrum light can be changed by changing the light amounts of the LEDs 20a to 20d. . In the present embodiment, the light source unit 20 imitates a case where observation is performed using the white-band broadband continuous spectrum light 26 emitted from the xenon lamp used in the conventional endoscope system shown in FIG. 4 as illumination light. The V light, the B light, the G light, and the R light are emitted with the balance. The multicolor spectrum light emitted from the light source unit 20 in the xenon emulation mode is hereinafter referred to as a first multicolor spectrum light. The multicolor spectrum light having the spectrum shown in FIG. 3 is the first multicolor spectrum light 25 of the present embodiment, and the spectrum of the first multicolor spectrum light 25 is the first multicolor spectrum.

光源制御部22は、光源部20が有する各LED20a〜20dの駆動電流や駆動電圧、駆動電流または駆動電圧を各LED20a〜20dにパルス入力する際のパルス幅やパルス長等を個別に制御することによって、各LED20a〜20dが発する各光の発光タイミングや光量を制御する。本実施形態では、光源部20から第1多色スペクトル光25を発光する場合、光源制御部22は、各LED20a〜20dを同時に点灯し、かつ、各LED20a〜20dの発光量の比(以下、光量比という)を制御する。そして、光源制御部22は、各LED20a〜20dの光量比を制御することで、第1多色スペクトル光25を撮像センサ48の複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率を、連続スペクトル光26を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致させる。   The light source controller 22 individually controls the pulse width and pulse length when the LEDs 20a to 20d included in the light source unit 20 are pulse-inputted with the LEDs 20a to 20d. Thus, the light emission timing and the amount of light emitted from each LED 20a to 20d are controlled. In the present embodiment, when the first multicolor spectrum light 25 is emitted from the light source unit 20, the light source control unit 22 lights the LEDs 20a to 20d at the same time, and the ratio of the light emission amounts of the LEDs 20a to 20d (hereinafter, Control). Then, the light source control unit 22 controls the light quantity ratio of each of the LEDs 20a to 20d, so that the light quantity integral value for each color obtained by receiving the first multicolor spectrum light 25 by the plurality of color pixels of the image sensor 48, respectively. The ratio is made to coincide with the ratio of the integrated amount of light for each color obtained by receiving the continuous spectrum light 26 with a plurality of color pixels.

光量積分値とは、撮像センサ48が複数色の各画素で光電変換して得る信号電荷の量である。このため、撮像センサ48の機種や設定等によっては、複数色の各画素で異なるゲインをかけて信号電荷の読み出しを行って画像信号を出力するが、光量積分値は撮像センサ48が信号電荷の読み出し時にかけるゲインの値には依存しない。また、光量積分値は、プロセッサ装置16が画像信号に対して行う信号処理の内容にも依存しない。本実施形態では、光量積分値は、光源部20が発する第1多色スペクトル光(あるいはキセノンランプの連続スペクトル光26)の分光スペクトルと、撮像センサ48のカラーフィルタの分光スペクトルの波長毎の積を、カラーフィルタの波長帯域毎に積分して算出する。   The light amount integral value is the amount of signal charge obtained by the image sensor 48 performing photoelectric conversion on each pixel of a plurality of colors. For this reason, depending on the model and setting of the image sensor 48, the signal charge is read out by applying different gains to each pixel of a plurality of colors, and the image signal is output. It does not depend on the value of gain applied at the time of reading. Further, the light quantity integral value does not depend on the content of signal processing performed by the processor device 16 on the image signal. In the present embodiment, the light intensity integral value is a product for each wavelength of the spectrum of the first multicolor spectrum light (or the continuous spectrum light 26 of the xenon lamp) emitted from the light source unit 20 and the spectrum of the color filter of the image sensor 48. Is calculated for each wavelength band of the color filter.

連続スペクトルとは白色光源が発光する光の少なくとも一部の波長帯域を有する光の分光スペクトルであり、連続スペクトル光とは連続スペクトルを有する光である。白色光源とは、1つの光源から可視光域(例えば400nmから700nm)にわたってなだらかな分布の光を出す光源である。より具体的には、白色光源とは、キセノンランプや、ハロゲンランプ、または白色LED等である。また、白色光源が発光する光の少なくとも一部の波長帯域を有する光とは、白色光源が発光する光からカラーフィルタ等によって抽出した光をいう。   The continuous spectrum is a spectral spectrum of light having at least a part of the wavelength band of light emitted from the white light source, and the continuous spectral light is light having a continuous spectrum. A white light source is a light source that emits light with a gentle distribution over a visible light range (for example, 400 nm to 700 nm) from one light source. More specifically, the white light source is a xenon lamp, a halogen lamp, a white LED, or the like. The light having at least a part of the wavelength band of light emitted from the white light source refers to light extracted from the light emitted from the white light source by a color filter or the like.

多色スペクトルとは、複数の光源がそれぞれ発光する光の分光スペクトルを重ね合わせて得る1つの分光スペクトルであり、複数の光源が発光する光を重ね合わせた光が多色スペクトル光である。広帯域とは、光源部20で用いる複数の光源(LED20a〜20d)のうち少なくとも1個の光源が発光する光の波長帯域よりも波長帯域が広いことを表す。キセノンランプの白色光は、LED20aが発光するV光の波長帯域(紫色波長帯域)、LED20bが発光するB光の波長帯域(青色波長帯域)、LED20cが発光するG光の波長帯域(緑色波長帯域)、及び、LED20dが発光するR光の波長帯域(赤色波長帯域)の各波長帯域よりも波長帯域が広く、これら全ての波長帯域(波長350nm以上700nm未満)の各波長の成分を含み、かつ、可視光域にわたってなだらかな分布を有する光である。したがって、キセノンランプが発光する白色光は、広帯域な連続スペクトル光26である。   A multicolor spectrum is one spectral spectrum obtained by superimposing spectral spectra of light emitted from a plurality of light sources, and light obtained by superimposing light emitted from a plurality of light sources is multicolor spectrum light. The broadband indicates that the wavelength band is wider than the wavelength band of light emitted from at least one light source among the plurality of light sources (LEDs 20a to 20d) used in the light source unit 20. The white light of the xenon lamp includes a wavelength band of V light (purple wavelength band) emitted by the LED 20a, a wavelength band of B light (blue wavelength band) emitted by the LED 20b, and a wavelength band (green wavelength band) of G light emitted by the LED 20c. ) And a wavelength band wider than each wavelength band of the wavelength band (red wavelength band) of the R light emitted by the LED 20d, including components of each wavelength in all these wavelength bands (wavelengths 350 nm to less than 700 nm), and The light has a gentle distribution over the visible light range. Therefore, the white light emitted from the xenon lamp is a broadband continuous spectrum light 26.

光源部20が発光する多色スペクトル光(第1多色スペクトル光25)は、光路結合部23を介して挿入部12a内に挿通されたライトガイド41に入射される。ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と内視鏡光源装置14及びプロセッサ装置16とを接続するコード)内に内蔵されており、光路結合部23から導光される照明光を内視鏡12の先端部12dまで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた経がφ0.3〜0.5mmの細径なファイバケーブルを使用することができる。   The multicolor spectrum light (first multicolor spectrum light 25) emitted from the light source unit 20 is incident on the light guide 41 inserted into the insertion unit 12a via the optical path coupling unit 23. The light guide 41 is built in the endoscope 12 and the universal cord (the cord connecting the endoscope 12, the endoscope light source device 14, and the processor device 16), and is guided from the optical path coupling unit 23. The illumination light propagates to the distal end portion 12d of the endoscope 12. A multimode fiber can be used as the light guide 41. As an example, a thin fiber cable having a core diameter of 105 μm, a clad diameter of 125 μm, and a diameter of φ0.3 to 0.5 mm including a protective layer serving as an outer skin can be used.

内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41によって伝搬された照明光は観察対象に照射される。撮像光学系30bは、対物レンズ46、ズームレンズ47、撮像センサ48を有している。観察対象からの戻り光(反射光の他、観察対象等から発生する蛍光を含む光)は、対物レンズ46及びズームレンズ47を介して撮像センサ48に入射する。これにより、撮像センサ48に観察対象が結像される。なお、ズームレンズ47は、ズーム操作部13を操作することで、テレ端とワイド端の間で自在に移動され、撮像センサ48に結像する観察対象を拡大または縮小する。   The distal end portion 12d of the endoscope 12 is provided with an illumination optical system 30a and an imaging optical system 30b. The illumination optical system 30 a has an illumination lens 45, and the illumination light propagated by the light guide 41 is irradiated to the observation object via the illumination lens 45. The imaging optical system 30 b includes an objective lens 46, a zoom lens 47, and an imaging sensor 48. Return light from the observation target (light that includes fluorescent light generated from the observation target in addition to reflected light) enters the image sensor 48 via the objective lens 46 and the zoom lens 47. Thereby, the observation object is imaged on the image sensor 48. The zoom lens 47 is freely moved between the tele end and the wide end by operating the zoom operation unit 13, and enlarges or reduces the observation target imaged on the image sensor 48.

撮像センサ48は、異なる色に感度を有する複数色の画素を有する。すなわち、撮像センサ48には、互いに色(カラーフィルタの分光スペクトル)が異なる画素がある。より具体的には、撮像センサ48は、青、緑、及び赤を含む原色系カラーフィルタを有する原色系カラー撮像センサであり、観察対象からの戻り光を複数色の画素でそれぞれ撮像して各色の画像信号を出力する。撮像センサ48としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。本実施形態では、撮像センサ48は、図5に示す分光スペクトルを有する青色カラーフィルタ(以下、Bフィルタという)、緑色カラーフィルタ(以下、Gフィルタという)、及び赤色カラーフィルタ(以下、Rフィルタという)の3色のカラーフィルタのいずれかが各画素に設けられている。   The imaging sensor 48 has a plurality of color pixels having sensitivity to different colors. That is, the image sensor 48 includes pixels having different colors (color filter spectral spectra). More specifically, the image sensor 48 is a primary color image sensor having primary color filters including blue, green, and red, and images each of the return light from the observation target with pixels of a plurality of colors. The image signal is output. As the image sensor 48, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor can be used. In the present embodiment, the image sensor 48 includes a blue color filter (hereinafter referred to as a B filter), a green color filter (hereinafter referred to as a G filter), and a red color filter (hereinafter referred to as an R filter) having the spectrum shown in FIG. ) Is provided in each pixel.

Bフィルタが設けられたB画素(青色画素)は、観察対象からの戻り光のうちBフィルタを透過する青色光成分を受光し、Gフィルタが設けられたG画素(緑色画素)は、観察対象からの戻り光のうちGフィルタを透過する緑色光成分を受光する。同様に、Rフィルタが設けられたR画素(赤色画素)は、観察対象からの戻り光のうちRカラーフィルタを透過する赤色光成分を受光する。したがって、光源部20が第1多色スペクトル光25を発光する場合、B画素は第1多色スペクトル光25のうち、V光とB光の各戻り光を受光し、B画像信号(青色画像信号)を出力する。同様に、光源部20が第1多色スペクトル光25を発光する場合、G画素はG光の戻り光を受光してG画像信号(緑色画像信号)を出力し、かつ、R画素はR光の戻り光を受光してR画像信号(赤色画像信号)を出力する。   The B pixel (blue pixel) provided with the B filter receives the blue light component transmitted through the B filter among the return light from the observation target, and the G pixel (green pixel) provided with the G filter is the observation target. The green light component which permeate | transmits G filter among the return lights from is received. Similarly, the R pixel (red pixel) provided with the R filter receives the red light component that passes through the R color filter in the return light from the observation target. Therefore, when the light source unit 20 emits the first multicolor spectrum light 25, the B pixel receives each return light of the V light and the B light in the first multicolor spectrum light 25, and receives the B image signal (blue image). Signal). Similarly, when the light source unit 20 emits the first multicolor spectrum light 25, the G pixel receives the return light of the G light and outputs a G image signal (green image signal), and the R pixel emits the R light. And the R image signal (red image signal) is output.

撮像センサ48が出力する各色の画像信号は、CDS/AGC回路50に送信される。CDS/AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS;Correlated Double Sampling)や自動利得制御(AGC;Automatic Gain Control)を行う。CDS/AGC回路50を経た画像信号は、A/Dコンバータ51により、デジタル画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置16に入力される。   Each color image signal output from the image sensor 48 is transmitted to the CDS / AGC circuit 50. The CDS / AGC circuit 50 performs correlated double sampling (CDS) and automatic gain control (AGC) on an image signal that is an analog signal. The image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by the A / D converter 51. The digital image signal after A / D conversion is input to the processor device 16.

プロセッサ装置16は、受信部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像生成部62と、映像信号生成部66とを備えている。   The processor device 16 includes a receiving unit 53, a DSP (Digital Signal Processor) 56, a noise removing unit 58, an image generating unit 62, and a video signal generating unit 66.

受信部53は、内視鏡12からデジタルのRGB画像信号を受信する。DSP56は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、及びデモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施されたRGB画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後のRGB画像信号に特定のゲインを乗じることにより信号レベルが整えられる。ゲイン補正処理後のRGB画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。リニアマトリクス処理後のRGB画像信号には、デモザイク処理(等方化処理、同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。   The receiving unit 53 receives a digital RGB image signal from the endoscope 12. The DSP 56 performs various signal processing such as defect correction processing, offset processing, gain correction processing, linear matrix processing, gamma conversion processing, and demosaicing processing on the received image signal. In the defect correction process, the signal of the defective pixel of the image sensor 48 is corrected. In the offset process, the dark current component is removed from the RGB image signal subjected to the defect correction process, and an accurate zero level is set. In the gain correction process, the signal level is adjusted by multiplying the RGB image signal after the offset process by a specific gain. The RGB image signal after the gain correction process is subjected to a linear matrix process for improving color reproducibility. After that, brightness and saturation are adjusted by gamma conversion processing. The RGB image signal after the linear matrix processing is subjected to demosaic processing (also referred to as isotropic processing or synchronization processing), and a signal of a color lacking in each pixel is generated by interpolation. By this demosaic processing, all the pixels have RGB signals.

ノイズ除去部58は、DSP56でデモザイク処理等が施されたRGB画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等による)を施すことによって、RGB画像信号からノイズを除去する。ノイズが除去されたRGB画像信号は、画像生成部62に送信される。   The noise removal unit 58 removes noise from the RGB image signal by performing noise removal processing (for example, using a moving average method or a median filter method) on the RGB image signal that has been demosaiced by the DSP 56. The RGB image signal from which noise has been removed is transmitted to the image generation unit 62.

画像生成部62は、RGB画像信号に対して、色変換処理、色彩強調処理、及び構造強調処理を行い、画像(以下、内視鏡画像という)を生成する。色変換処理では、RGB画像信号に対して3×3のマトリックス処理、階調変換処理、及び3次元LUT(ルックアップテーブル)処理などにより色変換処理を行う。色彩強調処理は、色変換処理済みのRGB画像信号に対して行われる。構造強調処理は、例えば表層血管やピットパターン等の観察対象の構造を強調する処理であり、色彩強調処理後のRGB画像信号に対して行われる。上記のように、構造強調処理まで各種画像処理等を施したRGB画像信号を用いたカラー画像が内視鏡画像である。映像信号生成部66は、画像生成部62が生成した内視鏡画像をモニタ18で表示可能な画像として表示するための映像信号に変換する。この映像信号を用いて、モニタ18は内視鏡画像を表示する。   The image generation unit 62 performs color conversion processing, color enhancement processing, and structure enhancement processing on the RGB image signal to generate an image (hereinafter referred to as an endoscopic image). In color conversion processing, color conversion processing is performed on RGB image signals by 3 × 3 matrix processing, gradation conversion processing, three-dimensional LUT (look-up table) processing, and the like. The color enhancement process is performed on the RGB image signal that has been subjected to the color conversion process. The structure enhancement process is a process for enhancing the structure of the observation target such as a surface blood vessel or a pit pattern, and is performed on the RGB image signal after the color enhancement process. As described above, a color image using an RGB image signal subjected to various types of image processing up to the structure enhancement processing is an endoscopic image. The video signal generation unit 66 converts the endoscopic image generated by the image generation unit 62 into a video signal for display as an image that can be displayed on the monitor 18. Using this video signal, the monitor 18 displays an endoscopic image.

以下、本実施形態の内視鏡システム10がキセノンエミュレートモードの照明光として使用する第1多色スペクトル光25の特性と、第1多色スペクトル光25を形成するV光、B光、G光、及びR光の光量比の求め方を説明する。   Hereinafter, the characteristics of the first multicolor spectrum light 25 used as illumination light in the xenon emulation mode by the endoscope system 10 of the present embodiment, and the V light, B light, and G that form the first multicolor spectrum light 25 are described. A method of obtaining the light amount ratio of light and R light will be described.

まず、光源制御部22は、V光、B光、G光、及びR光の光量比を任意に変更することができるが、これらの各色光の光量比を調節するだけでは、図6に示すようにキセノンランプの連続スペクトル光26の分光スペクトルを再現することはできない。例えば、V光及びB光の光量を連続スペクトル光26に一致させても、これらの中間の波長帯域(約420nm〜430nmの波長帯域)の光量は連続スペクトル光26の光量には及ばない。逆に、V光とB光の中間の波長帯域の光量を連続スペクトル光26の光量に一致させると、V光及びB光の中心波長の光量は連続スペクトル光26の光量を大幅に超過する。   First, the light source control unit 22 can arbitrarily change the light amount ratio of the V light, B light, G light, and R light, but only adjusting the light amount ratio of these color lights is shown in FIG. Thus, the spectral spectrum of the continuous spectrum light 26 of the xenon lamp cannot be reproduced. For example, even if the light amounts of the V light and B light are made to coincide with the continuous spectrum light 26, the light amount in the intermediate wavelength band (wavelength band of about 420 nm to 430 nm) does not reach the light amount of the continuous spectrum light 26. On the contrary, if the light quantity in the intermediate wavelength band between the V light and the B light is matched with the light quantity of the continuous spectrum light 26, the light quantity of the center wavelength of the V light and the B light greatly exceeds the light quantity of the continuous spectrum light 26.

したがって、光源制御部22は、各色のLED20a〜20dでキセノンランプの連続スペクトル光26を再現する代わりに、第1多色スペクトル光25をB画素で受光して得る光量積分値、G画素で受光して得る光量積分値、及びR画素で受光して得る光量積分値の比率が、キセノンランプの連続スペクトル光26をB画素で受光して得る光量積分値、G画素で受光して得る光量積分値、及びR画素で受光して得る光量積分値の比率にほぼ一致するように、V光、B光、G光、及びR光の光量比を調節する。こうすると、第1多色スペクトル光25とキセノンランプの連続スペクトル光26の分光スペクトルが異なっていたとしても、結果として、撮像センサ48で観察対象を撮像して得る画像信号が等しくなるので、モニタ18に表示する内視鏡画像も実質的に同じものである。すなわち、分光スペクトルを一致させなくても、観察対象の見え方がキセノンランプを用いた場合と同じ内視鏡画像が得られる。   Therefore, instead of reproducing the continuous spectrum light 26 of the xenon lamp by the LEDs 20a to 20d of each color, the light source control unit 22 receives the first multicolor spectrum light 25 by receiving the first multicolor spectrum light 25 by the B pixel, and receiving it by the G pixel. The ratio of the integrated quantity of light obtained by the above and the integrated quantity of light obtained by receiving the light at the R pixel are the integrated quantity of light obtained by receiving the continuous spectrum light 26 of the xenon lamp at the B pixel, and integrated by the light received by the G pixel. The light amount ratio of the V light, the B light, the G light, and the R light is adjusted so as to substantially match the value and the ratio of the light amount integrated value received by the R pixel. In this way, even if the spectral spectra of the first multicolor spectrum light 25 and the continuous spectrum light 26 of the xenon lamp are different, as a result, the image signals obtained by imaging the observation object with the image sensor 48 become equal. The endoscopic image displayed on 18 is substantially the same. That is, even if the spectral spectra are not matched, the same endoscopic image as that obtained when the xenon lamp is used as the observation target can be obtained.

第1多色スペクトル光25を形成するV光をB画素、G画素、及びR画素で受光して得る光量積分値をそれぞれVb、Vg、及びVrとする。同様に、第1多色スペクトル光25を形成するB光をB画素、G画素、及びR画素で受光して得る光量積分値をそれぞれBb、Bg、及びBrとし、第1多色スペクトル光25を形成するG光をB画素、G画素、及びR画素で受光して得る光量積分値をそれぞれGb、Gg、及びGrとし、第1多色スペクトル光25を形成するR光をB画素、G画素、及びR画素で受光して得る光量積分値をそれぞれRb、Rg、及びRrとする。   The light amount integral values obtained by receiving the V light forming the first multicolor spectrum light 25 by the B pixel, the G pixel, and the R pixel are Vb, Vg, and Vr, respectively. Similarly, the light intensity integral values obtained by receiving the B light forming the first multicolor spectrum light 25 by the B pixel, G pixel, and R pixel are Bb, Bg, and Br, respectively, and the first multicolor spectrum light 25 is obtained. Gb, Gg, and Gr are obtained as Gb, Gg, and Gr, respectively, and G light that forms the first multicolor spectrum light 25 is received by the B pixel, G pixel, and R pixel. Assume that Rb, Rg, and Rr are integrated light quantities obtained by receiving light at the pixel and the R pixel, respectively.

V光をB画素で受光して得る光量積分値Vbは、例えば最大値(中心波長の光量)を「1」に規格化したV光の分光スペクトル(図6参照)とBカラーフィルタの分光スペクトル(図5参照)の波長毎の積を積分することにより求められる。V光の分光スペクトル及びBカラーフィルタの分光スペクトルは既知なので、V光をB画素で受光して得る光量積分値Vbは既知量である。他の光量積分値Vg、Vr、Bb、Bg、Br、Rb、Rg、及びRrも同様である。   The light intensity integrated value Vb obtained by receiving the V light by the B pixel is, for example, the spectrum of the V light (see FIG. 6) with the maximum value (the light quantity of the center wavelength) normalized to “1” and the spectrum of the B color filter. It is obtained by integrating the product of each wavelength (see FIG. 5). Since the spectral spectrum of the V light and the spectral spectrum of the B color filter are known, the light amount integrated value Vb obtained by receiving the V light by the B pixel is a known amount. The same applies to the other light intensity integrated values Vg, Vr, Bb, Bg, Br, Rb, Rg, and Rr.

また、キセノンランプの連続スペクトル光26をB画素で受光して得る光量積分値をXbとし、キセノンランプの連続スペクトル光26をG画素で受光して得る光量積分値をXgとし、かつ、キセノンランプの連続スペクトル光26をR画素で受光して得る光量積分値をXrとする。連続スペクトル光26をB画素で受光して得る光量積分値Xbは、例えば最大値を「1」に規格化したキセノンランプの連続スペクトル光26(図4または図6参照)とBカラーフィルタの分光スペクトル(図5参照)の波長毎の積を積分することにより求められる。連続スペクトル光26の分光スペクトル及びBカラーフィルタの分光スペクトルは既知なので、連続スペクトル光26をB画素で受光して得る光量積分値Xbは既知量である。他の光量積分値Xg及びXrも同様である。   Further, the integrated light amount obtained by receiving the Xenon lamp continuous spectrum light 26 by the B pixel is Xb, the integrated light amount obtained by receiving the Xenon lamp continuous spectrum light 26 by the G pixel is Xg, and the xenon lamp. The integrated amount of light obtained by receiving the continuous spectrum light 26 by the R pixel is Xr. The integrated light amount Xb obtained by receiving the continuous spectrum light 26 by the B pixel is, for example, the continuous spectrum light 26 (see FIG. 4 or FIG. 6) of a xenon lamp whose maximum value is normalized to “1” and the spectrum of the B color filter. It is obtained by integrating the product for each wavelength of the spectrum (see FIG. 5). Since the spectral spectrum of the continuous spectral light 26 and the spectral spectrum of the B color filter are known, the light amount integrated value Xb obtained by receiving the continuous spectral light 26 with the B pixel is a known amount. The same applies to the other light quantity integration values Xg and Xr.

そして、第1多色スペクトル光25を形成するV光、B光、G光、及びR光の光量比をV光:B光:G光:R光=Cv:Cb:Cg:Crとする。これらCv、Cb、Cg、Crの値は変数であり、第1多色スペクトル光25をB画素で受光して得る光量積分値、G画素で受光して得る光量積分値、及びR画素で受光して得る光量積分値の比率が、キセノンランプの連続スペクトル光26をB画素で受光して得る光量積分値、G画素で受光して得る光量積分値、及びR画素で受光して得る光量積分値の比率に一致するように決定する。   And let the light quantity ratio of V light, B light, G light, and R light which form the 1st multicolor spectrum light 25 be V light: B light: G light: R light = Cv: Cb: Cg: Cr. The values of Cv, Cb, Cg, and Cr are variables, and the light intensity integrated value obtained by receiving the first multicolor spectrum light 25 by the B pixel, the light intensity integrated value obtained by receiving the light by the G pixel, and the light received by the R pixel. The ratio of the integral amount of light obtained is the integral amount of light obtained by receiving the continuous spectrum light 26 of the xenon lamp by the B pixel, the integral amount of light obtained by receiving the light by the G pixel, and the integral of light amount obtained by receiving the light by the R pixel. Decide to match the ratio of values.

すなわち、第1多色スペクトル光25を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crは、数1を満たすように決定すればよいが、方程式の数よりも変数の数の方が多いので、このままではV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを一意に定めることができない。   That is, the light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light forming the first multicolor spectrum light 25 may be determined so as to satisfy Equation 1, Since the number of variables is larger than the number, the light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light cannot be uniquely determined as it is.

Figure 0006602939
Figure 0006602939

そこで、本実施形態ではまずB画素で受光するV光とB光の光量比(V光:B光=Kv:Kb)を決定する。具体的には、B画素で受光する波長帯域を、V光の第1波長帯域(波長380nm以上430nm未満)とB光の第2波長帯域(波長430nm以上480nm未満)の2つの波長帯域に区切る。そして、第1多色スペクトル光25の第1波長帯域の光量積分値と、キセノンランプの連続スペクトル光26の第1波長帯域の光量積分値が一致し、かつ、第1多色スペクトル光25の第2波長帯域の光量積分値と、キセノンランプの連続スペクトル光26の第2波長帯域の光量積分値を一致するように、V光とB光の光量比Kv:Kbを決定する。   Therefore, in this embodiment, first, the light quantity ratio between the V light and the B light received by the B pixel (V light: B light = Kv: Kb) is determined. Specifically, the wavelength band received by the B pixel is divided into two wavelength bands, a first wavelength band for V light (wavelength 380 nm to less than 430 nm) and a second wavelength band for B light (wavelength 430 nm to less than 480 nm). . Then, the light intensity integral value of the first wavelength band of the first multicolor spectrum light 25 matches the light intensity integral value of the first wavelength band of the continuous spectrum light 26 of the xenon lamp, and the first multicolor spectrum light 25 The light quantity ratio Kv: Kb of the V light and the B light is determined so that the light quantity integral value of the second wavelength band matches the light quantity integral value of the second wavelength band of the continuous spectrum light 26 of the xenon lamp.

V光の第1及び第2波長帯域の各光量積分値をVb1及びVb2とし、B光の第1及び第2波長帯域の各光量積分値をBb1及びBb2とする。また、連続スペクトル光26の第1及び第2波長帯域の各光量積分値をXb1、Xb2とする。V光の第1波長帯域の光量積分値Vb1は、V光の分光スペクトルとBカラーフィルタの分光スペクトルの積を第1波長帯域で積分することで算出する。V光の分光スペクトルとBカラーフィルタの分光スペクトルは既知なので、V光の第1波長帯域の光量積分値Vb1は既知量である。他の光量積分値Vb2、Bb1、Bb2、Xb1、Xb2も同様である。   The respective light amount integral values of the first and second wavelength bands of the V light are denoted as Vb1 and Vb2, and the light amount integral values of the first and second wavelength bands of the B light are denoted as Bb1 and Bb2. Further, the respective light amount integral values of the first and second wavelength bands of the continuous spectrum light 26 are assumed to be Xb1 and Xb2. The light amount integral value Vb1 of the first wavelength band of the V light is calculated by integrating the product of the spectrum of the V light and the spectrum of the B color filter in the first wavelength band. Since the spectral spectrum of the V light and the spectral spectrum of the B color filter are known, the light amount integrated value Vb1 of the first wavelength band of the V light is a known amount. The same applies to the other light intensity integrated values Vb2, Bb1, Bb2, Xb1, and Xb2.

したがって、V光とB光の光量比Kv:Kbは、数2によって算出できる。本実施形態では、図7に示すように、Kv:Kb≒0.53:1(≒0.35:0.65)である。   Therefore, the light quantity ratio Kv: Kb between the V light and the B light can be calculated by the equation (2). In this embodiment, as shown in FIG. 7, Kv: Kb≈0.53: 1 (≈0.35: 0.65).

Figure 0006602939
Figure 0006602939

第1多色スペクトル光25を形成するV光とB光の光量比Kv:Kbが定まれば、この光量比で合成したV光とB光の合成光を擬似的に青色光(以下、B2光という)として扱うことができる(図7参照)。   If the light quantity ratio Kv: Kb of the V light and the B light forming the first multicolor spectrum light 25 is determined, the combined light of the V light and the B light synthesized at this light quantity ratio is pseudo blue light (hereinafter referred to as B2). (Referred to as light) (see FIG. 7).

このため、B2光をB画素で受光して得る光量積分値をB2b、B2光をG画素で受光して得る光量積分値をB2g、B2光をR画素で受光して得る光量積分値をB2rとし、第1多色スペクトル光25を形成するB2光、G光、及びR光の光量比をPb2:Pg:Prとすると、数3によってB2光、G光、及びR光の光量比Pb2:Pg:Prを算出することができる。本実施形態では、Pb2:Pg:Pr=1:1.64:1.65(≒0.24:0.36:0.40)である。   Therefore, the integrated light amount obtained by receiving the B2 light at the B pixel is B2b, the integrated light amount obtained by receiving the B2 light at the G pixel is B2g, and the integrated light amount obtained by receiving the B2 light at the R pixel is B2r. Assuming that the light quantity ratio of the B2 light, G light, and R light forming the first multicolor spectrum light 25 is Pb2: Pg: Pr, the light quantity ratio of B2 light, G light, and R light according to Equation 3 is Pb2: Pg: Pr can be calculated. In the present embodiment, Pb2: Pg: Pr = 1: 1.64: 1.65 (≈0.24: 0.36: 0.40).

Figure 0006602939
Figure 0006602939

こうして第1多色スペクトル光25を形成するV光とB光の光量比Kv:Kbと、B2光、G光、及びR光の光量比Pb2:Pg:Prが定まれば、これらを用いて第1多色スペクトル光25を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを算出することができる。本実施形態では、Cv:Cb:Cg:Cr=Kv/Kb:1:Pg/Pb2:Pr/Pb2=0.53:1:1.64:1.65(≒0.11:0.22:0.32:0.36)である。   If the light quantity ratio Kv: Kb of the V light and the B light and the light quantity ratio Pb2: Pg: Pr of the B2 light, the G light, and the R light forming the first multicolor spectrum light 25 are thus determined, these are used. The light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light forming the first multicolor spectrum light 25 can be calculated. In this embodiment, Cv: Cb: Cg: Cr = Kv / Kb: 1: Pg / Pb2: Pr / Pb2 = 0.53: 1: 1.64: 1.65 (≈0.11: 0.22: 0.32: 0.36).

上記光量比Cv:Cb:Cg:CrでV光、B光、G光、及びR光を合成した多色スペクトル光が第1多色スペクトル光25である(図3参照)。内視鏡システム10は、V光、B光、G光、及びR光の光量比を上記光量比Cv:Cb:Cg:Crにした第1多色スペクトル光25を用いることで、第1多色スペクトル光25を撮像センサ48の複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、キセノンランプの連続スペクトル光26を撮像センサ48の複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致する。   The first multicolor spectrum light 25 is a multicolor spectrum light obtained by synthesizing V light, B light, G light, and R light with the light quantity ratio Cv: Cb: Cg: Cr (see FIG. 3). The endoscope system 10 uses the first multicolor spectrum light 25 in which the light amount ratios of the V light, B light, G light, and R light are the above light amount ratios Cv: Cb: Cg: Cr. The ratio of the light intensity integral value for each color obtained by receiving the color spectrum light 25 by the pixels of the plurality of colors of the imaging sensor 48 is received by the pixels of the plurality of colors of the imaging sensor 48 of the continuous spectrum light 26 of the xenon lamp. It corresponds to the ratio of the integrated light quantity for each color to be obtained.

具体的には、数1からも分かるように、例えば、第1多色スペクトル光25を用いた場合のG画素での光量積分値(CvVg+CbBg+CgGg+CrRg)に対するB画素での光量積分値(CvVb+CbBb+CgGb+CrRb)の比率(CvVb+CbBb+CgGb+CrRb)/(CvVg+CbBg+CgGg+CrRg)が、キセノンランプの連続スペクトル光26を用いる場合のG画素での光量積分値Xgに対するB画素での光量積分値Xbの比率Xb/Xgに一致する。かつ、第1多色スペクトル光25を用いた場合のG画素での光量積分値(CvVg+CbBg+CgGg+CrRg)に対するR画素での光量積分値(CvVr+CbBr+CgGr+CrRr)の比率(CvVr+CbBr+CgGr+CrRr)/(CvVg+CbBg+CgGg+CrRg)は、キセノンランプの連続スペクトル光26を用いる場合のG画素での光量積分値Xgに対するR画素での光量積分値Xrの比率Xr/Xgに一致する。   Specifically, as can be seen from Equation 1, for example, the ratio of the light amount integrated value (CvVb + CbBb + CgGb + CrRb) at the B pixel to the light amount integrated value (CvVg + CbBg + CgGg + CrRg) at the G pixel when the first multicolor spectrum light 25 is used. (CvVb + CbBb + CgGb + CrRb) / (CvVg + CbBg + CgGg + CrRg) coincides with the ratio Xb / Xg of the light amount integrated value Xb in the B pixel to the light amount integrated value Xg in the G pixel when the continuous spectrum light 26 of the xenon lamp is used. In addition, when the first multicolor spectrum light 25 is used, the ratio (CvVr + CbBr + CgGr + CrRg) + (CvGg + gRg) + (CvGg + gRg) of the light intensity integrated value (CvVr + CbBr + CgGr + CrRr) at the R pixel to the light intensity integrated value (CvVg + CbBg + CgGg + CrRg) at the G pixel. This corresponds to the ratio Xr / Xg of the light amount integrated value Xr at the R pixel to the light amount integrated value Xg at the G pixel when using the spectrum light 26.

すなわち、第1多色スペクトル光25を用いれば、撮像センサ48から得られる画像信号の色毎のバランスがキセノンランプの連続スペクトル光26を用いた場合とほぼ同じになる。このため、内視鏡システム10は、観察対象の見え方をキセノンランプの連続スペクトル光26を用いた場合とほぼ同じになる。また、DSP56で行う各種信号処理や、ノイズ除去部58で行うノイズ除去処理、画像生成部62で行う各種画像処理等で用いるゲインやマトリクスを再計算する必要もなく、従来と同じゲインやマトリクスを使用できるので、ノイズもキセノンランプの連続スペクトル光26を用いる場合とほぼ同じになる。   In other words, if the first multicolor spectrum light 25 is used, the balance for each color of the image signal obtained from the image sensor 48 is almost the same as when the xenon lamp continuous spectrum light 26 is used. For this reason, the endoscope system 10 has almost the same appearance as the observation target when using the continuous spectrum light 26 of the xenon lamp. Further, there is no need to recalculate gains and matrices used in various signal processing performed by the DSP 56, noise removal processing performed by the noise removal unit 58, various image processing performed by the image generation unit 62, and the like. Since it can be used, the noise is almost the same as when using the continuous spectrum light 26 of a xenon lamp.

したがって、本実施形態のように撮像センサ48が、青色(第1色)に感度を有するB画素(第1色画素)と、緑色(第2色)に感度を有するG画素(第2色画素)と、赤色(第3色)に感度を有するR画素(第3色画素)と、を有する場合、光源制御部22は、V光、B光、G光、及びR光を上記光量比Cv:Cb:Cg:Crで発光させることにより、B画素で得る青色の光量積分値とG画素で得る第2色の光量積分値との比率を、第1多色スペクトル光25を用いる場合と連続スペクトル光26を用いる場合とで一致させ、かつ、R画素で得る赤色の光量積分値と緑色の光量積分値との比率を、第1多色スペクトル光25を用いる場合と連続スペクトル光26を用いる場合とで一致させる。   Therefore, as in the present embodiment, the imaging sensor 48 includes a B pixel (first color pixel) having sensitivity to blue (first color) and a G pixel (second color pixel) having sensitivity to green (second color). ) And R pixels (third color pixels) having sensitivity to red (third color), the light source control unit 22 converts the V light, B light, G light, and R light into the light amount ratio Cv. When the first multicolor spectrum light 25 is used, the ratio between the blue light amount integrated value obtained at the B pixel and the second color light amount integrated value obtained at the G pixel by emitting light with: Cb: Cg: Cr is continuous. The spectral light 26 is matched with the case where the spectral light 26 is used, and the ratio of the red light amount integrated value and the green light amount integrated value obtained by the R pixel is set to be the same as when the first multicolor spectral light 25 is used. Match with the case.

第1多色スペクトル光25は、キセノンランプの連続スペクトル光26と比較すると、一部の波長帯域(V光とB光の中間の波長帯域等)の波長成分が少ないが、いわゆる表層血管やピットパターン等の粘膜の表層付近の構造の情報や、中深層血管等の粘膜下の中深層の構造に関する情報は、第1多色スペクトル光25を形成する各色光が十分に担持している。したがって、内視鏡システム10では、第1多色スペクトル光25を用いることで、こうした表層血管等の見え方も含めて観察対象の見え方をキセノンランプの連続スペクトル光26を用いた場合とほぼ一致する。逆に言えば、キセノンランプの連続スペクトル光26のうち、V光とB光の中間の波長帯域等の光は、内視鏡画像を明るくするが、第1多色スペクトル光25を形成する各色光と比較すると、表層血管や中深層血管等の観察対象の構造の見え方への寄与が少ない。このため、内視鏡観察には、第1多色スペクトル光25で不足はない。   Compared with the continuous spectrum light 26 of the xenon lamp, the first multicolor spectrum light 25 has a small wavelength component in a part of the wavelength band (such as an intermediate wavelength band between the V light and the B light). Information on the structure in the vicinity of the surface layer of the mucous membrane such as a pattern and information on the structure in the middle and deep layers under the mucous membrane such as the middle and deep layer blood vessels are sufficiently carried by each color light forming the first multicolor spectrum light 25. Therefore, in the endoscope system 10, by using the first multicolor spectrum light 25, the appearance of the observation object including the appearance of the surface blood vessels and the like is almost the same as when the continuous spectrum light 26 of the xenon lamp is used. Match. In other words, among the continuous spectrum light 26 of the xenon lamp, light in a wavelength band intermediate between the V light and the B light brightens the endoscopic image, but each color forming the first multicolor spectrum light 25. Compared to light, there is little contribution to the appearance of the structure of the observation target, such as surface blood vessels and middle-deep blood vessels. For this reason, there is no shortage of the first multicolor spectrum light 25 for endoscopic observation.

なお、第1多色スペクトル光25を撮像センサ48の複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率は、連続スペクトル光26を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に対して少なくとも5%〜10%程度の誤差を許容できる。視覚が色差の違いに比較的鈍感であることもあり、誤差が上記程度であれば、観察対象の見え方はキセノンランプの連続スペクトル光26を用いた場合とほぼ同じになるので、各比率はほぼ一致していると見做せる。したがって、本明細書等で言う、第1多色スペクトル光25を撮像センサ48の複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率と、連続スペクトル光26を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率の「一致」には、上記のような誤差を含んだ「ほぼ一致」も含む。   In addition, the ratio of the light intensity integral value for each color obtained by receiving the first multicolor spectrum light 25 by the plurality of color pixels of the image sensor 48 is the color obtained by receiving the continuous spectrum light 26 by the plurality of color pixels, respectively. An error of at least about 5% to 10% can be allowed with respect to the ratio of the integrated amount of light for each. The visual sense may be relatively insensitive to the difference in color difference. If the error is in the above range, the appearance of the observation object is almost the same as when the continuous spectrum light 26 of the xenon lamp is used. It can be considered that they are almost the same. Therefore, the ratio of the integrated amount of light for each color obtained by receiving the first multicolor spectrum light 25 by the pixels of the plurality of colors of the image sensor 48 and the continuous spectrum light 26 of the pixels of the plurality of colors, as referred to in this specification and the like. The “match” of the ratios of the light intensity integral values for the respective colors received by each includes “almost match” including the error as described above.

[第2実施形態]
内視鏡システム10の観察対象は例えば食道であり、食道の反射率は、図8に示すように波長毎に異なる。このため、図9に示すように、V光、B光、G光、及びR光の各最大値を「1」に規格化した多色スペクトル光201を用いる場合でも、食道からの戻り光202は食道の反射率を反映して変化する。同様に、図10に示すように、キセノンランプの連続スペクトル光26を用いる場合でも、食道からの戻り光203は食道の反射率を反映して元の連続スペクトル光26から変化する。なお、食道の反射率には、食道からの反射光の光量の他に、食道の粘膜等を形成する組織から発生する蛍光の光量も含まれている。このため、戻り光202は多色スペクトル光201の反射光の他、多色スペクトル光201を照射したことによって食道から発生する蛍光も含む。戻り光203も同様である。
[Second Embodiment]
The observation target of the endoscope system 10 is, for example, the esophagus, and the reflectance of the esophagus is different for each wavelength as shown in FIG. For this reason, as shown in FIG. 9, even when using multicolor spectrum light 201 in which the maximum values of V light, B light, G light, and R light are normalized to “1”, the return light 202 from the esophagus is used. Changes to reflect the reflectance of the esophagus. Similarly, as shown in FIG. 10, even when the continuous spectrum light 26 of the xenon lamp is used, the return light 203 from the esophagus changes from the original continuous spectrum light 26 reflecting the reflectance of the esophagus. The reflectance of the esophagus includes not only the amount of reflected light from the esophagus but also the amount of fluorescence generated from tissue forming the mucous membrane of the esophagus. For this reason, the return light 202 includes not only the reflected light of the multicolor spectrum light 201 but also the fluorescence generated from the esophagus when irradiated with the multicolor spectrum light 201. The same applies to the return light 203.

上記のように、食道からの戻り光202及び戻り光203は、食道の反射率を反映して変化するので、第2実施形態では、光源制御部22は、食道に照射した多色スペクトル光201の戻り光202を撮像センサ48の複数色の画素で受光して得る色毎の光量積分値の比率が、食道に照射したキセノンランプの連続スペクトル光26を撮像センサ48の複数の画素で受光して得る色毎の光量積分値の比率に一致するように、V光、B光、G光、及びR光の光量比を制御する。   As described above, since the return light 202 and the return light 203 from the esophagus change to reflect the reflectance of the esophagus, in the second embodiment, the light source control unit 22 uses the multicolor spectrum light 201 irradiated to the esophagus. The ratio of the light intensity integral value for each color obtained by receiving the return light 202 of the image sensor 48 with the pixels of the plurality of colors is received by the pixels of the image sensor 48 with the continuous spectrum light 26 of the xenon lamp irradiated to the esophagus. The light amount ratio of the V light, the B light, the G light, and the R light is controlled so as to coincide with the ratio of the light amount integrated value for each color obtained.

このように、食道からの戻り光を撮像センサ48の複数色の画素で受光して得る色毎の光量積分値を、キセノンランプの連続スペクトル光26を撮像センサ48の複数の画素で受光して得る色毎の光量積分値の比率に一致させた多色スペクトル光が、図11に示す第1多色スペクトル光225である。グラフ226は、第1多色スペクトル光225の食道からの戻り光である。   As described above, the integrated light amount for each color obtained by receiving the return light from the esophagus with the pixels of the plurality of colors of the image sensor 48, and the continuous spectrum light 26 of the xenon lamp is received by the pixels of the image sensor 48. The multicolor spectrum light matched with the ratio of the obtained light quantity integral value for each color is the first multicolor spectrum light 225 shown in FIG. The graph 226 is the return light from the esophagus of the first multicolor spectrum light 225.

数1〜数3で用いる各光量積分値の算出する際に、V光、B光、G光、R光、及び連続スペクトル光26の代わりに戻り光202及び戻り光203のデータを用いれば、第1実施形態と同様にして、第1多色スペクトル光225を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを算出することができる。具体的には、第1多色スペクトル光225の場合、Cv:Cb:Cg:Cr=0.53:1:1.36:1.33(≒0.13:0.24:0.32:0.32)である。なお、第1多色スペクトル光225の場合、Kv:Kb=1.05:1.98(≒0.35:0.65)であり、Pb2:Pg:Pr=2.02:2.75:2.69(=0.27:0.37:0.36)である。   When calculating each light amount integral value used in Equations 1 to 3, if the data of the return light 202 and the return light 203 is used instead of the V light, the B light, the G light, the R light, and the continuous spectrum light 26, Similarly to the first embodiment, the light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light forming the first multicolor spectrum light 225 can be calculated. Specifically, in the case of the first multicolor spectrum light 225, Cv: Cb: Cg: Cr = 0.53: 1: 1.36: 1.33 (≈0.13: 0.24: 0.32: 0.32). In the case of the first multicolor spectrum light 225, Kv: Kb = 1.05: 1.98 (≈0.35: 0.65), and Pb2: Pg: Pr = 2.02: 2.75: 2.69 (= 0.27: 0.37: 0.36).

第2実施形態のように、特定の観察対象の性状を加味してV光、B光、G光、及びR光の光量比を設定した第1多色スペクトル光225を用いれば、特定の観察対象の見え方が、キセノンの連続スペクトル光26を用いる場合と特に正確に一致する。   As in the second embodiment, when the first multicolor spectrum light 225 in which the light quantity ratio of the V light, the B light, the G light, and the R light is set in consideration of the properties of a specific observation target, the specific observation is used. The appearance of the object matches with the case of using the xenon continuous spectrum light 26 particularly accurately.

なお、観察対象の反射率は、観察対象の種類(部位)によって異なる。例えば、食道の他、胃や大腸等も内視鏡システム10の観察対象であるが、図12に示すように、食道と胃と大腸とでは各波長の反射率は異なる。したがって、食道の反射率を考慮した第1多色スペクトル光225を形成するV光、B光、G光、及びR光の光量比と、胃の反射率を考慮した第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比とは異なる。同様に、大腸の反射率を考慮した第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比も、食道や胃の場合とは異なる。このため、食道や胃や大腸等の観察対象の種類に合わせて第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比を適切に制御することが好ましい。   Note that the reflectance of the observation target varies depending on the type (part) of the observation target. For example, in addition to the esophagus, the stomach, the large intestine, and the like are objects to be observed by the endoscope system 10, but as shown in FIG. 12, the reflectance of each wavelength is different in the esophagus, the stomach, and the large intestine. Therefore, the light quantity ratio of the V light, the B light, the G light, and the R light forming the first multicolor spectrum light 225 considering the reflectance of the esophagus and the first multicolor spectrum light considering the reflectance of the stomach. It differs from the light quantity ratio of the V light, B light, G light and R light to be formed. Similarly, the light quantity ratios of V light, B light, G light, and R light forming the first multicolor spectrum light considering the reflectance of the large intestine are also different from those of the esophagus and stomach. For this reason, it is preferable to appropriately control the light quantity ratio of the V light, B light, G light, and R light that form the first multicolor spectrum light according to the type of observation target such as the esophagus, stomach, or large intestine.

この場合、図13に示す内視鏡システム240のように、観察対象の種類毎に、複数のV光、B光、G光、及びR光の光量比を記憶する光量比記憶部241を設ける。光量比記憶部241には、例えば、食道用光量比251と胃用光量比252と大腸用光量比253を予め記憶しておく。そして、キセノンランプを模倣する第1多色スペクトル光を用いる場合、光源制御部22は、光量比記憶部241が記憶する複数の光量比のなかから、観察対象の種類に応じた光量比を選択し、V光、B光、G光、及びR光の光量比を選択した光量比に制御する。観察対象が胃の場合、光源制御部22は光量比記憶部241から胃用光量比252を選択し、V光、B光、G光、及びR光の光量比を選択した胃用光量比252に制御する。こうすれば、観察対象の種類に合わせた第1多色スペクトル光を発光することができる。   In this case, as in the endoscope system 240 shown in FIG. 13, a light amount ratio storage unit 241 that stores a light amount ratio of a plurality of V light, B light, G light, and R light is provided for each type of observation target. . In the light quantity ratio storage unit 241, for example, an esophageal light quantity ratio 251, a stomach light quantity ratio 252 and a large intestine light quantity ratio 253 are stored in advance. And when using the 1st multicolor spectrum light imitating a xenon lamp, the light source control part 22 selects the light quantity ratio according to the kind of observation object from the several light quantity ratios which the light quantity ratio memory | storage part 241 memorize | stores. Then, the light amount ratio of the V light, the B light, the G light, and the R light is controlled to the selected light amount ratio. When the observation target is the stomach, the light source control unit 22 selects the gastric light quantity ratio 252 from the light quantity ratio storage unit 241 and selects the light quantity ratio 252 for the V light, B light, G light, and R light. To control. If it carries out like this, the 1st multicolor spectrum light match | combined with the kind of observation object can be light-emitted.

なお、内視鏡システム240では、光量比記憶部241を内視鏡光源装置14に設けているが、光量比記憶部241は、プロセッサ装置16に設けてもよく、内視鏡12に設けても良い。すなわち、光源制御部22が観察対象の種類に合わせて適切な光量比を選択することができれば、光量比記憶部241を設けておく場所は任意である。   In the endoscope system 240, the light quantity ratio storage unit 241 is provided in the endoscope light source device 14. However, the light quantity ratio storage unit 241 may be provided in the processor device 16 or provided in the endoscope 12. Also good. That is, as long as the light source control unit 22 can select an appropriate light amount ratio according to the type of observation target, the place where the light amount ratio storage unit 241 is provided is arbitrary.

[第3実施形態]
上記第1実施形態及び第2実施形態では、原色系カラーフィルタを有する撮像センサ48を用いているが、内視鏡システム10及び240は、原色系の撮像センサ48の代わりに、補色系カラーフィルタを有する補色系カラー撮像センサを用いることもできる。補色系カラーフィルタは、シアンカラーフィルタ(Cy)、マゼンタカラーフィルタ(Mg)、及びイエローカラーフィルタ(Ye)を含む。本実施形態では、図14に示すように、補色系カラーフィルタは、例えば、Cy、Mg、及びYeに加え、グリーンカラーフィルタ(G)を備える。すなわち、本実施形態では、撮像センサ48は、シアン画素(以下、Cy画素という)、マゼンタ画素(以下、Mg画素という)、イエロー画素(以下、Ye画素という)、及びグリーン画素(以下、G画素という)を有する。
[Third Embodiment]
In the first embodiment and the second embodiment, the imaging sensor 48 having a primary color filter is used. However, the endoscope systems 10 and 240 use a complementary color filter in place of the primary color image sensor 48. It is also possible to use a complementary color imaging sensor having The complementary color filter includes a cyan color filter (Cy), a magenta color filter (Mg), and a yellow color filter (Ye). In this embodiment, as shown in FIG. 14, the complementary color filter includes, for example, a green color filter (G) in addition to Cy, Mg, and Ye. That is, in the present embodiment, the imaging sensor 48 includes a cyan pixel (hereinafter referred to as Cy pixel), a magenta pixel (hereinafter referred to as Mg pixel), a yellow pixel (hereinafter referred to as Ye pixel), and a green pixel (hereinafter referred to as G pixel). Have).

撮像センサ48に補色系カラー撮像センサを用いる場合、観察対象の見え方をキセノンランプの連続スペクトル光26を用いる場合とほぼ等しくする第1多色スペクトル光は、第1及び第2実施形態の第1多色スペクトル光25及び225とはV光、B光、G光、及びR光の光量比が異なる。このため、これらの代わりに補色系カラー撮像センサ用のV光、B光、G光、及びR光の光量比を用いる必要がある。   When a complementary color imaging sensor is used as the imaging sensor 48, the first multicolor spectrum light that makes the appearance of the observation object substantially the same as the case where the continuous spectrum light 26 of the xenon lamp is used is the first and second embodiments of the first and second embodiments. The light quantity ratio of V light, B light, G light, and R light is different from the 1 multicolor spectrum light 25 and 225. For this reason, it is necessary to use the light quantity ratio of the V light, the B light, the G light, and the R light for the complementary color image sensor instead of these.

補色系カラー撮像センサ用の第1多色スペクトル光を形成するV光をCy画素、Mg画素、Ye画素、及びG画素で受光して得る光量積分値をそれぞれVcy、Vmg、Vye、及びVgとする。同様に、補色系カラー撮像センサ用の第1多色スペクトル光を形成するB光をCy画素、Mg画素、Ye画素、及びG画素で受光して得る光量積分値をそれぞれBcy、Bmg、Bye、及びBgとし、補色系カラー撮像センサ用の第1多色スペクトル光を形成するG光をCy画素、Mg画素、Ye画素、及びG画素で受光して得る光量積分値をそれぞれGcy、Gmg、Gye、及びGgとし、補色系カラー撮像センサ用の第1多色スペクトル光を形成するR光をCy画素、Mg画素、Ye画素、及びG画素で受光して得る光量積分値をそれぞれRcy、Rmg、Rye、及びRgとする。これらが既知量であることは第1及び第2実施形態と同様である。   The light intensity integral values obtained by receiving the V light forming the first multicolor spectrum light for the complementary color imaging sensor by the Cy pixel, Mg pixel, Ye pixel, and G pixel are Vcy, Vmg, Vye, and Vg, respectively. To do. Similarly, the light intensity integral values obtained by receiving the B light forming the first multicolor spectrum light for the complementary color imaging sensor with the Cy pixel, Mg pixel, Ye pixel, and G pixel are respectively Bcy, Bmg, Bye, And Bg, and the light quantity integral values obtained by receiving the G light forming the first multicolor spectrum light for the complementary color imaging sensor with the Cy pixel, the Mg pixel, the Ye pixel, and the G pixel are Gcy, Gmg, and Gye, respectively. , Gg, and Rcy, Rmg, Rmg, Rmg, and Rcy, Rmg, respectively, obtained by receiving the R light forming the first multicolor spectrum light for the complementary color imaging sensor by the Cy pixel, Mg pixel, Ye pixel, and G pixel. Let Rye and Rg. The fact that these are known amounts is the same as in the first and second embodiments.

また、キセノンランプの連続スペクトル光26をCy画素で受光して得る光量積分値をXcyとし、キセノンランプの連続スペクトル光26をMg画素で受光して得る光量積分値をXmgとし、キセノンランプの連続スペクトル光26をYe画素で受光して得る光量積分値をXyeとし、かつ、キセノンランプの連続スペクトル光26をG画素で受光して得る光量積分値をXgとする。これらが既知量であることは第1及び第2実施形態と同様である。   Also, the integrated light quantity obtained by receiving the continuous spectrum light 26 of the xenon lamp with the Cy pixel is Xcy, the integrated light quantity obtained by receiving the continuous spectrum light 26 of the xenon lamp with the Mg pixel is Xmg, and the xenon lamp continuous The integrated light quantity obtained by receiving the spectral light 26 with the Ye pixel is Xye, and the integrated light quantity obtained by receiving the continuous spectral light 26 of the xenon lamp with the G pixel is Xg. The fact that these are known amounts is the same as in the first and second embodiments.

そして、補色系カラー撮像センサ用の第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比は、第1及び第2実施形態と同様に、V光:B光:G光:R光=Cv:Cb:Cg:Crとする。これらCv、Cb、Cg、Crの値は変数であり、補色系カラー撮像センサ用の第1多色スペクトル光を補色系の各画素で受光して得る光量積分値の比率が、キセノンランプの連続スペクトル光26を補色系の各画素で受光して得る光量積分値の比率に一致するように決定する。すなわち、補色系カラー撮像センサ用の第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crは、数4を満たすように決定すればよい。数4は、方程式の数と変数の数が等しいので、これを解いてV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを求めることができる。   And the light quantity ratio of V light, B light, G light, and R light which forms the 1st multicolor spectrum light for complementary color type color image sensors is V light: B similarly to 1st and 2nd embodiment. Light: G light: R light = Cv: Cb: Cg: Cr. These values of Cv, Cb, Cg, and Cr are variables, and the ratio of the integrated light amount obtained by receiving the first multicolor spectrum light for the complementary color imaging sensor by each pixel of the complementary color system is the continuous value of the xenon lamp. The spectral light 26 is determined so as to coincide with the ratio of the integrated amount of light obtained by receiving each of the complementary color system pixels. That is, the light quantity ratios Cv: Cb: Cg: Cr of the V light, B light, G light, and R light that form the first multicolor spectrum light for the complementary color imaging sensor are determined so as to satisfy Equation 4. That's fine. In Equation 4, since the number of equations is equal to the number of variables, the light quantity ratio Cv: Cb: Cg: Cr of V light, B light, G light, and R light can be obtained by solving this.

Figure 0006602939
Figure 0006602939

あるいは、以下に説明する算出方法によっても、補色系カラー撮像センサ用の第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを算出することができる。   Alternatively, the light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light forming the first multicolor spectrum light for the complementary color imaging sensor is also obtained by the calculation method described below. Can be calculated.

この場合、図15に示すように、Cy、Mg、Ye、及びGの各カラーフィルタの感度を波長毎に合算し、補色系カラー撮像センサの総合感度Sumを求め、補色系カラー撮像センサが総合感度Sumのカラーフィルタを有する1つの画素(以下、S画素という)とみなす。   In this case, as shown in FIG. 15, the sensitivities of the color filters Cy, Mg, Ye, and G are added for each wavelength to obtain the total sensitivity Sum of the complementary color image sensor, and the complementary color image sensor is integrated. It is regarded as one pixel (hereinafter referred to as S pixel) having a color filter with sensitivity Sum.

次いで、波長帯域を、V光の第1波長帯域(波長380nm以上430nm未満)と、B光の第2波長帯域(波長430nm以上480nm未満)と、G光の第3波長帯域(波長480nm以上580nm未満)と、R光の第4波長帯域(波長580nm以上700nm未満)と、に区切り、補色系カラー撮像センサ用の第1多色スペクトル光を形成するV光をS画素で受光して得る光量積分値のうち、第1〜第4波長帯域の光量積分値をそれぞれVS1、VS2、VS3、及びVS4とする。   Next, the wavelength band includes the first wavelength band of V light (wavelength of 380 nm to less than 430 nm), the second wavelength band of B light (wavelength of 430 nm to less than 480 nm), and the third wavelength band of G light (wavelength of 480 nm to 580 nm). And the fourth wavelength band of R light (wavelength 580 nm or more and less than 700 nm), and the amount of light obtained by receiving the V light forming the first multicolor spectrum light for the complementary color imaging sensor with the S pixel Among the integrated values, the integrated light amount values in the first to fourth wavelength bands are VS1, VS2, VS3, and VS4, respectively.

同様に、補色系カラー撮像センサ用の第1多色スペクトル光を形成するB光をS画素で受光して得る光量積分値のうち、第1〜第4波長帯域の光量積分値をそれぞれBS1、BS2、BS3、及びBS4とし、補色系カラー撮像センサ用の第1多色スペクトル光を形成するG光をS画素で受光して得る光量積分値のうち、第1〜第4波長帯域の光量積分値をそれぞれGS1、GS2、GS3、及びGS4とし、かつ、補色系カラー撮像センサ用の第1多色スペクトル光を形成するR光をS画素で受光して得る光量積分値のうち、第1〜第4波長帯域の光量積分値をそれぞれRS1、RS2、RS3、及びRS4とする。また、キセノンランプの連続スペクトル光26をS画素で受光して得る光量積分値のうち、第1〜第4波長帯域の光量積分値をそれぞれXS1、XS2、XS3、及びXS4とする。   Similarly, among the light amount integral values obtained by receiving the B light forming the first multicolor spectrum light for the complementary color imaging sensor with the S pixel, the light amount integral values of the first to fourth wavelength bands are respectively BS1, Among the light amount integration values obtained by receiving the G light forming the first multicolor spectrum light for the complementary color image sensor with the S pixel as BS2, BS3, and BS4, the light amount integration in the first to fourth wavelength bands. Among the light intensity integral values obtained by receiving the R light forming the first multicolor spectrum light for the complementary color imaging sensor with the S pixel, the values being GS1, GS2, GS3, and GS4, respectively. Assume that the integrated light quantity values in the fourth wavelength band are RS1, RS2, RS3, and RS4, respectively. In addition, among the light amount integral values obtained by receiving the continuous spectrum light 26 of the xenon lamp by the S pixel, the light amount integral values in the first to fourth wavelength bands are respectively XS1, XS2, XS3, and XS4.

光量積分値VS1は、V光の分光スペクトルと総合感度Sumの波長毎の積を第1波長帯域の範囲で積分することで算出する。他の光量積分値VS2、VS3、VS4、BS1、BS2、BS3、BS4、GS1、GS2、GS3、GS4、RS1、RS2、RS3、RS4、XS1、XS2、XS3、及びXS4も同様である。   The light quantity integration value VS1 is calculated by integrating the product of the spectral spectrum of the V light and the total sensitivity Sum for each wavelength in the range of the first wavelength band. The same applies to the other light intensity integrated values VS2, VS3, VS4, BS1, BS2, BS3, BS4, GS1, GS2, GS3, GS4, RS1, RS2, RS3, RS4, XS1, XS2, XS3, and XS4.

そして、数4の代わりに、数5によって、補色系カラー撮像センサ用の第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを算出する。本実施形態で用いる図14の補色系カラーフィルタを有する補色系カラー撮像センサの場合、数5によって求めた光量比はCv:Cb:Cg:Cr≒0.12:0.23:0.27:0.39である。図16に示す多色スペクトル光は、数5によって求めた光量比のV光、B光、G光、及びR光で形成する補色系カラー撮像センサ用の第1多色スペクトル光325である。   Then, instead of Equation 4, the light quantity ratio Cv: Cb: Cg: Cr of V light, B light, G light, and R light forming the first multicolor spectrum light for the complementary color imaging sensor is obtained by Equation 5. Is calculated. In the case of the complementary color imaging sensor having the complementary color filter of FIG. 14 used in this embodiment, the light quantity ratio obtained by Equation 5 is Cv: Cb: Cg: Cr≈0.12: 0.23: 0.27: 0.39. The multicolor spectrum light shown in FIG. 16 is the first multicolor spectrum light 325 for the complementary color system color image sensor formed by the V light, B light, G light, and R light having the light quantity ratio obtained by Equation 5.

Figure 0006602939
Figure 0006602939

補色系カラー撮像センサ用の第1多色スペクトル光325を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crの数5による算出方法は、複数の波長帯域(第1〜第4波長帯)で、第1多色スペクトル光を補色系カラー撮像センサの複数色の画素でそれぞれ受光して得る色毎の光量積分値の合計値を、キセノンランプの連続スペクトル光26を補色系カラー撮像センサの複数色の画素でそれぞれ受光して得る色毎の光量積分値の合計値と一致させる算出方法である。数5の算出方法は、数4の算出方法に比べて、色毎の光量積分値の比率に誤差が発生するが、その代わりに、確実にCv>0、Cb>0、Cg>0、かつCr>0を満たす範囲内でCv、Cb、Cg、及びCrを決定できる利点がある。第1多色スペクトル光325を補色系カラー撮像センサの複数の画素で受光して得る色毎の光量積分値の比率は、キセノンランプの連続スペクトル光26を補色系カラー撮像センサの複数の画素で受光して得る色毎の光量積分値の比率と実質的に一致し、これらの誤差は例えば数%程度である。   The light quantity ratio Cv: Cb: Cg: Cr of the V light, B light, G light, and R light forming the first multicolor spectrum light 325 for the complementary color imaging sensor 325 has a plurality of wavelengths. In the band (first to fourth wavelength bands), the total value of the integrated light quantity for each color obtained by receiving the first multicolor spectrum light by the plurality of color pixels of the complementary color imaging sensor is obtained as a continuation of the xenon lamp. This is a calculation method in which the spectral light 26 is received by each of a plurality of color pixels of the complementary color image sensor to match the total value of the integrated light amount for each color. Compared with the calculation method of Equation 4, the calculation method of Equation 5 causes an error in the ratio of the light amount integral value for each color, but instead, Cv> 0, Cb> 0, Cg> 0, and There is an advantage that Cv, Cb, Cg, and Cr can be determined within a range satisfying Cr> 0. The ratio of the light intensity integral value for each color obtained by receiving the first multicolor spectrum light 325 by the plurality of pixels of the complementary color imaging sensor is the ratio of the continuous spectrum light 26 of the xenon lamp by the plurality of pixels of the complementary color imaging sensor. It substantially coincides with the ratio of the integrated amount of light for each color obtained by receiving light, and these errors are about several percent, for example.

したがって、本実施形態のように、撮像センサ48が、シアン(第1色)に感度を有するCy画素(第1色画素)と、マゼンタ(第3色)に感度を有するMg画素(第3色画素)と、イエロー(第4色)に感度を有するYe画素(第4色画素)と、グリーン(第2色)に感度を有するG画素(第2色画素)を有する場合、光源制御部22は、V光、B光、G光、及びR光を上記光量比Cv:Cb:Cg:Crで発光させることにより、Cy画素で得るシアンの光量積分値とG画素で得るグリーンの光量積分値との比率を、第1多色スペクトル光25を用いる場合と連続スペクトル光26を用いる場合とで一致させ、Mg画素で得るマゼンタの光量積分値とグリーンの光量積分値との比率を、第1多色スペクトル光25を用いる場合と連続スペクトル光26を用いる場合とで一致させ、かつ、Ye画素で得るイエローの光量積分値とグリーンの光量積分値との比率を、第1多色スペクトル光25を用いる場合と連続スペクトル光26を用いる場合とで一致させる。   Therefore, as in the present embodiment, the imaging sensor 48 includes a Cy pixel (first color pixel) having sensitivity to cyan (first color) and an Mg pixel (third color) having sensitivity to magenta (third color). Pixel), a Ye pixel (fourth color pixel) having sensitivity to yellow (fourth color), and a G pixel (second color pixel) having sensitivity to green (second color), the light source control unit 22 Is a light intensity integral value of cyan obtained by Cy pixels and a light quantity integral value of green obtained by G pixels by emitting V light, B light, G light and R light at the light quantity ratio Cv: Cb: Cg: Cr. And the case where the first multicolor spectrum light 25 is used and the case where the continuous spectrum light 26 is used, and the ratio between the magenta light quantity integral value obtained by the Mg pixel and the green light quantity integral value is set to the first When using multicolor spectrum light 25 and continuous spectrum And the case where the first multicolor spectrum light 25 is used and the continuous spectrum light 26 is used. Match with the case.

上記第3実施形態の数5による光量比の算出方法は、撮像センサ48に原色系カラー撮像センサを用いる場合にも応用可能である。原色系カラー撮像センサのなかには、B画素、G画素、及びR画素に加え、エメラルド色カラーフィルタを有するE画素を有するセンサや、カラーフィルタが設けられていない白画素(W画素)を有するセンサもある。これらの原色系カラー撮像センサを用いる場合には、数4の光量比の算出方法よりも数5の光量比の算出方法の方が好適な場合がある。   The method for calculating the light amount ratio according to Equation 5 in the third embodiment can also be applied to the case where a primary color imaging sensor is used as the imaging sensor 48. Among primary color imaging sensors, in addition to B pixels, G pixels, and R pixels, there are sensors having E pixels having emerald color filters, and sensors having white pixels (W pixels) that are not provided with color filters. is there. When these primary color imaging sensors are used, the light quantity ratio calculation method of Formula 5 may be preferable to the calculation method of Light quantity ratio of Formula 4.

なお、上記第3実施形態のように撮像センサ48に補色系カラー撮像センサを用いる場合も、第2実施形態と同様に観察対象を加味して第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを制御することが好ましい。   Even when a complementary color imaging sensor is used as the imaging sensor 48 as in the third embodiment, V light and B that form the first multicolor spectrum light in consideration of the observation object as in the second embodiment. It is preferable to control the light quantity ratio Cv: Cb: Cg: Cr of light, G light, and R light.

第1実施形態の数2や、第3実施形態の数5に示す通り、第1多色スペクトル光のうち複数色の光源が発光する波長帯域の光を1つの画素で受光する場合、1つの画素が受光する光の波長帯域毎(すなわち各光源が発光する光の波長帯域毎)に、光量積分値を、キセノンランプの連続スペクトル光26を受光して得る光量積分値に一致させると、第1多色スペクトル光を形成するV光、B光、G光、及びR光の光量比Cv:Cb:Cg:Crを適切に決定することができる。この方法は、光源の色数が画素の色数よりも多い場合に特に効果的である(第1実施形態の数2参照)。   As shown in Equation 2 of the first embodiment and Equation 5 of the third embodiment, when light of a wavelength band emitted from a plurality of color light sources is received by one pixel among the first multicolor spectrum light, one pixel is received. For each wavelength band of light received by the pixel (that is, for each wavelength band of light emitted by each light source), the light intensity integrated value is matched with the light intensity integrated value obtained by receiving the continuous spectrum light 26 of the xenon lamp. The light quantity ratio Cv: Cb: Cg: Cr of V light, B light, G light, and R light forming one multicolor spectrum light can be appropriately determined. This method is particularly effective when the number of colors of the light source is larger than the number of colors of the pixels (see the number 2 in the first embodiment).

[第4実施形態]
上記第1〜第3実施形態では、光源制御部22は、光源部20の各LED20a〜20dによって、キセノンランプの連続スペクトル光26を用いる場合を模倣する第1多色スペクトル光25、225、及び325を発生させているが、光源制御部22は、光源部20の各LED20a〜20dによって、第1多色スペクトル光25、225、及び325と切り替えて、第1多色スペクトル光25及びキセノンランプの連続スペクトル光26とは異なる第2多色スペクトルを有する第2多色スペクトル光を発生させるようにしても良い。
[Fourth Embodiment]
In the first to third embodiments, the light source control unit 22 uses the LEDs 20a to 20d of the light source unit 20 to mimic the case where the xenon lamp continuous spectrum light 26 is used, and the first multicolor spectrum light 25 and 225, and 325 is generated, but the light source control unit 22 switches the first multicolor spectrum light 25, 225, and 325 with the LEDs 20a to 20d of the light source unit 20, and the first multicolor spectrum light 25 and the xenon lamp. The second multicolor spectrum light having the second multicolor spectrum different from the continuous spectrum light 26 may be generated.

第2多色スペクトル光は、従来のキセノンランプを用いた内視鏡システムにはない固有の分光スペクトルを有する照明光である。例えば、光源制御部22は、図17に示すように、V光またはB光の少なくともいずれか一方(本実施形態ではV光)の光量を第1多色スペクトル光25よりも大きくする。すなわち、第2多色スペクトル光401をB画素で受光して得る光量積分値を、第1多色スペクトル光25をB画素で受光して得る光量積分値よりも大きくする。また、本実施形態では、第1多色スペクトル光25に対して、第2多色スペクトル光401を形成するV光の光量だけを変化させているが、さらに、第2多色スペクトル光401は、G画素で受光して得る光量積分値を、第1多色スペクトル光25をG画素で受光して得る光量積分値よりも小さくすることが好ましい。   The second multicolor spectrum light is illumination light having a unique spectral spectrum not found in an endoscope system using a conventional xenon lamp. For example, as shown in FIG. 17, the light source control unit 22 makes the light quantity of at least one of V light and B light (V light in this embodiment) larger than the first multicolor spectrum light 25. That is, the light amount integral value obtained by receiving the second multicolor spectrum light 401 by the B pixel is made larger than the light amount integral value obtained by receiving the first multicolor spectrum light 25 by the B pixel. In the present embodiment, only the amount of the V light that forms the second multicolor spectrum light 401 is changed with respect to the first multicolor spectrum light 25, but the second multicolor spectrum light 401 is further changed. It is preferable that the integrated light amount obtained by receiving light with the G pixel is smaller than the integrated light amount obtained by receiving the first multicolor spectrum light 25 with the G pixel.

上記第2多色スペクトル光401を用いて観察対象を観察すれば、粘膜表層にある血管やピットパターン等を、キセノンランプの連続スペクトル光26を用いる場合よりも明瞭に観察することができる。このため、第1多色スペクトル光25と第2多色スペクトル光401と切り替え可能にしておけば、上記のような多色スペクトル光を用いる場合の特有の利点をも享受できる。   If the observation target is observed using the second multicolor spectrum light 401, blood vessels, pit patterns, and the like on the mucous membrane surface layer can be observed more clearly than when the continuous spectrum light 26 of the xenon lamp is used. For this reason, if the first multicolor spectrum light 25 and the second multicolor spectrum light 401 can be switched, the unique advantages of using the above multicolor spectrum light can also be enjoyed.

第1多色スペクトル光25と第2多色スペクトル光401との切り替えは、内視鏡12の操作部12bに設けた観察モード切り替えスイッチ(図示しない)等を用いて、任意に切り替えられるようにすることができるが、特に、内視鏡システム10で用いる内視鏡12の機種に応じて自動的に第1多色スペクトル光25と第2多色スペクトル光401とを切り替えることが好ましい。   Switching between the first multicolor spectrum light 25 and the second multicolor spectrum light 401 can be arbitrarily switched using an observation mode switch (not shown) provided in the operation unit 12b of the endoscope 12. However, it is particularly preferable to automatically switch between the first multicolor spectrum light 25 and the second multicolor spectrum light 401 according to the model of the endoscope 12 used in the endoscope system 10.

このように、内視鏡12の機種によって第1多色スペクトル光25と第2多色スペクトル光401を自動的に切り替える場合、図18に示す内視鏡システム410のように、内視鏡12には機種を示すID(Identification Data)を記憶するID記憶部411を設け、内視鏡光源装置14には、内視鏡機種検出部412を設ける。内視鏡機種検出部412は、内視鏡12が内視鏡光源装置14に接続された場合に、ID記憶部411から内視鏡12のIDを読み出すことによって、接続された内視鏡12の機種を検出し、検出結果を光源制御部22に入力する。そして、光源制御部22は、内視鏡機種検出部412によって検出された内視鏡12の機種によって、光源部20で発生させる照明光を第1多色スペクトル光25と第2多色スペクトル光401とで切り替える。より具体的には、光源制御部22は、内視鏡12の機種が、キセノンランプの連続スペクトル光を用いる従来の内視鏡システムで使用する機種である場合は、光源部20で発生させる照明光を第1多色スペクトル光25に自動設定し、かつ、内視鏡12の機種が上記以外の機種である場合(多色スペクトル光を用いる内視鏡システムでだけ用いられる機種の場合等)には、光源部20で発生させる照明光を第2多色スペクトル光401に自動設定することが好ましい。   As described above, when the first multicolor spectrum light 25 and the second multicolor spectrum light 401 are automatically switched depending on the model of the endoscope 12, the endoscope 12 is similar to the endoscope system 410 shown in FIG. Is provided with an ID storage unit 411 for storing ID (Identification Data) indicating a model, and the endoscope light source device 14 is provided with an endoscope model detection unit 412. The endoscope model detecting unit 412 reads the ID of the endoscope 12 from the ID storage unit 411 when the endoscope 12 is connected to the endoscope light source device 14, thereby connecting the connected endoscope 12. And the detection result is input to the light source control unit 22. Then, the light source control unit 22 uses the first multicolor spectrum light 25 and the second multicolor spectrum light as the illumination light generated by the light source unit 20 according to the model of the endoscope 12 detected by the endoscope model detection unit 412. Switch with 401. More specifically, the light source control unit 22 illuminates the light source unit 20 when the model of the endoscope 12 is a model used in a conventional endoscope system that uses continuous spectrum light of a xenon lamp. When the light is automatically set to the first multicolor spectrum light 25 and the endoscope 12 is a model other than the above (such as a model used only in an endoscope system using multicolor spectrum light). For this, it is preferable to automatically set the illumination light generated by the light source unit 20 to the second multicolor spectrum light 401.

キセノンランプを用いる従来の内視鏡システムで使用する内視鏡を接続する場合、医師は使い慣れた従来の内視鏡システムと同様に観察対象を観察できることを望むことが多く、多色スペクトル光を照明光として使用する内視鏡システムでだけ用いる内視鏡を接続する場合は、医師は多色スペクトル光の利点を活かした観察を望むことが多い。このため、上記のように、内視鏡12の機種によって照明光を第1多色スペクトル光25と第2多色スペクトル光401とで自動的に切り替えると、操作や設定等をせずに、ニーズに合った内視鏡画像を自動的に提供することができる。もちろん、初期設定を上記のように内視鏡12の機種に応じて自動設定し、その後は、医師の判断で手動切り替えられるようにすることがさらに好ましい。   When connecting an endoscope to be used in a conventional endoscope system using a xenon lamp, doctors often desire to be able to observe an observation object in the same manner as a conventional endoscope system that is familiar to users. When an endoscope used only in an endoscope system used as illumination light is connected, a doctor often desires observation using the advantages of multicolor spectrum light. Therefore, as described above, when the illumination light is automatically switched between the first multicolor spectrum light 25 and the second multicolor spectrum light 401 depending on the model of the endoscope 12, without operation or setting, etc. Endoscopic images that meet your needs can be provided automatically. Of course, it is more preferable that the initial setting is automatically set according to the model of the endoscope 12 as described above, and thereafter, manual switching can be performed based on the judgment of the doctor.

図18の内視鏡システム410では、内視鏡光源装置14が内視鏡機種検出部412によって内視鏡12の接続を検知し、かつ、内視鏡12からIDを読み出して内視鏡12の機種を検出しているが、図19に示す内視鏡システム420のように、プロセッサ装置16にID読取部413を設け、ID読取部413によって内視鏡12の接続を検知し、かつ、内視鏡12からIDを読み出しても良い。この場合、内視鏡機種検出部412は、プロセッサ装置16のID読取部413から内視鏡12のIDを取得し、その機種を検出すれば良い。   In the endoscope system 410 of FIG. 18, the endoscope light source device 14 detects the connection of the endoscope 12 by the endoscope model detection unit 412, and reads the ID from the endoscope 12 to read the endoscope 12. However, as in the endoscope system 420 shown in FIG. 19, the processor device 16 is provided with an ID reading unit 413, the ID reading unit 413 detects the connection of the endoscope 12, and The ID may be read from the endoscope 12. In this case, the endoscope model detection unit 412 may acquire the ID of the endoscope 12 from the ID reading unit 413 of the processor device 16 and detect the model.

[第5実施形態]
LED等の半導体光源は、キセノンランプ等の従来の光源と比較すると長寿命であるが、LED等の半導体光源であっても、図20に示すように経時的に劣化して、既定の駆動電流や既定の駆動電圧で駆動しても、光量が低下する。また、半導体光源の種類(発光する光の波長等)によっても経時劣化の程度は異なる。経時劣化を無視すると、光源制御部22が例えば第1多色スペクトル光25を発光させるための既定の制御をしても、第1多色スペクトル光25の条件を満たさない多色スペクトル光が発せられてしまうことがある。このため、光源制御部22は、光源部20の各LED20a〜20dの経時劣化を考慮して、第1多色スペクトル光25や第2多色スペクトル光401を発光させることが好ましい。
[Fifth Embodiment]
A semiconductor light source such as an LED has a longer life than a conventional light source such as a xenon lamp. However, even a semiconductor light source such as an LED deteriorates with time as shown in FIG. Even if it is driven with a predetermined driving voltage, the amount of light decreases. The degree of deterioration with time varies depending on the type of semiconductor light source (wavelength of emitted light, etc.). When aging deterioration is ignored, even if the light source control unit 22 performs predetermined control for emitting the first multicolor spectrum light 25, for example, the multicolor spectrum light that does not satisfy the condition of the first multicolor spectrum light 25 is emitted. It may be. For this reason, it is preferable that the light source control unit 22 emits the first multicolor spectrum light 25 and the second multicolor spectrum light 401 in consideration of the temporal deterioration of the LEDs 20a to 20d of the light source unit 20.

上記のように光源部20の各LED20a〜20dに経時劣化があっても第1実施形態等の条件を満たす第1多色スペクトル光25や第2多色スペクトル光401を発光させるためには、例えば、図21に示す内視鏡システム500のように、内視鏡光源装置14に光量検出部501を設け、光源制御部22には経時劣化検出部504を設ける。   In order to cause the first multicolor spectrum light 25 and the second multicolor spectrum light 401 that satisfy the conditions of the first embodiment or the like even when the LEDs 20a to 20d of the light source unit 20 are deteriorated with time as described above, For example, as in an endoscope system 500 shown in FIG. 21, a light amount detection unit 501 is provided in the endoscope light source device 14, and a temporal deterioration detection unit 504 is provided in the light source control unit 22.

光量検出部501は、V光の光量を検出するためのV光量検出部502aと、B光の光量を検出するためのB光量検出部502bと、G光の光量を検出するためのG光量検出部502cと、R光の光量を検出するためのR光量検出部502dとを備える。V光量検出部302aは、ミラー503aを介してV光の一部を取得することで、V−LED20aが発光したV光の光量を検出する。ミラー503aは、V−LED20aの光路中に配置され、V−LED20aが発光したV光の一部を反射してV光量検出部502aに入射させ、かつ、残りのV光を光路結合部23に向けて透過する。同様に、B−LED20b、G−LED20c、及びR−LED20dの光路中には、これらが発光した各色光の一部を反射してB光量検出部502b、G光量検出部502c、及びR光量検出部502dにそれぞれ入射させ、残りの各色光を光路結合部23に向けて透過するミラー503b、ミラー503c、及びミラー503dが配置される。B光量検出部502bは、ミラー503bを介してB光の一部を取得してB−LED20bが発光したB光の光量を検出する。G光量検出部502cは、ミラー503cを介してG光の一部を取得してG−LED20cが発光したG光の光量を検出する。R光量検出部502dは、ミラー503dを介してR光の一部を取得してR−LED20dが発光したR光の光量を検出する。   The light amount detector 501 includes a V light amount detector 502a for detecting the amount of V light, a B light amount detector 502b for detecting the amount of B light, and a G light amount detection for detecting the amount of G light. Unit 502c and an R light amount detector 502d for detecting the amount of R light. The V light amount detection unit 302a detects the light amount of the V light emitted by the V-LED 20a by acquiring a part of the V light through the mirror 503a. The mirror 503a is disposed in the optical path of the V-LED 20a, reflects a part of the V light emitted from the V-LED 20a and makes it incident on the V light quantity detection unit 502a, and the remaining V light is input to the optical path coupling unit 23. Transparent to. Similarly, in the optical paths of the B-LED 20b, the G-LED 20c, and the R-LED 20d, a part of each color light emitted from the B-LED 20b, the G-LED 20c, and the R-LED 20d is reflected to detect the B light amount detector 502b, the G light amount detector 502c, A mirror 503b, a mirror 503c, and a mirror 503d that are incident on the unit 502d and transmit the remaining light of each color toward the optical path coupling unit 23 are disposed. The B light amount detection unit 502b acquires a part of the B light through the mirror 503b and detects the light amount of the B light emitted from the B-LED 20b. The G light quantity detection unit 502c acquires a part of the G light through the mirror 503c and detects the light quantity of the G light emitted from the G-LED 20c. The R light amount detection unit 502d acquires a part of the R light via the mirror 503d and detects the light amount of the R light emitted from the R-LED 20d.

光量検出部501は、各色用の光量検出部502a〜502dが検出したV光、B光、G光、及びR光の光量を光源制御部22に入力する。光源制御部22では、経時劣化検出部504が、第1多色スペクトル光25を発光する各LED20a〜20dの駆動電流等の駆動条件と、光量検出部501で実際に検出された各色光の光量とを用いて、各LED20a〜20dの経時劣化を検出する。具体的には、経時劣化検出部504は、各LED20a〜20dのうち、既定の光量に対して最も光量が低下した最劣化光源を検出する。光源制御部22は、経時劣化検出部504で検出した最劣化光源の光量に合わせて、残りの光源の光量を設定する。例えば、図22に示すように、光源制御部22が第1多色スペクトル光25を発光する駆動条件で各LED20a〜20dを駆動することで各LED20a〜20dの光量を指定したにも関わらず、R−LED20dの経時劣化のためにR光の光量が第1多色スペクトル光25を形成する指定の光量に満たず、かつ、V光、B光、及びG光は第1多色スペクトル光25を形成する指定の光量が発光した多色スペクトル光524になっていたとする。この場合、光源制御部22では、経時劣化検出部504がR−LED20dを最劣化光源として検出する。このため、図23に示すように、光源制御部22は、R−LED20dが発光するR光の光量に合わせて、V光、B光、及びG光の光量を低減させることにより、経時劣化したR−LED20dが発するR光の光量と、V光、B光、及びG光の光量のバランスを保たれた新たな第1多色スペクトル光525を発光させる。すなわち、各LED20a〜20dの少なくともいずれか1つに光量の不足が検出された場合、光源制御部22は、第1多色スペクトル光25を形成する各LED20a〜20dの光量の指定値に対して、光量の不足量が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する。これにより、各色光のバランスが保たれた第1多色スペクトル光525を発光させる。   The light amount detection unit 501 inputs the light amounts of the V light, B light, G light, and R light detected by the light amount detection units 502 a to 502 d for each color to the light source control unit 22. In the light source control unit 22, the temporal deterioration detection unit 504 includes driving conditions such as driving currents of the LEDs 20 a to 20 d that emit the first multicolor spectrum light 25, and the light amounts of the respective color lights actually detected by the light amount detection unit 501. Are used to detect deterioration with time of each of the LEDs 20a to 20d. Specifically, the temporal deterioration detection unit 504 detects the most deteriorated light source having the light amount that has decreased most with respect to a predetermined light amount among the LEDs 20a to 20d. The light source control unit 22 sets the light amount of the remaining light source in accordance with the light amount of the most deteriorated light source detected by the temporal deterioration detection unit 504. For example, as shown in FIG. 22, the light source control unit 22 drives the LEDs 20a to 20d under the driving conditions for emitting the first multicolor spectrum light 25, but specifies the light amounts of the LEDs 20a to 20d. Due to the deterioration of the R-LED 20d over time, the amount of R light is less than the specified amount of light that forms the first multicolor spectrum light 25, and the V light, B light, and G light are the first multicolor spectrum light 25. It is assumed that the designated amount of light forming the light is the multicolor spectrum light 524 emitted. In this case, in the light source control unit 22, the temporal deterioration detection unit 504 detects the R-LED 20d as the most deteriorated light source. For this reason, as shown in FIG. 23, the light source control unit 22 is deteriorated over time by reducing the light amounts of the V light, the B light, and the G light according to the light amount of the R light emitted from the R-LED 20d. A new first multicolor spectrum light 525 is generated in which the balance between the amount of R light emitted from the R-LED 20d and the amount of V light, B light, and G light is maintained. That is, when a shortage of light amount is detected in at least one of the LEDs 20a to 20d, the light source control unit 22 corresponds to a specified value of the light amount of each LED 20a to 20d that forms the first multicolor spectrum light 25. The light quantity of the remaining light sources is set in accordance with the light quantity of the most deteriorated light source having the largest light quantity deficiency. Thereby, the first multicolor spectrum light 525 in which the balance of each color light is maintained is emitted.

上記のように、各LED20a〜20dが発光する各色光の光量を検出し、これら各LED20a〜20dの中で最も経時劣化した光源の光量に合わせて残りの光源の光量を設定することで、光源制御部22は、光源部20によって常に各色光のバランスが保たれた第1多色スペクトル光25や第2多色スペクトル光401を安定して発光させることができる。また、上記のようにすれば、常に各色光のバランスが保たれた第1多色スペクトル光25及び325や第2多色スペクトル光401が安定して発光されるので、マトリックス処理で用いるマトリックス等、内視鏡画像を生成するために用いる信号処理パラメータや画像処理パラメータを再計算したり、複数用意したりしておく必要がない。また、撮像センサ48のカラーフィルタに混色がある場合には、内視鏡画像を生成するために用いる信号処理パラメータや画像処理パラメータを再計算したり、複数用意したりしておいても補正しきれないが、上記のようにすれば、常に安定して観察対象を観察することができる。   As described above, the light amount of each color light emitted by each LED 20a to 20d is detected, and the light amount of the remaining light source is set in accordance with the light amount of the light source that has deteriorated with time most of these LEDs 20a to 20d. The control unit 22 can stably emit the first multicolor spectrum light 25 and the second multicolor spectrum light 401 in which the balance of each color light is always maintained by the light source unit 20. Further, with the above configuration, the first multicolor spectrum light 25 and 325 and the second multicolor spectrum light 401 in which the balance of each color light is always maintained are stably emitted. There is no need to recalculate or prepare a plurality of signal processing parameters and image processing parameters used for generating an endoscopic image. Further, when there is color mixture in the color filter of the image sensor 48, the signal processing parameters and image processing parameters used for generating the endoscopic image are recalculated or corrected even if a plurality of them are prepared. Although it is not possible to do so, it is possible to always observe the observation target stably as described above.

上記第5実施形態で光量検出部501が行う各色光の光量検出は、少なくともキャリブレーション時に行うことが好ましい。特に、光量検出部501は、観察対象を観察するために各LED20a〜20dが発光している間、各色光の光量検出を繰り返し行なって、光源制御部22にフィードバックして、リアルタイムに第1多色スペクトル光25等のバランスを整えることが好ましい。   The light amount detection of each color light performed by the light amount detection unit 501 in the fifth embodiment is preferably performed at least during calibration. In particular, the light amount detection unit 501 repeatedly performs light amount detection of each color light while the LEDs 20a to 20d emit light in order to observe the observation target, and feeds back to the light source control unit 22 to perform the first multi-time measurement in real time. It is preferable to balance the color spectrum light 25 and the like.

[第6実施形態]
上記第5実施形態の内視鏡システム500では、LED20a〜20dの経時劣化を検出しているが、LED20a〜20dの経時劣化以外の要因によって、光源制御部22が正確な第1多色スペクトル光25が発光できない場合もある。この場合、図24に示す内視鏡システム600のように、第5実施形態の内視鏡システム500と同様の光量検出部501等を設け、光源制御部22には経時劣化検出部504の代わりに、検証部604を設ける。
[Sixth Embodiment]
In the endoscope system 500 of the fifth embodiment, the deterioration with time of the LEDs 20a to 20d is detected. However, the light source control unit 22 can accurately detect the first multicolor spectrum light due to factors other than the deterioration with time of the LEDs 20a to 20d. 25 may not emit light. In this case, like the endoscope system 600 shown in FIG. 24, a light amount detection unit 501 and the like similar to those of the endoscope system 500 of the fifth embodiment are provided, and the light source control unit 22 is replaced with the temporal deterioration detection unit 504. In addition, a verification unit 604 is provided.

検証部604は、模倣対象であるキセノンランプの連続スペクトル光26を撮像センサ48の各色の画素で受光して得る色毎の光量積分値の比率を模倣比率テーブル606に予め記憶している。検証部604は、この模倣比率テーブル606と光量検出部501の検出結果を用いて、実際に発光した第1多色スペクトル光25を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、キセノンランプの連続スペクトル光26を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証する。   The verification unit 604 stores in advance in the imitation ratio table 606 the ratio of the light intensity integrated value for each color obtained by receiving the continuous spectrum light 26 of the xenon lamp that is the imitation target by each color pixel of the image sensor 48. The verification unit 604 uses the imitation ratio table 606 and the detection result of the light amount detection unit 501, and the light amount integrated value for each color obtained by receiving the first multicolor spectrum light 25 actually emitted by the pixels of a plurality of colors. It is verified whether or not this ratio matches the ratio of the integrated amount of light for each color obtained by receiving the continuous spectrum light 26 of the xenon lamp by each of the pixels of a plurality of colors.

検証部604は、光量検出部501の検出結果である各LED20a〜20dの実際の光量と撮像センサ48のカラーフィルタの分光特性から各色画素の光量積分値を算出し、これらの比率を求める。例えば、撮像センサ48がB画素、G画素、及びR画素を有する原色系カラー撮像センサである場合、G画素で得る光量積分値に対するB画素で得る光量積分値の比率(以下、本実施形態においてBp/Gpという)と、G画素で得る光量積分値に対するR画素で得る光量積分値の比率(以下、本実施形態においてRp/Gpという)を算出する。   The verification unit 604 calculates the light amount integral value of each color pixel from the actual light amount of each of the LEDs 20a to 20d, which is the detection result of the light amount detection unit 501, and the spectral characteristics of the color filter of the image sensor 48, and obtains the ratio thereof. For example, when the imaging sensor 48 is a primary color imaging sensor having a B pixel, a G pixel, and an R pixel, a ratio of a light amount integrated value obtained by the B pixel to a light amount integrated value obtained by the G pixel (hereinafter, in the present embodiment). Bp / Gp) and the ratio of the light amount integral value obtained by the R pixel to the light amount integral value obtained by the G pixel (hereinafter referred to as Rp / Gp in this embodiment).

また、模倣するキセノンランプの連続スペクトル光26と、撮像センサ48のカラーフィルタの分光特性から各色画素の光量積分値は予め算出し、模倣比率テーブル606は、模倣する連続スペクトル光26を用いた場合のG画素で得る光量積分値に対するB画素で得る光量積分値の比率(以下、本実施形態においてBx/Gxという)と、模倣する連続スペクトル光26を用いた場合のG画素で得る光量積分値に対するR画素で得る光量積分値(以下、本実施形態においてRx/Gxという)とを記憶する。   In addition, the light intensity integral value of each color pixel is calculated in advance from the continuous spectrum light 26 of the xenon lamp to be imitated and the spectral characteristics of the color filter of the image sensor 48, and the imitation ratio table 606 uses the imitated continuous spectrum light 26. The ratio of the light intensity integrated value obtained by the B pixel to the light intensity integrated value obtained by the G pixel (hereinafter referred to as Bx / Gx in the present embodiment) and the light intensity integrated value obtained by the G pixel when using the continuous spectrum light 26 to be imitated Is stored as a light intensity integral value (hereinafter referred to as Rx / Gx in the present embodiment).

このため、検証部604は、算出した比率Bp/Gpと模倣比率テーブル606に記憶している比率Bx/Gxを比較し、かつ、算出した比率Rp/Gpと模倣比率テーブル606に記憶している比率Rx/Gxを比較する。これら2つの比較の結果、比率Bx/Gxに対して比率Bp/Gpの誤差が許容範囲内(例えば比率Bp/Gpの10%程度以下)であり、かつ、比率Rx/Gxに対して比率Rp/Gpの誤差が許容範囲内(例えば比率Bx/Gxの10%程度以下)であれば、第1多色スペクトル光25が適切に発光していると判断する。この場合、光源制御部22は、第1多色スペクトル光25の発光を継続する。   Therefore, the verification unit 604 compares the calculated ratio Bp / Gp with the ratio Bx / Gx stored in the imitation ratio table 606, and stores the calculated ratio Rp / Gp in the imitation ratio table 606. Compare the ratio Rx / Gx. As a result of these two comparisons, the error of the ratio Bp / Gp is within an allowable range with respect to the ratio Bx / Gx (for example, about 10% or less of the ratio Bp / Gp), and the ratio Rp to the ratio Rx / Gx If the error of / Gp is within an allowable range (for example, about 10% or less of the ratio Bx / Gx), it is determined that the first multicolor spectrum light 25 is appropriately emitted. In this case, the light source control unit 22 continues to emit the first multicolor spectrum light 25.

一方、比率Bx/Gxに対して比率Bp/Gpの誤差が許容範囲外である場合、または、比率Rx/Gxに対して比率Rp/Gpの誤差が許容範囲外である場合、検証部604は適切な第1多色スペクトル光25が発光されていないと判断する。この場合、光源制御部22は、検証部604の検証結果を用いてLED20a〜20dをフィードバック制御する。すなわち、光源制御部22は、検証部604で算出した比率Bx/Gxに対して比率Bp/Gpの誤差、または、比率Rx/Gxに対して比率Rp/Gpの誤差に基づいて、各LED20a〜20dの光量を調整して制御する。これにより、照明光は常に適切な第1多色スペクトル光25に補正される。   On the other hand, when the error of the ratio Bp / Gp is out of the allowable range with respect to the ratio Bx / Gx, or when the error of the ratio Rp / Gp is out of the allowable range with respect to the ratio Rx / Gx, the verification unit 604 It is determined that the appropriate first multicolor spectrum light 25 is not emitted. In this case, the light source control unit 22 performs feedback control of the LEDs 20a to 20d using the verification result of the verification unit 604. That is, the light source control unit 22 determines whether the LEDs 20a to 20 are based on the error of the ratio Bp / Gp with respect to the ratio Bx / Gx calculated by the verification unit 604 or the error of the ratio Rp / Gp with respect to the ratio Rx / Gx. The light amount of 20d is adjusted and controlled. As a result, the illumination light is always corrected to the appropriate first multicolor spectrum light 25.

上記第6実施形態の内視鏡システム600では、検証部604が各色の光量積分値の算出する際等に観察対象の種類を考慮していないが、第2実施形態と同様に観察対象の種類を考慮して検証部604で算出する各色の光量積分値や光量積分値の比率を算出することができる。また、上記第6実施形態の内視鏡システム600の検証部604は、第5実施形態の経時劣化検出部504として機能することもできる。なお、上記第6実施形態では、内視鏡光源装置14に検証部604を設けているが、検証部604はプロセッサ装置16に設けても良い。   In the endoscope system 600 of the sixth embodiment, the verification unit 604 does not consider the type of observation target when calculating the integrated light amount of each color, but the type of observation target is the same as in the second embodiment. In consideration of the above, it is possible to calculate the light quantity integral value of each color and the ratio of the light quantity integral values calculated by the verification unit 604. Further, the verification unit 604 of the endoscope system 600 of the sixth embodiment can function as the temporal deterioration detection unit 504 of the fifth embodiment. In the sixth embodiment, the verification unit 604 is provided in the endoscope light source device 14, but the verification unit 604 may be provided in the processor device 16.

上記第6実施形態の内視鏡システム600は、光量検出部501の検出結果を用いて照明光が第1多色スペクトル光25になっているかを検証しているが、光量検出部501の検出結果を用いる代わりに、撮像センサ48の出力を用いて照明光が第1多色スペクトル光25になっているかを検証することもできる。この場合、図25に示す内視鏡システム700のように、プロセッサ装置16に検証部704を設ける。   The endoscope system 600 of the sixth embodiment verifies whether the illumination light is the first multicolor spectrum light 25 using the detection result of the light amount detection unit 501, but the detection by the light amount detection unit 501. Instead of using the result, it is also possible to verify whether the illumination light is the first multicolor spectrum light 25 using the output of the imaging sensor 48. In this case, a verification unit 704 is provided in the processor device 16 as in the endoscope system 700 shown in FIG.

検証部704は、光量検出部501の検出結果の代わりに、受信部53から取得する撮像センサ48の出力を用いる以外は、上記第6実施形態の検証部604と同様である。すなわち、検証部704は、模倣比率テーブル706に模倣対象であるキセノンランプの連続スペクトル光26を撮像センサ48の各色の画素で受光して得る色毎の光量積分値の比率を記憶しており、この模倣比率テーブル706と撮像センサ48の出力を用いて、実際に発光した第1多色スペクトル光25を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、キセノンランプの連続スペクトル光26を複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証する。   The verification unit 704 is the same as the verification unit 604 of the sixth embodiment except that the output of the imaging sensor 48 acquired from the reception unit 53 is used instead of the detection result of the light amount detection unit 501. That is, the verification unit 704 stores in the imitation ratio table 706 the ratio of the light intensity integral value for each color obtained by receiving the continuous spectrum light 26 of the xenon lamp to be imitated by the pixels of each color of the image sensor 48, Using the imitation ratio table 706 and the output of the image sensor 48, the ratio of the light intensity integral value for each color obtained by receiving the first multicolor spectrum light 25 actually emitted by the pixels of the plurality of colors is the xenon lamp. It is verified whether or not the continuous spectrum light 26 matches the ratio of the integrated light amount for each color obtained by receiving the continuous spectrum light 26 with the pixels of a plurality of colors.

検証部704は、撮像センサ48の出力である画像信号を受信部53から取得し、これらの比率を求める。撮像センサ48がB画素、G画素、及びR画素を有する原色系カラー撮像センサである場合、例えば検証部704はB画像信号、G画像信号、及びR画像信号の各々の平均値等(平均値や中央値等の統計量)を求めることにより各色の画素の光量積分値を算出し、それらの比率Bp/Gpと比率Rp/Gpを算出する。なお、検証部704が算出する各色の画像信号の平均値等は、撮像センサ48からの信号電荷の読み出し時にかかるゲインや受信部53で行う各種処理の具体的内容に影響されるので本明細書でいう光量積分値そのものではないが、第1多色スペクトル光25を発光するキセノンエミュレートモードでは常に同じ処理をするので、各色の画像信号の平均値等は実質的に光量積分値を表す。   The verification unit 704 obtains an image signal that is an output of the imaging sensor 48 from the reception unit 53 and obtains a ratio thereof. When the imaging sensor 48 is a primary color imaging sensor having a B pixel, a G pixel, and an R pixel, for example, the verification unit 704 has an average value of each of the B image signal, the G image signal, and the R image signal (average value). Or the statistic such as the median value) is calculated to calculate the light quantity integral value of each color pixel, and the ratio Bp / Gp and the ratio Rp / Gp are calculated. Note that the average value or the like of the image signals of the respective colors calculated by the verification unit 704 is affected by the gain when reading the signal charges from the imaging sensor 48 and the specific contents of various processes performed by the reception unit 53, and thus this specification. In the xenon emulation mode in which the first multicolor spectrum light 25 is emitted, the same processing is always performed, so the average value of the image signals of the respective colors substantially represents the light amount integral value.

模倣比率テーブル706は、模倣する連続スペクトル光26を用いる場合のB画像信号、G画像信号、及びR画像信号の各々の平均値等を用いて算出した比率Bx/Gx及び比率Rx/Gxを記憶する。検証部704は、算出した比率Bp/Gpと模倣比率テーブル706に記憶している比率Bx/Gxを比較し、かつ、算出した比率Rp/Gpと模倣比率テーブル606に記憶している比率Rx/Gxを比較し、光源制御部22がこれらの比較結果(検証部704の検証結果)に基づいてLED20a〜20dの制御するのは上記第6実施形態の内視鏡システム600と同様である。   The imitation ratio table 706 stores the ratio Bx / Gx and the ratio Rx / Gx calculated using the average values of the B image signal, the G image signal, and the R image signal when the continuous spectrum light 26 to be imitated is used. To do. The verification unit 704 compares the calculated ratio Bp / Gp with the ratio Bx / Gx stored in the imitation ratio table 706, and calculates the calculated ratio Rp / Gp and the ratio Rx / Gp stored in the imitation ratio table 606. Gx is compared, and the light source control unit 22 controls the LEDs 20a to 20d based on these comparison results (verification results of the verification unit 704), as in the endoscope system 600 of the sixth embodiment.

なお、実際の観察対象を撮影しながら検証部704による検証を行うことができるが、観察対象の個体差等の影響を除くためには、例えば生体粘膜の反射率を模した模擬体(ファントム)や照明光をほぼ直接に撮像センサ48に入射させる白板を撮影して検証をすることが好ましい。   Although verification by the verification unit 704 can be performed while photographing an actual observation target, in order to eliminate the influence of individual differences or the like of the observation target, for example, a simulated body (phantom) simulating the reflectance of the biological mucosa It is preferable to perform verification by photographing a white plate on which the illumination light is incident on the image sensor 48 almost directly.

上記変形例の内視鏡システム700は、検証部704が各色の光量積分値の算出する際等に観察対象の種類を考慮していないが、第2実施形態と同様に観察対象の種類を考慮して検証部704で算出する各色の光量積分値や光量積分値の比率を算出することができる。このように、検証部704が行う検証に観察対象の種類を考慮する場合、食道、胃、及び大腸等の反射率を模した模擬体を用いる。   The endoscope system 700 according to the modified example does not consider the type of the observation target when the verification unit 704 calculates the light amount integral value of each color, but considers the type of the observation target as in the second embodiment. Thus, the light quantity integral value of each color and the ratio of the light quantity integral values calculated by the verification unit 704 can be calculated. As described above, when the type of the observation target is considered in the verification performed by the verification unit 704, a simulated body simulating reflectance such as the esophagus, stomach, and large intestine is used.

上記変形例の内視鏡システム700では、検証部704は、撮像センサ48の出力として受信部53から画像信号を取得しているが、受信部53から画像信号を取得する代わりに、DPS56、ノイズ除去部58、または画像生成部62から画像信号を取得することができる。検証部704は、これらプロセッサ装置16の各部から画像信号を取得する代わりに、内視鏡12のA/Dコンバータ51、CDS/AGC回路50、または撮像センサ48から画像信号を取得してもよい。   In the endoscope system 700 according to the modified example, the verification unit 704 acquires an image signal from the reception unit 53 as an output of the imaging sensor 48. Instead of acquiring the image signal from the reception unit 53, the verification unit 704 An image signal can be acquired from the removal unit 58 or the image generation unit 62. The verification unit 704 may acquire an image signal from the A / D converter 51, the CDS / AGC circuit 50, or the imaging sensor 48 of the endoscope 12 instead of acquiring an image signal from each unit of the processor device 16. .

上記第1〜第5実施形態では、B−LED20bが発するB光をそのまま第1多色スペクトル光25、225、325、及び525に利用しているが、約450nmから約500nmの波長の光は表層血管やピットパターン等の構造のコントラストを低下させてしまう。このため、図26に示す内視鏡システム800のように、B−LED20bの光路中に、約450nmから約500nmの波長の光を低減する帯域制限部801を配置することによって、B−LED20bが発するB光から、約450nmから約500nmの波長成分を低減したBs光を生成し、Bs光を第1多色スペクトル光25、225、325、及び525に用いることが好ましい。この場合、光量比は、帯域制限部801を通過後のBs光の分光スペクトルを用いて算出する。   In the first to fifth embodiments, the B light emitted from the B-LED 20b is used as it is for the first multicolor spectrum light 25, 225, 325, and 525. However, light having a wavelength of about 450 nm to about 500 nm is used. The contrast of structures such as surface blood vessels and pit patterns is reduced. For this reason, like the endoscope system 800 shown in FIG. 26, the B-LED 20b is arranged in the optical path of the B-LED 20b by disposing a band limiting unit 801 that reduces light having a wavelength of about 450 nm to about 500 nm. It is preferable to generate Bs light having a reduced wavelength component from about 450 nm to about 500 nm from the emitted B light, and use the Bs light for the first multicolor spectrum light 25, 225, 325, and 525. In this case, the light amount ratio is calculated using the spectrum of the Bs light after passing through the band limiting unit 801.

上記第1〜第6実施形態では、撮像センサ48が設けられた内視鏡12を被検体内に挿入して観察を行う内視鏡システムによって本発明を実施しているが、カプセル内視鏡システムでも本発明は好適である。例えば、図27に示すように、カプセル内視鏡システムでは、カプセル内視鏡900と、プロセッサ装置(図示しない)とを少なくとも有する。   In the first to sixth embodiments, the present invention is implemented by the endoscope system in which the endoscope 12 provided with the imaging sensor 48 is inserted into the subject for observation, but the capsule endoscope The present invention is also suitable for a system. For example, as shown in FIG. 27, the capsule endoscope system includes at least a capsule endoscope 900 and a processor device (not shown).

カプセル内視鏡900は、光源部902と光源制御部903と、撮像センサ904と、画像生成部906と、送受信アンテナ908とを備えている。光源部902は、上記第1〜第6実施形態の光源部20と同様に、V光を発するV−LEDと、B光を発するB−LEDと、G光を発するG−LEDと、R光を発するR−LEDと、を有している。   The capsule endoscope 900 includes a light source unit 902, a light source control unit 903, an image sensor 904, an image generation unit 906, and a transmission / reception antenna 908. Similarly to the light source unit 20 of the first to sixth embodiments, the light source unit 902 includes a V-LED that emits V light, a B-LED that emits B light, a G-LED that emits G light, and R light. R-LED emitting

光源制御部903は、上記各実施形態及び変形例の光源制御部22と同様にして光源部902の駆動を制御する。また、光源制御部903は、送受信アンテナ908によって、カプセル内視鏡システムのプロセッサ装置と無線で通信可能である。カプセル内視鏡システムのプロセッサ装置は、上記第1〜第6実施形態のプロセッサ装置16とほぼ同様であるが、画像生成部906はカプセル内視鏡900に設けられ、生成された内視鏡画像は、送受信アンテナ908を介してプロセッサ装置に送信される。撮像センサ904は上記第1〜第6実施形態の撮像センサ48と同様に構成される。   The light source control unit 903 controls the driving of the light source unit 902 in the same manner as the light source control unit 22 of the above embodiments and modifications. The light source control unit 903 can wirelessly communicate with the processor device of the capsule endoscope system by the transmission / reception antenna 908. The processor device of the capsule endoscope system is substantially the same as the processor device 16 of the first to sixth embodiments, but the image generation unit 906 is provided in the capsule endoscope 900 and the generated endoscope image is generated. Is transmitted to the processor device via the transmission / reception antenna 908. The image sensor 904 is configured in the same manner as the image sensor 48 of the first to sixth embodiments.

なお、上記第1〜第6実施形態では、光源制御部22は、キセノンランプの白色光を模倣するための第1多色スペクトル光25、225、325、及び525を発生させているが、キセノンランプの白色光の代わりに、他の広帯域な連続スペクトル光を模倣するための第1多色スペクトル光を発生さても良い。例えば、従来の内視鏡システムでは、キセノンランプ以外のハロゲンランプを用いる場合がある。キセノンランプ以外のハロゲンランプを模倣するための第1多色スペクトル光を発生させても良く、模倣するランプの種類を医師等が選択できるようにしても良い。同様に、励起光を発する励起光光源と、励起光の照射によって蛍光を発する蛍光体を組み合わせた広帯域光源や、半導体光源からなる広帯域光源が発する連続スペクトル光を模倣することもできる。蛍光体に励起光を照射して広帯域光源は、例えば、紫外光、紫色光、または青色光等を発光する励起光光源と、紫外光、紫色光、または青色光等の照射によって緑色から黄色(あるいは赤色)の蛍光を発光する蛍光体を組み合わせて構成される。半導体光源からなる広帯域光源は、例えば、白色光を発生する半導体光源である。上記のように、キセノンランプ以外の広帯域な連続スペクトル光(実質的に白色に見える擬似白色光やその他白色以外の光を含む)を模倣する場合も、上記実施形態のキセノンランプの白色光を模倣する場合と同様にして第1多色スペクトル光を発生させることができる。   In the first to sixth embodiments, the light source control unit 22 generates the first multicolor spectrum light 25, 225, 325, and 525 for imitating the white light of the xenon lamp. Instead of the white light of the lamp, the first multicolor spectrum light for imitating other broadband continuous spectrum light may be generated. For example, in a conventional endoscope system, a halogen lamp other than a xenon lamp may be used. First multicolor spectrum light for imitating a halogen lamp other than a xenon lamp may be generated, and a doctor or the like may be able to select the type of lamp to be imitated. Similarly, it is also possible to imitate a continuous spectrum light emitted from a broadband light source combining a pump light source that emits excitation light and a phosphor that emits fluorescence when irradiated with the excitation light, or a broadband light source composed of a semiconductor light source. A broadband light source by irradiating a phosphor with excitation light is, for example, an excitation light source that emits ultraviolet light, violet light, blue light, or the like, and green to yellow by irradiation with ultraviolet light, violet light, blue light, or the like ( Alternatively, it is configured by combining phosphors emitting red fluorescence. A broadband light source composed of a semiconductor light source is, for example, a semiconductor light source that generates white light. As described above, when imitating broadband continuous spectrum light other than the xenon lamp (including pseudo-white light that appears substantially white and other light other than white), the white light of the xenon lamp of the above embodiment is also imitated. The first multicolor spectrum light can be generated in the same manner as the above.

上記第1〜第6実施形態では、V−LED20a、B−LED20b、G−LED20c、R−LED20dの4色のLEDを用いているが、内視鏡光源装置14に用いる複数の光源が発光する光の色(波長)や組み合わせ、LEDの個数等は、これ以外の色及び組み合わせでも良い。また、LEDの代わりに、LD(Laser Diode)等の他の半導体光源を用いても良い。LEDやLDと蛍光体を組み合わせた光源を用いても良い。   In the said 1st-6th embodiment, although the LED of 4 colors, V-LED20a, B-LED20b, G-LED20c, and R-LED20d is used, the several light source used for the endoscope light source device 14 light-emits. Other colors and combinations may be used for the light color (wavelength), the combination, the number of LEDs, and the like. Further, instead of the LED, another semiconductor light source such as an LD (Laser Diode) may be used. You may use the light source which combined LED and LD, and the fluorescent substance.

なお、上記第1〜第6実施形態では、光源部20の各LED20a〜20dを全て同時に点灯しているが、撮像センサ48が観察対象を撮像している間(光電変換をする間の時間)にこれら各LED20a〜20dを順次点灯させても良い。また、撮像センサ48が観察対象を撮像している間に、色毎に点灯時間を調節して、光量を制御してもよい。これらの場合も上記第1〜第5実施形態のように光源部20の各LED20a〜20dを同時に点灯するのと同じ結果が得られる。   In the first to sixth embodiments, all the LEDs 20a to 20d of the light source unit 20 are turned on at the same time, but while the imaging sensor 48 is imaging the observation target (time during photoelectric conversion). These LEDs 20a to 20d may be turned on sequentially. Further, while the imaging sensor 48 images the observation target, the light amount may be controlled by adjusting the lighting time for each color. In these cases, the same result as that when the LEDs 20a to 20d of the light source unit 20 are simultaneously turned on as in the first to fifth embodiments can be obtained.

10,240,410,420,500,600,700,800 内視鏡システム
20 光源部
22 光源制御部
25,225,325,525 第1多色スペクトル光
26 連続スペクトル光
412 内視鏡機種検出部
501 光量検出部
504 経時劣化検出部
604,704 検証部
900 カプセル内視鏡
10, 240, 410, 420, 500, 600, 700, 800 Endoscope system 20 Light source unit 22 Light source control unit 25, 225, 325, 525 First multicolor spectrum light 26 Continuous spectrum light 412 Endoscope model detection unit 501 Light quantity detection unit 504 Aging deterioration detection unit 604, 704 Verification unit 900 Capsule endoscope

Claims (12)

第1波長帯域の紫色光であるV光を発する紫色光源、第2波長帯域の青色光であるB光を発する青色光源、緑色光であるG光を発する緑色光源、及び、赤色光であるR光を発する赤色光源を有する複数の光源を有し、前記複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、
異なる色に感度を有する複数色の画素を有する撮像センサであって、第1色に感度を有する第1色画素と、第2色に感度を有する第2色画素と、第3色に感度を有する第3色画素とを有する撮像センサと、
前記複数の光源を制御し、前記第1多色スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率を、キセノンランプ、ハロゲンランプ、または白色LEDが発光する白色光である連続スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致させる光源制御部とを備え、
前記光源制御部は、
前記第1多色スペクトル光の前記第1波長帯域の光量積分値と前記連続スペクトル光の前記第1波長帯域の光量積分値とが一致し、且つ、前記第1多色スペクトル光の前記第2波長帯域の光量積分値と前記連続スペクトル光の前記第2波長帯域の光量積分値とが一致するように、前記V光と前記B光の光量比Kv:Kbを決定し、
前記光量比Kv:Kbで前記V光と前記B光を合成した光をB2光とした場合であって、前記B2光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれB2b、B2g、及びB2rとし、前記第1多色スペクトル光のG光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれGb、Gg、及びGrとし、前記第1多色スペクトル光のR光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれRb、Rg、及びRrとし、前記連続スペクトル光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれXb、Xg、及びXrとした場合において、下記数3を満たすように、B2光、G光、及びR光の光量比Pb2:Pg:Prを算出する内視鏡システム。
Figure 0006602939
A violet light source that emits V light that is violet light in the first wavelength band, a blue light source that emits B light that is blue light in the second wavelength band, a green light source that emits G light as green light, and R that is red light A plurality of light sources having a red light source that emits light, and a light source unit that emits first multicolor spectrum light having a first multicolor spectrum obtained by superimposing light emitted from the plurality of light sources;
An imaging sensor having a plurality of color pixels having sensitivity to different colors, the first color pixel having sensitivity to the first color, the second color pixel having sensitivity to the second color, and the sensitivity to the third color. An imaging sensor having a third color pixel;
The white light emitted from the xenon lamp, the halogen lamp, or the white LED is used to control the plurality of light sources and to determine the ratio of the integrated light amount for each color obtained by receiving the first multicolor spectrum light by the pixels of the plurality of colors. A light source control unit that matches the ratio of the integrated amount of light for each color obtained by receiving continuous spectrum light that is light by the pixels of the plurality of colors,
The light source controller is
The integrated amount of light in the first wavelength band of the first multicolor spectrum light matches the integrated amount of light in the first wavelength band of the continuous spectrum light, and the second of the first multicolor spectrum light. Determining the light quantity ratio Kv: Kb of the V light and the B light so that the light quantity integral value of the wavelength band and the light quantity integral value of the second wavelength band of the continuous spectrum light match;
The light obtained by combining the V light and the B light at the light quantity ratio Kv: Kb is B2 light, and the B2 light is used as the first color pixel, the second color pixel, and the third color pixel. The light quantity integral values obtained by receiving light at B2b, B2g, and B2r are respectively received by the first color pixel, the second color pixel, and the third color pixel. The obtained light amount integral values are Gb, Gg, and Gr, respectively, and the light amount obtained by receiving the R light of the first multicolor spectrum light by the first color pixel, the second color pixel, and the third color pixel. The integral values are Rb, Rg, and Rr, respectively, and the light amount integral values obtained by receiving the continuous spectrum light at the first color pixel, the second color pixel, and the third color pixel are Xb, Xg, and In the case of Xr, B2 , G light, and R light quantity ratio of Pb2: Pg: an endoscope system for calculating the Pr.
Figure 0006602939
前記光源制御部は、
前記光量比Kv:Kbと前記光量比Pb2:Pg:Prを用いて、前記V光、前記B光、前記G光、及び前記R光の光量比Cv:Cb:Cg:Crを算出する請求項1記載の内視鏡システム。
The light source controller is
The light quantity ratio Cv: Cb: Cg: Cr of the V light, the B light, the G light, and the R light is calculated using the light quantity ratio Kv: Kb and the light quantity ratio Pb2: Pg: Pr. The endoscope system according to 1.
観察対象の種類毎に光量比Cv:Cb:Cg:Crを記憶する光量比記憶部を備え、
前記光源制御部は、前記観察対象の種類毎の光量比Cv:Cb:Cg:Crのなかから光量比Cv:Cb:Cg:Crを選択する請求項2項に記載の内視鏡システム。
A light amount ratio storage unit for storing a light amount ratio Cv: Cb: Cg: Cr for each type of observation object;
The endoscope system according to claim 2, wherein the light source control unit selects a light amount ratio Cv: Cb: Cg: Cr from a light amount ratio Cv: Cb: Cg: Cr for each type of the observation target.
前記第1色画素は青色画素、前記第2色画素は緑色画素、前記第3色画素は赤色画素である請求項1〜3のいずれか1項に記載の内視鏡システム。   The endoscope system according to any one of claims 1 to 3, wherein the first color pixel is a blue pixel, the second color pixel is a green pixel, and the third color pixel is a red pixel. 前記複数の光源が発する光量をそれぞれ検出する光量検出部を備え、
前記光源制御部は、前記光量検出部による検出結果を用いて、前記複数の光源のうち、前記第1多色スペクトル光を形成する光量の指定値に対して、光量の不足が最も大きい最劣化光源の光量に合わせて、残りの光源の光量を設定する請求項1〜4のいずれか1項に記載の内視鏡システム。
A light amount detection unit for detecting the amount of light emitted by the plurality of light sources,
The light source control unit uses the detection result of the light amount detection unit, and among the plurality of light sources, the light source has the greatest shortage of light amount with respect to a specified value of the light amount forming the first multicolor spectrum light. The endoscope system of any one of Claims 1-4 which sets the light quantity of the remaining light sources according to the light quantity of a light source.
前記光量検出部は、前記複数の光源が発光している間、前記複数の光源が発光する光の検出を繰り返し行う請求項5に記載の内視鏡システム。   The endoscope system according to claim 5, wherein the light amount detection unit repeatedly detects light emitted from the plurality of light sources while the plurality of light sources emit light. 前記第1多色スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、前記連続スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証する検証部を備える請求項1〜6のいずれか1項に記載の内視鏡システム。   The ratio of the integrated amount of light for each color obtained by receiving the first multicolor spectrum light by the pixels of the plurality of colors is the light amount integration for each color of light obtained by receiving the continuous spectrum light by the pixels of the plurality of colors. The endoscope system according to any one of claims 1 to 6, further comprising a verification unit that verifies whether or not the value ratio matches. 前記複数の光源が発する光量をそれぞれ検出する光量検出部を備え、
前記検証部は、前記光量検出部による検出結果を用いて、前記第1多色スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、前記連続スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証する請求項7に記載の内視鏡システム。
A light amount detection unit for detecting the amount of light emitted by the plurality of light sources,
The verification unit uses the detection result of the light amount detection unit, and the ratio of the light amount integral value for each color obtained by receiving the first multicolor spectrum light by the pixels of the plurality of colors is the continuous spectrum light. The endoscope system according to claim 7, wherein it is verified whether or not the light intensity integrated value ratio for each color obtained by receiving light at the pixels of the plurality of colors matches.
前記検証部は、前記撮像センサの出力を用いて、前記第1多色スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率が、前記連続スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致しているか否かを検証する請求項7に記載の内視鏡システム。   The verification unit uses the output of the imaging sensor to obtain a light intensity integral value for each color obtained by receiving the first multi-color spectrum light with the pixels of the plurality of colors, and the plurality of continuous spectrum lights. The endoscope system according to claim 7, wherein it is verified whether or not the light intensity integrated value ratio for each color obtained by receiving light at each color pixel matches. 前記光源制御部は、前記検証部による検証結果を用いて前記複数の光源を制御する請求項7〜9のいずれか1項に記載の内視鏡システム。   The endoscope system according to any one of claims 7 to 9, wherein the light source control unit controls the plurality of light sources using a verification result obtained by the verification unit. 前記第1色画素で受光する波長帯域は前記第1波長帯域と前記第2波長帯域に区切られており、
前記第1多色スペクトル光の前記第1波長帯域の光量積分値と前記連続スペクトル光の前記第1波長帯域の光量積分値とは、それぞれ前記第1色画素の前記第1波長帯域で受光して得られる光量積分値であり、
前記第1多色スペクトル光の前記第2波長帯域の光量積分値と前記連続スペクトル光の前記第2波長帯域の光量積分値とは、それぞれ前記第1色画素の前記第2波長帯域で受光して得られる光量積分値である請求項1ないし10いずれか1項記載の内視鏡システム。
The wavelength band received by the first color pixel is divided into the first wavelength band and the second wavelength band,
The light intensity integral value of the first wavelength band of the first multicolor spectrum light and the light intensity integral value of the first wavelength band of the continuous spectrum light are received in the first wavelength band of the first color pixel, respectively. Is the light intensity integral value obtained by
The light intensity integral value of the second wavelength band of the first multicolor spectrum light and the light intensity integral value of the second wavelength band of the continuous spectrum light are received in the second wavelength band of the first color pixel, respectively. The endoscope system according to any one of claims 1 to 10, which is a light quantity integral value obtained in the above manner.
第1波長帯域の紫色光であるV光を発する紫色光源、第2波長帯域の青色光であるB光を発する青色光源、緑色光であるG光を発する緑色光源、及び、赤色光であるR光を発する赤色光源を有する複数の光源を有し、前記複数の光源が発光する光を重ね合わせた第1多色スペクトルを有する第1多色スペクトル光を発する光源部と、異なる色に感度を有する複数色の画素を有する撮像センサであって、第1色に感度を有する第1色画素と、第2色に感度を有する第2色画素と、第3色に感度を有する第3色画素とを有する撮像センサと、を有する内視鏡システムの作動方法において、
光源制御部が前記複数の光源を制御し、前記第1多色スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率を、キセノンランプ、ハロゲンランプ、または白色LEDが発光する白色光である連続スペクトル光を前記複数色の画素でそれぞれ受光して得る色毎の光量積分値の比率に一致させるステップであって、
前記光源制御部は、
前記第1多色スペクトル光の前記第1波長帯域の光量積分値と前記連続スペクトル光の前記第1波長帯域の光量積分値とが一致し、且つ、前記第1多色スペクトル光の前記第2波長帯域の光量積分値と前記連続スペクトル光の前記第2波長帯域の光量積分値とが一致するように、前記V光と前記B光の光量比Kv:Kbを決定し、
前記光量比Kv:Kbで前記V光と前記B光を合成した光をB2光とした場合であって、前記B2光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれB2b、B2g、及びB2rとし、前記第1多色スペクトル光のG光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれGb、Gg、及びGrとし、前記第1多色スペクトル光のR光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれRb、Rg、及びRrとし、前記連続スペクトル光を前記第1色画素、前記第2色画素、及び前記第3色画素で受光して得る光量積分値をそれぞれXb、Xg、及びXrとした場合において、下記数3を満たすように、B2光、G光、及びR光の光量比Pb2:Pg:Prを算出するステップを有する内視鏡システムの作動方法。
Figure 0006602939
A violet light source that emits V light that is violet light in the first wavelength band, a blue light source that emits B light that is blue light in the second wavelength band, a green light source that emits G light as green light, and R that is red light A plurality of light sources each having a red light source that emits light, and a light source unit that emits first multicolor spectrum light having a first multicolor spectrum in which light emitted from the plurality of light sources is superimposed; An imaging sensor having a plurality of color pixels, a first color pixel having sensitivity to a first color, a second color pixel having sensitivity to a second color, and a third color pixel having sensitivity to a third color In an operation method of an endoscope system having an imaging sensor having
The light source control unit controls the plurality of light sources, and the ratio of the integrated amount of light for each color obtained by receiving the first multicolor spectrum light by the pixels of the plurality of colors is set as a xenon lamp, a halogen lamp, or a white LED. Is a step of matching the ratio of the integrated amount of light for each color obtained by receiving the continuous spectrum light that is white light emitted by each of the pixels of the plurality of colors,
The light source controller is
The integrated amount of light in the first wavelength band of the first multicolor spectrum light matches the integrated amount of light in the first wavelength band of the continuous spectrum light, and the second of the first multicolor spectrum light. Determining the light quantity ratio Kv: Kb of the V light and the B light so that the light quantity integral value of the wavelength band and the light quantity integral value of the second wavelength band of the continuous spectrum light match;
The light obtained by combining the V light and the B light at the light quantity ratio Kv: Kb is B2 light, and the B2 light is used as the first color pixel, the second color pixel, and the third color pixel. The light quantity integral values obtained by receiving light at B2b, B2g, and B2r are respectively received by the first color pixel, the second color pixel, and the third color pixel. The obtained light amount integral values are Gb, Gg, and Gr, respectively, and the light amount obtained by receiving the R light of the first multicolor spectrum light by the first color pixel, the second color pixel, and the third color pixel. The integral values are Rb, Rg, and Rr, respectively, and the light amount integral values obtained by receiving the continuous spectrum light at the first color pixel, the second color pixel, and the third color pixel are Xb, Xg, and In the case of Xr, B2 , G light, and R light quantity ratio of Pb2: Pg: operation method of the endoscope system having the step of calculating the Pr.
Figure 0006602939
JP2018216972A 2018-11-20 2018-11-20 Endoscope system and method for operating endoscope system Active JP6602939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018216972A JP6602939B2 (en) 2018-11-20 2018-11-20 Endoscope system and method for operating endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216972A JP6602939B2 (en) 2018-11-20 2018-11-20 Endoscope system and method for operating endoscope system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015131741A Division JP2017012395A (en) 2015-06-30 2015-06-30 Endoscope system and method of operating endoscope system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019186119A Division JP6874087B2 (en) 2019-10-09 2019-10-09 Endoscope system and how to operate the endoscope system

Publications (2)

Publication Number Publication Date
JP2019058689A JP2019058689A (en) 2019-04-18
JP6602939B2 true JP6602939B2 (en) 2019-11-06

Family

ID=66175929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216972A Active JP6602939B2 (en) 2018-11-20 2018-11-20 Endoscope system and method for operating endoscope system

Country Status (1)

Country Link
JP (1) JP6602939B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208985A (en) * 2000-01-27 2001-08-03 Olympus Optical Co Ltd Endoscope device
JP2001201697A (en) * 2000-01-17 2001-07-27 Olympus Optical Co Ltd Endoscope light source device
JP4734074B2 (en) * 2005-09-30 2011-07-27 オリンパスメディカルシステムズ株式会社 Endoscope device
JP5767775B2 (en) * 2009-07-06 2015-08-19 富士フイルム株式会社 Endoscope device
JP5485835B2 (en) * 2010-09-07 2014-05-07 富士フイルム株式会社 Endoscope light source device and light amount control method thereof, endoscope system and control method thereof
WO2015005277A1 (en) * 2013-07-11 2015-01-15 オリンパスメディカルシステムズ株式会社 Light source device
JP5976045B2 (en) * 2013-08-27 2016-08-23 富士フイルム株式会社 Endoscope light source device and endoscope system using the same
JP5931031B2 (en) * 2013-09-23 2016-06-08 富士フイルム株式会社 Endoscope system and method for operating endoscope system
EP3050492A4 (en) * 2013-10-30 2017-09-20 Olympus Corporation Light source unit and endoscope device

Also Published As

Publication number Publication date
JP2019058689A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP2017012395A (en) Endoscope system and method of operating endoscope system
JP6461739B2 (en) Image processing apparatus, endoscope system, and method of operating image processing apparatus
JP6013382B2 (en) Endoscope system and operating method thereof
JP5931031B2 (en) Endoscope system and method for operating endoscope system
US9895054B2 (en) Endoscope system, light source device, operation method for endoscope system, and operation method for light source device
JP6206691B2 (en) Endoscope system and operating method thereof
CN107518867A (en) Light supply apparatus and endoscopic system
JP6159817B2 (en) Calibration method and endoscope system
JP6690003B2 (en) Endoscope system and operating method thereof
WO2017154325A1 (en) Endoscope system, processor device, endoscope system operation method
WO2020039932A1 (en) Endoscope system
JP2019136555A (en) Endoscope light source device, endoscope system, and method of operating endoscope light source device
JP2016007355A (en) Light source device, endoscope system, operation method of light source device, and operation method of endoscope system
US9977232B2 (en) Light source device for endoscope, endoscope system, and method for operating light source device for endoscope
JP7196016B2 (en) Information processing device and its operating method, endoscope system and its operating method
JP6602939B2 (en) Endoscope system and method for operating endoscope system
JP6874087B2 (en) Endoscope system and how to operate the endoscope system
JP2016158837A (en) Endoscope light source device, endoscope system, and operation method of endoscope light source device
JP6905038B2 (en) Light source device and endoscopic system
JP6039605B2 (en) Endoscope system and operating method thereof
JP7191978B2 (en) Endoscope light source device, endoscope device, and light intensity adjustment method
JP6659817B2 (en) Medical image processing equipment
JP2016209517A (en) Endoscope system and operation method therefor
JP6276149B2 (en) Endoscope system and operating method thereof
JP6386939B2 (en) Endoscope light source device, endoscope system, and operation method of endoscope light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250