JP6648538B2 - Electrodeposition coating equipment - Google Patents

Electrodeposition coating equipment Download PDF

Info

Publication number
JP6648538B2
JP6648538B2 JP2016012666A JP2016012666A JP6648538B2 JP 6648538 B2 JP6648538 B2 JP 6648538B2 JP 2016012666 A JP2016012666 A JP 2016012666A JP 2016012666 A JP2016012666 A JP 2016012666A JP 6648538 B2 JP6648538 B2 JP 6648538B2
Authority
JP
Japan
Prior art keywords
electrodeposition coating
ejection
electrodeposition
coating liquid
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016012666A
Other languages
Japanese (ja)
Other versions
JP2017133056A (en
Inventor
鈴木 伸和
伸和 鈴木
大之 小林
大之 小林
鈴木 賢司
賢司 鈴木
誠喜 加藤
誠喜 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2016012666A priority Critical patent/JP6648538B2/en
Publication of JP2017133056A publication Critical patent/JP2017133056A/en
Application granted granted Critical
Publication of JP6648538B2 publication Critical patent/JP6648538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電着塗装液を電着槽に流通させながら被塗装物を電着塗装する電着塗装装置に関する。   The present invention relates to an electrodeposition coating apparatus for performing electrodeposition coating of an object to be coated while flowing an electrodeposition coating liquid through an electrodeposition tank.

従来、自動車ボディなどの防錆性を確保するために、複雑な形状を有する部品でも均一な塗膜を形成することが可能なカチオン電着塗装装置が知られている(例えば、特許文献1〜2参照)。この電着塗装装置は、自動車ボディ(被塗装物)で構成される陰極と、電着槽内に配置される陽極とに電圧を印加することで、陰極で電気分解された水の陰イオンとカチオン電着塗装液とを反応させて、被塗装物に塗膜を析出させるものである。   2. Description of the Related Art Conventionally, a cationic electrodeposition coating apparatus capable of forming a uniform coating film even on a component having a complicated shape in order to ensure rust prevention such as an automobile body is known (for example, Patent Documents 1 to 4). 2). This electrodeposition coating apparatus applies a voltage to a cathode composed of an automobile body (object to be coated) and an anode disposed in an electrodeposition tank to form anion of water electrolyzed at the cathode. It reacts with a cationic electrodeposition coating liquid to deposit a coating film on an object to be coated.

特許文献1の電着塗装装置は、自動車ボディの内部にプロペラ攪拌機を配置し、当該内部にある電着塗装液を直接撹拌することで、ボディ内面付近の流速を高めながら、袋状部分は塗膜析出量が極大値付近となる流速に制御するものである。これによって、ボディ内面の膜厚を減少させて袋状部分の膜厚を増加させることができると記載されている。   The electrodeposition coating apparatus disclosed in Patent Document 1 arranges a propeller stirrer inside an automobile body and directly agitates the electrodeposition coating liquid inside the body to increase the flow velocity near the inner surface of the body while coating the bag-shaped portion. The flow rate is controlled so that the film deposition amount becomes near the maximum value. It is described that the thickness of the bag-shaped portion can be increased by reducing the thickness of the inner surface of the body.

特許文献2の電着塗装装置は、電着槽の液面直下と側壁とに複数の噴射ノズルなどを設置し、自動車ボディ表面の電着塗装液の流速を高め、膜厚を増加させるものである。また、特許文献2には、流速が変曲点以上になると、陰極で発生する水素ガスのガス抜け作用が促進され、ボディ表面の電気抵抗値が低下して膜厚が増加すると記載されている。   The electrodeposition coating apparatus of Patent Document 2 is provided with a plurality of injection nozzles and the like just below the liquid level of an electrodeposition tank and on a side wall to increase the flow rate of the electrodeposition coating liquid on the surface of an automobile body and increase the film thickness. is there. In addition, Patent Document 2 describes that when the flow velocity is equal to or higher than the inflection point, the outgassing action of hydrogen gas generated at the cathode is promoted, the electric resistance value of the body surface decreases, and the film thickness increases. .

特開平10−237695号公報JP-A-10-237695 特開2000−119897号公報JP 2000-119897 A

しかしながら、特許文献1の電着塗装装置は、電着塗装液の流速を高めるためにプロペラ攪拌機を設置する必要があり、装置が大型化してしまう。また、プロペラ攪拌機を被塗装物の内部に設置する技術では、小型の自動車部品に電着塗装を施す場合に設置スペースを確保できない。   However, in the electrodeposition coating apparatus of Patent Document 1, it is necessary to install a propeller stirrer in order to increase the flow rate of the electrodeposition coating liquid, and the apparatus becomes large. In addition, the technique of installing a propeller stirrer inside an object to be coated cannot secure an installation space when performing electrodeposition coating on a small automobile part.

一方、特許文献2のように電着槽の液面直下と側壁とに複数の噴射ノズルを設ける技術では、被塗装物の内部の流速を高めることが難しく、陰極で発生した水素ガスが塗膜に滞留してガスピンホールを招いてしまうおそれがある。特に、塗装速度を高めるために印加電圧を大きくした場合、水素ガスが大量に発生して塗膜破壊が発生し易い。その結果、被塗装物に対して所望の防錆性能を発揮することができない。   On the other hand, in the technique of providing a plurality of spray nozzles directly below the liquid level of the electrodeposition tank and on the side wall as in Patent Document 2, it is difficult to increase the flow velocity inside the object to be coated, and the hydrogen gas generated at the cathode is coated with hydrogen gas. And may cause gas pinholes. In particular, when the applied voltage is increased to increase the coating speed, a large amount of hydrogen gas is generated, and the coating film is likely to be broken. As a result, desired rust prevention performance cannot be exerted on the object to be coated.

そこで、小型の自動車部品に電着塗装を施す場合でも、塗装速度を高めつつ平滑性のある塗膜を形成することのできる電着塗装装置が望まれている。   Therefore, there is a demand for an electrodeposition coating apparatus capable of forming a smooth coating film while increasing the coating speed even when applying electrodeposition coating to small automobile parts.

電着塗装装置の特徴構成は、長尺状で長手方向に沿う貫通空間が形成された被塗装物の全域を浸す電着塗装液が収容され、前記被塗装物の前記長手方向を上下方向として配置した電着槽と、前記被塗装物に接続された第1電極部と、前記電着槽の内部に配置され、前記第1電極部とは対極となる第2電極部と、前記被塗装物の側方から前記被塗装物に向かって前記電着塗装液を噴出させる第1噴出部と、前記電着槽の下方から前記被塗装物の前記貫通空間に向かって前記電着塗装液を噴出させる第2噴出部と、を備え、前記第1電極部および前記第2電極部に電圧を印加するとき、前記第1噴出部および前記第2噴出部から同時に前記電着塗装液を噴出させる点にある。 Characteristic feature of the electrodeposition coating device, electrodeposition coating solution bathing the entire area of the coated article through the space along the longitudinal direction of the elongated is formed is housed, the longitudinal direction of the object to be coated as a vertical direction An electrodeposition bath disposed therein, a first electrode portion connected to the object to be coated, a second electrode portion disposed inside the electrodeposition bath and serving as a counter electrode to the first electrode portion, and A first ejection part for ejecting the electrodeposition coating liquid from the side of the object toward the object to be coated, and the electrodeposition coating liquid from below the electrodeposition tank toward the penetration space of the object to be coated. A second jetting unit for jetting, and when applying a voltage to the first electrode unit and the second electrode unit, the electrodeposition coating liquid is jetted simultaneously from the first jetting unit and the second jetting unit. On the point.

第1電極部では、電着塗装液が水の電気分解で発生するイオン(アニオン電着塗装では陽イオン、カチオン電着塗装では陰イオン)と反応して被塗装物に塗膜が析出される。その際、第1電極部では、気泡(アニオン電着塗装では酸素ガス、カチオン電着塗装では水素ガス)が発生する。この気泡が塗膜に滞留すると、塗膜抵抗が低下して放電することで塗膜が硬化し、焼付後にガスピンホールが形成されてしまう。特に、印加電圧が大きい場合は、塗膜抵抗が低下した部位で水の電気分解が促進されて気泡が大量に発生し、焼付後に被塗装物の表面にクレータ状の部位が形成される(塗膜破壊)。その結果、平滑性のある塗膜が形成されず、所望の防錆性能を発揮することができない。   In the first electrode portion, the electrodeposition coating solution reacts with ions (cations in anion electrodeposition coating and anions in cation electrodeposition coating) generated by electrolysis of water to deposit a coating film on an object to be coated. . At this time, bubbles (oxygen gas in anion electrodeposition coating and hydrogen gas in cation electrodeposition coating) are generated in the first electrode portion. When these bubbles stay in the coating film, the coating film resistance is reduced and the coating film is hardened by electric discharge, and gas pinholes are formed after baking. In particular, when the applied voltage is large, the electrolysis of water is promoted at the portion where the coating film resistance is reduced, and a large amount of air bubbles are generated. Membrane destruction). As a result, a smooth coating film is not formed, and the desired rust prevention performance cannot be exhibited.

しかしながら、本構成における第2噴出部は、電着槽の下方から被塗装物に向かって電着塗装液を噴出させる。このため、被塗装物の塗膜に存在する気泡は、電着塗装液によって上方へ離脱し、塗膜の外部に連れ出される。その結果、塗膜に気泡が滞留することがなく、塗膜破壊の発生を防止することができる。また、第1噴出部によって、被塗装物の側方からも電着塗装液を噴出させるので、被被塗装物の塗膜に存在する気泡の離脱を促進させる。   However, the second ejection section in the present configuration ejects the electrodeposition coating liquid from below the electrodeposition tank toward the object to be coated. For this reason, bubbles existing in the coating film of the object to be coated are separated upward by the electrodeposition coating liquid and taken out of the coating film. As a result, bubbles do not stay in the coating film, and the occurrence of coating film destruction can be prevented. Further, since the electrodeposition coating liquid is jetted from the side of the object to be coated by the first jetting portion, the separation of bubbles existing in the coating film of the object to be coated is promoted.

一方、被塗装物から連れ出された気泡が、被塗装物の塗膜に再付着するおそれがある。しかしながら、本構成では、被塗装物の長手方向を上下方向に配置し、第2噴出部が下方から上方に電着塗装液を流動させるので、気泡が被塗装物に干渉されることなく円滑に上昇する。その結果、塗膜に気泡が再付着する不都合が解消され、平滑性のある塗膜を確実に形成することができる。   On the other hand, there is a possibility that the air bubbles taken out of the object to be coated re-adhere to the coating film of the object to be coated. However, in this configuration, the longitudinal direction of the object to be coated is arranged in the up-down direction, and the second jetting portion allows the electrodeposition coating liquid to flow upward from below, so that the air bubbles are smoothly prevented from interfering with the object to be coated. To rise. As a result, the inconvenience of air bubbles re-adhering to the coating film is eliminated, and a smooth coating film can be reliably formed.

このように、被塗装物の塗膜から速やかに気泡を除去することができるので、大きな電圧を印加しても気泡が滞留して塗膜を破壊させることがない。つまり、通常、印加電圧が大きいほど早く塗膜が形成される性質上、本構成では、従来に比べて印加電圧を大きくして塗装速度を高めることが可能となる。よって、本構成を採用することで、塗装速度を高めつつ平滑性のある塗膜を形成することができる電着塗装装置を提供できた。   As described above, since bubbles can be quickly removed from the coating film of the object to be coated, the bubbles do not stay and break the coating film even when a large voltage is applied. That is, in general, the higher the applied voltage, the sooner the coating film is formed. Therefore, in the present configuration, it is possible to increase the applied voltage and increase the coating speed as compared with the related art. Therefore, by adopting this configuration, it was possible to provide an electrodeposition coating apparatus capable of forming a smooth coating film while increasing the coating speed.

他の特徴構成は、前記電着槽に隣接して設けられ、溢れた前記電着塗装液を収容する溜め部と、前記第1噴出部の上部に設けられ、前記電着塗装液を前記溜め部に向かって噴出させる第3噴出部と、を備えている点にある。   Another characteristic configuration is that a reservoir is provided adjacent to the electrodeposition tank and accommodates the overflowing electrodeposition coating liquid, and is provided on an upper portion of the first ejection section, and the reservoir holds the electrodeposition coating liquid. And a third jetting portion for jetting toward the portion.

被塗装物の塗膜から連れ出された気泡は上昇して、電着槽の液面から緩やかに排出される。このとき、気泡が大量に発生した場合、排出効率が低下して被塗装物の周辺に気泡が逆流するおそれがある。本構成のように、溜め部に向かって電着塗装液を噴出させる第3噴出部を設ければ、電着槽の液面に滞留した気泡は溜め部の方に移動する。その結果、被塗装物の塗膜から除去された気泡を、被塗装物の周囲に逆流させることなく円滑に外部に排出することが可能となる。よって、塗膜に気泡が再付着することを防止して、平滑性のある塗膜をより確実に形成することができる。しかも、第1噴出部の上部に第3噴出部を設ければ、個別に第3噴出部を設ける必要がなく効率的である。   The bubbles taken out of the coating film of the object to be raised rise and are slowly discharged from the liquid level of the electrodeposition tank. At this time, if a large amount of air bubbles are generated, the discharge efficiency may be reduced and the air bubbles may flow back around the object to be coated. If a third ejection unit for ejecting the electrodeposition coating liquid toward the reservoir is provided as in the present configuration, the bubbles staying on the liquid surface of the electrodeposition tank move toward the reservoir. As a result, the air bubbles removed from the coating film of the object to be coated can be smoothly discharged to the outside without flowing back around the object to be coated. Therefore, the bubbles can be prevented from re-adhering to the coating film, and a coating film having smoothness can be more reliably formed. In addition, if the third ejection section is provided above the first ejection section, it is not necessary to separately provide the third ejection section, which is efficient.

他の特徴構成は、前記第1噴出部は、前記電着槽の周方向に沿って複数設けられ、前記電着槽の下方から前記電着塗装液を噴出させて、夫々の前記第1噴出部の前記周方向に沿った間に上方流を発生させる第4噴出部を備えている点にある。   Another characteristic configuration is that the first ejection section is provided in a plurality along the circumferential direction of the electrodeposition tank, and ejects the electrodeposition coating liquid from below the electrodeposition tank to form each of the first ejection sections. And a fourth ejection portion for generating an upward flow while being along the circumferential direction of the portion.

本構成のように、第2噴出部に加えて、下方から上方に電着塗装液を流動させる第4噴出部を設けることで、気泡の上昇速度を高めて塗膜に気泡が再付着することを確実に防止することができる。しかも、この第4噴出部によって電着塗装液が流動する方向は、第1噴出部の噴出領域に干渉しない領域である第1噴出部の周方向に沿った間に設定しているので、電着塗装液の流動方向が下から上へと一定化され、気泡を液面へと円滑に導くことができる。   As in the present configuration, in addition to the second ejection portion, by providing the fourth ejection portion for flowing the electrodeposition coating liquid upward from below, the rising speed of the bubbles is increased, and the bubbles are re-adhered to the coating film. Can be reliably prevented. In addition, since the direction in which the electrodeposition coating liquid flows by the fourth ejection part is set along the circumferential direction of the first ejection part, which is a region that does not interfere with the ejection area of the first ejection part, The flow direction of the coating liquid is constant from bottom to top, and air bubbles can be smoothly guided to the liquid surface.

他の特徴構成は、前記第1電極部および前記第2電極部に印加する電圧に応じて、前記第1噴出部および第2噴出部における前記電着塗装液の噴出速度を設定する制御部を備えている点にある。   Another characteristic configuration includes a control unit that sets a jetting speed of the electrodeposition coating liquid in the first jetting unit and the second jetting unit according to a voltage applied to the first electrode unit and the second electrode unit. It has a point.

被塗装物に形成する膜厚の目標値に応じて、印加電圧は設定される。電着塗装液の噴出速度を高めれば、塗膜に発生する気泡は確実に除去されるが、印加電圧が小さい場合は噴出速度を小さく設定しても塗膜破壊を防止することができる。そこで、本構成のように、印加電圧に応じて電着塗装液の噴出速度を設定すれば、消費電力を節約することができる。   The applied voltage is set according to the target value of the film thickness formed on the workpiece. If the jetting speed of the electrodeposition coating liquid is increased, bubbles generated in the coating film are surely removed. However, when the applied voltage is small, the coating film can be prevented from being broken even if the jetting speed is set low. Thus, as in this configuration, if the ejection speed of the electrodeposition coating liquid is set according to the applied voltage, power consumption can be reduced.

他の特徴構成は、前記第1噴出部は、前記電着槽の側壁と前記被塗装物との中間よりも前記被塗装物の側に配置されている点にある。   Another characteristic configuration is that the first ejection portion is disposed closer to the object to be coated than between the side wall of the electrodeposition tank and the object to be coated.

本構成のように、第1噴出部を被塗装物の側に接近させることで、噴出された電着塗装液を被塗装物の側面に衝突させることが可能となる。その結果、被塗装物の塗膜に発生した気泡を強制的に除去することができる。   As in the present configuration, by causing the first ejection portion to approach the object to be coated, the ejected electrodeposition coating liquid can collide with the side surface of the object to be coated. As a result, it is possible to forcibly remove bubbles generated in the coating film of the object to be coated.

本実施形態に係る電着塗装装置の全体図である。1 is an overall view of an electrodeposition coating apparatus according to the present embodiment. 本実施形態に係る噴出部を示す斜視図である。It is a perspective view which shows the ejection part which concerns on this embodiment. 図1のIII−III矢視図である。FIG. 3 is a view taken in the direction of arrows III-III in FIG. 1. 噴流速度と塗膜破壊が発生する電圧との関係図である。FIG. 3 is a diagram illustrating a relationship between a jet velocity and a voltage at which coating film destruction occurs. 噴流速度を変化させた場合における印加電圧と塗装速度との関係図である。FIG. 4 is a diagram illustrating a relationship between an applied voltage and a coating speed when a jet velocity is changed. 本実施例に係る被塗装物の外観写真である。It is an external appearance photograph of the to-be-coated object which concerns on a present Example. 比較例に係る被塗装物の外観写真である。It is an external appearance photograph of the to-be-coated object which concerns on a comparative example. 別実施形態1に係る噴出部を示す斜視図である。It is a perspective view which shows the ejection part which concerns on another Embodiment 1. 別実施形態2に係る噴出部を示す斜視図である。It is a perspective view which shows the ejection part which concerns on another Embodiment 2. 別実施形態3に係る電着塗装装置を上方から見た図である。It is the figure which looked at the electrodeposition coating device concerning another embodiment 3 from the upper part.

以下に、本発明に係る電着塗装装置の実施形態について、図面に基づいて説明する。本実施形態における電着塗装装置Xとして、ワーク41(被塗装物の一例)を陰極部4(第1電極部の一例)としてカチオン電着塗装液2(電着塗装液の一例)を電着塗装する一例を説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。   Hereinafter, an embodiment of an electrodeposition coating apparatus according to the present invention will be described with reference to the drawings. As the electrodeposition coating apparatus X in the present embodiment, a cation electrodeposition coating liquid 2 (an example of an electrodeposition coating liquid) is electrodeposited using a workpiece 41 (an example of an object to be coated) as a cathode section 4 (an example of a first electrode section). An example of painting will be described. However, without being limited to the following embodiments, various modifications can be made without departing from the scope of the invention.

図1〜図3には、電着塗装装置Xが示される。また、図4および図5には、電着塗装装置Xでカチオン電着塗装を実施した場合の、噴出速度指数−塗膜破壊の関係、印加電圧−塗装速度指数の関係をプロットした図が示される。なお、以下の実施形態で詳述する数値は一例であり、限定されるものではない。   1 to 3 show an electrodeposition coating apparatus X. FIGS. 4 and 5 show plots of the relationship between the ejection speed index and the coating film destruction and the relationship between the applied voltage and the coating speed index when the cationic electrodeposition coating is performed by the electrodeposition coating apparatus X. It is. It should be noted that the numerical values described in detail in the following embodiments are examples, and are not limited.

[基本構成]
図1に示すように、電着塗装装置Xは、長尺状のワーク41の長手方向を上下方向として配置され、カチオン電着塗装液2が収容された電着槽1と、ワーク41に接続された陰極部4と、電着槽1の内部に配置され、陰極部4とは対極となる陽極部5(第2電極部の一例)とを備えている。また、溢れたカチオン電着塗装液2を収容する溜め部11が、電着槽1に隣接して設けられている。なお、本実施形態で電着塗装するワーク41としては、例えば座席のガイドレール、パイプ、ディビジョンバー(窓の仕切り部材)などの、防錆性や美観が要求される小型の自動車部品を想定している。つまり、ワーク41は、長尺状に形成され、長手方向に沿う貫通空間41aが中央に形成されている。
[Basic configuration]
As shown in FIG. 1, the electrodeposition coating apparatus X is arranged such that the longitudinal direction of a long workpiece 41 is arranged in the vertical direction, and is connected to the electrodeposition tank 1 containing the cationic electrodeposition coating liquid 2 and the workpiece 41. The cathode unit 4 includes an anode unit 5 (an example of a second electrode unit) which is disposed inside the electrodeposition tank 1 and is a counter electrode to the cathode unit 4. In addition, a reservoir 11 for containing the overflowed cationic electrodeposition coating liquid 2 is provided adjacent to the electrodeposition tank 1. The work 41 to be electrodeposited in the present embodiment is assumed to be a small automobile part requiring rust prevention and aesthetics, such as a guide rail of a seat, a pipe, a division bar (a partition member of a window), and the like. ing. That is, the work 41 is formed in a long shape, and the through space 41a along the longitudinal direction is formed at the center.

本実施形態における電着槽1の中央には、貫通空間41a(長手方向)が上下方向に沿うようにワーク41が固定されている。また、電着槽1には、カチオン電着塗装液2を導入する導入部3が底部中央付近に形成されている。この導入部3には、溜め部11のカチオン電着塗装液2をポンプPで循環させている。なお、導入部3や導入部3とは異なる箇所に、ワーク41の塗装が進みにつれて電着槽1から持ち出される塗料成分を補給するための補給部(不図示)を設けても良い。また、溜め部11のカチオン電着塗装液2を濾過して、導入部3に循環させても良い。   A work 41 is fixed at the center of the electrodeposition tank 1 in the present embodiment such that the penetration space 41a (longitudinal direction) extends in the vertical direction. In addition, in the electrodeposition tank 1, an introduction part 3 for introducing the cationic electrodeposition coating liquid 2 is formed near the bottom center. The pump 3 circulates the cationic electrodeposition coating liquid 2 in the reservoir 11 in the introduction section 3. Note that a replenishing unit (not shown) for replenishing the paint component taken out of the electrodeposition tank 1 as the painting of the work 41 progresses may be provided at the introduction unit 3 or at a location different from the introduction unit 3. Further, the cationic electrodeposition coating liquid 2 in the reservoir 11 may be filtered and circulated to the introduction part 3.

カチオン電着塗装液2は、アクリル樹脂、エポキシ系樹脂やエポキシ−ポリアミド系樹脂などに添加物、溶剤を含む陽イオン電解性樹脂を展色材(ビヒクル)とし、この陽イオン電解性樹脂に顔料を加えたものを水性媒体中に分散させて構成される。   The cationic electrodeposition coating liquid 2 is a vehicle in which a cationic electrolytic resin containing an additive and a solvent is added to an acrylic resin, an epoxy resin, an epoxy-polyamide resin, or the like, and a coloring material (vehicle) is used. Is dispersed in an aqueous medium.

陰極部4は、導電性のある係止部材42によってワーク41が係止された状態で、直流電源7と接続されている。図1に示すように、ワーク41は、電着槽1に収容されたカチオン電着塗装液2に、すべての領域が浸された状態となっている。   The cathode portion 4 is connected to the DC power supply 7 in a state where the work 41 is locked by the conductive locking member 42. As shown in FIG. 1, the work 41 is in a state in which all regions are immersed in the cationic electrodeposition coating liquid 2 stored in the electrodeposition tank 1.

陽極部5は、ステンレスや炭素板などで構成され、図3に示すように、陰極部4の周方向に沿って等間隔に四つ配置されている。また、陰極部4と陽極部5とは、電極どうしの間隔L1を所定の距離(例えば5cm)に保って配置されている。   The anode portions 5 are made of stainless steel, a carbon plate, or the like, and are arranged at equal intervals along the circumferential direction of the cathode portion 4 as shown in FIG. Further, the cathode section 4 and the anode section 5 are arranged so that the distance L1 between the electrodes is kept at a predetermined distance (for example, 5 cm).

ところで、一般的な電着塗装工程において、カチオン電着塗装を施す前に、脱脂してリン酸塩系の表面処理を行う。次いで、カチオン電着塗装工程でワーク41に塗膜を形成した後、水洗工程を経て焼付工程を実施し、ワーク41の電着塗装が完了する。このカチオン電着塗装は、ワーク41に塗膜が順次形成される性質を有するので、所謂つきまわり性が高く、均一な膜厚を形成して所望の防錆性能を発揮することのできる優れた塗装方法である。   By the way, in a general electrodeposition coating process, a phosphate-based surface treatment is performed by degreasing before applying the cationic electrodeposition coating. Next, after a coating film is formed on the work 41 in the cationic electrodeposition coating process, a baking process is performed through a water washing process, and the electrodeposition coating of the work 41 is completed. Since the cationic electrodeposition coating has a property that a coating film is sequentially formed on the work 41, the so-called throwing power is high, and an excellent thickness capable of forming a uniform film thickness and exhibiting a desired rust prevention performance can be exhibited. It is a painting method.

カチオン電着塗装工程において、水性溶媒中の水が電気分解して発生する水酸化物イオンと、陽イオン電解性樹脂中のアミノ基とが反応して、陰極部4のワーク41に水不溶性の塗膜が形成される。図5に示すように、陰極部4および陽極部5への印加電圧を上げれば、上記反応が促進して塗装速度が高まり、より増膜することが知られている。一方、陰極部4では、水素イオンが電荷を受け取り、水素ガスが発生する。このとき、電極部4,5への印加電圧を上げれば、ワーク41の塗膜内に多くの水素ガスが滞留し、塗膜の成長を阻害し易い。このため、塗膜抵抗が低下して放電することで塗膜が硬化し、焼付後にガスピンホールが形成されてしまう。   In the cationic electrodeposition coating process, hydroxide ions generated by electrolysis of water in the aqueous solvent react with amino groups in the cation-electrolytic resin to form a water-insoluble material on the workpiece 41 of the cathode portion 4. A coating is formed. As shown in FIG. 5, it is known that, when the voltage applied to the cathode portion 4 and the anode portion 5 is increased, the above reaction is accelerated, the coating speed is increased, and the film is further increased. On the other hand, in the cathode section 4, the hydrogen ions receive electric charges, and hydrogen gas is generated. At this time, if the voltage applied to the electrode portions 4 and 5 is increased, a large amount of hydrogen gas stays in the coating film of the work 41 and the growth of the coating film is likely to be hindered. For this reason, the coating film hardens due to a decrease in the coating film resistance and discharge, and gas pinholes are formed after baking.

特に、電極部4,5への印加電圧を高めすぎた場合、水素ガスが大量に発生するので、焼付工程でワーク41の塗膜内に滞留している水素ガスが塗膜を破壊して、ワーク41の表面にクレータ状の部位が形成される。その結果、外観不良となって所望の防錆性能を発揮することができない。   In particular, when the voltage applied to the electrode portions 4 and 5 is too high, a large amount of hydrogen gas is generated, and the hydrogen gas remaining in the coating film of the work 41 in the baking process destroys the coating film. A crater-like portion is formed on the surface of the work 41. As a result, the appearance becomes poor and the desired rust prevention performance cannot be exhibited.

この外観不良は、カチオン電着塗装液2の浴抵抗や電解度、陽極部5の形状や配置、ワーク41の材質や形状などの諸条件で異なるが、塗膜破壊は概ね230V以上から発生しやすくなる傾向がある。   This appearance defect differs depending on various conditions such as bath resistance and electrolyticity of the cationic electrodeposition coating solution 2, the shape and arrangement of the anode part 5, and the material and shape of the work 41. However, coating film destruction generally occurs from 230V or more. Tends to be easier.

そこで、本実施形態における電着塗装装置Xでは、ワーク41の側方からワーク41に向かってカチオン電着塗装液2を噴出させる第1噴出部12と、電着槽1の下方からワーク41の貫通空間41a(ワーク41の長手方向)に向かってカチオン電着塗装液2を噴出させる第2噴出部13とを設けている。また、これら噴出部12,13にカチオン電着塗装液2を分配する分配ボックス31が、導入部3に接続されている。この分配ボックス31がカチオン電着塗装液2を貯留するバッファ機能を有するので、噴出部12,13の噴出圧を適正なものに設定できる。   Therefore, in the electrodeposition coating apparatus X according to the present embodiment, the first ejection unit 12 that ejects the cationic electrodeposition coating liquid 2 from the side of the work 41 toward the work 41, and the work 41 from below the electrodeposition tank 1. A second ejection section 13 for ejecting the cationic electrodeposition coating liquid 2 toward the through space 41a (the longitudinal direction of the work 41) is provided. In addition, a distribution box 31 for distributing the cationic electrodeposition coating liquid 2 to the ejection sections 12 and 13 is connected to the introduction section 3. Since the distribution box 31 has a buffer function for storing the cationic electrodeposition coating liquid 2, the ejection pressure of the ejection portions 12, 13 can be set to an appropriate value.

また、電着塗装装置Xは、ポンプPの吐出圧を制御して、分配ボックス31を介して噴出部12,13から排出されるカチオン電着塗装液2の噴出速度を制御する制御部8を備えている。   The electrodeposition coating apparatus X controls the discharge pressure of the pump P to control the discharge speed of the cationic electrodeposition coating liquid 2 discharged from the discharge units 12, 13 via the distribution box 31. Have.

図2および図3に示すように、分配ボックス31の二つの側面には、夫々の第1噴出部12がL字管状に延出している。つまり、第1噴出部12は、電着槽1の周方向に沿って等間隔に複数(本実施形態では、二箇所)設けられ、互いに対向する第1噴出部12どうしの間隔L2は、所定の距離(例えば20cm)で設定されている。また、第1噴出部12は、ワーク41の側面に噴出孔部12aを所定のピッチ(例えば9cmピッチ)で形成している。なお、第1噴出部12は、一箇所又は三箇所以上でも良く、また不等間隔に設けても良い。   As shown in FIGS. 2 and 3, each of the first ejection portions 12 extends in an L-shaped tubular shape on two side surfaces of the distribution box 31. In other words, a plurality of (in this embodiment, two) first ejection portions 12 are provided at equal intervals along the circumferential direction of the electrodeposition tank 1, and the interval L2 between the first ejection portions 12 facing each other is a predetermined value. (For example, 20 cm). The first ejection portion 12 has ejection holes 12a formed on the side surface of the work 41 at a predetermined pitch (for example, 9 cm pitch). In addition, the 1st ejection part 12 may be provided in one place or three or more places, and may be provided at irregular intervals.

このように、第1噴出部12によって、ワーク41の側面にカチオン電着塗装液2を噴出させるので、ワーク41の側面の塗膜に存在する気泡が、カチオン電着塗装液2によって塗膜の外部に連れ出される。また、第1噴出部12は、電着槽1の側壁とワーク41との中間よりワーク41の側に配置されているのが好ましい。つまり、図1に示すように、第1噴出部12の内側とワーク41の外表面との間隔L3は、電着槽1の側壁の内面とワーク41の外表面との間隔L4の半分より小さく設定されているのが好ましい。その他に、第1噴出部12の内側とワーク41の外表面との間隔は、陰極部4の内面とワーク41の外表面との間隔より小さく設定されていても良い。このように、第1噴出部12をワーク41の側に接近させることで、噴出されたカチオン電着塗装液2をワーク41の側面に衝突させることが可能となる。その結果、ワーク41の塗膜に発生した気泡を強制的に除去することができる。   As described above, since the cationic spraying liquid 2 is sprayed to the side surface of the work 41 by the first spraying unit 12, bubbles existing in the coating film on the side surface of the work 41 are removed by the cationic spraying solution 2. You are taken out. Further, it is preferable that the first ejection portion 12 is arranged on the side of the work 41 from the middle between the side wall of the electrodeposition tank 1 and the work 41. That is, as shown in FIG. 1, the distance L3 between the inside of the first ejection portion 12 and the outer surface of the work 41 is smaller than half the distance L4 between the inner surface of the side wall of the electrodeposition tank 1 and the outer surface of the work 41. Preferably, it is set. In addition, the distance between the inside of the first ejection part 12 and the outer surface of the work 41 may be set smaller than the distance between the inner surface of the cathode part 4 and the outer surface of the work 41. In this way, by bringing the first ejection part 12 closer to the work 41 side, the ejected cationic electrodeposition coating liquid 2 can collide with the side surface of the work 41. As a result, air bubbles generated in the coating film of the work 41 can be forcibly removed.

また、図2および図3に示すように、分配ボックス31は、中央上面に孔状の第2噴出部13を有している。この第2噴出部13は、一箇所であっても良いし、複数箇所設けても良い。つまり、ワーク41の貫通空間41aを上下方向に配置した状態で、第2噴出部13からカチオン電着塗装液2を貫通空間41aの内部に噴出させるものである。その結果、ワーク41の内部の塗膜に存在する気泡は、カチオン電着塗装液2によって塗膜の外部に連れ出される。その結果、塗膜に気泡が滞留することがなく、塗膜破壊の発生を防止することができる。   As shown in FIGS. 2 and 3, the distribution box 31 has a second ejection part 13 having a hole shape on the center upper surface. The second ejection portion 13 may be provided at one place or at a plurality of places. That is, the cationic electrodeposition coating liquid 2 is ejected from the second ejection portion 13 into the inside of the penetration space 41a in a state where the penetration space 41a of the work 41 is arranged in the up-down direction. As a result, bubbles existing in the coating film inside the work 41 are taken out of the coating film by the cationic electrodeposition coating liquid 2. As a result, bubbles do not stay in the coating film, and the occurrence of coating film destruction can be prevented.

一方、ワーク41から連れ出された気泡が、ワーク41の塗膜に再付着するおそれがある。しかしながら、第2噴出部13によって被塗装物の下方から上方にカチオン電着塗装液2を流動させることで、気泡の上昇速度を高めて塗膜に気泡が再付着することを防止する。その結果、平滑性のある塗膜を確実に形成することができる。   On the other hand, there is a possibility that bubbles taken out of the work 41 may adhere to the coating film of the work 41 again. However, by flowing the cationic electrodeposition coating liquid 2 from below to above the object to be coated by the second ejection part 13, the rising speed of the bubbles is increased, and the bubbles are prevented from re-adhering to the coating film. As a result, a smooth coating film can be reliably formed.

また、電着塗装装置Xに噴出部12,13を設けることによって、図4に示すように、塗膜破壊が発生しない印加電圧を高めることができる。特に、本実施形態では、破壊電圧(限界電圧)と噴出速度指数との関係を規定している。噴出部12,13からのカチオン電着塗装液2の噴出速度をA(L/分)からB(L/分)まで約4倍に高めれば、塗膜破壊が発生しない印加電圧を約1.3倍(以下、「最大電圧」と言う。)まで高めることができる。一方、噴出速度をB(L/分)としても塗膜破壊電圧は上昇しないので、上述した電着塗装装置Xの設定条件下において、噴出速度は概ねB(L/分)が好ましい。   Further, by providing the jetting parts 12 and 13 in the electrodeposition coating apparatus X, as shown in FIG. 4, it is possible to increase the applied voltage at which the coating film is not broken. In particular, in the present embodiment, the relationship between the breakdown voltage (limit voltage) and the ejection speed index is defined. If the jetting speed of the cationic electrodeposition coating liquid 2 from the jetting parts 12 and 13 is increased about four times from A (L / min) to B (L / min), the applied voltage that does not cause the destruction of the coating film is about 1. It can be increased up to three times (hereinafter referred to as “maximum voltage”). On the other hand, since the coating film breakdown voltage does not increase even if the ejection speed is set to B (L / min), the ejection speed is preferably approximately B (L / min) under the above-mentioned set conditions of the electrodeposition coating apparatus X.

しかも、図5に示すように、同じ電圧を印加した場合、噴出部12,13からのカチオン電着塗装液2の噴出速度は、塗装速度に影響を与えない。つまり、印加電圧を大きくできる噴出速度としても、カチオン電着塗装液2のつきまわり性が低下しない。このように、本実施形態における電着塗装装置Xは、従来に比べて印加電圧を大きくして塗装速度を高めながらも、平滑性のある塗膜を確実に形成することができる。   Moreover, as shown in FIG. 5, when the same voltage is applied, the ejection speed of the cationic electrodeposition coating liquid 2 from the ejection portions 12 and 13 does not affect the coating speed. That is, the throwing power of the cationic electrodeposition coating liquid 2 does not decrease even if the ejection speed can increase the applied voltage. As described above, the electrodeposition coating apparatus X according to the present embodiment can surely form a smooth coating film while increasing the coating speed by increasing the applied voltage compared to the related art.

ワーク41に形成する膜厚に応じて、印加電圧は設定される。カチオン電着塗装液2の噴出速度を高めれば、塗膜に発生する気泡は確実に除去されるが、印加電圧が小さい場合は噴出速度を小さく設定しても塗膜破壊を防止することができる。そこで、本実施形態における制御部8は、陰極部4および陽極部5に印加する電圧に応じて、噴出部12,13におけるカチオン電着塗装液2の噴出速度を設定することとしている。これによって、ワーク41の表面に所望の膜厚を有する塗装を形成することができる。   The applied voltage is set according to the film thickness formed on the work 41. If the jetting speed of the cationic electrodeposition coating liquid 2 is increased, bubbles generated in the coating film are surely removed. However, when the applied voltage is small, the coating film can be prevented from being broken even if the jetting speed is set low. . Therefore, the control unit 8 in the present embodiment sets the ejection speed of the cationic electrodeposition coating liquid 2 in the ejection units 12 and 13 according to the voltage applied to the cathode unit 4 and the anode unit 5. Thereby, a coating having a desired film thickness can be formed on the surface of the work 41.

以下、本実施形態における実施例および比較例を説明する。本実施例,比較例の前提条件として、ワーク41に奥行き約3cm、幅約5cm、長さ約38cmの断面U字状の冷延鋼板(ガイドレール)、陽極部5に円柱状のステンレス材を用い、陰極部4をワーク41の周囲に四箇所配置し、陰極部4と陽極部5との電極どうしの間隔L1を約5cmに設定した。このワーク41の穴を係止部材42の係止爪に引っ掛けた状態で、カチオン電着塗装液2が満たされた電着槽1にワーク41の全領域を浸漬した。   Hereinafter, examples and comparative examples in the present embodiment will be described. As prerequisites for the present embodiment and the comparative example, a cold rolled steel plate (guide rail) having a U-shaped cross section with a depth of about 3 cm, a width of about 5 cm, and a length of about 38 cm is used for the work 41, and a columnar stainless steel for the anode part 5. The cathode part 4 was arranged at four places around the work 41, and the distance L1 between the electrodes of the cathode part 4 and the anode part 5 was set to about 5 cm. The entire area of the work 41 was immersed in the electrodeposition bath 1 filled with the cationic electrodeposition coating liquid 2 while the hole of the work 41 was hooked on the locking claw of the locking member 42.

[本実施例]
本実施例では、互いに対向する第1噴出部12どうしの間隔L2を約20cmに設定すると共に、第1噴出部12の噴出孔部12aを約9cmピッチで形成した。また、噴出部12,13からB(L/分)でカチオン電着塗装液2を噴出すると共に、最初の10秒間は徐々に印加電圧を上昇させながら、残り約55秒間に亘って最大電圧を印加した。
[Example]
In the present embodiment, the interval L2 between the first ejection sections 12 facing each other is set to about 20 cm, and the ejection holes 12a of the first ejection sections 12 are formed at a pitch of about 9 cm. Further, the cation electrodeposition coating liquid 2 is jetted from the jetting parts 12 and 13 at B (L / min), and while the applied voltage is gradually increased for the first 10 seconds, the maximum voltage is increased for the remaining about 55 seconds. Applied.

本実施例で電着塗装して焼付けた後のワーク41は、図6に示すように外観は平滑性を有し、良好な状態であった。よって、通常はガスピンホールや塗膜破壊が発生する高電圧領域でも、良好な電着塗装を施すことができることが確認された。   The workpiece 41 after electrodeposition coating and baking in this example had a smooth appearance and was in a good state as shown in FIG. Therefore, it was confirmed that good electrodeposition coating can be performed even in a high voltage region where gas pinholes and coating film breakage usually occur.

[比較例]
本比較例では、噴出部12,13を設けずに、最初の10秒間は徐々に印加電圧を上昇させながら、残り約55秒間に亘って本実施例と同じ最大電圧を印加した。
[Comparative example]
In this comparative example, the same maximum voltage as in the present example was applied over the remaining approximately 55 seconds while gradually increasing the applied voltage for the first 10 seconds without providing the ejection portions 12 and 13.

本比較例で電着塗装して焼付けた後のワーク41は、図7に示すように外観にはクレータ状の窪みが発生し、特にワーク41のエッジ部分近傍にこの窪みが多く散在していた。これは、塗膜内に水素ガスが大量に滞留して局所的に電流が集中し、塗膜を硬化させる放電現象が発生したことが推測される。このように、噴出部12,13を設けずに大きな電圧を印加すると、塗装速度が高まらず、塗膜破壊が発生してしまうことが確認された。   As shown in FIG. 7, the work 41 after electrodeposition coating and baking in this comparative example had a crater-shaped depression in its appearance, and many of the depressions were scattered particularly near the edge portion of the work 41. . This is presumably because a large amount of hydrogen gas stayed in the coating film, the current was locally concentrated, and a discharge phenomenon occurred to harden the coating film. As described above, it was confirmed that when a large voltage was applied without providing the ejection portions 12 and 13, the coating speed did not increase and the coating film was destroyed.

以下、別実施形態について、図面の理解を容易にするため、上述した実施形態と同じ部材名称及び符号を用いて説明する。   Hereinafter, another embodiment will be described using the same member names and reference numerals as in the above-described embodiment to facilitate understanding of the drawings.

[別実施形態1]
図8に示すように、本実施形態では、上述した実施形態と異なる点として、ワーク41の側方からカチオン電着塗装液2を噴出させて、カチオン電着塗装液2を溜め部11に向かって流動させる第3噴出部14を備えたことにある。この第3噴出部14は、第2噴出部13と同じ管部材を用いて、夫々の第2噴出部13の上部に溜め部11に向く噴出孔部14aを設けて形成されている。なお、第3噴出部14を、複数の第2噴出部13の全長に亘って溜め部11に向く噴出孔部14aを複数設けても良いし、第2噴出部13とは別の管部材を分配ボックス31に接続しても良く、特に限定されない。また、第3噴出部14は一箇所でも良いし、二箇所以上の任意の数であっても良い。
[Another embodiment 1]
As shown in FIG. 8, the present embodiment is different from the above-described embodiment in that the cationic electrodeposition coating liquid 2 is ejected from the side of the work 41 and the cationic electrodeposition coating liquid 2 is directed toward the reservoir 11. That is, the third jetting portion 14 for causing the fluid to flow. The third jetting portion 14 is formed by using the same pipe member as the second jetting portion 13 and providing an jetting hole portion 14 a facing the reservoir 11 above each of the second jetting portions 13. In addition, the third ejection part 14 may be provided with a plurality of ejection holes 14 a facing the reservoir 11 over the entire length of the plurality of second ejection parts 13, or a pipe member different from the second ejection part 13 may be provided. It may be connected to the distribution box 31 and is not particularly limited. Further, the number of the third ejection portions 14 may be one, or may be an arbitrary number of two or more.

ワーク41の塗膜から連れ出された気泡は上昇して、電着槽1の液面から緩やかに排出される。このとき、気泡が大量に発生した場合、排出効率が低下してワーク41の周辺に気泡が逆流するおそれがある。本実施形態のように、溜め部11に向かってカチオン電着塗装液2を流動させる第3噴出部14を設ければ、電着槽1の液面に滞留した気泡は溜め部11の方に移動する。その結果、ワーク41の塗膜から除去された気泡を、ワーク41の周囲に逆流させることなく円滑に外部に排出することが可能となる。よって、塗膜に気泡が再付着することを防止して、平滑性のある塗膜をより確実に形成することができる。   The bubbles taken out of the coating film of the work 41 rise and are slowly discharged from the liquid surface of the electrodeposition tank 1. At this time, when a large amount of air bubbles are generated, there is a possibility that the discharge efficiency is reduced and the air bubbles flow back around the work 41. As in the present embodiment, if the third jetting part 14 for flowing the cationic electrodeposition coating liquid 2 toward the reservoir 11 is provided, the bubbles remaining on the liquid surface of the electrodeposition tank 1 are directed toward the reservoir 11. Moving. As a result, the bubbles removed from the coating film of the work 41 can be smoothly discharged to the outside without flowing back around the work 41. Therefore, the bubbles can be prevented from re-adhering to the coating film, and a coating film having smoothness can be more reliably formed.

[別実施形態2]
図9に示すように、本実施形態では、上述した実施形態と異なる点として、電着槽1の下方からカチオン電着塗装液2を噴出させて、夫々の第1噴出部12の周方向に沿った間に上方流を発生させる第4噴出部15を複数(本実施形態では、四箇所)備えたことにある。これら第4噴出部15は、分配ボックス31の上面において、第2噴出部13の周囲に等間隔に設け、孔状に形成されている。なお、第4噴出部15は、一箇所でも良いし、二箇所以上で不等間隔に設けても良い。
[Another embodiment 2]
As shown in FIG. 9, the present embodiment differs from the above-described embodiment in that the cation electrodeposition coating liquid 2 is ejected from below the electrodeposition tank 1 and the first That is, a plurality of (four in the present embodiment) fourth ejection parts 15 that generate an upward flow are provided along the space. These fourth ejection portions 15 are provided at equal intervals around the second ejection portion 13 on the upper surface of the distribution box 31 and are formed in a hole shape. The fourth ejection portion 15 may be provided at one location, or may be provided at two or more locations at irregular intervals.

本実施形態は、第2噴出部13に加えて、ワーク41の下方から上方にカチオン電着塗装液2を流動させる第4噴出部15を設けることで、気泡の上昇速度を高めて塗膜に気泡が再付着することを確実に防止することができる。しかも、この第4噴出部15の噴出方向は、第1噴出部12の噴出領域に干渉しない領域に設定しているので、カチオン電着塗装液2の流動方向が下から上へと一定化され、気泡を液面へと円滑に導くことができる。   In the present embodiment, in addition to the second ejection part 13, the fourth ejection part 15 for flowing the cationic electrodeposition coating liquid 2 from below to above the work 41 is provided, so that the rising speed of bubbles is increased and the coating film is formed on the coating film. The bubbles can be reliably prevented from reattaching. Moreover, since the ejection direction of the fourth ejection portion 15 is set to a region that does not interfere with the ejection region of the first ejection portion 12, the flow direction of the cationic electrodeposition coating liquid 2 is fixed from bottom to top. In addition, air bubbles can be smoothly guided to the liquid surface.

[別実施形態3]
図10に示すように、ワーク41、電極部4,5、噴出部12、13を有する装置群を、単一の電着槽1の内部に並列に複数設けても良い。これによって、一度に電着塗装できるワーク41の数が増え、製造効率が向上する。
[Another embodiment 3]
As shown in FIG. 10, a plurality of device groups having the work 41, the electrode units 4 and 5, and the ejection units 12 and 13 may be provided in parallel in the single electrodeposition tank 1. As a result, the number of works 41 that can be electrodeposited at one time is increased, and manufacturing efficiency is improved.

[その他の実施形態]
(1)上述した実施形態における第1噴出部12の噴出孔部12a、第2噴出部13、第3噴出部14の噴出孔部14aおよび第4噴出部15は、孔状に形成されるものに限定されず、ノズルなどで構成されていても良い。また、分配ボックス31を省略しても良い。
[Other Embodiments]
(1) The ejection holes 12a, the second ejection portions 13, and the ejection holes 14a and the fourth ejection portions 15 of the third ejection portions 14 in the above-described embodiment are formed in a hole shape. The present invention is not limited to this, and may be configured by a nozzle or the like. Further, the distribution box 31 may be omitted.

(2)上述した実施形態では、陽極部5を、ワーク41の側方に周方向に沿って等間隔に四つ備えたが、特に限定されず、陽極部5は一つ以上あれば良く、どのような配置であっても良い。また、陽極部5の形状も円柱状や板状など、どのような形態であっても良いし、陽極部5や第1噴出部12の管部材を保持する保持部材を、電着槽1に設けても良い。 (2) In the above-described embodiment, four anode portions 5 are provided at equal intervals along the circumferential direction on the side of the work 41. However, the present invention is not particularly limited. Any arrangement may be used. Further, the shape of the anode part 5 may be any shape such as a columnar shape or a plate shape, and a holding member for holding the anode part 5 and the tube member of the first ejection part 12 is attached to the electrodeposition tank 1. May be provided.

(3)上述した実施形態におけるワーク41を陰極部4に係合固定する形態は、例えば挟持部材でワーク41を保持するなどどのような形態であっても良い。 (3) The form in which the work 41 is engaged and fixed to the cathode portion 4 in the above-described embodiment may be any form such as holding the work 41 with a sandwiching member.

(4)上述した実施形態における制御部8は、電着槽1に収容されたカチオン電着塗装液2の温度や濃度を一定に制御する温度制御部や濃度制御部を備えても良い。この場合、カチオン電着塗装液2の固化を防止する効果や、膜厚の安定化が期待できる。 (4) The control unit 8 in the above-described embodiment may include a temperature control unit or a concentration control unit that controls the temperature and the concentration of the cationic electrodeposition coating liquid 2 contained in the electrodeposition tank 1 at a constant level. In this case, the effect of preventing the solidification of the cationic electrodeposition coating liquid 2 and the stabilization of the film thickness can be expected.

(5)上述した実施形態では、カチオン電着塗装を一例として挙げたが、電着塗装装置Xをアニオン電着塗装に使用しても良い。この場合、第1電極部が陽極部、第2電極部が陰極部で構成され、陽極部でアニオン電着塗装が施されると共に酸素ガスが発生する。このアニオン電着塗装においても、噴出部12,13によってワーク41の塗膜内に滞留する酸素ガスが効果的に連れ出されるので、塗膜破壊の発生を防止することができる。 (5) In the above-described embodiment, the cation electrodeposition coating is described as an example, but the electrodeposition coating apparatus X may be used for anion electrodeposition coating. In this case, the first electrode portion is constituted by an anode portion, and the second electrode portion is constituted by a cathode portion. Anion electrodeposition coating is performed on the anode portion and oxygen gas is generated. Also in this anion electrodeposition coating, since the oxygen gas staying in the coating film of the work 41 is effectively taken out by the jetting parts 12 and 13, it is possible to prevent the destruction of the coating film.

本発明は、車両部品などを電着塗装する電着塗装装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to an electrodeposition coating apparatus for electrodeposition coating a vehicle part or the like.

1 電着槽
11 溜め部
12 第1噴出部
13 第2噴出部
14 第3噴出部
15 第4噴出部
2 カチオン電着塗装液(電着塗装液)
4 陰極部(第1電極部)
41 ワーク(被塗装物)
5 陽極部(第2電極部)
8 制御部
X 電着塗装装置
DESCRIPTION OF SYMBOLS 1 Electrodeposition tank 11 Reservoir part 12 First ejection part 13 Second ejection part 14 Third ejection part 15 Fourth ejection part 2 Cationic electrodeposition coating liquid (electrodeposition coating liquid)
4 Cathode unit (first electrode unit)
41 Work (object to be coated)
5 Anode part (second electrode part)
8 control part X electrodeposition coating equipment

Claims (5)

長尺状で長手方向に沿う貫通空間が形成された被塗装物の全域を浸す電着塗装液が収容され、前記被塗装物の前記長手方向を上下方向として配置した電着槽と、
前記被塗装物に接続された第1電極部と、
前記電着槽の内部に配置され、前記第1電極部とは対極となる第2電極部と、
前記被塗装物の側方から前記被塗装物に向かって前記電着塗装液を噴出させる第1噴出部と、
前記電着槽の下方から前記被塗装物の前記貫通空間に向かって前記電着塗装液を噴出させる第2噴出部と、を備え
前記第1電極部および前記第2電極部に電圧を印加するとき、前記第1噴出部および前記第2噴出部から同時に前記電着塗装液を噴出させる電着塗装装置。
An electrodeposition bath in which a long and penetrating space along the longitudinal direction is formed, which contains an electrodeposition coating liquid that immerses the entire area of the object to be coated, wherein the longitudinal direction of the object to be coated is arranged in a vertical direction,
A first electrode unit connected to the object;
A second electrode unit disposed inside the electrodeposition tank and serving as a counter electrode to the first electrode unit;
A first ejection unit that ejects the electrodeposition coating liquid from the side of the object toward the object to be coated,
A second ejection unit that ejects the electrodeposition coating liquid from below the electrodeposition tank toward the penetration space of the object to be coated ,
An electrodeposition coating apparatus that, when a voltage is applied to the first electrode unit and the second electrode unit, ejects the electrodeposition coating liquid simultaneously from the first ejection unit and the second ejection unit .
前記電着槽に隣接して設けられ、溢れた前記電着塗装液を収容する溜め部と、
前記第1噴出部の上部に設けられ、前記電着塗装液を前記溜め部に向かって噴出させる第3噴出部と、を備えている請求項1に記載の電着塗装装置。
A reservoir provided adjacent to the electrodeposition tank and containing the overflowed electrodeposition coating liquid;
2. The electrodeposition coating apparatus according to claim 1, further comprising: a third ejection unit provided above the first ejection unit and ejecting the electrodeposition coating liquid toward the reservoir. 3.
前記第1噴出部は、前記電着槽の周方向に沿って複数設けられ、
前記電着槽の下方から前記電着塗装液を噴出させて、夫々の前記第1噴出部の前記周方向に沿った間に上方流を発生させる第4噴出部を備えている請求項1又は2に記載の電着塗装装置。
A plurality of the first ejection parts are provided along a circumferential direction of the electrodeposition tank,
4. The apparatus according to claim 1, further comprising: a fourth ejection unit that ejects the electrodeposition coating liquid from below the electrodeposition tank to generate an upward flow between the first ejection units along the circumferential direction. 3. The electrodeposition coating apparatus according to 2.
前記第1電極部および前記第2電極部に印加する電圧に応じて、前記第1噴出部および第2噴出部における前記電着塗装液の噴出速度を設定する制御部を備えている請求項1から3のいずれか一項に記載の電着塗装装置。   2. A control unit for setting a jetting speed of the electrodeposition coating liquid in the first jetting unit and the second jetting unit according to a voltage applied to the first electrode unit and the second electrode unit. 3. The electrodeposition coating apparatus according to any one of claims 1 to 3. 前記第1噴出部は、前記電着槽の側壁と前記被塗装物との中間よりも前記被塗装物の側に配置されている請求項1から4のいずれか一項に記載の電着塗装装置。   The electrodeposition coating according to any one of claims 1 to 4, wherein the first ejection portion is disposed closer to the object to be coated than an intermediate portion between a side wall of the electrodeposition tank and the object to be coated. apparatus.
JP2016012666A 2016-01-26 2016-01-26 Electrodeposition coating equipment Active JP6648538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012666A JP6648538B2 (en) 2016-01-26 2016-01-26 Electrodeposition coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012666A JP6648538B2 (en) 2016-01-26 2016-01-26 Electrodeposition coating equipment

Publications (2)

Publication Number Publication Date
JP2017133056A JP2017133056A (en) 2017-08-03
JP6648538B2 true JP6648538B2 (en) 2020-02-14

Family

ID=59504295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012666A Active JP6648538B2 (en) 2016-01-26 2016-01-26 Electrodeposition coating equipment

Country Status (1)

Country Link
JP (1) JP6648538B2 (en)

Also Published As

Publication number Publication date
JP2017133056A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US11473208B2 (en) Electropolishing method and system therefor
JP2010202962A (en) High-speed continuous plating apparatus
JP6648538B2 (en) Electrodeposition coating equipment
WO2018052023A1 (en) Zinc-nickel composite plating bath, zinc-nickel composite plating film, mold and plating method
JP3150370U (en) Electrolytic plating equipment
US2828192A (en) Method for etching metals
JP2006328487A (en) Hot-dip plated steel strip manufacturing method
KR20150101114A (en) Apparatus and method for treating surface of base metal
KR100624167B1 (en) Method and apparatus for plating with high speed
KR20100115294A (en) Electroplating apparatus
JP6459319B2 (en) Electrodeposition coating equipment
JP5375596B2 (en) Jet plating method and apparatus
JP2003020201A (en) Apparatus and element for generating hydrogen
US20200232082A1 (en) Apparatus for continuous hot-dip metal coating treatment and method for hot-dip metal coating treatment using same
KR101598391B1 (en) Cooling device for steel strip
EP2388358A1 (en) Method and apparatus for anodizing objects
KR20190050197A (en) Device for removing dendrite from edge part of plated strip, and the method
DE10248556B4 (en) Process for the treatment of a substrate for the purpose of corrosion protection and apparatus for degassing the liquid process medium used in the process
JP2018111859A (en) Plating apparatus and plating method
JP2004025163A (en) High pressure washing apparatus and treatment method before coating
WO2015129067A1 (en) Partial anodizing treatment method
JP2002080976A (en) Chemical conversion film treatment system and chemical conversion film treatment method
US20180022083A1 (en) Doctor Beam
JPH0335400B2 (en)
JPH0348211Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R151 Written notification of patent or utility model registration

Ref document number: 6648538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151