JP6648442B2 - Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine - Google Patents

Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine Download PDF

Info

Publication number
JP6648442B2
JP6648442B2 JP2015153168A JP2015153168A JP6648442B2 JP 6648442 B2 JP6648442 B2 JP 6648442B2 JP 2015153168 A JP2015153168 A JP 2015153168A JP 2015153168 A JP2015153168 A JP 2015153168A JP 6648442 B2 JP6648442 B2 JP 6648442B2
Authority
JP
Japan
Prior art keywords
cavity
piston
internal combustion
combustion engine
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015153168A
Other languages
Japanese (ja)
Other versions
JP2017031891A (en
Inventor
宗篤 柿木
宗篤 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015153168A priority Critical patent/JP6648442B2/en
Publication of JP2017031891A publication Critical patent/JP2017031891A/en
Application granted granted Critical
Publication of JP6648442B2 publication Critical patent/JP6648442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本発明は、ディーゼルエンジン等の内燃機関において、キャビティ(燃焼室)内の燃料噴霧と吸気との混合を促進すると共に、隣接する燃料噴霧同士の干渉による燃料過濃領域の発生を抑制して、不完全燃焼による煤、HC、CO等の生成を回避できる内燃機関用のピストン、内燃機関、及び内燃機関用のピストンの設計方法に関する。   The present invention promotes mixing of fuel spray and intake air in a cavity (combustion chamber) in an internal combustion engine such as a diesel engine, and suppresses generation of a fuel rich region due to interference between adjacent fuel sprays. The present invention relates to a piston for an internal combustion engine, an internal combustion engine, and a method for designing a piston for an internal combustion engine that can avoid generation of soot, HC, CO, and the like due to incomplete combustion.

ディーゼルエンジン等の内燃機関用のピストンにおいては、ピストンの頂部(冠面:ピストントップ)にキャビティと呼ばれる凹部を設けて、このキャビティの中央部に対向させて設けた燃料噴射ノズルから燃料を噴射し、この噴射された燃料噴霧をキャビティの内部で吸気と混合させて燃料を燃焼させている。この燃焼においては、不完全燃焼による煤、HC、CO等の生成がある.現象としては、次に示す通りである。図8に示すように、ピストン1Xの頂部2に設けられたキャビティ10Xにおいて、図9に示すように、燃料噴霧Fはキャビティ10Xの外周壁11に衝突した後でスワールSに流されるので、このスワールSに流された燃料噴霧Fsがスワール下流側に存在することになり、図10に示すように、隣接する噴孔31から噴射された燃料噴霧F1、F2がキャビティ10X内で重なり合って干渉が生じる。   2. Description of the Related Art In a piston for an internal combustion engine such as a diesel engine, a concave portion called a cavity is provided at a top portion (crown surface: piston top) of the piston, and fuel is injected from a fuel injection nozzle provided opposite to a central portion of the cavity. The injected fuel spray is mixed with intake air inside the cavity to burn fuel. In this combustion, there is generation of soot, HC, CO, and the like due to incomplete combustion. The phenomenon is as follows. As shown in FIG. 8, in the cavity 10X provided at the top 2 of the piston 1X, as shown in FIG. 9, the fuel spray F is caused to flow to the swirl S after colliding with the outer peripheral wall 11 of the cavity 10X. The fuel spray Fs flowing through the swirl S exists on the downstream side of the swirl, and as shown in FIG. 10, the fuel sprays F1 and F2 injected from the adjacent injection holes 31 overlap in the cavity 10X, and interference occurs. Occurs.

そして、この燃料噴霧F1、F2同士の干渉が生じると、燃料に対して酸素不足となる過濃領域Roが形成されるおそれがあり、煤、HC、CO等が生成する可能性がある。これは、内燃機関における燃焼の観察結果によって得られた知見である。そこで、それらの現象を回避して、燃焼効率を良くするために、キャビティの形状に様々な工夫がなされてきている。   When the fuel sprays F1 and F2 interfere with each other, there is a possibility that an oxygen-enriched region Ro where the fuel becomes insufficient will be formed, and soot, HC, CO, and the like may be generated. This is a finding obtained from observation results of combustion in an internal combustion engine. Therefore, in order to avoid these phenomena and improve the combustion efficiency, various ideas have been devised for the shape of the cavity.

例えば、インジェクタからキャビティに向けて噴射された燃料の噴霧がキャビティの壁面に沿って周方向に広がって隣り合う噴霧同士が干渉することによる燃料の過濃領域の形成を抑制するために、ピストンの頂部に、上方に配置されたインジェクタから周方向に間隔を隔てて複数噴射された燃料の噴霧が衝突するキャビティを凹設した内燃機関の燃焼室構造であって、キャビティの壁面に、噴霧が衝突する部分に位置して、キャビティの内外方向に沿ったガイド突起を複数設けて、噴霧が壁面に沿ってキャビティの周方向に広がることによる隣り合う噴霧同士の干渉を抑える内燃機関の燃焼室構造が提案されている(例えば、特許文献1参照)。   For example, in order to suppress the formation of a fuel rich region due to the fuel spray injected from the injector toward the cavity spreading in the circumferential direction along the wall surface of the cavity and interfering with adjacent sprays, A combustion chamber structure of an internal combustion engine having a cavity in which a plurality of fuel sprays, which are injected at intervals in a circumferential direction from an injector arranged above, collide with a top of the cavity, and the spray collides with a wall surface of the cavity. The combustion chamber structure of the internal combustion engine is provided with a plurality of guide projections along the inner and outer directions of the cavity, which suppress the interference between adjacent sprays due to the spray spreading in the circumferential direction of the cavity along the wall surface. It has been proposed (for example, see Patent Document 1).

しかし、煤が凹部に堆積した場合にはガイド突起の効果が薄れたり、熱応力によりガイド突起が破壊されたりする可能性が生じるとの知見を得た。   However, it has been found that when the soot is deposited in the concave portions, the effect of the guide projection is weakened, or the guide projection may be broken by thermal stress.

言い換えれば、噴霧の拡散を防止するための構造が、熱応力によって破損しやすい構造であるため、負荷が高い領域での使用には向いていないという改善の余地や、ピストンのキャビティの断面形状が周方向に大きく変化しておらず、スワール(横渦流:旋回)の流れを生かして噴霧と吸気の混合を促進する構造になっていないので、この面からも改善の余地があるとの知見を得た。   In other words, the structure for preventing spray diffusion is a structure that is easily damaged by thermal stress, so there is room for improvement that it is not suitable for use in areas where the load is high, and the cross-sectional shape of the piston cavity is There is no significant change in the circumferential direction, and there is no structure that promotes the mixing of spray and intake by making use of the swirl (lateral vortex: swirl) flow. Obtained.

これに関連して、燃焼室の容積をできるだけ維持したまま、簡単な構造でスキッシュ
エリアの燃焼効率を高めたために、噴孔から噴射した勢いで燃料を霧化する燃料噴射ノズルに対応した直接噴射式ディーゼル内燃機関のピストンであって、頂部に凹設された燃焼室と、燃料噴射ノズルの複数の噴孔から噴射された燃料噴霧の拡散範囲に個別に対応させて燃焼室の外周に独立して設けられる窪みとを備え、ピストンの半径方向に沿う窪みの断面形状は、ピストンの中心に対する周方向位置によって異なる燃料噴霧の燃料濃度の分布に応じて設けられているピストンが提案されている(例えば、特許文献1参照)。
In this connection, the direct injection corresponding to the fuel injection nozzle, which atomizes the fuel with the momentum injected from the injection hole, has been used to increase the combustion efficiency of the squish area with a simple structure while maintaining the volume of the combustion chamber as much as possible. A piston of a diesel internal combustion engine, wherein the piston is independent of the outer periphery of the combustion chamber by individually corresponding to the combustion chamber recessed at the top and the diffusion range of the fuel spray injected from the plurality of injection holes of the fuel injection nozzle. A piston provided in accordance with the distribution of the fuel concentration of the fuel spray depending on the cross-sectional shape of the recess along the radial direction of the piston depending on the circumferential position with respect to the center of the piston. For example, see Patent Document 1).

しかしながら、この構成では、窪みは、ピストンの頂部に燃焼室の空間とは独立して設けられているので、この燃焼室の外周縁を越えるスキッシュエリアの燃料噴霧の燃焼の改善には効果があるが、燃焼室中心部の燃焼の改善には直接には役立たないという問題がある。   However, in this configuration, since the depression is provided at the top of the piston independently of the space of the combustion chamber, it is effective in improving the combustion of the fuel spray in the squish area beyond the outer peripheral edge of the combustion chamber. However, there is a problem that it is not directly useful for improving the combustion in the center of the combustion chamber.

特開2011−174388号公報JP 2011-174388 A 特開2010−112350号公報JP 2010-112350 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、ディーゼルエンジン等の内燃機関において、スワールを利用して、キャビティ内の燃料噴霧と吸気との混合を促進すると共に、隣接する燃料噴霧同士の干渉による燃料過濃領域の発生を抑制して、不完全燃焼による煤、HC、CO等の生成を回避できる内燃機関用のピストン、内燃機関、及び内燃機関用のピストンの設計方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to use a swirl in an internal combustion engine such as a diesel engine to promote mixing of fuel spray and intake air in a cavity, and to improve the adjacency of the fuel. Design of a piston for an internal combustion engine, an internal combustion engine, and a piston for an internal combustion engine capable of suppressing generation of a soot, HC, CO, etc. due to incomplete combustion by suppressing generation of a fuel rich region due to interference between fuel sprays It is to provide a method.

上記の目的を達成するための本発明の内燃機関用のピストンは、ピストンの頂部に凹形状に設けられたキャビティと、該キャビティの中央部に対向してシリンダヘッドに設けられた燃料噴射ノズルを有し、吸気をスワールさせる内燃機関のための内燃機関用のピストンにおいて、前記キャビティの領域を前記燃料噴射ノズルの噴孔ごとの区画領域に区分し、前記区画領域の内側に前記キャビティの周壁面の外周上側部分を窪みを有する棚部を設けると共に、前記区画領域に隣接する区画領域との境界部分では前記棚部が無い形状に形成し、スワールの方向に関して、前記区画領域のスワール最上流側では前記棚部が無い形状から外周側に抉る前記棚部を形成した形状に移行する第1移行部と、前記区画領域の中央まで徐々に前記窪みの外周側への抉り量を大きくする第1窪み部と、前記区画領域の中央で前記窪みの外周側への抉り量を最大とする最大窪み部と、前記区画領域の中央からスワール下流側に徐々に前記窪みの外周側への抉り量を小さくする第2窪み部と、前記区画領域のスワール最下流側では前記棚部のある形状から前記棚部の無い形状に移行する第2移行部とで形成して、隣接する区画領域のスワール最上流側の形状に連続させるように形成し、更に、前記第1移行部、前記第2移行部、前記第2窪み部、前記第1窪み部の順に、前記窪みの外周側への抉り量における周方向に対する変化量を小さくして構成する。   In order to achieve the above object, a piston for an internal combustion engine of the present invention includes a cavity provided in a concave shape at the top of the piston, and a fuel injection nozzle provided in a cylinder head opposed to a center of the cavity. A piston for an internal combustion engine for an internal combustion engine for swirling intake air, wherein the region of the cavity is divided into divided regions for each injection hole of the fuel injection nozzle, and a peripheral wall surface of the cavity is provided inside the divided region. The outer peripheral upper portion is provided with a ledge having a depression, and at the boundary portion with the partitioned region adjacent to the partitioned region, the ledge is formed in a shape without the shelf, and with respect to the swirl direction, the swirl most upstream side of the partitioned region Then, a first transition portion that transitions from a shape without the shelf portion to a shape in which the shelf portion is hollowed out to the outer peripheral side, and an outer peripheral side of the depression gradually to the center of the partitioned area A first recessed portion for increasing the amount of gouging, a maximum recessed portion for maximizing the amount of gouging to the outer peripheral side of the recess at the center of the partitioned region, and the recessed portion gradually from the center of the partitioned region to the swirl downstream side. And a second transition portion that transitions from a shape with the shelf portion to a shape without the shelf portion on the most downstream side of the swirl in the partition area. , Formed so as to be continuous with the shape of the swirl most upstream side of the adjacent partitioned area, and further, in the order of the first transition portion, the second transition portion, the second depression portion, and the first depression portion, The amount of change in the circumferential direction in the amount of gouging to the outer peripheral side is made small.

この構成によれば、燃料噴霧ごとに、ピストンのキャビティの円周方向にキャビティの断面積が変化する構造で、その区画領域内の吸気と燃料噴霧が混合するように工夫しているので、キャビティ内の吸気と燃料噴霧を十分混合することが可能となり、煤、HC、COなどの発生を抑制できる。この区画領域は、噴孔に対応して設定される、つまり、噴孔の数によって変化する。   According to this configuration, the structure is such that the cross-sectional area of the cavity changes in the circumferential direction of the cavity of the piston for each fuel spray, and the intake and the fuel spray in the partitioned area are devised to be mixed. It is possible to sufficiently mix the intake air and fuel spray in the interior, and it is possible to suppress the generation of soot, HC, CO, and the like. This partitioned area is set corresponding to the injection hole, that is, it changes according to the number of injection holes.

また、隣接する噴霧同士の重なりを排除して干渉を防止しているので、隣接する燃料噴霧同士の干渉による燃料過濃領域の発生を抑制することが可能となり、これにより,不完全燃焼による煤、HC、COの生成を回避することができる。また、吸気と燃料噴霧の混合が良好に促進されるので、この面においてもSoot、COの低減が可能となる。   In addition, since interference between adjacent fuel sprays is eliminated to prevent interference, it is possible to suppress the occurrence of a fuel-rich region due to interference between adjacent fuel sprays. , HC and CO can be avoided. In addition, since the mixing of the intake air and the fuel spray is favorably promoted, it is possible to reduce Soot and CO in this aspect as well.

従って、ディーゼルエンジン等の内燃機関において、スワールを利用して、キャビティ内の燃料噴霧と吸気との混合を促進すると共に、隣接する燃料噴霧同士の干渉による燃料過濃領域の発生を抑制して、不完全燃焼による煤、HC、CO等の生成を回避できる。   Therefore, in an internal combustion engine such as a diesel engine, the swirl is used to promote the mixing of the fuel spray and the intake air in the cavity, and to suppress the generation of the fuel rich region due to the interference between the adjacent fuel sprays. Generation of soot, HC, CO, and the like due to incomplete combustion can be avoided.

上記の内燃機関用のピストンにおいて、前記第2窪み部の前記棚部のある部位において、前記ピストンの頂部との角部の口元部をピストン中心軸側にせり出させて形成する。言い換えれば、噴射された燃料噴霧が、ギャビティの外周壁に衝突した後、スワールで流される間に、キャビティの中心部の吸気と混合するように、キャビティの口元部をせり出す構造とする。これにより、スワールの流れに合わせて、燃料噴霧がキャビティの中心部の吸気と混合し易くなる。   In the piston for an internal combustion engine described above, at a portion of the second recess where the shelf is located, a mouth portion of a corner of the piston and a top of the piston protrudes toward the piston center axis. In other words, after the injected fuel spray collides with the outer peripheral wall of the cavity and is swirled, the mouth of the cavity is protruded so as to be mixed with the intake air at the center of the cavity. This makes it easier for the fuel spray to mix with the intake air at the center of the cavity in accordance with the swirl flow.

また、この口元部の構造により、ピストンが圧縮上死点を越えて膨張行程に入るとキャビティからシリンダへの流れとなる流れを逆スキッシュ流というが、この逆スキッシュ流も活用できて、燃料噴霧と吸気の混合を促進できるようになる。   In addition, due to the structure of the mouth, the flow that flows from the cavity to the cylinder when the piston enters the expansion stroke beyond the compression top dead center is called the reverse squish flow. And the intake of air can be promoted.

上記の目的を達成するための本発明の内燃機関は、上記の内燃機関用のピストンを備えて構成され、上記の燃料噴射装置と同様の作用効果を奏することができる。   An internal combustion engine according to the present invention for achieving the above object is provided with the above-mentioned piston for an internal combustion engine, and has the same operational effects as the above-described fuel injection device.

そして、上記の目的を達成するための本発明の内燃機関用のピストンの設計方法は、ピストンの頂部に凹形状に設けられたキャビティと、該キャビティの中央部に対向してシリンダヘッドに設けられた燃料噴射ノズルを有し、吸気をスワールさせる内燃機関のための内燃機関用のピストンの設計方法において、予め設定されたスワールによって、前記燃料噴射ノズルの各噴孔から噴射された燃料噴霧が流される範囲を計測または算出する第1ステップと、噴射された燃料噴霧と吸気の混合分布を計測し、燃料噴霧の量に対して混合している吸気中の酸素量が余剰となる当量比1未満領域を計測または算出する第2ステップと、前記キャビティの領域を、前記燃料噴射ノズルの噴孔ごとの区画領域に前記当量比1未満領域を含むように区分する第3ステップと、前記区画領域ごとに前記キャビティの形状を決定する第4ステップとを有し、前記第4ステップにおいて、前記噴孔から燃料が噴射される方向においては、燃料噴霧が前記キャビティの外周壁と衝突するまでの混合距離を稼ぐために、前記キャビティの外周壁をピストン中心軸から遠くに配置し、スワール下流側では、燃料噴霧が前記キャビティの前記外周壁に衝突後、スワールで流される間に前記キャビティの内部の吸気と混合するように、前記キャビティの口元部を燃料噴霧を押し込むようにせり出す形状とし、スワール上流側では、燃料噴霧が前記キャビティの前記外周壁に衝突後、隣接する燃料噴霧との干渉が無いように、前記キャビティの前記外周壁をピストン中心軸側に近づけて配置し、前記ピストン中心軸を含む平面内の前記キャビティの断面形状を、スワールの流れに沿って前記ピストン中心軸を中心にして周方向に沿って回転させたときに、この回転に伴って前記キャビティが外側に広がった後に元に戻るように連続させて前記キャビティの形状を作成することを特徴とする方法である。 In order to achieve the above object, a method for designing a piston for an internal combustion engine according to the present invention includes a cavity provided in a concave shape at the top of the piston, and a cavity provided in a cylinder head opposed to a central portion of the cavity. In a method of designing a piston for an internal combustion engine for an internal combustion engine for swirling intake air, the fuel spray injected from each injection hole of the fuel injection nozzle is caused to flow by a preset swirl. A first step of measuring or calculating a range to be mixed, and measuring a mixed distribution of the injected fuel spray and the intake air, and an equivalent ratio of less than 1 in which the amount of oxygen in the intake air mixed with the amount of the fuel spray becomes excessive. A second step of measuring or calculating an area, and dividing the area of the cavity such that a division area for each injection hole of the fuel injection nozzle includes the area having an equivalence ratio of less than 1. 3 and step, and a fourth step of determining the shape of the cavity for each of the divided area, the at fourth step, in the direction in which fuel is injected from the injection hole, an outer peripheral fuel spray of the cavity In order to increase the mixing distance before colliding with the wall, the outer peripheral wall of the cavity is arranged far from the central axis of the piston, and on the downstream side of the swirl, the fuel spray is swirled after colliding with the outer peripheral wall of the cavity. In order to mix with the intake air inside the cavity, the mouth portion of the cavity is formed to protrude so as to push fuel spray, and on the swirl upstream side, after the fuel spray collides with the outer peripheral wall of the cavity, it is adjacent The outer peripheral wall of the cavity is arranged closer to the piston center axis side so as not to interfere with fuel spray, and the piston center axis is When the cross-sectional shape of the cavity in the plane is rotated along the circumferential direction around the center axis of the piston along the flow of swirl, after the cavity is spread outward with this rotation, the original shape is obtained. The method is characterized in that the shape of the cavity is continuously formed so as to return to the above .

この内燃機関用のピストンの設計方法によれば、上記の内燃機関用のピストンと同様の作用効果を奏することができる。 According to this method of designing a piston for an internal combustion engine, the same operation and effect as those of the piston for an internal combustion engine can be obtained.

本発明の内燃機関用のピストン、内燃機関及び内燃機関用のピストンの設計方法によれば、ディーゼルエンジン等の内燃機関において、スワールを利用して、キャビティ内の燃料噴霧と吸気との混合を促進すると共に、隣接する燃料噴霧同士の干渉による燃料過濃領域の発生を抑制して、不完全燃焼による煤、HC、CO等の生成を回避できる。   According to the piston for an internal combustion engine, the internal combustion engine and the method for designing a piston for an internal combustion engine of the present invention, in an internal combustion engine such as a diesel engine, swirl is used to promote mixing of fuel spray and intake air in a cavity. In addition, the generation of a fuel-rich region due to interference between adjacent fuel sprays can be suppressed, and generation of soot, HC, CO, and the like due to incomplete combustion can be avoided.

本発明に係る実施の形態の内燃機関用のピストンのキャビティの構造を模式的に示すピストンの側断面図である。It is a side sectional view of a piston which shows typically the structure of the cavity of the piston for internal-combustion engines of an embodiment concerning the present invention. 本発明に係る実施の形態の内燃機関用のピストンの設計方法における第1ステップを説明するための図で、キャビティ内におけるスワールによる燃料噴霧の流れを模式的に示す図である。It is a figure for explaining the 1st step in the design method of the piston for internal-combustion engines of an embodiment concerning the present invention, and is a figure showing typically a flow of fuel spray by a swirl in a cavity. 本発明に係る実施の形態の内燃機関用のピストンの設計方法における第2ステップと第3ステップを説明するための図で、キャビティ内における当量比1未満の領域を模式的に示す図である。FIG. 4 is a diagram for explaining a second step and a third step in the method for designing a piston for an internal combustion engine according to the embodiment of the present invention, and is a diagram schematically illustrating a region in the cavity having an equivalent ratio of less than 1; 本発明に係る実施の形態の内燃機関用のピストンの設計方法における第4ステップを説明するための図で、キャビティ内における区画領域と各断面の位置を模式的に示す図である。It is a figure for explaining the 4th step in a piston design method for an internal-combustion engine of an embodiment concerning the present invention, and is a figure showing typically the division area in a cavity, and the position of each section. 本発明に係る実施の形態の内燃機関用のピストンにおける断面形状を模式的に示す図である。It is a figure showing typically section shape in a piston for internal-combustion engines of an embodiment concerning the present invention. 本発明に係る実施の形態の内燃機関用のピストンにおける断面形状を立体的に示す斜視図である。It is a perspective view which shows the sectional shape in the piston for internal-combustion engines of an embodiment concerning the present invention three-dimensionally. 本発明に係る実施の形態の内燃機関用のピストンにおける隣接する燃料噴霧の状態を模式的に示す図である。It is a figure which shows typically the state of the adjacent fuel spray in the piston for internal combustion engines of embodiment concerning this invention. 従来技術の内燃機関用のピストンのキャビティの構造を模式的に示すピストンの側断面図である。It is a side sectional view of a piston which shows typically the structure of the cavity of the piston for internal combustion engines of the prior art. 従来技術の内燃機関用のピストンのキャビティ内におけるスワールによる燃料噴霧の流れを模式的に示す図である。FIG. 4 is a view schematically showing a flow of fuel spray by swirl in a cavity of a piston for a conventional internal combustion engine. 従来技術の内燃機関用のピストンのキャビティ内における隣接する燃料噴霧の重なりの状態を模式的に示す図である。FIG. 4 is a view schematically showing an overlapping state of adjacent fuel sprays in a cavity of a piston for a conventional internal combustion engine.

以下、本発明に係る実施の形態の内燃機関用のピストン、内燃機関、及び内燃機関用のピストンの設計方法について、図面を参照しながら説明する。なお、本発明に係る実施の形態の内燃機関は、本発明に係る実施の形態の内燃機関用のピストンを備えて構成され、後述する内燃機関用のピストンが奏する作用効果と同様の作用効果を奏することができる。   Hereinafter, a piston for an internal combustion engine, an internal combustion engine, and a method for designing a piston for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. The internal combustion engine according to the embodiment of the present invention is configured to include the piston for the internal combustion engine according to the embodiment of the present invention, and has the same operation and effects as those of the piston for the internal combustion engine described later. Can play.

先ず、最初に、本発明の実施の形態の内燃機関用のピストンの設計方法について説明する。この内燃機関用のピストンの設計方法は、図1に示すように、ピストン1の頂部2に凹形状に設けられたキャビティ10と、このキャビティ10の中央部に対向してシリンダヘッド(図示しない)に設けられた燃料噴射ノズル30を有し、吸気をスワールさせる内燃機関のための内燃機関用のピストンの設計方法である。   First, a method of designing a piston for an internal combustion engine according to an embodiment of the present invention will be described. As shown in FIG. 1, a method of designing a piston for an internal combustion engine includes, as shown in FIG. 1, a cavity 10 provided in a concave shape on a top 2 of a piston 1, and a cylinder head (not shown) opposed to a center of the cavity 10. This is a method for designing a piston for an internal combustion engine that has a fuel injection nozzle 30 provided in the internal combustion engine and swirls intake air.

なお、図1に示すように、キャビティ10は、外周壁11、底部12、外縁部13、口元部(せり出し部)13a、棚部14、窪み15、棚部14の口元部(せり出し部)16などを有して構成されている。   As shown in FIG. 1, the cavity 10 includes an outer peripheral wall 11, a bottom portion 12, an outer edge portion 13, a mouth portion (projection portion) 13 a, a shelf 14, a depression 15, and a mouth portion (projection portion) 16 of the shelf portion 16. And so on.

この内燃機関用のピストンの設計方法は、第1〜第4のステップを有しており、第1ステップでは、図2に示すように、予め設定されたスワールSによって、燃料噴射ノズル30の各噴孔31から噴射された燃料噴霧Fが仮想の外周壁11Xに衝突して流される範囲Rsを計測または算出する。この仮想の外周壁11Xは、燃料噴霧Fが流れる範囲Rsを得るためのものであるので、適当な形状でよく、例えば、先行技術の円環状の外周壁をもつキャビティの形状を使用することができる。   This method of designing a piston for an internal combustion engine has first to fourth steps. In the first step, as shown in FIG. 2, each of the fuel injection nozzles 30 is set by a preset swirl S. The range Rs in which the fuel spray F injected from the injection hole 31 collides with the virtual outer peripheral wall 11X and flows is measured or calculated. Since this virtual outer peripheral wall 11X is for obtaining the range Rs in which the fuel spray F flows, the virtual outer peripheral wall 11X may have an appropriate shape. For example, it is possible to use the shape of a cavity having an annular outer peripheral wall of the prior art. it can.

また、第2ステップでは、図3に示すように、噴射された燃料噴霧Fと吸気の混合分布を計測し、燃料噴霧Fの量に対して混合している吸気中の酸素量が余剰となる当量比1未満領域R1を計測または算出する。   In the second step, as shown in FIG. 3, the mixture distribution of the injected fuel spray F and the intake air is measured, and the amount of oxygen in the intake air mixed with the amount of the fuel spray F becomes excessive. The region R1 having an equivalence ratio of less than 1 is measured or calculated.

そして、第3ステップでは、図3に示すように、キャビティ10の中心から延びる直線Liと直線Li+1とにより、キャビティ10の領域を、燃料噴射ノズル30の噴孔31ごとの区画領域Diにおいて当量比1未満領域R1を含むように区分する。次の第4ステップでは、図4〜図6に示すように、区画領域Diごとにキャビティ10の形状を決定する。この区画領域Diは、噴孔31、言い換えれば、噴孔31の数に対応して変化する。つまり、区画領域Diは、噴孔31の数に対応した数だけあることになる。   In the third step, as shown in FIG. 3, the area of the cavity 10 is divided by the straight line Li and the straight line Li + 1 extending from the center of the cavity 10 into the equivalence ratio Di in the divided area Di for each injection hole 31 of the fuel injection nozzle 30. The area is divided so as to include the area R <1. In the next fourth step, as shown in FIGS. 4 to 6, the shape of the cavity 10 is determined for each partitioned area Di. The division area Di changes according to the number of the injection holes 31, in other words, the number of the injection holes 31. That is, the number of the divided areas Di is equal to the number of the injection holes 31.

つまり、隣接する燃料噴霧Fの干渉が少なくなるようにキャビティ(燃焼室)10の形状を設定することを目的にして、予め設定されたスワールSで燃料噴霧Fが流される範囲を計測または流体解析プログラム等の使用により算出し、また、LAS法(レーザー吸収散乱法)などで当量比(空気過剰率の逆数=完全燃焼に必要な酸素の重量/実際の混合気が含む酸素の重量)を計測,当量比1未満となる領域R1、言い換えれば、酸素が余剰な領域R1が、各噴孔31から噴射される区画領域Di毎に配置されるようキャビティ10の周方向に区分された範囲となる区画領域Diを決定して、各噴孔31の噴射された燃料噴霧Fが発生する領域で決められる各区画領域Diごとのキャビティ10の断面形状(S1〜S7)を決定する。   That is, for the purpose of setting the shape of the cavity (combustion chamber) 10 so as to reduce the interference between the adjacent fuel sprays F, the range in which the fuel sprays F flow through the preset swirl S is measured or fluid analysis is performed. Calculate by using a program, etc., and measure the equivalent ratio (reciprocal of excess air ratio = weight of oxygen required for complete combustion / weight of oxygen contained in actual air-fuel mixture) by LAS method (laser absorption scattering method) etc. , The region R1 where the equivalence ratio is less than 1, in other words, the region R1 in which oxygen is excessive is a range divided in the circumferential direction of the cavity 10 so as to be arranged for each divided region Di injected from each injection hole 31. The sectional area Di is determined, and the cross-sectional shape (S1 to S7) of the cavity 10 for each of the sectional areas Di determined by the area where the fuel spray F injected from each injection hole 31 is generated is determined.

そして、予め設定されたスワールSに基づいて、キャビティ10の上面視の周方向で当量比が1未満となるように区画領域Diを設定し、この区画領域Di毎にキャビティ10の断面形状(S1〜S7)を設定する。このキャビティ10の断面形状(S1〜S7)の設定に際して、噴射された燃料噴霧Fが直接衝突する箇所S4は、噴孔31からできるだけ遠い箇所とし、仮想の外周壁11X上で,噴霧同士が重なり、当量比が1を超えて、酸素不足が生じると計測または、計算されるような箇所(S1、S7)には壁状の形状を設定して、隣接する噴射された燃料噴霧F1、F2が重ならないようにする。そのため、各区画領域Diの両端の断面形状(S1、S7)は、隣接する区域の燃料噴霧F1、F2と干渉しないようにキャビティ10の半径方向のピストン中心軸Cからの距離を縮小させる。   Then, based on the swirl S set in advance, the partition area Di is set so that the equivalent ratio in the circumferential direction of the cavity 10 when viewed from above is less than 1, and the sectional shape (S1) of the cavity 10 is set for each of the partition areas Di. To S7) are set. In setting the cross-sectional shape (S1 to S7) of the cavity 10, the location S4 where the injected fuel spray F directly collides is set as far as possible from the injection hole 31 and the sprays overlap on the virtual outer peripheral wall 11X. When the equivalence ratio exceeds 1 and oxygen deficiency occurs or is measured or calculated, walls (S1, S7) are set in a wall shape so that adjacent injected fuel sprays F1, F2 are formed. Avoid overlapping. Therefore, the cross-sectional shapes (S1, S7) of both ends of each partitioned area Di reduce the distance of the cavity 10 from the piston center axis C in the radial direction so as not to interfere with the fuel sprays F1, F2 of the adjacent areas.

また、上記の第4ステップにおいて、噴孔31から燃料噴霧Fが噴射される方向(断面S4)においては、燃料噴霧Fがキャビティ10の外周壁11と衝突するまでの混合距離を稼ぐために、キャビティ10の外周壁11をピストン中心軸Cから遠くに配置し、スワール下流側(断面S5、S6)では、燃料噴霧Fがキャビティ10の外周壁11に衝突後、スワールSで流される間にキャビティ10の内部の吸気と混合するように、キャビティ10の口元部13aを燃料噴霧Fを押し込むようにせり出す形状とし、スワール上流側(断面S2、S3)では、燃料噴霧Fがキャビティ10の外周壁11に衝突後、隣接する燃料噴霧Fとの干渉が無いように、キャビティ10の外周壁11をピストン中心軸C側に近づけて配置し、図6に示すように、ピストン中心軸Cを含む平面内のキャビティ10の断面形状(S1〜S7)を、スワールSの流れに沿ってピストン中心軸Cを中心にして周方向に沿って回転させたときに、この回転に伴ってキャビティ10が外側に広がった後に元に戻るように連続させてキャビティ10の形状を作成する。つまり、ピストン中心軸Cを含む平面内のキャビティ10の断面形状(S1〜S7)をピストン中心軸Cを中心にして、周方向に広げるように連続させてキャビティ10の形状を作成する。   In the fourth step, in the direction in which the fuel spray F is injected from the injection hole 31 (cross section S4), in order to increase the mixing distance until the fuel spray F collides with the outer peripheral wall 11 of the cavity 10, The outer peripheral wall 11 of the cavity 10 is disposed far from the center axis C of the piston, and on the downstream side of the swirl (sections S5 and S6), the fuel spray F impinges on the outer peripheral wall 11 of the cavity 10 and then flows while being swirled. The mouth 13a of the cavity 10 is shaped so that the fuel spray F is pushed in so as to be mixed with the intake air inside the fuel injection F. On the swirl upstream side (sections S2 and S3), the fuel spray F is applied to the outer peripheral wall 11 of the cavity 10. After the collision, the outer peripheral wall 11 of the cavity 10 is arranged close to the piston center axis C side so as not to interfere with the adjacent fuel spray F, as shown in FIG. When the cross-sectional shape (S1 to S7) of the cavity 10 in a plane including the piston center axis C is rotated along the circumferential direction around the piston center axis C along the flow of the swirl S, this rotation Accordingly, the shape of the cavity 10 is continuously formed so that the cavity 10 spreads outward and then returns to the original state. That is, the cross-sectional shape (S1 to S7) of the cavity 10 in a plane including the piston center axis C is continuously extended in the circumferential direction around the piston center axis C to form the shape of the cavity 10.

つまり、キャビティ10内の吸気の流れであるスワールSに合わせて、キャビティ10をピストン中心軸Cを含む平面で切断した断面形状(S1〜S7)をスワールSの方向に従って半径方向に変化するように構成し、このキャビティ10の断面形状(S1〜S7)の変化については、燃料噴霧Fが直接衝突する箇所(S4)の口元部13aは、噴孔31から最も遠い箇所とし、第1ステップ及び第2ステップで得られた結果では、隣接する燃料噴霧Fと重なり、当量比が1を超えていた箇所(S1、S7)には、壁状の形状を設定する。また、燃料噴霧FがスワールSに流されるに従って、燃料噴霧Fがキャビティ10の中心部C側の吸気と混合するように、燃料Fを押し込むように口元部13aを中心部C側にせり出させる。   That is, the cross-sectional shape (S1 to S7) of the cavity 10 cut along a plane including the piston center axis C changes in the radial direction according to the direction of the swirl S in accordance with the swirl S which is the flow of the intake air in the cavity 10. With regard to the change in the cross-sectional shape (S1 to S7) of the cavity 10, the mouth 13a of the portion (S4) where the fuel spray F directly collides with the portion farthest from the injection hole 31 and the first step and the As a result obtained in two steps, a wall-like shape is set at a portion (S1, S7) where it overlaps with the adjacent fuel spray F and the equivalent ratio exceeds 1. Further, as the fuel spray F flows through the swirl S, the mouth 13 a is pushed out toward the center C so as to push the fuel F so that the fuel spray F mixes with the intake air at the center C of the cavity 10. .

次に、本発明の実施の形態の内燃機関用のピストン(以下ピストン)1について説明する。このピストン1は、図1〜図6に示すように、ピストン1の頂部2に凹形状に設けられたキャビティ10と、このキャビティ10の中央部に対向してシリンダヘッド(図示しない)に設けられた燃料噴射ノズル30を有し、吸気をスワールさせる内燃機関のための内燃機関用のピストンである。   Next, a piston (hereinafter, piston) 1 for an internal combustion engine according to an embodiment of the present invention will be described. As shown in FIGS. 1 to 6, the piston 1 is provided with a cavity 10 provided in a concave shape on the top 2 of the piston 1 and a cylinder head (not shown) opposed to the center of the cavity 10. The internal combustion engine has a fuel injection nozzle 30 and swirls intake air.

このピストン1において、キャビティ10の領域を燃料噴射ノズル30の噴孔31ごとの区画領域Diに区分し、この区画領域Diの内側にキャビティ10の外周壁11の外周上側部分を窪み15を有する棚部14を設ける。   In the piston 1, the area of the cavity 10 is divided into divided areas Di for each injection hole 31 of the fuel injection nozzle 30, and a shelf 15 having a recess 15 at the outer peripheral upper part of the outer peripheral wall 11 of the cavity 10 inside the divided area Di. A part 14 is provided.

それと共に、この区画領域Diに隣接する区画領域Di+1との境界部分では窪み15を有する棚部14が無い形状に形成し、スワールSの方向に関して、区画領域Diのスワール最上流側(S1)では棚部14が無い形状から外周側に抉る窪み15を設けて棚部14を形成した形状に移行する第1移行部(S1〜S2)を設ける。   At the same time, at the boundary portion with the partition area Di + 1 adjacent to the partition area Di, the shelf section 14 having the depression 15 is formed in a shape without the shelves 14, and with respect to the direction of the swirl S, on the swirl most upstream side (S1) of the partition area Di. A first transition portion (S1 to S2) is provided which is provided with a depression 15 which is provided with a gouge on the outer peripheral side from a shape having no shelf portion 14 and shifts to a shape in which the shelf portion 14 is formed.

また、区画領域Diの中央(S4)まで徐々に窪み15の外周側への抉り量を大きくする第1窪み部(S2〜S4)と、区画領域Diの中央(S4)で窪み15の外周側への抉り量を最大とする最大窪み部(S4)を設ける。   Further, a first recessed portion (S2 to S4) in which the depth of the recess 15 is gradually increased toward the center (S4) of the partitioned area Di, and an outer circumferential side of the recess 15 at the center (S4) of the partitioned area Di. A maximum recessed portion (S4) that maximizes the depth of the hollow is provided.

更に、区画領域Diの中央(S4)からスワール下流側に徐々に窪み15の外周側への抉り量を小さくする第2窪み部(S4〜S6)と、区画領域Diのスワール最下流側(S7)では窪み15を有する棚部14のある形状から窪み15を有する棚部14の無い形状に移行する第2移行部(S6〜S7)とで形成して、隣接する区画領域Di+1のスワール最上流側の形状に連続させるように形成する。   Further, a second dent portion (S4 to S6) for gradually reducing the amount of depression from the center (S4) of the partitioned area Di to the outer peripheral side of the dent 15 toward the swirl downstream side, and a swirl most downstream side (S7) of the partitioned area Di. ), A second transition portion (S6 to S7) that transitions from the shape with the shelf 14 having the depression 15 to the shape without the shelf 14 having the depression 15 is formed in the swirl uppermost stream of the adjacent partitioned area Di + 1. It is formed so as to be continuous with the side shape.

その上、第1移行部(S1〜S2)、第2移行部(S2〜S4)、第2窪み部(S4〜S6)、第1窪み部(S6〜S7)の順に、窪み15の外周側への抉り量における周方向に対する変化量を小さくして構成する。   In addition, the outer peripheral side of the depression 15 in the order of the first transition part (S1 to S2), the second transition part (S2 to S4), the second depression part (S4 to S6), and the first depression part (S6 to S7). The amount of change in the circumferential direction in the amount of gouge is reduced.

つまり、キャビティ(燃焼室)10の形状に関しては、燃料噴射ノズル30の噴孔31から噴射される燃料噴霧Fごとに、ピストン中心軸Cから半径方向に延びる断面形状(S1〜S7)を周方向に扇状に重ね合わせるようにしてキャビティ形状を作成する。   That is, with respect to the shape of the cavity (combustion chamber) 10, for each fuel spray F injected from the injection hole 31 of the fuel injection nozzle 30, the cross-sectional shape (S 1 to S 7) extending in the radial direction from the piston center axis C is set in the circumferential direction. A cavity shape is created by overlapping in a fan shape.

そして、燃料噴霧Fが直接衝突する箇所である最大窪み部(S4)は、燃料噴霧Fが衝突するまでの混合距離を稼ぐため出来るだけ遠くになるようにする。また、第2窪み部(S4〜S6)では、燃料噴霧Fがキャビティ10の外周壁11に衝突後、スワールSで流される間にキャビティ10の中心部Cの吸気と混合するようにキャビティ10の口元部13aが燃料噴霧Fを押し込むように口元部13aをピストン中心軸C側にせり出す形状にする。   The maximum depression (S4) where the fuel spray F directly collides is made as far as possible to increase the mixing distance until the fuel spray F collides. Further, in the second depressions (S4 to S6), after the fuel spray F collides with the outer peripheral wall 11 of the cavity 10, the fuel spray F is mixed with the intake air at the center C of the cavity 10 while being swirled. The mouth portion 13a is formed to protrude toward the piston center axis C so that the mouth portion 13a pushes the fuel spray F.

これにより、燃料噴霧Fと吸気の混合をできる限り促進したい部位(S4〜S6)では、混合時間が長く、また、混合領域が大きくなるように、噴射された燃料噴霧Fが衝突するキャビティ10の外周壁11の位置を遠くにして形成する。   Accordingly, in the part (S4 to S6) where mixing of the fuel spray F and the intake air is desired to be promoted as much as possible, the mixing time is long and the mixing area of the cavity 10 with which the injected fuel spray F collides so that the mixing area becomes large. The outer peripheral wall 11 is formed at a far position.

一方で、区画領域Diの両側では隣接する燃料噴霧Fとの干渉が生じないように、スワール流れの向きと反対側の方向のスワール上流側の第1窪み部(S2〜S4)では、隣接する噴射された燃料噴霧Fと干渉しないようにキャビティ10の半径方向のピストン中心軸Cからの距離を徐々に縮小させ、隣接する噴射された燃料噴霧Fと重なることなく、干渉しないようにする障壁を形成する形状にする。   On the other hand, on both sides of the partition area Di, the first dents (S2 to S4) on the swirl upstream side in the direction opposite to the direction of the swirl flow are adjacent to each other so as not to interfere with the adjacent fuel spray F. The radial distance of the cavity 10 from the piston center axis C is gradually reduced so as not to interfere with the injected fuel spray F, and a barrier is provided to prevent interference with the adjacent injected fuel spray F without overlapping. Make the shape to be formed.

このキャビティ10では、ピストン1の頂部2の内側のラインとなる外縁部13は、図4及び図6に示すように、ピストン中心軸Cの上から見たときに、噴孔31からの燃料噴射の方向に対して、線対称とはならず、非線対称となる。   In the cavity 10, the outer edge portion 13 which is a line inside the top portion 2 of the piston 1 has a fuel injection through an injection hole 31 when viewed from above the piston center axis C as shown in FIGS. 4 and 6. Is not axisymmetric but non-symmetric with respect to the direction.

この構成によれば、燃料噴霧Fごとに、ピストン1のキャビティ10の円周方向にキャビティ10の断面積が変化する構造で、その区画領域Di内の吸気と燃料噴霧Fが混合するように工夫しているので、キャビティ10内の吸気と燃料噴霧Fを十分混合することが可能となり、煤、HC、COなどの発生を抑制できる。   According to this configuration, the structure is such that the cross-sectional area of the cavity 10 changes in the circumferential direction of the cavity 10 of the piston 1 for each fuel spray F, so that the intake air and the fuel spray F in the partitioned area Di are mixed. Therefore, the intake air in the cavity 10 and the fuel spray F can be sufficiently mixed, and the generation of soot, HC, CO, and the like can be suppressed.

また、図7の領域Rxに示すように、噴射された隣接する燃料噴霧F1、F2同士の重なりを排除して干渉が無いようにしているので、隣接する燃料噴霧F1、F2同士の干渉による燃料過濃領域の発生を抑制することが可能となり、これにより,不完全燃焼による煤、HC、COの生成を回避することができる。また、吸気と燃料噴霧Fの混合が良好に促進されるので、この面においてもSoot、COの低減が可能となる。   Further, as shown in a region Rx of FIG. 7, the overlap between the injected fuel sprays F1 and F2 is eliminated so that there is no interference, so that the fuel due to the interference between the adjacent fuel sprays F1 and F2 is eliminated. It is possible to suppress the generation of the rich region, and thereby it is possible to avoid the generation of soot, HC, and CO due to incomplete combustion. In addition, since the mixing of the intake air and the fuel spray F is favorably promoted, it is possible to reduce Soot and CO in this aspect as well.

また、第2窪み部の棚部14のある部位(S4〜S6)において、ピストン1の頂部2との角部の口元部13a、及び、棚部14の口元部16をピストン中心軸C側にせり出させて形成する。言い換えれば、噴射された燃料噴霧Fが、ギャビティ10の外周壁11に衝突した後、スワールSで流される間に、キャビティ10の中心部側の吸気と混合するように、キャビティ10の口元部13a、及び、棚部14の口元部16をせり出す構造とする。これにより、スワールSの流れに合わせて、燃料噴霧Fがキャビティ10の中心部側の吸気と混合し易くなる。   In addition, at the portion (S4 to S6) of the second recessed portion where the shelf 14 is located, the mouth 13a at the corner with the top 2 of the piston 1 and the mouth 16 of the shelf 14 are moved toward the piston center axis C. It is formed by protruding. In other words, after the injected fuel spray F collides with the outer peripheral wall 11 of the cavity 10 and is swirled by the swirl S, it mixes with the intake air at the center of the cavity 10 so that the mouth 13a of the cavity 10 is mixed. , And a structure in which the lip 16 of the shelf 14 is protruded. Accordingly, the fuel spray F is easily mixed with the intake air at the center of the cavity 10 in accordance with the flow of the swirl S.

また、この口元部13a、16の構造により、ピストン1が圧縮上死点を越えて膨張行程に入るとキャビティ10からシリンダへの流れとなる逆スキッシュ流も活用できて、燃料噴霧Fと吸気の混合を促進できるようになる。   Further, due to the structure of the mouth portions 13a and 16, the reverse squish flow, which flows from the cavity 10 to the cylinder when the piston 1 enters the expansion stroke beyond the compression top dead center, can be utilized, and the fuel spray F and the intake air can be used. Mixing can be promoted.

従って、上記の構成の内燃機関用のピストン、内燃機関、及び内燃機関用のピストンの設計方法によれば、ディーゼルエンジン等の内燃機関において、スワールSを利用して、キャビティ10内の燃料噴霧Fと吸気との混合を促進すると共に、隣接する燃料噴霧F同士の干渉による燃料過濃領域の発生を抑制して、不完全燃焼による煤、HC、CO等の生成を回避できる。   Therefore, according to the piston for the internal combustion engine, the internal combustion engine, and the method for designing the piston for the internal combustion engine having the above-described configuration, the fuel spray F in the cavity 10 is utilized in the internal combustion engine such as the diesel engine by using the swirl S. In addition to promoting the mixing of fuel and intake air, the generation of a fuel-rich region due to interference between adjacent fuel sprays F can be suppressed, and generation of soot, HC, CO, and the like due to incomplete combustion can be avoided.

1、1X 内燃機関用のピストン(ピストン)
2 ピストンの頂部
10、10X キャビティ
11 キャビティの外周壁
11X 仮想の外周壁
12 キャビティの底部
13 キャビティの外縁部
13a キャビティの口元部(せり出し部)
14 棚部
15 窪み
16 棚部の口元部(せり出し部)
30 燃料噴射ノズル
31 噴孔
C キャビティの中心部(ピストン中心軸)
Di 区画領域
F 燃料噴霧
Li、Li+1 キャビティの中心から延びる直線
Rs 燃料噴霧が仮想の外周壁に衝突して流される範囲
R1 当量比1未満領域
S スワール
S1〜S7 キャビティの断面形状
1,1X piston for internal combustion engine (piston)
2 Piston top 10, 10X Cavity 11 Cavity outer peripheral wall 11X Virtual outer peripheral wall 12 Cavity bottom 13 Cavity outer edge 13a Cavity mouth (projection)
14 Shelf 15 Depression 16 Shelf mouth (projection)
30 Fuel injection nozzle 31 Injection hole C Central part of cavity (central axis of piston)
Di Sectional area F Fuel spray Li, Li + 1 Straight line Rs extending from the center of the cavity Range R1 where fuel spray collides with the virtual outer peripheral wall and flows below Equivalent ratio 1 Area S Swirl S1 to S7 Cross-sectional shape of cavity

Claims (4)

ピストンの頂部に凹形状に設けられたキャビティと、該キャビティの中央部に対向してシリンダヘッドに設けられた燃料噴射ノズルを有し、吸気をスワールさせる内燃機関のための内燃機関用のピストンにおいて、
前記キャビティの領域を前記燃料噴射ノズルの噴孔ごとの区画領域に区分し、
前記区画領域の内側に前記キャビティの外周壁の外周上側部分を窪みを有する棚部を設けると共に、前記区画領域に隣接する区画領域との境界部分では前記棚部が無い形状に形成し、
スワールの方向に関して、
前記区画領域のスワール最上流側では前記棚部が無い形状から外周側に抉る前記棚部を形成した形状に移行する第1移行部と、前記区画領域の中央まで徐々に前記窪みの外周側への抉り量を大きくする第1窪み部と、前記区画領域の中央で前記窪みの外周側への抉り量を最大とする最大窪み部と、前記区画領域の中央からスワール下流側に徐々に前記窪みの外周側への抉り量を小さくする第2窪み部と、前記区画領域のスワール最下流側では前記棚部のある形状から前記棚部の無い形状に移行する第2移行部とで形成して、隣接する区画領域のスワール最上流側の形状に連続させるように形成し、
更に、前記第1移行部、前記第2移行部、前記第2窪み部、前記第1窪み部の順に、前記窪みの外周側への抉り量における周方向に対する変化量を小さくしたことを特徴とする内燃機関用のピストン。
A piston for an internal combustion engine for an internal combustion engine that has a cavity provided in a concave shape at the top of the piston and a fuel injection nozzle provided in a cylinder head facing the center of the cavity and swirls intake air. ,
Dividing the area of the cavity into partitioned areas for each injection hole of the fuel injection nozzle,
A shelf having a recess is provided on the outer peripheral upper portion of the outer peripheral wall of the cavity inside the partitioned area, and the shelf is formed in a shape without the shelf at a boundary portion with a partitioned area adjacent to the partitioned area,
Regarding the swirl direction,
A first transition portion that transitions from a shape without the shelf portion to a shape formed with the shelf portion which is hollowed out on the outer peripheral side on the most upstream side of the swirl of the partitioned region, and gradually toward the outer peripheral side of the depression to the center of the partitioned region. A first recessed portion for increasing the amount of gouging, a maximum recessed portion for maximizing the amount of gouging to the outer peripheral side of the recess at the center of the partitioned region, and the recessed portion gradually from the center of the partitioned region to the swirl downstream side. And a second transition portion that transitions from the shape with the shelf to the shape without the shelf at the most downstream side of the swirl in the partitioned area. , Formed to be continuous with the shape of the swirl most upstream side of the adjacent partitioned area,
Further, the first transition portion, the second transition portion, the second dent portion, and the first dent portion are sequentially reduced in the amount of change in the amount of gouging toward the outer peripheral side of the dent in the circumferential direction. For internal combustion engines.
前記第2窪み部の前記棚部のある部位において、前記ピストンの頂部との角部の口元部をピストン中心軸側にせり出させて形成した請求項1に記載の内燃機関用のピストン。   2. The piston for an internal combustion engine according to claim 1, wherein at a portion of the second recess where the shelf is located, a mouth portion of a corner of the piston with a top portion is formed to protrude toward a piston center axis side. 3. 請求項1又は2に記載の内燃機関用のピストンを備えたことを特徴とする内燃機関。   An internal combustion engine comprising the internal combustion engine piston according to claim 1. ピストンの頂部に凹形状に設けられたキャビティと、該キャビティの中央部に対向してシリンダヘッドに設けられた燃料噴射ノズルを有し、吸気をスワールさせる内燃機関のための内燃機関用のピストンの設計方法において、
予め設定されたスワールによって、前記燃料噴射ノズルの各噴孔から噴射された燃料噴霧が流される範囲を計測または算出する第1ステップと、
噴射された燃料噴霧と吸気の混合分布を計測し、燃料噴霧の量に対して混合している吸気中の酸素量が余剰となる当量比1未満領域を計測または算出する第2ステップと、
前記キャビティの領域を、前記燃料噴射ノズルの噴孔ごとの区画領域に前記当量比1未満領域を含むように区分する第3ステップと、
前記区画領域ごとに前記キャビティの形状を決定する第4ステップとを有し、
前記第4ステップにおいて、
前記噴孔から燃料が噴射される方向においては、燃料噴霧が前記キャビティの外周壁と衝突するまでの混合距離を稼ぐために、前記キャビティの外周壁をピストン中心軸から遠くに配置し、
スワール下流側では、燃料噴霧が前記キャビティの前記外周壁に衝突後、スワールで流される間に前記キャビティの内部の吸気と混合するように、前記キャビティの口元部を燃料噴霧を押し込むようにせり出す形状とし、
スワール上流側では、燃料噴霧が前記キャビティの前記外周壁に衝突後、隣接する燃料噴霧との干渉が無いように、前記キャビティの前記外周壁をピストン中心軸側に近づけて配置し、
前記ピストン中心軸を含む平面内の前記キャビティの断面形状を、スワールの流れに沿って前記ピストン中心軸を中心にして周方向に沿って回転させたときに、この回転に伴って前記キャビティが外側に広がった後に元に戻るように連続させて前記キャビティの形状を作成する内燃機関用のピストンの設計方法。
A piston for an internal combustion engine for an internal combustion engine for swirling intake air, having a cavity provided in a concave shape at the top of the piston, and a fuel injection nozzle provided in a cylinder head opposed to the center of the cavity. In the design method,
A first step of measuring or calculating a range in which the fuel spray injected from each injection hole of the fuel injection nozzle flows by a preset swirl,
A second step of measuring a mixture distribution of the injected fuel spray and intake air, and measuring or calculating a region having an equivalence ratio of less than 1 in which the amount of oxygen in the intake air mixed with respect to the amount of fuel spray is excessive;
A third step of dividing the region of the cavity such that the divided region for each injection hole of the fuel injection nozzle includes the region having an equivalence ratio of less than 1;
A fourth step of determining the shape of the cavity for each of the divided areas ,
In the fourth step,
In the direction in which fuel is injected from the injection hole, the outer peripheral wall of the cavity is disposed far from the center axis of the piston in order to increase the mixing distance until the fuel spray collides with the outer peripheral wall of the cavity,
On the downstream side of the swirl, after the fuel spray collides with the outer peripheral wall of the cavity, the mouth of the cavity is pushed out so as to push the fuel spray so as to mix with the intake air inside the cavity while being swirled. age,
On the swirl upstream side, after the fuel spray collides with the outer peripheral wall of the cavity, the outer peripheral wall of the cavity is arranged closer to the piston center axis side so as not to interfere with the adjacent fuel spray,
When the cross-sectional shape of the cavity in a plane including the piston center axis is rotated in a circumferential direction around the piston center axis along a swirl flow, the cavity is moved outward with this rotation. A method for designing a piston for an internal combustion engine, wherein the shape of the cavity is continuously formed so as to return to its original state after being spread .
JP2015153168A 2015-08-03 2015-08-03 Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine Active JP6648442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015153168A JP6648442B2 (en) 2015-08-03 2015-08-03 Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153168A JP6648442B2 (en) 2015-08-03 2015-08-03 Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017031891A JP2017031891A (en) 2017-02-09
JP6648442B2 true JP6648442B2 (en) 2020-02-14

Family

ID=57987989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153168A Active JP6648442B2 (en) 2015-08-03 2015-08-03 Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6648442B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160194A (en) * 2012-02-08 2013-08-19 Nippon Soken Inc Fuel injection control device for internal combustion engine
JP6100916B2 (en) * 2012-12-18 2017-03-22 ボルボ トラック コーポレイション Piston for internal combustion engine cylinder
JP6238702B2 (en) * 2013-11-28 2017-11-29 株式会社豊田中央研究所 diesel engine

Also Published As

Publication number Publication date
JP2017031891A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP4888330B2 (en) Direct injection internal combustion engine
US7165526B2 (en) Direct injection engine and controller for the same
JP6818011B2 (en) Distorted combustion chamber for opposed piston engine
JP6869244B2 (en) Internal combustion engine piston crown
BRPI0722151A2 (en) EMISSION REDUCTION DEVICE ON A VEHICLE INTERNAL COMBUSTION ENGINE
JP5589453B2 (en) Diesel engine combustion chamber
JP4732505B2 (en) Direct fuel injection engine
US10731544B2 (en) Internal combustion engine and method for its operation
JP6508236B2 (en) diesel engine
WO2018163742A1 (en) Diesel engine
JP6648442B2 (en) Piston for internal combustion engine, internal combustion engine, and method for designing piston for internal combustion engine
JP6238702B2 (en) diesel engine
JP5983109B2 (en) Internal combustion engine
JP5227010B2 (en) Piston for direct injection diesel engine
US10876464B2 (en) Piston design for flow re-direction
JP2002122024A (en) Combustion chamber or piston
JP5671810B2 (en) Combustion chamber structure of internal combustion engine
JPH108965A (en) Combustion chamber for diesel engine
JP2020153238A (en) Combustion chamber
JP6508235B2 (en) diesel engine
JP4183127B2 (en) Sub-chamber internal combustion engine
JP5418315B2 (en) Diesel engine combustion chamber
JP2022108979A (en) diesel engine
JPH08144766A (en) Direct injection type diesel engine
JPH0720341Y2 (en) Direct injection combustion chamber of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150